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Preface (Readme)

Th is  is the n in th  ed ition  o f  the text but the firs t w ith  Farid  G olnaraghi as the lead author. 
For th is ed ition , we increased the num ber o f  examples, added M A T L A B  ® ' toolboxes, and 
enhanced the M A T L A B  G U I software. A C S Y S . We added more com puter-aided tools fo r  
students and teachers. The prepublication m anuscript was reviewed by many professors, 
and most o f  the relevant suggestions have been adopted. In  th is ed ition. Chapters 1 through
4  are organized to  contain a ll background m ateria l, w h ile  Chapters 5 through 10 contain 
m ateria l d irec tly  related to  the subject o f  control.

In  this ed ition , the fo llo w in g  m aterials have been moved in to  appendices on th is book's 
Web site at w w w .w iley.com /co llege /go lnaragh i.

Append ix  A : E lem entary M a trix  Theory and A lgebra 

Append ix  B ; D ifference Equations 

Append ix  C: Laplace Transform  Table 

Append ix  D : r-T ransfo rm  Table

Append ix  E; Propenies and Consữuction o f  the R oot L o c i 

Append ix  F; General N yqu is i C rite rion  

Append ix  G; A C S Y S  2008: D escrip tion o f  the Software 

Append ix  H : D iscrete-Data C onưol Systems

In  add ition , the Web site conta ins the M A T L A B  files fo r  A C S Y S . w h ich  are software 
too ls fo r  so lv ing  con tro l-system  problem s, and Pow erPoint files fo r  the illu s tra tio n s  in  the 
texl.

The fo llo w in g  paragraphs are aimed at three groups: professors w ho have adopted the 
book or who we hope w il l  select it  as the ir text; p ractic ing engineers look ing  fo r  answers to 
solve the ir day-to-day design problem s: and. fina lly , students who are go ing to  live  w ith  the 
book because i t  has been assigned fo r the conirol-system s course they are taking.

T o  the  P ro fessor: The materia] assembled in  th is book is an outgrow th o f  senior-level 
control-system  courses taughi by the authors at the ir universities throughout theứ  teaching 
careers. The firs t eight editions have been adopted by hundreds o f  universities in  the U n ited  
States and around the w orld  and have been translated in to  at least six languages. P ractica lly 
all the design topics presented in  the eighth ed ition  have been retained.

Th is  text contains not on ly  conventional M A T L A B  toolboxes, where students can 
learn M A T L A B  and u tilize  the ir program m ing sk ills , bu i also a graphical M A T l-.^B -based 
software. A C SYS. The A C S Y S  software added to this ed ition  is very d iffe ren t from  the 
software accompanying any other con tro l book. Here, through extensive use o f  M A T L .^B  
G U I program m ing, we have created software that is easy to  use. As a result, students w ill 
need to  focus on ly  on learning con tro l problem s, not p rogram m ing! We also have added 
tw o  new applications. S IM Lab and V iitu a l Lab. through w hich students w o rk  on rea lis tic  
problems and conduct speed and position contro l labs in  a software environm ent. In 
S IM Lab. students have access to the system parameters and can a lter them (as m  any 
sim ulation). In  V irtua l Lab. we have introduced a b)ack-box approach in w h ich  die students

' MATLAB '* is a registered ưademark of The MaihWorks. Inc.
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have no access to  the plant parameters and have to  use some sort o f  system iden tifica tion  
technique to find  them. Through V irtu a l Lab we have essentia lly prov ided  students w ith  a 
rea listic on line  lab w ith  a ll the problem s they w ou ld  encounter in  a real speed- or pos ition- 
con tro l lab— fo r example, a m p lifie r saturation, noise, and non linearity. We welcom e you r 

ideas fo r  the future editions o f  this book.
F ina lly , a sample section-by-section fo r  a one-semester course is g iven in  the 

Instructor’s Manual, w h ich  is available fro m  the pub lisher to  qua lified  instructors. The 
M anual also contains detailed solu tions to  a ll the problem s in  the book.

T o  P ra c tic in g  E ng ineers: Th is  book was w ritten  w ith  the readers in  m ind  and is very 
suitable fo r  self-study. O ur ob jective was to  treat subjects c learly  and thoroughly. The book 
does not use the th eo rem -p roo f-Q .E .D . style and is w ith o u t heavy mathematics. The 
authors have consulted extensively fo r  w ide  sectors o f  the industry fo r  m any years and have 
partic ipated in  so lv ing  numerous control-system s problem s, from  aerospace systems to 
industria l controls, autom otive contro ls, and contro l o f  com puter peripherals. A lthough  i t  is 
d if f ic u lt  to  adopt a ll the details and realism  o f  p ractica l problem s in  a textbook at th is level, 
some examples and problem s reflect s im p lifie d  versions o f  rea l- life  systems.

T o  S tudents: You have had i t  now  that you have signed up fo r  th is course and your 
professor has assigned th is book! You had no say about the choice, though you can fo rm  
and express you r op in ion  on the book after reading it. W orse yet. one o f  the reasons that 
you r professor made the selection is because he o r she intends to  make you w o rk  hard. B ut 
please d o n 't m isunderstand us: w hat we rea lly  mean is that, though th is is an easy book to 
study (in  our op in ion), i t  is a no-nonsense book. I t  doesn’ t have cartoons o r n ice-look ing  
photographs to  amuse you. From  here on. i t  is a ll business and hard w ork. You should have 
had the prerequisites on subjects found in  a typ ica l linear-systems course, such as how  to 
solve linear ord inary d iffe ren tia l equations. Laplace transform  and applications, and tim e- 
response and frequency-dom ain analysis o f  linear systems. In  this book you w il l  not find 
too much new mathematics to  w h ich  you have not been exposed before. W hat is interesting 
and challenging is that you are going to  leam  how  to  apply some o f the mathematics that 
you  have acquired during the past tw o  or three years o f  study in  college. In  case you need to 
review  some o f  the mathem atical foundations, you can find  them in  the appendices on this 
book ’s Web site. The W eb site also contains lo ts o f  other goodies, inc lud ing  the A C S Y S  
software, w h ich  is G U I software that uses M A T LA B -based  programs fo r so lv ing linear 
contro l systems problems. You w il l  also find  the S im u lin k ” ^-based S IM L a b  and V irtua l 
Lab, w h ich  w il l  help you to  gain understanding o f  rea l-w orld  con tro l systems.

T h is  book has numerous illus tra tive  examples. Some o f  these are deliberate ly simple 
fo r  the purpose o f  illusư ating  new ideas and subject matter. Some examples are more 
elaborate, in  order to  bring  the practical w o rld  closer to you. Furthermore, the ob jective o f  
th is book is to  present a com plex subject in a clear and thorough way. One o f  the im portant 
learning strategies fo r  you as a student is not to  re ly  s tr ic tly  on the textbook assigned. W hen 
studying a certain subject, go to  the lib ra ry  and check out a few  s im ila r texts to  see how 
other authors treat the same subject. You may gain new perspectives on the subject and 
d iscover that one author may treat the m ateria l w ith  more care and thoroughness than the 
others. D o not be disưacted by w ritten-dow n coverage w ith  overs im p lified  examples. The 
m inute you step in to  the real w orld , you w il l  face the design o f  con tro l systems w ilh  
nonlinearities and/or tim e-vary ing  elements as w e ll as orders that can boggle you r m ind. It
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may be discouraging to  te ll you now  that s tr ic tly  linear and firs t-o rder systems do not exist 
in  the real w orld .

Some advanced engineering students in  college do not believe that die m ateria l they 
leam  in  the classroom is ever go ing  to be applied dữectly in  indusưy. Some o f  our students 
come back from  fie ld  and in te rv iew  trips  to ta lly  surprised 10 find  that the m ateria l ihev 
learned in  courses on contro l systems is actua lly being used in  indusưy loday. They are 
surprised to find  that th is book is also a popular reference fo r p ractic ing  engineers. 
U nfortunate ly , these fac t-find ing , eye-opening, and se lf-m otiva ting  u ip s  usually occur near 
the end o f  the ir college days, w h ich  is o ften too late fo r  students to  get m otivated.

There are many learn ing aids available to  you: the M A TLA B -based A C S Y S  software 
w il l  assist you in  so lv ing  a ll k inds o f  control-system s problems. The S IM Lab  and VirruaJ 
Lab software can be used fo r  s im ulation o f  v irtu a l experim ental systems. These are all 
found on the Web site. In  addition, the R eview  Questions and Summaries at ứie end o f  each 
chapter should be useful to  you. A lso  on the Web site, you w il l  find  the eưaia and other 
supplemental material.

We hope that you w i l l  enjoy this book. I t  w i l l  represent another m a jo r textbook 
acquis ition (investm ent) in  you r college career. O ur advice to  you is not to sell i t  back to  the 
bookstore at the end o f  the semester. I f  you do so but fin d  out la ter in  you r professional 
career that you need to  re fe r to  a control systems book, you w il l  have to  buy i i  again at a 
h igher price.

S pecial A ckn o w le d g m e n ts : The authors w ish to thank the reviewers fo r  ih e ir invaluable 
comments and suggestions. The prepublication reviews have had a great im pact on the 
revis ion project.

The authors thank Dr. Earl Foster. Dr. Vahe Caliskan. S im on Fraser students and 
research associates M ichael Ages, Johannes M in o r, L inda  Franak. Arash Jamalian. 
Jennifer Leone. Neda Pamian. Sean MacPherson. A m in  Kamalzadeh. and Nathan 
(W uyang) Zheng fo r the ir help. Farid  Golnaraghi also wishes to thank Professor Benjam in 
K uo  fo r  sharing the pleasure o f  w ritin g  th is w onderfu l book, and fo r his teachings, patience, 
and suppon throughout th is experience.

M . F. Golnaraghi.
Vancouver. British Columbia,
Canada
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Introduction

I INTRODUCTION
The m ain objectives o f  this chapter are:

1. To define a con tro l system.

2. To expla in  w hy con tro l systems are im portant.

3. To introduce the basic components o f  a conưol system.

4. To give some examples o f  control-system  applications.

5. To expla in  w hy feedback is incorporated in to  m ost con tro l systems.

6. To inưoduce types o f  contro l systems.

One o f  the most com m only  asked questions by a novice on a con tro l system is: W hat is 
a contro l system? To answer the question, we can say that in  our da ily  lives there are 
numerous “ objectives”  that need to be accomplished. For instance, in  the domestic 
dom ain, we need to regulate the temperature and h um id ity  o f  homes and bu ild ings fo r 
com fortab le liv in g . For transportation, we need to  con tro l the autom obile and airplane to  go 
from  one po in t to  another accurately and safely. Indusư ia lly, m anufacturing processes 
contain numerous objectives fo r  products that w il l  satisfy the precision and cost- 
effectiveness requirements. A  human being is capable o f  perform ing a w ide range o f  
tasks, includ ing  decision making. Some o f  these tasks, such as p ick in g  up objects and 
w a lk ing  from  one po in l to  another, are com m only  carried out in  a routine fashion. Under 
certain conditions, some o f  these tasks are to  be perform ed in the best possible way. For 
instance, an athlete running a 100-yard dash has the objective o f  running that distance in the 
shortest possible tim e. A  marathon runner, on the other hand, not o n ly  must run the distance 
as qu ick ly  as possible, but, in  doing so, he o r she must contro l the consum ption o f  energy 
and devise the best strategy fo r die race. The means o f  achieving these “ ob jectives”  usually 
invo lve the use o f  contro l systems that im plem ent certain contro l strategies, 

rol systems are in In  recent years, contro l systems have assumed an increasingly im portant role in  the
ince in modem development and advancement o f  modern c iv iliza tio n  and technology. P ractica lly every

aspect o f  our day-to-day activ ities  is affected by some type o f  contro l system. C ontrol 
systems are found in abundance in a ll sectors o f  industry, such as qua lity  control o f  
m anufactured products, automatic assembly lines, m achine-tool contro l, space technology 
and weapon systems, com puter contro l, transportation systems, pow er systems, robotics, 
M icro -E iectro -M echan ica l Systems (M E M S ). nanotechnology, and many others. Even the 
contro l o f  inventory and social and econom ic systems may be approached from  the theory 
o f  automatic control.

Ition,
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system.

|‘M  Basic Components of a Control System

The basic ingredients o f  a contro l system can be described by:

1. Objectives o f  control.

2. Control-system  components.

3. Results or outputs.

The basic relationship among these three components is illus tra ted  in  F ig. 1-1. In  more 
technical terms, the ob jectives can be iden tified  w ith  in p u ts , o r a c tu a tin g  signals, u. and 
the results are also called o u tpu ts , or co n tro lle d  variab les , y. In  general, the objective 
o f  the contro l system is to  con tro l the outputs in  some prescribed manner by the inputs 
through the elements o f  the contro l system.

1-1-2 Examples of Control-System Applications

In te llig e n t Systems
A pp lica tions o f  con tro l systems have s ign ifican tly  increased through the development 
o f  new materials, w hich provide unique opportunities fo r h igh ly  e ffic ien t actuation and 
sensing, thereby reducing energy losses and environm ental impacts. S iate-of-the-an 
actuators and sensors may be im plem ented in v in u a lly  any system, inc lud ing  b io log ica l 
propulsion; locom otion ; robotics: m aterial handling: b iom edica l, surgical, and endoscopic: 
aeronautics; m arine: and the defense and space industries. Potential applications o f  conưol 
o f  these systems may benefit the fo llo w in g  areas;

• M a ch in e  tools. Im prove precision and increase produc tiv ity  by con tro lling  chatter.

• F le x ib le  robo tics . Enable faster m otion  w ith  greater accuracy.

• P h o to lith o g ra p h y . Enable the m anufacture o f  sm aller m icroelectron ic c ircu its  by 
con tro lling  v ib ra tion  in the photo lithography c ircu it-p rin tin g  process.

• B iom echan ica l and  b iom ed ica l. A rt if ic ia l muscles, drug de live r)’ systems, and 
other assistive technologies.

• Process c o n tro l. For example, o n /o ff shape contro l o f  soiar reflectors o r aero
dynam ic surfaces.

C o n tro l in  V ir tu a l P ro to ty p in g  and H a rd w a re  in  the Loop
The concept o f  v irtua l p ro totyp ing has become a w ide ly  used phenomenon in  the 
autom otive, aerospace, defense, and space industries. In  a ll these areas, pressure to cut 
costs has forced manufacturers 10  design and test an entire system in a computer 
environm ent before a physical prototype is made. Design tools such as M A T L A B  and 
S Im u lin k  enable companies to design and test contro llers fo r d iffe ren t components ie.g.. 
suspension. A B S . steering, engines, fligh t control mechanisms, landing gear, and special
ized devices) w ith in  the system and examine the behavior o f  the control system on the 
virtua l prototype in real tim e. Th is  allows the designers to change or adjust con tro lle r 
parameters online before the actual hardware is developed. Hardware in the loop 
te rm inology is a new approach o f  testing ind iv idua l components by attaching them to 
the v inua l and conư o lle r prototypes. Here the physical con tro lle r hardware is interfaced 
w ith  the com puter and replaces its mathematical model w ith in  the computer!



S m a rt T ra n s p o rta tio n  Systems
The autom obile and its evo lu tion  in  the last tw o  centuries is arguably the most ưansíorm - 
ative ÌDvention o f  man. O ver years innovations have made cars faster, sưonger, and 
aesthetically appealing. We have grow n to  desire cars that are ‘ ‘ in te llig e n t”  and provide 
m axim um  levels o f  com fort, safety, and fue l e ffic iency. Exam ples o f  in te llig e n t systems in  
cars include clim ate con tro l, cruise contro l, a n ti-lock  brake systems (A B S s), active 
suspensions that reduce vehic le  v ib ra tion  over rough teưain o r im prove s tab ility , a ir 
springs that self-leve l the vehic le  in  h igh-G  turns (in  addition to p rov id ing  a better ride), 
integrated vehic le  dynamics that p rov ide  yaw  contro l when the vehicle is either over- or 
understeering (by selective ly activating the brakes to regain vehicle con tro l), traction 
contro l systems to  prevent sp inning o f  wheels during  acceleration, and active sway bars to 
provide “ con tro lled ”  ro llin g  o f  the vehicle. The fo llo w in g  are a few  examples.

D nve-by-w ire a nd  D river A ssis t System s  The new generations o f  in te llig e n t vehicles 
w il l  be able to  understand the d r iv in g  environm ent, know  the ir whereabouts, m on ito r their 
health, understand the road signs, and m on ito r d rive r performance, even oveư id ing  drivers 
to  avoid catastrophic accidents. These tasks require sign ifican t overhaul o f  current designs. 
D rive-by-w ừ e technology replaces the trad itiona l mechanical and hydrau lic  systems w ith  
e lectronics and contro l systems, using electrom echanical actuators and hum an-m achine 
interfaces such as pedal and steering feel em ulators— otherw ise know n as haptic systems. 
Hence, the trad itiona l components— such as the steering colum n, intennediate shafts, 
pumps, hoses, flu ids, belts, coolers, brake boosters, and master cylinders— are elim inated 
fro m  the vehicle. Haptic interfaces that can o ffe r adequate transparency to  the d rive r w h ile  
m a inta in ing safety and s ta b ility  o f  the system. Rem oving the bu lky  mechanical steering 
wheel co lum n and the rest o f  the steering system has clear advantages in  terms o f  mass 
reduction and safety in  m odem  vehicles, along w ith  im proved ergonomics as a result o f  
creating more driver space. Replacing the steering wheel w ith  a haptic device that the 
d rive r controls through the sense o f  touch w ou ld  be useful in th is regard. The haptic device 
w ou ld  produce the same sense to the d rive r as the mechanical steering wheel but w ith  
im provements in  cost, safety, and fue l consum ption as a result o f  e lim ina ting  the bu lky 
mechanical system.

D rive r assist systems help drivers to  avoid o r m itiga te  an accident by sensing the nature 
and significance o f  the danger. Depending on the significance and tim in g  o f  the threat, 
these on-board safety systems w il l  in it ia lly  alert the d rive r as early as possible to  an 
im pending danger. Then, they w il l  active ly assist or. u ltim ate ly, intervene in  order to  avert 
the accident o r m itigate its consequences. Provisions fo r automatic over-ride features when 
the driver loses contro l due to  fatigue o r lack o f  attention w il l  be an im portant part o f  the 
system. In  such systems, the so-called advanced vehicle contro l system m onitors the 
long itud ina l and lateral control, and by interacting w ith  a centra] management unit, it w il l 
be ready to  take control o f  the vehicle whenever the need arises. The system can be readily 
integrated w ith  sensor networks that m on ito r every aspect o f  the conditions on the road and 
are prepared to  take appropriate action in  a safe manner.

Integration and  ư tìlization o f  A dvanced  H ybrid Powertrains H yb rid  technologies o ffe r 
im proved fuel consum ption w h ile  enhancing d riv ing  experience. U tiliz in g  new energy 
storage and conversion technologies and integrating them w ith  powertrains w ou ld  be prim e 
objectives o f  this research activ ity . Such technologies must be com patib le  w ith  cuưent 
pla tform s and must enhance, rather than com promise, vehicle function. Sample applica
tions w ould include developing p lug-in  hyb rid  technology, w hich w ould enhance the 
vehicle cru is ing distance based on using battery power alone, and u tiliz in g  sustainable

1-1 Introduction ^  3
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energy resources, such as solar and w ind  power, to  charge the batteries. The smart p lug -in  
vehic le  can be a part o f  an integrated smart home and g rid  energy system o f  the future, 
w h ich  w ou ld  u tilize  smart energy m etering devices fo r  op tim a l use o f  g rid  energy by 
avo id ing  peak energy consum ption hours.

H igh P erform ance R eal-tim e Control, H eatíh  M onừorìng, a n d  D iagnosis  M odem  
vehicles u tilize  an increasing number o f  sensors, actuators, and networked embedded 
computers. The need fo r  h igh  perform ance com puting  w ou ld  increase w ith  the inưoduction 
o f  such revo lu tionary features as d rive -by-w ire  systems in to  m odem  vehicles. The 
ưemendous com putational burden o f  processing sensory data in to  appropriate contro l 
and m on ito ring  signals and d iagnostic in fo rm a tion  creates challenges in  the design o f  
embedded com puting technology. Towards th is end, a related challenge is to  incorporate 
sophisticaled com putational techniques that con tro l, m onitor, and diagnose com plex 
autom otive systems w h ile  m eeting requirements such as low  pow er consum ption and 
cost effectiveness.

The fo llo w in g  represent more ưaditiona l applications o f  con tro l that have become part 
o f  our da ily  lives.

S tee ring  C o n tro l o f  an A u to m o b ile
As a sim ple example o f  the con tro l system, as shown in Fig. I - l ,  consider the steering 
con tro l o f  an autom obile. The d irection  o f  the tw o  fro n t wheels can be regarded as the 
contro lled variable, o r the output, y; the d irection  o f  the steering wheel is the actuating 
s ignal, o r the input, u. The contro l system, o r process in  this case, is composed o f  the 
steering mechanism and the dynam ics o f  the entire  autom obile. However, i f  ứie ob jective is 
to contro l the speed o f  the autom obile, then the amount o f  pressure exerted on the 
accelerator is the actuating signal, and the vehic le  speed is the con tro lled  variable. As a 
whole, we can regard the s im p lified  autom obile contro l system as one w ith  tw o  inputs 
(steering and accelerator) and tw o outputs (heading and speed). In  th is case, the tw o 
controls and tw o  outputs are independent o f  each other, but there are systems fo r  w h ich  the 
controls are coupled. Systems w ith  more than one input and one output are called 
m u lt iv a r ia b le  systems.

Id le-Speed C o n tro l o f  an A u to m o b ile
As another exam ple o f  a con tro l system, we consider the idle-speed conưol o f  an 
autom obile engine. The objective o f  such a contro l system is lo  m aintain the engine 
id le  speed at a re la tive ly  low  value ( fo r  fue l econom y) regardless o f  the applied engine 
loads (e.g.. transm ission, power steering, a ir  cond ition ing). W ithou t the idle-speed conưol, 
any sudden engine-load app lication w ou ld  cause a drop in  engine speed that m igh t cause 
the engine to stall. Thus the main objectives o f  the idle-speed contro l system are (1 ) to 
e lim inate o r m in im ize  the speed droop when engine loading is applied and (2 ) to  maintain 
the engine id le  speed at a desired value. F ig. I -2  shows the b lock  diagram o f  the idle-speed 
con tro l system from  the standpoint o f  inputs-system -outputs. In  th is case, the throttle 
angle a  and the load torque Tl (due to the application o f  a ir condition ing, pow er steering, 
transmission, or power brakes, etc.) are the inputs, and the engine speed O) is the output. The 
engine is the con tro lled  process o f  the system.

S u n -T ra c k in g  C o n tro l o f  S o la r C o llec to rs
To achieve the goal o f  developing econom ica lly feasible non-fossil-fue l e lectrica l power, 
the U.S. govem m enl has sponsored many organizations in  research and developm ent o f  
solar power conversion methods, includ ing  the solar-cell conversion techniques. In  most o f
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Load torque Tị_

Throtile angle a . ENGINE
Figure 1-2 Idle-speed 
conưol system.

Figure 1-3 Solar collector field.

these systems, the need fo r h igh  effic iencies dictates the use o f  devices fo r sun tracking. 
F ig. 1 -3 shows a solar co llec to r fie ld. Fig. 1 -4  shows a conceptual method o f  e ffic ien t water 
extraction using solar power. D uring  the hours o f  day ligh t. Ihe solar co llec to r w ould 
produce e lectric ity  to  pum p water from  the underground water table to a reservo ir (perhaps 
on a nearby m ountain or h il l) ,  and in  the early m orn ing hours, the water w ould be released 
in to  the irriga tion  system.

One o f  the most im portant features o f  the solar co llec to r is  that the co llec to r dish must 
track the sun accurately. Therefore, the m ovement o f  the co llec to r dish must be contro lled 
by sophisticated con lro l systems. The b lock diagram o f  Fig. 1-5 describes the general 
philosophy o f  the sun-tracking system together w ith  some o f  the most im portant com po
nents. The con tro lle r ensures that the tracking co llec to r is pointed tow ard the sun in  the 
m orn ing and sends a “ start tra c k " command. The co n tro lle r constantly calculates the sun’s 
rate fo r  the tw o axes (azim uth and elevation) o f  con tro l during the day. The con tro lle r uses 
the sun rate and sun sensor in fo rm ation  as inputs to generate proper m otor commands to 
slew the collector.

1-1-3 Open-Loop Control Systems (Nonfeedback Systems)

• Open-loop systems are The idle-speed contro l system illustra ted in Fig. 1-2. shown previously, is rather un
economical but usually sophisticated and is called an open-loop  c o n tro l system. It is not d if f ic u lt  to see lhat the
inaccurate. system as shown w ould not sa tisfactorily  fu lf i l l  c r it ica l performance requirements. For

instance, i f  the throttle angle a  is set at a certain in itia l value that coưesponds 10  a certain
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Figure 1-5 Important components o f ứie sun-ưacking control system.

engine speed, then when a load torque T l is applied, there is no way to  prevent a drop in  ihe 
engine speed. The o n ly  way to  make the system w ork  is to  have a means o f  ad justing a  in 
response to  a change in  the load torque in  order to  m aintain CO at the desired l e v e l .  The 
conventional e lectric washing machine is another exam ple o f  an open-loop conưol system 
because, typ ica lly , the am ount o f  machine wash tim e  is en tire ly  determ ined by ihe 
judgm ent and estim ation o f  the human operator.

The elements o f  an open-loop contro l system can usually be d iv ided  in to  tw o  parts: ứie 
c o n tro lle r  and the c o n tro lle d  process, as shown by  the b lock diagram  o f  Fig. 1-6. A n  input 
signal, o r com m and, r.  is applied to  the contro ller, whose output acts as the actuating signal 
u; the actuating signal then controls the con tro lled  process so that die con tro lled variab le y  
w ill perform  according to some prescribed standards. In  sim ple cases, the co n tro lle r can be

input r signal u CONTROLLED variable >•
CONTROLLER PROCESS 1

Figure 1-6 Elements o f an open-loop conưo] system.



an am plifier, a mechanical linkage, a filte r, o r other contro l elements, depending on the 
nature o f  the system. In  more sophisticated cases, the con tro lle r can be a com puter such as a 
m icroprocessor. Because o f  the s im p lic ity  and econom y o f  open-loop con tro l systems, we 
f in d  th is type o f  system in  many noncritica l applications.

1-1-4 Closed-Loop Control Systems (Feedback Control Systems)

W hat is m issing in  the open-loop con tro l system fo r  more accurate and more adaptive 
con tro l is a l in k  o r feedback fro m  the output to  the inpu t o f  the system. To obta in  more 
accurate contro l, the con tro lled  signal should be fed back and compared w ith  the 
reference input, and an actuating signal p roportional to  the difference o f  the inpu t and the 
output must be sent through the system to  correct the eưor. A  system w ith  one o r more 
feedback paths such as that ju s t described is called a c losed-loop system.

• Closed-loop systems have A  closed-loop idle-speed contro l system is shown in  F ig. 1-7. The reference inpu t 0}, 
many advantages over open- sets the desired id lin g  speed. The engine speed at id le  should agree w ith  the reference value 
loop systems. and any d ifference such as the load torque T i  is sensed by the speed transducer and the

erro r detector. The co n tro lle r w i l l  operate on the difference and prov ide  a signal 10  adjust 
the throttle  angle a  to  correct the error. Fig, 1 -8 compares the typ ica l performances o f  open- 
loop  and closed-loop idle-speed contro l systems. In  F ig. l-8 (a ), the id le  speed o f  the open- 
loop system w il l  drop and settle at a low er value after a load torque is applied. In  Fig. 1-8 
(b), the id le  speed o f  the closed-loop system is shown to  recover qu ick ly  to the preset value 
after the application o f  Ti_.

The objective o f  the id le-speed con tro l system illustra ted, also known as a re g u la to r 
system, is to  m aintain the system output at a prescribed level.

1-1 Introduction 7

Figure 1-7 Block diagram o f a closed-loop idle-speed control system.
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Figure 1-8 (a) Typical response o f the open-loop idle-speed control system, (b) Typical response of 
the closed-loop idle-speed control system.
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► 1-2 W HAT IS FEEDBACK, AND W HAT ARE ITS EFFECTS?

• Feedback exists 
whenever there is a closed 
sequence o f cause-and- 
effect relationships.

The m otiva tion  fo r using feedback, as illustra ted by ihe examples in  Section i- 1 .  is 
somewhat overs im p lified . In  these examples, feedback is used to  reduce ứie e rro r between 
the reference input and the system output. However, the significance o f  ihe effects o f  
feedback in  contro l systems is more com plex than is demonsữated by ứiese simple 
examples. The reduction o f  system e rro r is m ere ly one o f  the many im portan t effects 
that feedback may have upon a system. We show in  the fo llo w in g  sections that feedback 
also has effects on such system perform ance characteristics as s ta b ilit> . b a n d w id th , 
o v e ra ll ga in , im pedaoce. and se ns itiv ity .

To understand the effects o f  feedback on a contro l system, i t  is essential to  examine 
th is phenomenon in  a broad sense. W hen feedback is  de liberate ly inưoduced fo r  the 
purpose o f  con tro l, its  existence is easily iden tified . However, there are numerous situations 
where a physical system that we recognize as an inherently nonfeedback system turns out 
to  have feedback when i t  is observed in  a certain manner. In  general, we can state that 
whenever a closed sequence o f  cause-and-effect re la tio n sh ip s  exists among the variables 
o f  a system, feedback is said to  exist. Th is  v iew po in t w il l  inev itab ly  adm it feedback in  a 
large number o f  systems that o rd ina rily  w ou ld  be iden tified  as nonfeedback systems. 
However, contro l-sysiem  theory a llow s numerous systems, w ith  o r  w ithou t physical 
feedback, to  be studied in  a systematic w ay once the existence o f  feedback in  ứie sense 
m entioned previously is established.

We shall now  investigate the effects o f  feedback on the various aspects o f  sysiem 
performance. W ithou t the necessarv m athematical foundation o f  linear-system  theor>’. at 
this po in t we can re ly  on ly  on sim ple siatic-system notation fo r  ou r discussion. Le t US 
consider the sim ple feedback system configuration shown in  F ig. 1-9. where r  is the input 
signal: V. the output signal; e. the error; and b. the feedback signal. The parameters G  and / /  
may be considered as constant gains. By sim ple algebraic m anipu lations, i t  is sim ple to 
show that the in pu t-ou tpu t re la tion o f  the system is

^G H ( 1- 1)

U sing th is basic re la tionship o f  the feedback system structure, we can uncover some o f the 
s ign ificant effects o f  feedback.

1-2-1 Effect o) Feedback on Overall Gain

• Feedback may increase As seen from  Eq. (1-1). feedback affects the gain G o f  a nonfeedback system by  a facto r o f
ihe gain o f a system in one 1 +  CH. The system o f  F ig. 1-9 is said to  have negative feedback, because a m inus si<mis
frequency range but assigned to the feedback signal. The quantity G H  m ay its e lf include a m inus sign, so the
decrease It in another. general effect o f  feedback is that it m ay increase or decrease the gain  G. In  a practical

control system. G  and H  are functions o f  frequency, so the m agnitude o f  1 — G H  may be

Figure 1-9 Feedback system.
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greater than I  in  one frequency range but less than 1 in  another. I h t x t ĩ o ĩ t .  feedback  could  
increase the gain o f  system  in one frequency range bu t decrease it in another.

1-2-2 Effect of Feedback on Stability

• A  system is unstable i f  its S tab ility  is a notion that describes whether the system w il l  be able to fo llo w  the input 
output is out o f conưol. com m and that is, be useful in  general. In  a nonrigorous manner, a system  is sa id  to be 

unstable i f  its  output is out o f  control. To investigate the effect o f  feedback on stab ility , we 
can again re fe r to  the expression in  Eq. (1-1). I f  C H  =  - 1 .  the output o f  the system is 
in fin ite  fo r  any fin ite  input, and the system is said to  be unstable. Therefore, we may state 
that feedback  can cause a system  that is originally stable to becom e unstable. Certainly, 
feedback is a double-edged sword; when it  is im properly  used, i t  can be harm fu l. I t  should 
be pointed out, however, that we are o n ly  dealing w ith  the static case here, and, in  general, 
GH  =  - 1  is not the o n ly  cond ition  fo r ins tab ility . The subject o f  system s tab ility  w i l l  be 
treated fo rm a lly  in  Chapters 2, 5, 7, and 8.

I t  can be demonstrated that one o f  the advantages o f  incorporating feedback is that it 
can stabilize an unstable system. Le t us assume that the feedback system in  Fig, 1-9 is 
unstable because G H  =  — 1. I f  we introduce another feedback loop through a negative 
feedback gain o f  F , as shown in  Fig. 1-10, the inp u t-o u tp u t relation o f  the overa ll system is

\ + G H  +  GF
(1 -2 )

• Feedback can improve I t  is apparent that a lthough the properties o f  G and H  are such that the inner-loop
stability or be harmful to feedback system is unstable, because GH  =  - 1 ,  the overall system can be stable by 

properly selecting the outer-loop feedback gain F. In  practice, GH  is a function o f  
frequency, and the stab ility  cond ition  o f  the ciosed-loop system depends on the m agn itude  
and phase o f CH. The bottom  line  is thai feedback  can improve stability or be harm ful to 
stability i f  it is not properly applied.

Sensitiv ity considerations often are im portant in  the design o f  control systems. 
Because a ll physical elements have properties that change w ith  environm ent and age. 
we cannot always consider the parameters o f  a con tro l system to be com plete ly stationary 
over the entire operating life  o f  the system. For instance, the w ind ing  resistance o f  an 
e lectric m otor changes as the temperature o f  the m otor rises during operation. Contro l 
systems w ith  electric components may not operate norm ally  when first turned on because

Figure 1-10 Feedback system with tw o feedback loops.
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o f  the s till-chang ing  system parameters during warm up. Th is  phenomenon is sometimes 
ca lled “ m orn ing sickness.”  M ost dup lica ting  machines have a w arm up period during  
wh ich  tim e operation is blocked ou t when firs t turned on.

In  general, a good con tro l system should be very insensitive to  parameter varia tions but 
sensitive to the inpu t commands. We shall investigate what e ffect feedback has on 
sens itiv ity  to  parameter variations. R e fen ing  to  the system in  F ig . 1-9, we consider G 
to  be a gain parameter that m ay vary. The sens itiv ity  o f  the gain o f  the overa ll system M  to 
the varia tion  in  G  is defined as

d G /G  ''
percentage change in  M  
percentage change in  G

(1 -3 )

• Note: Feedback can 
increase or decrease the 
sensitivity o f a systcm.

where d M  denotes the increm ental change in  M  due to  the increm ental change in  G, o r  dG. 
B y using Eq. (1-1), the sens itiv ity  function  is w ritten

‘  (1-4)
“  3 G  M  I + G H

Th is  re la tion  shows that i f  GH  is a positive constant, the m agnitude o f  the sensitiv ity 
function  can be made a rb itra rily  sm all by increasing GH, provided that the system remains 
stable. I t  is apparent that, in  an open-loop system, the gain o f  the system w il l  respond in  a 
one-to-one fashion to  the varia tion in  G  (i.e.. =  1). A gain, in  practice, GH  is a function
o f frequency; the magnitude o f  1 +  G H  may be less than un ity  over some frequency ranges, 
so feedback could be harm fu l to  the sens itiv ity  to  parameter variations in  certain cases. In 
general, the sensitiv ity o f  the system gain o f  a feedback system to  parameter variations 
depends on where the parameter is located. The reader can derive the sens itiv ity  o f  the 
system in Fig. 1-9 due to the varia tion o f  H.

1-2-3 Effect of Feedback on External Disturbance or Noise

• Feedback can reduce the 
effecl o f noise.

A l l  physical systems are subject to  some types o f  extraneous signals o r noise during 
operation. Examples o f  these signals are therm al-noise voltage in  electron ic c ircu its  and 
brush o r com m utator noise in  electric motors. External disturbances, such as w ind  gusts 
acting on an antenna, are also qu ite  com m on in  conưol systems. Therefore, conưol systems 
should be designed so that ứiey are insensitive to noise and disturbances and sensitive to 
input commands.

The effect o f  feedback on noise and disturbance depends greatly on where these 
extraneous signals occur in  the system. N o  general conclusions can be reached, but in 
m any situations, feedback  can reduce the effect o f  noise a nd  disturbance on system  
performance. Le t us re fer to the system shown in Fig. 1 -11. in  wh ich  r  denotes the command

Figure 1-11 Feedback system with a noise signal-



signal and n  is the noise signal. In  the absence o f  feedback, that is, H = 0 , the output y  due to  n 
acting alone is

y  =  G2n  (1-5)

1-3 Types of Feedback Conưol Systems 11

W ith  the presence o f  feedback, the system output due to  n  acting alone is

V — --------—  n
^  I + G 1G 2/ /

( 1-6)

• Feedback also can affect C om paring Eq. (1-6) w ith  Eq. (1 -5 ) shows that the noise com ponent in  the output o f
bandwidth, impedance. Eq. (1*6) is reduced by the facto r 1 +  G 1G2H  i f  the la tte r is greater than un ity  and the
transient responses, and system is kept stable.
frequency responses. Ị j j  Chapter 9, the feedforw ard and fo rw ard  co n tro lle r configurations are used along

w ith  feedback to  reduce the effects o f  disturbance and noise inputs. In  general, feedback 
also has effects on such perform ance characteristics as bandw idth, impedance, ưansient 
response, and frequency response. These effects w il l  be explained as we continue.

► 1 - 3  TYPES OF FEEDBACK CONTROL SYSTEM S
Feedback con tro l systems may be classified in a number o f  ways, depending upon the 
purpose o f  the classification. For instance, according to the m ethod o f  analysis and design, 
con tro l systems are classified as lin e a r  o r n o n lin e a r, and tim e -v a ry in g  o r tim e - in v a r ia n t. 
A ccord ing  to  the types o f  signal found in  the system, reference is o ften made to 
co n tinuous-da ta  or d isc re te -da ta  systems, and m o du la ted  o r un m o d u la te d  systems. 
C onưol systems are often c lassified according to  the m ain purpose o f  the system. For 
instance, a p o s itio n -co n tro l system and a ve lo c ity -c o n tro l system  contro l the output 
variables ju s t as the names im p ly . In  Chapter 9. the type  o f  contro l system is defined
according to  the fo rm  o f  the open-loop transfer function . In  general, there are many other
ways o f  iden tify ing  contro l systems according to some special features o f  the system. I t  is 
im portan t to  know  some o f  the more com m on ways o f  c lass ify ing  con tro l systems before 
em barking on the analysis and design o f  these systems.

1-3-1 Linear versus Nonlinear Control Systems

• Most real-life control 
systems have nonlinear 
characteristics to some 
extent.

Th is  classification is made according to the methods o f  analysis and design. S tric tly  
speaking, linear systems do not exist in  practice, because a ll physical systems are nonlinear 
to  some extent. L inear feedback contro l systems are idealized models fabricated by the 
analyst pure ly fo r  the s im p lic ity  o f  analysis and design. W hen the magnitudes o f  signals in 
a contro l system are lim ite d  to  ranges in  w hich system components exh ib it linear 
characteristics (i.e., the princ ip le  o f  superposition applies), the system is essentially linear. 
B ut when the magnitudes o f  signals are extended beyond the range o f  the linear operation, 
depending on the severity o f  the nonlinearity, the system should no longer be considered 
linear. For instance, am plifiers used in  con tro l systems often exh ib it a saturation effect 
when the ir input signals become large; the magnetic fie ld  o f  a m otor usually has saturation 
properties. O ther common nonlinear effects found in  con tro l systems are the backlash or 
dead play between coupled gear members, nonlinear spring characteristics, nonlinear 
fr ic tio n  force o r torque between m oving  members, and so on. Q uite  often, nonlinear 
characteristics are in ten tiona lly  introduced in  a contro l system to  im prove its  perfonnance



or p rov ide  more e ffective  con tro l. For instance, to  achieve m in im um -tim e  c o n tto l. an on- 
o f f  (bang-bang or re lay) type con tro lle r is used in  m any m issile  o r spacecraft conưol 
systems. T yp ica lly  in  these systems, je ts  are mounted on the sides o f  the vehic le  to  provide 
reaction torque fo r  attitude contro l. These je ts  are often contro lled in  a fu li-o n  o r fu l l- o f f  
fash ion, so a fixed  am ount o f  aừ is applied fro m  a g iven je t  fo r  a certain tim e  period to 
con tro l the attitude o f  the space vehicle.

• There are no general F o r linear systems, a w ealth  o f  analytica l and graphical techniques is ava ilab le  fo r
methods for solving a wide design and analysis purposes. A  m a jo rity  o f  the m ateria l in  th is text is devoted 10  the
class o f nonlinear systems, analysis and design o f  linea r systems. N on linear systems, on the other hand, are usually

d iff ic u lt  to ưeat m athem atica lly, and there are no general methods availab le fo r  so lv ing ã 
w ide  class o f  non linear systems. I t  is practical to  firs t design the conư o lle r based on the 
linear-system  m odel by neglectíng the non lineariiies o f  the system. The designed con tto lle r 
is then applied to  the nonlinear system m odel fo r  evaluation or redesign by computer 
s im ulation. The V irtu a l Lab  in troduced in  Chapter 6 is m a in ly  used to  model the 
characteristics o f  p ractica l systems w ith  rea lis tic  physica l components.

1-3-2 Time-Invariant versus Time-Varying Systems

W hen the parameters o f  a con lro l system are stationary w ith  respect to  tim e during the 
operation o f  the system, the system is ca lled a tim e-invarian t system. In  practice, most 
physica l systems contain elements that d r if t  o r vary w ith  tim e. For example, the w inding 
resistance o f  an electric m o to r w il l  vary when the m otor is firs t be ing excited and its 
temperature is ris ing . A nother example o f  a tim e-vary ing  system is a guided-m issile 
con tro l system in  w h ich  the mass o f  the m issile  decreases as the fue l on board is being 
consumed during flig h t. A lthough a tim e-vary ing  system w ith o u t n on linea rity  is s till a 
linear system, the analysis and design o f  th is class o f  systems are usually m uch more 
com plex than that o f  the linear lim e-invarian t systems.

C on tin u o u s-D a ta  C o n tro l Systems
A  continuous-data system is one in  w h ich  the signals at various parts o f  the system are all 
functions o f  the continuous tim e variable t. The signals in  continuous-data systems may be 
fu rther c lassified as ac or dc. U n like  the general de fin itions o f  ac and dc signals used in 
e lectrica l engineering, ac and dc con tro l systems carry special significance in  control 
systems term inology. W hen one refers to an ac c o n tro l system, i t  usually means that the 
signals in  the system are m odula ted  hy  some fo rm  o f  m odulation scheme. A  dc con tro l 
system, on the other hand, s im p ly  im p lies that the signals are unm odulated, but they are 
s till ac signals according to the conventional de fin ition . The schematic diagram  o f  a closed- 
loop  dc contro l system is shown in  Fig. 1-12. Typ ica l waveform s o f  the signals in  response 
to  a step-function inpu t are shown in  the figure. Typ ica l components o f  a dc con tro l system 
are potentiometers, dc am plifiers, dc motors, dc tachometers, and so on.

F igure 1-13 shows the schematic diagram o f  a typ ica l ac contro l system that performs 
essentially the same task as the dc system in  Fig. 1-12. In this case, the signals in the system 
are m odulated; lha t is. the in fo rm ation  is transm itted by an ac carrier signal. N o tice  that the 
output con tro lled  variable s t ill behaves s im ila rly  to  that o f  the dc system. In  th is  case, the 
m odulated signals are demodulated by the low-pass characteristics o f  the ac m otor. Ac 
contro l systems are used extensively in  a ircra ft and m issile control systems in  w h ich  noise 
and disturbance often create problems. B y using modulated ac contro l systems w ith  carrier 
frequencies o f  400 Hz or higher, the system w il l  be less susceptible to low -frequency noise. 
Typ ica l components o f  an ac contro l system are synchros, ac am plifiers, ac motors 
gyroscopes, accelerometers, and so on.

12 • Chapter V Introduction
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Figure 1-12 Schematic diagram o f a typical dc closed-loop system.

Figure 1-13 Schematic diagram o f a typical ac closed-loop control system.

In  practice, not a ll control systems are s tric tly  o f  the ac or dc type. A  system may 
incorporate a m ixture o f  ac and dc components, using m odulators and demodulators to 
match the signals at various points in  the system.

D iscre te -D a ta  C o n tro l Systems
D iscreie-data control systems d iffe r  from  the continuous-data systems in  that the signals at 
one o r more points o f  the system are in  the fo rm  o f  either a pulse tra in or a d ig ita l code. 
U sually, discrete-data contro l systems are subdivided in to  sam pled-da ta  and d ig ita l 
c o n tro l systems. Sampled-data con tro l systems refer to  a more general class o f
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Figure 1-14 Block diagram o f a sampled-data conưol system.

Digital

Figure 1-15 Digital autopilot system fo r a guided missile.

• Digital control systems 
are usually less susceptible 
(0 noise.

discrete-data systems in  w h ich  the signals are in  the fo rm  o f  pulse data. A  d ig ita l conữol 
system refers to  the use o f  a d ig ita l com puter o r co n tro lle r in  the system so that the signals 
are d ig ita lly  coded, such as in  binary code.

In  general, a sampled-data system receives data o r in fo rm a tion  o n ly  in te rm itten tly  at 
specific instants o f  tim e. F o r example, the eư or signal in  a contro l system can be supplied 
o n ly  in  the fo rm  o f  pulses, in  w h ich  case the contro l system receives no in fo rm a tion  about 
the eư or signal during the periods between tw o consecutive pulses. S tric tly , a sampled-data 
system can also be classified as an ac system, because the signal o f  the system is pulse 
modulated.

F igure 1-14 illustrates how  a typ ica l sampled-data system operates. A  continuous-data 
inpu t signal r{l) is applied to  the system. The erro r signal e(l) is sampled by a sampling 
device, the sa m p le r, and the ou tpu t o f  the sampler is a sequence o f  pulses. The sampling 
rate o f  the sampler may o r  may not be un ifo rm . There are many advantages to  incorporating 
sam pling in to  a contro l system. One im portant advantage is that expensive equipm ent used 
in  the system may be time-shared among several contro l channels. A nother advantage is 
that pulse data are usually less susceptible to  noise.

Because d ig ita l computers provide m any advantages in  size and fle x ib ility , computer 
contro l has become increasing ly popular in  recent years. M any airborne systems contain 
d ig ita l contro llers that can pack thousands o f  discrete elements in to  a space no larger than 
the size o f  th is book. F igure 1-15 shows the basic elements o f  a d ig ita l au top ilo t fo r  guided- 
m issile control.

1-4 SUM M ARY
In this chapter, we inưoduced some o f the basic concepts o f what a control system is and what it is 
supposed to accomplish. The basic components o f a control system were described. By demonstrat
ing the effects o f feedback in a rudimentary way. the question o f why most control systems are closed- 
loop systems was also clarified. Mosl important, it was pointed out that feedback is a double-edged 
sword— it can benefil as well as harm the system to be controlled. This is part o f the challenging task 
o f designing a control system, which involves consideration o f such performance criteria as stability.
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sensitivity, bandwidth, and accuracy. Finally, various types o f conưol systems were categorized 
according 10 the system signals, linearity, and control objectives. Several typical conưol-system 
examples were given to illustrate the analysis and design o f conưol systems. Most systems 
encountered in real life  are nonlinear and time-varying to some extent. The concentration on the 
studies o f linear systems is due primarily to the availability o f unified and simple-to-undersiand 
analytical methods in ứie analysis and design o f linear systems.

► REV IEW  QUESTIONS

1. List the advantages and disadvantages o f an open-loop system.

2. List the advantages and disadvantages o f a closed-loop system.

3. Give the definitions o f ac and dc conưol systems.

4. Give the advantages o f a digital coinrol system over a continuous-data control system,

5. A  closed-loop control system is usually more accurate than an open-loop system.

6- Feedback is sometimes used to improve the sensitivity o f a control system.

7. I f  an open-loop system is unstable, then applying feedback w ill always improve
its stability.

S. Feedback can increase the gain o f a system in one frequency range but decrease 
it in another.

y. Nonlinear elements are sometimes intentionally inưoduced to a control system 
to improve its performance.

1«. Discrete-data control systems are more susceptible to noise due to the nature o f
their signals.

Answers to these review questions can be found on this book’s companion Web site: 
www.wiIey.com/college/golnaraghi.

(T) (F)

(T) (F)

(T) (F)

(T) (F)

(T) (F)

(T) (F)

http://www.wiIey.com/college/golnaraghi
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The studies o f  con tro l systems re ly  to a great extent on applied m aihem atics. One o f  the 
m a jo r purposes o f  control-system  studies is to  develop a set o f  analytica l too ls so that tbe 
designer can a n ive  w iU i reasonably predictable and re liab le  designs w ithou t depending 
so le ly  on the drudgery o f  experim entation o r extensive com puter sim ulation.

In  this chapter, i t  is assumed that the reader has some leve l o f  fa m ilia r it)  w ith  these 
concepts through earlier courses. Elem entary m a u ix  algebra is covered in  Append ix  A. 
Because o f  space lim ita tions, as w e ll as ứie fact that most subjects are considered as review 
m ateria l fo r the reader, the treatment o f  ứiese m athematical subjects is not exhaustive. The 
reader who wishes to  conduct an in-depth study o f  any o f  these subjects should re fer to 
books that are devoted to them.

The m ain objectives o f  th is chapter are:

1. To introduce the fundamentals o f  com plex variables.

2. To introduce frequency dom ain analysis and frequency plots.

3. To introduce d iffe ren tia l equations and state space systems.

4. To introduce the fundamentals o f  Laplace transforms.

5. To demonstrate the applications o f  Laplace ưansíorms to  solve linea r ordinar> 
d iffe ren tia ] equations.

To introduce ửie concept o f  ưansíer functions and how to  appl> them to  Uie 
m odeling o f  linear tim e-invariant systems.

To discuss s ta b ility  o f  linear tim e-invariant systems and the R outh-H urft i i2 
criterion.

To demonstrate the M A T L A B  tools using case studies.

6.

7.

► 2-1 COMPLEX-VARIABLE CONCEPT
To understand com plex variables, i t  is wise to  Stan w ith  the concept o f  com plex numbers 
and the ir m athematical properties.

2-1-1 Complex Numbers

A  com plex num ber is represented in re c ta n g u la r fo rm  as

(2- 1)

where, j  — y / ^  and (.T. V) are real and imaginar>- coefficients o f  r  respectively. We can 
treat (x . as a po in t in  the C a rtes ian  coordinate frame shown in  Fig. 2-1. A  p o in t in  a
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Figure 2-1 Complex number z 
representation in rectangular and polai 
forms.

(2-2 )

rectangular coordinate fram e may also be defined by a vector R  and an angle Ớ. I t  is then 
easy to  see that

AT =  i ỉc o s ớ  
y  =  /?sinớ

where,

R  =  m agnitude o f  z

0 =  phase o f  z  and is measured from  the X  axis. R ight-hand ru le  convention: 
positive phase is in  counter c lockw ise  direction.

Hence,

’ -1 >
(2-3)

Ớ =  tan -
X

In troduc ing  Eq. (2 -2 ) in to  Eq. (2-1), we get

z = /ỈCOSỚ +  ỹ /? s in ớ  (2-4)

U pon comparison o f  T ay lo r series o f  the terms involved, i t  is easy to  confirm

C-* =  cose  +  j  sin s  (2-5)

Eq. (2-5) is also known as the E u le r fo rm u la . As a result, Eq. (2 -1 ) may also be represented 
in  p o la r  fo rm  as

Z =  R e^^  =  R / d  (2-6)

W e define the con juga te  o f  the com plex num ber z  in  Eq. (2-1) as

z ' = x - j y  (2-7)
Or, alternatively, 

Note:

z* =  R cosO  -  iR s in ỡ  =  R e

=  ■■ -■ 1- „ÌN 0(.nH :;iị2

Table 2-1 shows basic m athematical properties o fjcom piex nu ra b e ts .. - M

(2 -8)

•9)
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TABLE 2-1 Basic Properties of Complex Numbers

Addition ị z \ ^ x x +  jyx ^
\  22 =  +  jy i  
^ Z = { x x + x 2 ) + j{ y ị+ y 2 )

f z i
L a  =  *2 ^*=
- z  =  R ie^"' + R

Subtraction f  Z1 =  -ri +  jy\
\ z 2 = X 2 + jy t
- * z =  (j:i - X 2) +  j{y\ - y z )

i z ,  = R | « " '  
l a = R 2 >
- z  =  - Í 2

Multiplication f  Z1 =  -Í1 +  jy\
\ z 2  = X2 + jy2
^ Z = { x ix 2 - y iy 2 )  + j{x\y2+ x2y\) 

/  =  -1

í z ^ = R ^ e l ‘ <
i z 2 = R 2 i ' “=

-^ z  = ( i i , f il ) /( e ,+ e 2 Ì

Division f z i  = - i i  + jy i 'z i

1 +  jyz . Z2 =

( z\ =Xi -  jy]
< Complex Conjugate
1 z j =  *2 -  iy i

z ' ,= R ,e - J '‘ 

z\ =  R2e->^

Ỉ.Ĩ
Z1 Z2 (xix2 + y iy 2) + j ( x 2y i - x i y s )  
Z2 ZỊ 4 +  yị

Find )  and j  .

j  =  =  c o s ^ + ỳ s in ^  =  

ý  = = - J

p ^ e - ‘f  = e - n

/  =  / ; = - /  =  ! <

► EXAMPLE 2-1-2 Find using Eq. (2-6).

f  = {Rej^)’'= R ’’eJ"  ̂= R ''ind (2- 10)

2-1-2 Complex Variables

A  com plex variable s  has tw o  com ponents: a real com ponent Ơ and an im ag inary  
com ponent CO. G raph ica lly , the tea ! com ponent o f  s is represented by a <J a x is  in  the 
horizon ta l d irection , and the im aginary com ponent is m easured along the vertica l ịoì 
axis, in  the com plex i-p la n e . F ig . 2-2 illustra tes the com plex i-p la n e , in  w h ich  any 
arb itra ry  po in t 5 =  Í )  is defined by the coordinates a  =  Ơ). and (O =  (!}[. o r s im p ly
Si = Ơ I  + j o ) ] .
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Figure 2-2 Complex j-plane.

2-1-3 Functions of a Complex Variable

The func tion  GCj) is said to be a function  o f  the com plex variable s  if ,  fo r every value o f  s, 
there is one or more coưesponding values o f  G ( j) . Because s  is defined to  have real and 
im aginary parts, the function  G(s) is also represented by its  real and im aginary parts; that is,

G is) =  Re[Gis)] +  jim [G {s)] (2- 11)

where Re[G(5)] denotes the real part o f  G ( i) , and Im [G ( j) ]  represents the im aginary part o f  
G ( j) . The function G ( j)  is also represented by the com plex G(5)-plane, w ith  R e [G (i)] as the 
real axis and Im [G ( i) ]  as the im aginary axis. I f  fo r  every value o f  Í  there is on ly  one 
coưesponding value o f  G(s) in  the G (i)-p lane , G(s) is said to  be a sing le -va lued  fu n c tio n , 
and the m apping fro m  points in  the i-p lane  onto points in  the G(5)-plane is described as 
s ing le -va lued  (F ig . 2-3). I f  the m apping fro m  the C (i)-p lane  to the 5-plane is also single
valued, the m apping is called one-to-one. However, there are many functions fo r  w hich the 
m apping from  the func tion  plane to  the com plex-variable plane is not single-valued. For 
instance, given the function

G ( i)  =
s ( s + l )

(2- 12)

I ReC

* ClJj)

Figure 2-3 Single-valued mapping from the 5-plane to the G('.5^plane.
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it  is apparent that, fo r  each value o f  s, there is on ly  one unique corresponding value fo r  G(s). 
However, the inverse m apping is not true; fo r  instance, the po in t G{s) =  oc is mapped onto 
tw o  points, Í  =  0 and 5 =  - 1 ,  in  the i-p lane .

2-1-4 Analytic Function

A function  G (s) o f  the com plex variable s is called an analytic fu n c tio n in  a region o f  the  s- 
pìane i f  the function  a nd  all its derivatives e x is t in the region. For instance, the func iion  
g iven in  Eq. (2 - I2 )  is analytic at every po in t in  the i-p lane  except at the po in ts 5 =  0  and
5 =  — 1. A t these tw o  points, the value o f  the func tion  is in fin ite . As another example, the 
func tion  G ( ỉ)  =  Ỉ  +  2 is ana lytic at every po in t in  the fin ite  5-plane.

2-1-5 Singularities and Poles of a Function

The s in g u la r it ie s  o f  a function  are the points in  the 5-plane at w h ich  the function  o r its 
derivatives do not exist. A  pole is the most com m on type o f  s ingu la rity  and plays a very 
im portan t ro le  in  the studies o f  classical con tro l theory.

The de fin ition  o f  a pole can be stated as; ĩ f  a function  G (s) is analytic a nd  single
valued in the neighborhood o f  p o in t P i, it is sa id  to have a  pole o f  order r  ữ/ s =  Pj í /  the 
lim it lim  [ ( ỉ  -  pìỴG [s)] has a finite, nonzero value. In  other words, the denom inator o f 

G{,s) must include the facto r ( i  -  p iỴ ,  so when s =  P i,  the func tion  becomes in fin ite . 
I f  r  =  1. the pole at 5 =  P i is called a s im p le  pole. A s  an example, the function

p . , 3,

has a pole o f  order 2 at 5 =  -  3 and sim ple poles at 5 =  0  and Í  =  - 1 .  I t  can also be said that 
the function  G(s) is ana lytic in  the j-p lane  except at these poles. See F ig. 2 -4  fo r  the 
graphical represemation o f  the fin ite  poles o f  the system.

2-1-6 Zeros of a Function

The de fin ition  o f  a ze ro  o f  a function  can be stated as: I f  the function  G (s) is analytic at 
s =  Zj, il is said to have a  zero o f  order T a t s =  Z[ i f  ihe lim it lim  [(s -  2,}“ '’G (5)] has a 

finite, nonzero value. Or, simply, G (s) has a zero o f  order T a l s =  Zj i f  / /G (s )  has an Tih- 
order p o ỉe a t  s =  Zj. For example, the function  in Eq. (2-13) has a sim ple z e ro a t 5 =  - 2 .

I f  the function  under consideration is a rational function  o f  s, that is, a quo tien t o f  two 
polynom ia ls o f  5. the total number o f  poles equals the to ta l num ber o f  zeros, counting the 
m u ltip le -o rder poles and zeros and taking in to  account the poles and zeros at in fin ity . 
The function in Eq. (2-13) has fou r fin ite  poles at Í  =  0, -  I ,  -  3, and - 3 ;  there is one 
fin ite  zero al Í  =  - 2 ,  but there are three zeros at in fin ity , because

lim  G(5) -  lim  ^  =  0  (2-14)

Therefore, the function  has a total o f  fou r poles and fou r zeros in  the entire  5-plane 
includ ing  in fin ity . See F ig. 2-4 fo r the graphical representation o f  the fin ite  zeros o f  the 
system.
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i-plane

-3 -2  -1 0 1 2

Figure 2-4 Graphicai representation o f C(5) =  
— ; in the j -pl ane:  X p o les  and o zeros.

Toolbox 2-1-1
For Eq. (2-13), use “ zpk”  to create 
zero-pole-gain models by the fo llo w in g  
sequence o f  M A T L A B  functions 

» G  = z p k ( [ - 2 ]  . [ 0  - 1  - 3  - 3 ]  ,1 0 )

Zero/pole/gain:
10 (s + 2)

s (s + 1) (s + 3)^2

Convert ứie transfer func tion  to 
po lynom ia l fo rm  

»  Gp = tf(G)

Transfer function:
10 s + 20

s''4 + 7 + 15 s^2 + 9 s

A lte rna tive ly  use:

»  clear all 
»  s = t f (’s ’) :
» G p  = 10.(s + 2)/(s*(s + l)»(s + 3)^2)

Transfer function :

10 s + 20 

s^4 + 7 s^3 + 15 s^2 + 9 s

Use “ po le ”  and "z e ro ”  to  obtain the poles 
and zeros o f  the transfer function 

»  pole(Gp) 

ans =

-3
- 3

»  zero(Gp) 

ans =

Convert the transfer function  G p to 
zero-pole-gain fo rm  

»  G zp k  = z p k (G p )

Zero/pole/gain:
10 (s + 2)

s (s + s r z  Cs + 1)
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2-1-7 Polar Representation

To fin d  the p o la r  represeD tation  o f  G{s) in  Eq. (2-12) at J =  2j .  we lo o k  aĩ ind iv idua ] 
components. That is

G { s ) = -
1

s ( s ^ i )

=  2J =  RejO =  2 e ti

■S+ 1 =  2 j +  1 = R e - ' *

«  =  \ /2 2  +  1 =  ■^5 

9 =  ta n ^ ' Y =  1 rad(=  63.43°)

2 v 5

(2-15)

(2-16)

(2-17)

See F ig. 2-5 fo r  a graphical representation o f  5] =  2_/ +  1 in  the 5-plane.

► EXAMPLE 2-1-3 Find the polar representation o f G(s) given below for s  =  j<u, where Í0 is a constant varying from 
zero to infinity.

J- 1 0 i+ 1 6 “  (s +  2)(s +  8)

To evaluate Eq. (2-18) at Í  =  jcu, we look at individual components. Thus.

;<o +  2 = v '2 2 + o P i *  

0J = R\ sin0|

2 =  /?)COS0J

R\ =

(2-19)

Í2 -20)

(2-21J

(2 -22)

a -2 3 )

Figure 2-5 Graphical represeniation o f 
i ]  =  2 ;-^  1 in the 5-plane.
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Figure 2-6 Graphical representation o f 
components o f ------- .

;tư +  8 =  \/82  + i t ^ e ^

_I 0J /R 2

1 6 =  16e“

See Fig. 2-6 for a graphical representation o f components o f 

Hence,
1 1

jw  + 2 ~  +

1 I

M  +  i  +  uA gj-h

16
{ io j+ 2 ){< o j+ sy

As a result. G{s =  jci}) becomes: 

G{jw)^ 16

where

\/2^ +"0>2 v/8* +  (Ô 

R = G{a,) = \Gijw)\ =

Similarly, we can define

_ I Im G( ja>) 
R e G( jio)

v / P T 4 ) { Z 7 + 6 4 )

=  -C ( i =  jw) =  -0 1  -  Ộ2

(2-24)

(2-25)

(2-26)

(2-27)

(2-28)

(2-30)

(2-31)

Table 2-2 describes differeni R and <t> values as <0 changes. As shown. ỨÍC magnitude decreases as 
the frequency increases. The phase goes from 0 ' to -180v
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TABLE 2-2 Numerical Values of Sample Magnitude and Phase of the 
System in Example 2-1-3

CO rad/s R 0

o .l 0.999 -3.58

1 0.888 -33.69

10 0.123 -130.03

100 0.0016 -174.28

A lternative Approach: I f  we m ultiply both numerator and denominator o f Eq. (2-18) by the

complex conjugate o f the denominator, i.e. [{-j<o +  2){-j(D + S)

_  . , 16(-;a, + 2)(-ja; + 8)

-  Real +  Imaginary

{ù?+4){ù^+64) ^
16

“  ự { ũ ^+ 4 ){ù ?  + 64)

= Rê ‘‘‘

(2-33)

16

-1 0 a .//?  lm (C (70j))

See Fig. 2-7 for a graphical representation o f 7  . - r,(a)j + 2){coj + S,
So as you have noticed, the frequency response can be determined graphically. Consider the 
following second order system:

r  for a fixed value o f Ũ

G{s) =
K

( s +  / 7 | ) ( í +  i>2)
(2-34)

R= .
V « y ^  + 4){6)^+64)

Figure 2-7 Graphical representation o f  ̂ f o r  a fixed value o f Cl
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Toolbox 2-1-2
Here are M A T L A B  commands to  treat com plex variables: 

z  =  c o m p le x  ( a . b )

creates a com plex output, z ,  fro m  the tw o real inputs z  =  a +  bi 

ZC = c o n j  ( Z )

reium s the com plex conjugate o f  the elements o f  z  

x  = r e a l  ( Z )

returns the real part o f  the elements o f  the com plex array z

Y =  im a g  ( Z )

returns the im aginary part o f  the elements o f  array z  

R = a b s  ( Z )

returns the com plex m odulus (m agnitude), w hich is the same as 

R = s q r t { r e a l ( Z )  .^ 2  +  im a g ( Z )  . '^2 ) 

t h e t a  =  a n g le ( Z )

returns the phase angles, in  radians, fo r each element o f  com plex array z

The angles lie  between the “ real a x is " in  the j-p la n e  and the m agnitude R 

z  = R . * e x p ( i * t h e t a )  

converts back to  the o rig in a l com plex z  

»  z  =  c o n ip le x ( 3 , 2 )

z =
3 .0 0 0 0 +  2 . 0 0 0 0 Ì  

»  z c  =  c o n j  ( Z )  

zc =
3 .0 0 0 0  -  2 . 0 0 0 0 Ì  

»  R =  a b s ( Z )

R =
3 .6 0 5 6

»  t h e t a  =  a n g le ( Z )

t h e t a  =
0 .5 8 8 0

»  ZRT =  R. * e x p ( i * t h e t a )

ZRT =
3 .0 0 0 0  + 2 . 0 0 0 0 Ì
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where ( -P i)  and (-P 2) are poles o f Ihe function Gis). By definition, i f  Í  =  jo). G( jit)) is the fre q u en cj-  

response function o f G (j), because O) has a unit o f frequency (rad/s):

The magnitude o f G( j(i)) is
^  /■>R= \G {ja> )\-

| >  +  P i | | >  +  w l  
and the phase angle o f G( ;a>) is

<p =  lG [ jc o )  =  Í K  — i j i 0 +  P \ — i j o > +  P2 

= -4 > x - lz
For the general case, where

(2-37)

G(s) = K _*=!__
Ệ ( s + P í )
(-1

The magnitude and phase o f G(5) are as follows

,  ịýùJ +  Z| I • • • I >  +  ^  I
(2-39)

4,=  íG{j(o) = iỶ \  +  ■■■ + ÍÍ'™ )-(<#■! +■■■ + 0 . )

► 2-2 FREQUENCY-DOMAIN PLOTS
Let G ( j)  be the forw ard-path tra n s fe r fu n c tio n ’ o f  a linea r con tro l system w ith  unity 
feedback. The frequency-dom ain analysis o f  the closed-loop system can be conducted 
from  the frequency-dom ain plots o f  G ( i)  w ith  5 replaced by joj.

The function  G( jco) is generally a com plex function  o f  ứie frequency at and can be 
w ritten  as

G ijo}) =  \G {ja})\iG {j(o)  (2-40)

where \G{jo))\ denotes the magnitude o f  G {j(o), and -G (  jo*) is the phase o f  G {jw ).
The fo llo w in g  frequency-dom ain plots o f  G{ joj) versus (O are often used in  the 

analysis and design o f  linear control systems in ihe frequency domain.

1. P o la r p lo t. A  p lo t o f the magnitude versus phase in  the po lar coordinates as iy  is 
varied from  zero to in fin ity

2. Bode p lo t. A  p lo t o f  the magnitude in  decibels versus a> (o r logio<u) in  semilog 
(o r rectangular) coordinates

3. M agn itude -phase  p lo t. A  p lo t o f  the m agnitude (in  decibels) versus the phase on 
rectangular coordinates, w ith  o> as a variable parameter on the cuA e

2-2-1 Computer-Aided Construction of the Frequency-Domain Plots

The data fo r  the p lo ttin g  o f  the frequency-dom ain plots are usually quite tim e consum ing to 
generate i f  the com putation is carried out m anually, especially i f  the func tion  is o f  high 
order. In  ửiis textbook, we use M A T L A B  and the A C S Y S  software fo r  th is purpose.

' For the fornial definition of a "transfer function." refer to Section 2-7-2.
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j<D

J.plane •M

•M

•M

0

Figure 2-8 Polar plot shown a 
the G( jo>)-plane.

a mapping o f ứie positive half o f the ;<ư-axis in the j-plane onto

2-2-2 Polar Plots

F rom  an analytica l standpoint, the analyst and designer should be fa m ilia r  w ith  the 
properties o f  the frequency-dom ain plots so that proper interpretations can be made on 
these computer-generated plots.

The po la r p lo t o f  a function o f  the com plex variable s, G{s), is a p lo t o f  the magnitude o f 
G ( joj) versus the phase o f  G( jio) on po lar coordinates as (O is varied from  zero to  in fin ity . 
From  a mathematical v iew point, the process can be regarded as the m apping o f  the positive 
h a lf o f  the im aginary axis o f  the 5-plane onto the G ( jcy)-plane, A  sim ple exam ple o f  this 
m apping is shown in  Fig. 2-8. For any frequency (O =  o)|, the magnitude and phase o f  
G {jo )\)  are represented by a vector in  the G {jiw )-p lane . In  measuring the phase, 
counterclockw ise is reíeưed to as positive, and c lockw ise is negative.

EXAMPLE 2-2-1 To illustrate the construction o f the polar plot o f a function G(J), consider the function

1
G (s)= -

where 7” is a positive constant. Setting 5 =  jai. we have

1
G{ja>)=-

(2-43)

1 +  jcuT

In terms o f magnitude and phase. Eq. (2-42) is rewritten as

G( jo}) = , — L - ta n “ ' 0)T

When OP is zero, the magnitude o f G( joj) is unity, and the phase o f G( jco) is at 0°. Thus, at &> =  0, 
G{jto) is represented by a vector o f unit length directed in the 0® direction. As <0 increases, the 
magnitude o f G{ joj) decreases, and the phase becomes more negative. As O) increases, the length o f 
the vector in the polar coordinates decreases and ứie vector rotates in the clockwise (negative) 
direction. When cu approaches infinity, the magnitude o f G( jw) becomes zero, and the phase reaches 
-9 0 °, This is presented by a veccor with an infiniiesimaily small length directed along the -9 0 ° -axis 
in the G( ja))-plane. By substituting other finite values o f 0) into Eq. (2-43), the exact plot o f G( jai) 
lums out to be a semicircle, as shown in Fig. 2-9.
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^  EXAMPLE 2*2-2 As a second illusưative example, consider ứie fuDClion

where Tị and Ĩ 2 are positive real constants. Eq. (2-44) is re-written as

G{ja>) = t —^ — ' iw72 -  tan ' aiTi) Í2-45)
y 1 +  (irTị

The polar plot o f G{jio), in this case, depends on the relative magnitudes o f T| and T2.ỈÍT-, is greater 
than T ). the  m agnitude o f  C(J(i>) is  a lw ays greater than un ity  as Cti is  varied  from  zero  to ũilìiiity. and 
the phase o f G{ ja>) is always positive. I f  Ĩ 2 is less than T), the magnitude o f G( ja>) is always less than 
unity, and Uie phase is always negative. The polar plots o f G{ ja>) o f Eq. (2-45) lhai ccwrespond to 
these two conditions are shown in Hg. 2-10.

The general shape o f the polar plot o f a function G( ja>) can be determined from tbe foUowing 
information.

1. The behavior o f the magnitude and phase o f G( joi) at a> =  0 and w =  oc.

2. The intersections o f ứie polar plot w idi the real and imaginary axes, and the values o f Ct» at 
these intersections

Figure 2-10 Polar plots o f G( yctf) =

T/Ty Re c

(l+ jc o T i)
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Toolbox 2-2-1
The N yqu is t d iagram  fo r  Eq. (2-44) fo r  tw o cases is obtained b y  the fo llo w in g  sequence o f  M A T L A B  
functions:

T1 = 10:
T2 = 5;
numl = [T2 1] ; 
deni = [T1 1] ;
G1 = tf(numl.denl); 
nyquist(Gl); 
hold on; 
nuiti2 = [ T 1 1] ; 
den2 = [T2 1] •
G2 = tf (num2, den2) ; 
nyquist (G2);
title ( ‘ Nyquist diagram of G1 and G2 ’ )

N o ie ; The " n y q u is t"  function  provides a com plete polar diagram, where Ù) is varying fro m  ~ o c  rơ +  oo.

Nyquist diagram ot 01 and G2

Comparing the results in Toolbox 2-2-1 and Fig- 2-10. it is clear thal the polar plot reflects only a 
ponion o f the Nyquisl diagram. In many control-system applications, such as the Nyquisl stability 
critenon (see Chapter 8). an exact plot o f the frequency response is not essential. Often, a rough 
sketch o f the polar plot o f the transfer function is adequate for stability analysis in the frequency 
domain.
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► EXAMPLE 2-2-3 In frequency-domain analyses ofconttol systems, often we have to determine tbe basic prt^)erties o f a 
polar plot. Consider the follow ing transfer function:

G (i) =
10 (2-46)

s { s + l)
By substituting s ~  jcư in Eq. (2-46), the magnitude and phase o f C( jdi) at =  0 and iy =  3C are 
computed as follows:

<2-41) 

(2-48) 

(2-Í9) 

(2-50)

10
I —  =  oo 
0 ù>

lim  lG (jù})=  lim  Ũ O /jù )~  —90° 

lim  |C( yo))| =  lim  -!5 =  0 

lim  lG {Jai)=  lim  a o /( jù iỹ  = - I W

Thus, the properties o f ửiepolarplot o f C{ỹíy) at =  0 and OI — oc are ascertained-Nexi. we detennine 
the intersections, i f  any, o f the polar plot with the two axes o f the G( ýít)}-plane. I f  the polar plot o f G{ jo}) 
intersects the real axis, at the point o f intersection, ừie imaginary pan o f G( jo}) is zero; thai is.

I m [ G ( » Ị  =  0 (2-51)

To express G{ jcữ) as Ihe sum o f its real and imaginary pans, we must rationalize G( jo)) by multi
plying its numerator and denominator by the complex conjugate o f its denominator. Therefore. 
G{ jo)) is written

1 0 ( - H ( - > + l )  - 1 0 ^  ■ lOtt*
jco { jco + l){ -jco ){ -jco + l) ^cơ* + (ó  ̂ (2-52)

=  Re[G(jũ;)] +  ỹIm ỊG (jứ ;)]

When we set Im[G( jco)] to zero, we get oi =  oc. meaning that the G( joj) plot intersects only with the 
real axis o f the G(ýcư)-plane at ứie origin.

Similarly, the intersection o f G( jco) with Ihe imaginary axis is found by setting Re[G( jiu)] of 
Eq. (2-52) to zero. The only real solution for a> is also co= oc, which corresponds to the origin o f the 
G( yc£j)-plane. The conclusion is that the polar plot o f G( jci}) does not in tersect any one o f  the axes al 
any finite nonzero frequency. Under certain conditions, we are interested in die properties o f ihe 
G{ jù}) at infinity, which corresponds to cu =  0 in ửiis case. From Eq. (2-52). we see that lm [G( j(ứ)] =  
oc and Re[G( jco)] =  -1 0  at =  0. Based on this information as well as knowledge o f the angles of 
G( ýtư) at dư =  0 and CO =  DC, ửie polar plot o f G{ ju>) is easily sketched w iihoul actual plotting, as 
shown in Fig. 2-11.

Figure 2-11 Polar plot o f G (j)  =
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► EXAMPLE 2-2-4 Given the transfer function

G { s )= -
10

(2-53)
5(í + 1 ) { í  +  2)

we want to make a rough sketch o f  the polar plot o f G( jcử). The following calculations are made for 
the properties o f  the magnitude and phase o f G( jw) at a> =  0 and w =  oc;

lim  \C(jaA\ =  lim  - =  oc
a> —0 &) —OoJ

lim  íG {j(o )=  lim  Z 5 />  =  -9 0 “

10

(2-54)

(2-55)

(2-56)lira \G {ja))\=  lim  ^  =  0

To find the intersections o f the G{ jo)) plot on the real and imaginary axes o f the G{ jo))-plane. we 
rationalize G[}(ù) to give

1 0 ( - » ( - > + ! ) ( - >  +2)
+  1 ) 0  + 2 ) ( - » ( - >  +  1)(-jo) + 2) 

After simplification, the last equation is written

G O )  ^  R , |G (> ) ]  +  y ,m [C (> ) ]

Setting Re[G( jo})] to zero, we have Ct> =  oo, and G( joo) =  0, wi 
intersects the imaginary axis only at the origin. Setting lm[G{ jo})\ to 
This gives Ae point o f intersection on the real axis at

(2-57)

G [ ± jV l )  =  - 5 /3

(2-58)

0, which means that the G( jw) plot 
have Ù} = í V Ĩ  rad/sec.

(2-59)

The result, CO =  - a / 2  rad/sec, has no physical meaning, because the frequency is negative: it simply 
represents a mapping point on the negative ýíư-axis o f the s-plane. In general, i f  G(s) is a rational 
function o f s  (a quotient o f two polynomials o f j) ,  the polar plot o f G( ja>) for negative values o f (O is the 
miiTor image o f that for positive Ù), with the m irror placed on the real axis o f the C( jty)-plane. From 
Eq. (2-58), we also see that Re[G( jO)] =  00 and lm[ơ(ỳO)] =  oc. W ith this information, it is now 
possible to make a sketch o f the polar plot for the transfer funcQon inEq. (2-53). as shown in Fig. 2-12.

Although the method o f obtaining the rough sketch o f the polar plot o f a transfer function as 
described is quite straightforward, in general, for complicated ưansfer functions that may have 
multiple crossin gs on the real and im aginary axes o f  the transfer-function p lane, the algebraic  
manipulation may again be quite involved. Furthermore, the poiarplot is basically a tool for analysis; 
it is somewhat awkward for design purposes. We shall show in the next section that approximate 
information on the polar plot can always be obtained from the Bode plot, which can be sketched

Figure 2-12 Polar plot o f G{s) = ------iS----- ,
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without any calculiuions. Thus, for more complicated ưansfer fuacticms, sketches o f  ư»e polar p lou 
can be obtained with the help o f the Bode plots, unless M ATLAB is used. <

2-2-3 Bode Plot (Corner Plot or Asymptotic Plot)

The Bode p lo t o f  the func tion  G { jcư) is composed o f  tw o  plots, one w ith  the am plitude  o f  
G{jử)) in  decibels (dB ) versus logiocư o r CO and the other w iứ i ửie phase o f  C ( j(o) in 
degrees as a function  o f  logiQtó o r CO. A  Bode p lo t is also know n as ã c o rn e r  p lo t  o r an 
a sym p to tic  p lo t o f  G ijw ) .  These names stem fro m  the fact that the Bode p lo t can be 
constructed by using stra ight-line approxim ations that are asym ptotic to  the actual plot. 

In  sim ple terms, the Bode p lo t has the fo llo w in g  features:

1. Because the magnitude o f  G{j<o) in  ứie Bode p lo t is expressed in  dB . product and 
d iv is ion  factors in  G ịja)}  became additions and subưactions. respectively. The 
phase relations are also added and subưacted fro m  each o ther a lgebraically.

2. The magnitude p lo t o f  the Bode p lo t o f  G{ j(ú) can be apf>roximated by sưaight-line 
segments, w hich allow  ứie simple sketching o f  die p lo t w ithou t detaiJed computation.

Because the sữaìght-line approxim ation o f  the Bode p lo t is re la tive ly  easy to  construct, the 
data necessary fo r  the other frequency-dom ain plots, such as the po la r p lo t and the 
magnitude-versus-phase p lo t, can be easily generated from  the Bode p lo t.

Consider the function

G (J) =  y  +  ^ l) ( ^  +  a ) - - - ( ^  +  ^ ^ )  - r . .  (2-60)
s:(s + P i) { s +  P 2 ] - - - ụ +  Pn)

where K  and Td are real constants, and the z 's  and ứie p 's  may be real o r com plex (in
conjugate paừs) numbers. In  Chapter 7. Eq. (2-60) is the preferred fo n n  fo r  root-locus
construction, because the poles and zeros o f  G(5) are easily iden tified . For constructing the 
Bode p lo t m anually, Gis) is preferably w ritten  in  the fo llo w in g  form :

^  i l i l ± Z V E ± Z i £ h d l ± M , - r , .  ,2-6U
I> ( I +  7 - , i) ( l  +  n s )  ■ ■ ■ (1 +  T„s)

where K] is a real constant, the T s  may be real o r com plex (in  conjugate paừs) numbers, 
and T j  is the real tim e delay. I f  the Bode p lo t is to  be consơucted w ith  a com puter program, 
then either fo rm  o f Eq. (2-60) o r Eq. (2-61) can be used.

Because p ractica lly  a ll the terms in  Eq. (2-61) are o f  the same fo rm , ứien w iU iout loss 
o f  generality, we can use the fo llo w in g  ưansíer function  to  illusưate ứie construction o f ứie 
Bode diagram.

GU) =  a -6 2 ,
s ( l + T ,s ) { l + 2 ( s / a ,„ + s y a ^ „ )  '

where K. Td, r , .  T i.  Ta. and are real constants. It is assumed that the second-order
po lynom ia l in the denom inator has com plex-conjugate zeros.

The magnitude o f  G ( joj) in  dB is obtained by m u ltip ly in g  the logarithm  (base 10) o f 
|C ( jco)\ by 20; we have

|G ( ;w ) ld B =  201og,o |G f7w )|

=  201ogK,|/i| +  20 log,o |l +  jioTi I +  201og,o|l +  jcoT.j

— 20 lo g jo l _/io| — 2 0 ]og |o l I +  j<i^Ta\ — 20 lo g jo l 1 +  jl^co  — (1?  (2-63)



The phase o f  G ( jai) is

ZG( jio) =  J ( + l { l +  jto T i)  +  Z (I +  jcoTi) -  lj(0  -  i { \  +  jùiTa)

-  í { ỉ + 2 ^ a } / ù } „ - o / / ( ù l )  -  o T d  rad (2-64)

In  general, the fu n c tio n  G {j(o) m ay be o f  h ighe r o rder than tha t o f  Eq. (2 -62 ) and 
have m any m ore facto red  term s. H ow ever, Eqs. (2 -63 ) and (2 -64 ) ind ica te  that 
a d d itiona l term s in  G {jo)) w ou ld  s im p ly  produce more s im ila r  term s in  the m agnitude 
and phase expressions, so the basic m ethod o f  consư uction  o f  ứie Bode p lo t w o u ld  be
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Toolbox 2-2-2
The Bode p lo t fo r  Exam ple 2-1-3. using ứie N IA T L A B  "b o d e ”  function , is obtained by the fo llo w in g  
sequence o f  M A TL.A B  functions.

Approach 2

s = t f (‘s’);
G=16/(s^2 + 10.s + 16); 
bode(G):

Approach 1

num =[16]: 
d e n =  [110 16] ;
G = tfCnum.den); 
bodeCG);

The ' 'bode ■ ■ function  com putes the m agnitude and  phase o f  the frequency response o f  linear time 
invariant models. The m agnitude is p lo tte d  in decibels ịdB) and  the phase in degrees. Com pare the 
results to the values in Table 2-2.

Bode Diagram
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the same. We have also ind ica ted  that, in  general, G{j(i>) can con ta in  ju s t  five  s im ple 
types o f  factors:

1. Constant facto r: K

2. Poles o r zeros at the o rig in  o f  order p:

3. Poles o r zeros at Í  =  - 1 / r  o f  order ợ: (1 +  i(ứ T )^ ‘̂

4. C om plex poles and zeros o f  order r: ( l  +  ỹ2fíư /íư „ — O)

5. Pure tim e delay where Td, p , g, and r  are pos itive integers

Eqs. (2-63) and (2-64) v e r ify  one o f  the unique characteristics o f  the Bode p lo t in  that 
each o f  the five  types o f  factors lis ted  can be considered as a separate p lo t; the individuaJ 
plots are then added o r subtracted accord ing ly  to  y ie ld  the total m agnitude in  dB and 
the phase p lo t o f  G {j(o). The curves can be p lo tted  on sem ilog graph paper o r linear 
rectangular-coordinate graph paper, depending on w hether Ù) o r  logjQit) is used as the 
abscissa.

We shall now investigate sketching the Bode p lo t o f  d iffe ren t types o f  factors.

2-2-4 Real Constant ^

Because

^dB =  20 log 10 A ” =  constant (2-65)

and

the Bode p lo t o f  the real constant K  is shown in  Fig. 2-13 in  sem ilog coordinates.

2-2-S Poles and Zeros at the Origin, (ịứ}) '̂^
The m agnitude o f  in  dB is g iven by

2 01og ,„|(ý<u )± '’ | =  ± 2 0 p lo g ,o < ^  dB (2-67)

fo r OJ >  0. The last expression fo r  a given p  represents a straight line  in  e ither sem ilog or 
rectangular coordinates. The slopes o f  these lines are determ ined by taking the derivative o f 
Eq. (2-67) w ith  respect to  lo g |0O>: that is.

(± 2 0 p lo g ,o iu )  =  ± 2 0 p  dB/decade (2-68)
í/log io íư

These lines pass through theO-dB axis at it) =  1. Thus, a u n it change in  log jqo> corresponds 
to  a change o f  ± lQ p  dB in magnitude. Furthermore, a un it change in  logjQO) in the 
rectangular coordinates is equivalent to  one decade o f  variation in  O), that is, fro m  1 to  10, 
10 to  100, and so on, in  the sem ilog coordinates. Thus, the slopes o f  the sưaight lines 
described by Eq. (2-68) are said to  be ± 2 ữ p  dB/decade o f  frequency.
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Figure 2-13 Bode plot o f constant K.

Instead o f  decades, sometimes octaves are used to represent the separation o f  tw o 
frequencies. The frequencies 0)\ and (02 are separated by one octave i f  (ứiỊíũ\ — 2. The 
num ber o f  decades between any tw o  frequencies it>i and is given by

n u m b e r o f d = = a d = s = i 5 l M ^ =  

S im ila rly , the number o f octaves between 0)2 and 0)1 is

(2-69)

number o f  octaves =  ,
lo g ,o 2

Thus, the relation between octaves and decades is

(2-70)

number o f  octaves =  1 /0 .301 decades =  3.32 decades (2-71)



Substituting Eq. (2-71) into Eq. (2-67), we have

±20pdB/decade =  ± 20 p  X 0.301 ^  6p  dB/octave
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(2-72)

For the function G (i) =  1 ịs ,  which has a simple pole at J =  0, the magnitude o f G( j(ù) is a 
sưaight line with a slope o f -20dB/decade, and it  passes ứưough the 0-dB axis Zi 
(O =  1 rad/sec.

The phase o f is written

í { j a > f P = ± p x 9 Ỹ f (2-73)

The magnitude and phase curves o f ứie function are shown in Fig. 2-14 for several
values o f p.
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Figure 2-14 Bode plots o f ( j(D Ỷ .



2-2-6 Simple Zero, 1+/W7"

Consider the function

G{j0i) = 1 +  jojT (2-74)

where r  is a positive real constant. The magnitude o f G{ j(o) in dB is
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|G(;<»)ldB =  2 0 1 o g ,o |0 (;a .) | =  20 log.o V l  +  (2-75)

To obtain asymptotic approximations o f |G(ỹíy)|jB, we consider both very large and very 
sm all values o f  CO. A t  very low  frequencies, ũjT  1, Eq. (2-75) is approxim ated by

|G (;o))|dB  =  201og ,o l -  0  dB (2-76)

because is neglected when compared with 1.
A t very h igh  frequencies, 1, we can approxim ate 1 + o?T '^  by then Eq. 

(2-75) becomes

|G(;a))|„B “  2 0 1 o g ,o V Ĩ? rĩ =  aOlog.oioT (2-77)

Eq. (2-76) represents a straight line w ith a slope o f 20 dB/decade o f frequency. 
The intersect o f these two lines is found by equating Eq. (2-76) to Eq. (2-77), which 
gives

t u = I / r  (2-78)

This frequency is also the intersect o f the high-frequency approximate plot and the low- 
frequency approximate plot, which is the 0-dB axis. The frequency given in Eq. (2-78) is 
also known as the corner frequency o f the Bode plot o f Eq. (2-14), because the asymptotic 
plot forms the shape o f a comer at this frequency, as shown in Fig. 2-15. The actual 
ỊG( i<ò) I p l o t  o f Eq. (2-74) is a smooth curve and deviates only slightly from the straight- 
line approximation. The actual values and the straight-line approximation o f |1 +  j(jjT\ -̂Q 
as functions o f (oT are tabulated in Table 2-3. The error between the actual magnitude curve 
and the straight-line asymptotes is symmetrical w ith respect to the comer frequency 
CÚ =  1 / T .  I t  is useful to  remember that the error is 3 dB at the com er frequency, and i t  is
1 dB at 1 octave above (&) =  2 /T )  and 1 octave below  (o) =  1 /2 T )  the com er frequency. 
A t 1 decade above and below the comer frequency, the eưor is dropped to approximately 
0.3 dB. Based on these facts, the procedure o f drawing 11 +  jojT\^Q is as follows;

1. Locate the com er frequency it; =  1/7" on the frequency axis.

2. D raw  the 20-dB/decade (o r 6-dB/octave) line and the horizonta l line  at 0 dB, w ith  
the tw o  lines intersecting at CO = Ì /T .

3. I f  necessary, the actual magnitude curve is obtained by adding the eưors to  the 
asymptotic plot at the strategic frequencies. Usually, a smooth curve can be 
sketched s im p ly  by locating the 3-dB po in t at the corner frequency and the ] -dB 
points at 1 octave above and below the comer frequency.

The phase o f  G( j<o) =  1 +  jcoT  is

rGịjoj) =  tan"'w 7 ’ (2-79)

S im ila r to the magnitude curve, a straight-line approxim alion can be made fo r the phase 
curve. Because the phase o f G{ joj) varies from  0 ' to w ,  we can draw a line from  0° at I 
decade below the com er frequency to 90'-' ai 1 decade above the com er frequency. As shown 
in  Fig. 2-15, the maximum deviation between the straight-line approximation and the aciual 
curve is less than 6"^ Table 2-3 gives the values o f  . f 1 +  jcuT) versus (oT.
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TABLE 2-3 Values o f <oT

Straight-Line Approximation Error -(1 +  jwT)

<oT logiotoT- 11 + i i + > n d B |1 +  jtoT'ldB (dB) (deg)

0.01 I.o 0.000043 0 0.00043 0.5

0.10 -1 1.04 0.043 0 0.W3 5.7

0.50 -0 .3 1.12 1 0 1 26.6

0.76 -0 .12 1.26 2 0 2 37.4

1.00 0 1.41 3 0 3 45.0

1.31 0.117 1.65 4.3 2.3 2 52.7

2.00 0.3 2.23 7.0 6.0 1 63,4

10.00 1.0 10.4 20.043 20.0 0.043 84.3

100.00 2.0 100.005 40.00043 40,0 0.00043 89,4
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Z-2-7 Simple Pole, 1/(1 i^ịùíT)
For the function

the m agnitude |G ( j(0)\ in  dB , is given by the negative o f  the r ig h t side o f  Eq. (2-75), and 
the phase ÍG{ joi) is the negative o f  the angle in  Eq. (2-79). Therefore, i t  is sim ple to  extend 
all the analysis for the case o f the simple zero to the Bode plot o f Eq. (2-80). The 
asymptotic approximations o f |G(ycu)||jB at low and high frequencies are

i » r < l  |G ( » |d B ^ O d B  (2-81)

|G(ýíư)|dB ^  -201og,o<yr (2-82)

Thus, the comer frequency o f the Bode plot o f Eq. (2-80) is s till at it) =  1 / r ,  except
that at high frequencies the slope o f the straight-line approximation is —20dB/decade.
The phase o f  G{ j(o) is 0  degrees at OJ =  0. and - 9 0 °  when O) =  oo. The m agnitude in  dB 
and phase o f the Bode plot o f Eq. (2-80) are shown in Fig. 2-15. The data in Table 2-3 are 
s till useful for the simple-pole case i f  appropriate sign changes are made to the numbers. 
For instance, the numbers in  | 1 t h e  s tra igh t-line  approx im ation  o f 
Ị1 +  jcoT\^Q. the e rro r (dB ), and the i { \  +  j(oT) co lum ns should a ll be negative. A t 
the corner frequency, the e rro r between the s tra igh t-line  approx im ation  and the actual 
magnitude curve is —3dB.

2-2-8 Quadratic Poles and Zeros

Now consider the second-order transfer function

s^ + 2;o}„s +  ù ^  1 +  ( 2 c M , ) í  +  (l/cư?,)s^

We are interested only in the case when < <  1, because otherwise Gis) would have two 
unequal real poles, and the Bode plot can be obtained by considering G{s) as the product of 
two transfer functions with simple poles.

By letting s = jw, Eq. (2-83) becomes

The magnitude o f G(ja>) in dB is

|C ( ja .) | = 2 0 1 o g |o |C ( jo))( =  - 2 0 1 o g , „ y Ị l  -  + iỊ-(o ilo i„ Ý  (2-85)

At very low frequencies, «  1, Eq. (2-85) can be approximated as

|G ( j'" ) ld B  =  20>oEii)|C (j<u)| Si - 2 0 lo g | „ l  = 0  dB (2-86)
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Thus, the low-frequency asymptote o f the magnitude plot o f Eq. (2-83) is a sưaight line that 
lies on the 0-dB axis. A t very high frequencies, (úỊu}n. »  1, the magnitude in dB o f G( jco) in 
Eq. (2-83) becomes

|G (ý ít> )ldB  -  ~  20log|oy^(oì/cúný = -401og,o(a;/w „) (2-87)

T h is  equation represents a straight line w ith  a slope o f  - 4 0  dB /decade in  the Bode-p lo t 
coordinates. The intersection o f  the tw o  asymptotes is found by equating Eq. (2 -86) to 
Eq. (2-87), y ie ld in g  th e  com er frequency at CƯ =  ù)n- The actual magnitude curve o f  G { j(o) 
in  th is case may d iffe r  s tr ik in g ly  from  the asym ptotic curve. The reason fo r  th is is that the 
am plitude and phase curves o f  the second-order G( j(o) depend not o n ly  on the com er 
frequency o>„ but also on the dam ping ratio  w hich does not enter the asym ptotic curve. 
The actual and the asym ptotic curves o f  are shown in  F ig . 2-16 fo r  several
values o f  The errors between the tw o  sets o f  curves are shown in  F ig. 2-17 fo r  the same 
set o f  values o f  C- The standard procedure o f  constructing the second-order \G( jờ)) Î IB is to 
first locate the comer frequency co„ and -40-dB/decade line to the right o f (o„. The actual 
curve is obtained by making coưections to the asymptotes by using either the data from the 
error curves o f Fig. 2-17 or the curves in Fig. 2-16 for the corresponding

Figure 2-16 Bode ploi o f C (i)  =  —
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Figure 2-17 Errors in r e curves o f Bode plots o f G(5Ì = ------ ——Í^  '  ■' i+ 2f(Vw,)+(s/‘^ -r

The phase o f  G ( jcử) is g iven by

lG (jù )) — - t a n "
(o„ U J

(2-81

and is p lotted as shown in  Fig. 2-16 fo r  various values o f  f.
The analysis o f  the Bode p lo t o f  the second-order transfer function  o f  Eq. (2-83) can be 

applied to the second-order transfer function  w ith  tw o  com plex zeros. For

G { i)  =  1 +  — s +  X jS ^
Oin

(2-89)

the magnitude and phase curves are obtained by inverting  those in  Fig. 2-16. The errors 
between the actual and the asym ptotic curves in  Fig. 2-17 are also inverted.

Toolbox 2-2-3
The Bode p lo t fo r  F ig . 2-17 when f  =  0.05 andcư =  1, using the M A T L A B  "b o d e "  function, is obtained by 
the fo llo w in g  sequence o f M A T L A B  functions.

Approach 1 Approach 2

nu m  = [ 1 ] ;  
d e n =  [ 1  . 1 1 ] ;
G = tf(num.den); 
b o d e ( G ) ;

s = t f ( ‘ s ’ ) ;
G = l / ( s ' ' 2  + . 1* 5  + 1 ) ;  
b o d e ( G ) ;
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BodeDia^’am

Frequency (rôd/sec)

2-2-9 Pure Time Delay,

The magnitude o f  the pure tim e delay term  is equal to  un ity  fo r  a ll values o f  (O. The phase o f 
the pure tim e delay term  is

Ig -ju T , ^  ,2-90)

w h ich  decreases linea rly  as a function  o f  (ư. Thus, fo r  the transfer function

=  (2-91)

the m agnitude p lo t |G ( y’o jjljjg  is identica l to that o f  The phase p lo t _Gf joj) is
obtained by subtracting (oTd radians from  the phase curve o f  G \{ jo j)  at various Ù).

► EXAMPLE 2-2-5 As an illustrative example on the manual consUTJCtion o f the Bode plot, co n sid er  the function

10)
CÍ5) = (2 -92 )

T h e  first s te p  is to  e x p re ss  G(s) in  th e  fo rm  o f  E q . (2 -6 1 )  a n d  se t 5 =  jcu (k ee p in g  in  m in d  t h a t  fo r 
c o m p u te r  p lo tt in g , th is  s te p  is  u n n e c e ssa ry j: w e have

10 (1 ^jOAcv)
G ( jw )  =  -

ỳa»(l +  ;0 .5 w j( l -ý0 .2 íy )
Í2-93)

E q . (2 -9 2 ) sh o w s th a t C i  jdJ i h a s  c o m e r  fre q u e n c ie s  a t cu =  2 . 5 . a n d  10 ra d /s e c . T h e  p o le  a l 5 =  0 
g iv e s  a  m a g n itu d e  c u rv e  th a t is  a  s tra ig h t lin e  w ith  a  s lope  o f  - 2 0 d B /d e c a d e .  p a s s in g  ư ư o u g h  the  
cu =  1 r a d /s e c  p o in t o n  the  0 -d B  ax is . T h e  c o m p le te  B o d e  p lo t o f  th e  m a g n itu d e  a n d  p h a se  o f  G ( jw )  
is o b ta in e d  by  a d d in g  th e  c o m p o n e n t c u rv e s  to g e th e r, p o in t by p o in t, a s  sh o w n  in  F ig . 2 -1 8 . T h e  ac tua l 
c u rv e s  c an  b e  o b ta in ed  b> a c o m p u te r  p ro g ra m  a n d  are  sh o w n  in  F ig . 2 -18 .
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T oo lbox  2-2-4

The Bode p lo t fo r  Eq. (2-93). using the M A T L A B  "b o d e " function , is obtained by the fo llo w in a  sequence o f  
M A T L A B  functions.

num = [1 10] : 
d e n =  [.1 .7 10];
G = tf(num.den): 
bode(G);

The result is a graph s im ila r to Fia. 2-18.



44 ► Chapter 2. Mathematical Foundation

2-2-10 Magnitude-Phase Plot

The magnitude-phase p lo t o f  G{ja>) is a p lo t o f  the m agnitude o f  G {j(o) in  d B  versus its 
phase in  degrees, w ith  as a param eter on the curve. One o f  the m ost im portan t 
app lica tions o f  th is type  o f  p lo t is that, when G{ j(o) is  the fo rw ard -pa th  ư ansfer func tion  
o f  a un ity-feedback con tro l system, the p lo t can be supeqjosed on the N ich o ls  chart 
(see C hapter 8 ) to  g ive  in fo rm a tio n  on the re la tive  s ta b ility  and frequency response o f  the 
system. W hen constant co e ffic ie n t K  o f  the transfe r fu n c tio n  varies, the p lo t is  s im p ly  
raised o r  low ered v e rtic a lly  accord ing to  the value o f  K  in  dB . H ow ever, in  the 
construction  o f  the p lo t, the p rope rty  o f  adding the curves o f  the in d iv id u a l components 
o f  the transfe r fu n c tio n  in  the Bode p lo t does no t carry  over to  th is  case. Thus, i t  is 
best to  make the magnitude-phase p lo t by com puter o r transfer the data fro m  the 
B ode p lo t.

► EXAMPLE 2-2-6 As an illustrative example, the polar plot and the magnitude-phase plot o f Eq. (2-92) are shown in 
Fig. 2-19 and Fig. 2-20, respectively. The Bode plot o f the function is already shown in Fig. 2-18. 
The relationships among these three plots are easily identified by comparing the curves in  Figs. 2-18, 
2-19, and 2-2o'
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Toolbox 2-2-5

The magnitude and phase p lo t fo r  Example 2-2-6 may be obtained using the M A T L A B  “ n icho ls”  function, 
by the fo llo w in g  sequence o f  M A T L A B  functions.

» G  = zpk([-10] , [0 -2 -5] .10)

Zero/pole/gain:

10 (s + 10)

s (s + 2) (s + 5) 

»  nichols(G)

S ee  F ig . 2 -20 .
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T o o lb o x  2 -2 -6

The phase and ga in  m arg ins fo r  Eq. (2 -92 ) are obta ined b y  the fo llo w in g  sequence o f  M A T L A B  
func tions .

Approach 2 

s = t f ( ‘ s ’ ) :
Gl=(10-S + 100)/(s"3 + 7*s^2 + 10-s) ; 
margin(Gl) ;

Approach 1

nuni= [10 100]: 
den = [1 7 10 0] :
G1 = tf(num.den); 
margin(Gl)I

“ M a rg in "  produces a Bode p lo t and displays the m argins on th is plot.

Bode Diagram
Gm = 7.36 dB (at 5.77 ra d /se c), Pm *  10.7 deg (at 3.88 rad/sec)

2-2-11 Gain- and Phase-Crossover Points

Gain- and phase-cro'ssdver points on the frequency-dom ain plots are im ponant fo r  analysis 
and design o f  contro l systems. These are defined as fo llow s.

• G a in -c rossove r p o in t. The gain-crossover po int on the frequencv-dom ain p lo t o f 
G íý íy) is the po int at w h ich  Gl jcu}\ =  1 or G( =  OdB. The frequenc> at ihe 
gain-crossover po in t is called the ga in -crossover frequency  cOg.

• Phase-crossover p o in t. The phai>e-crossover po int on the frequency-dom ain plo t 
o f  C l jừ J ì is the po in t at which C( joj} =  180 '. The frequency at ử e  phase- 
crossover point is called the phase-crossover frequency (t)p.



The gain and phase crossovers are interpreted w ith  respect to  three types o f  plots:

• P o la r p lo t. The gain-crossover po in t (o r points) is where \Gịj(ư) 1 =  1. The phase- 
crossover po in t (o r points) is where lG ịjco) =  180° (see F ig. 2-19).

• Bode p lo t. The gain-crossover po in t (o r points) is where the magnitude curve 
|G (ý (i)) |jg  crosses the 0-dB axis. The phase-crossover po in t (o r poin ts) is where the 
phase c u ire  crosses the 180° axis (see F ig. 2-18).

• M agn itude -phase  p lo t. The gain-crossover po in t (o r poin ts) is where the G( joj) 
curve crosses the 0-dB axis. The phase-crossover po in t (o r points) is where the 
G{jco) curve crosses the 180^ axis (see F ig . 2-20).

2-2-12 Minimum-Phase and Nonminimum-Phase Functions

A  m a jo rity  o f  the process transfer functions encountered in  linear con tro l systems do not 
have poles or zeros in the rig h t-h a lf i-p lane . Th is  class o f  transfer functions is called the 
m in im u m -p h a se  tra n s fe r fu n c tio n . W hen a transfer function  has either a pole o r a zero in 
the right-half 5-plane, it is called a nonminimum-phase transfer function.

Minim um -phase transfer functions have an im portant property in that the ir magnitude 
and phase characteristics are un iquely related. In  other words, given a m inimum-phase 
func tion  G(.y), know ing its  m agnitude characteristics \G{jco)\co m p le te ly  defines the phase 
characteristics. :G(ýcư). Conversely, g iven G ijo j). \G{jo)}\ is com plete ly defined.

Nonm inim um -phase transfer functions do not have the unique magnitude-phase 
relationships. For instance, g iven the function

w  (2-94)
1 — J0)T

the magnitude o f  G( joj) is the same whether r i s  positive (nonm in im um  phase) o r negative 
(m in im um  phase). However, the phase o f  G{ j(o) is d iffe ren t fo r positive and negative T. 

A dd itiona l properties o f  the m inim um -phase transfer functions are as fo llow s;

• For a m inim um -phase transfer function  G(.s) w ith  m  zeros and n  poles, excluding 
the poles at Í  =  0 . i f  any. when s =  jco and as O) varies from  oc to  0 . the total phase 
variation o f  G {jùj)  is (« -  m)Tĩ/2.

• The value o f  a m in im um -phase transfer function  cannot become zero o r in fin ity  at 
any fin ite  nonzero frequency.

• A  nonm inimum-phase transfer function w ill always have a more positive phase 
s h if t  a s  CO is  v a r ie d  fr o m  -X  to  0 ,

EXAMPLE 2-2-7 As an illustrative example o f the propenies o f ihe nonminimum-phase transfer function, consider lhat 
the zero o f the transfer function  o f  Eq. (2-92) is in  the r ig h t-h a lf i-p lan e : that is.

,ĩ( j  +  2 ) ( j  +  5)

T h e  m a g n itu d e  p lo t o f  th e  B ode  d ia g ra m  o f  C ( j(o )  is id e n tic a l to  th a t o f  th e  m in im u m -p h ase  tran s fe r  
fu n c tio n  in E q . (2 -9 2 ), a s  show n  in Fig. 2 -1 8 . T h e  p h a se  c u rv e  o f  th e  B o d e  p lo t o f  C l  j(o )  o f  E q . (2 -9 5 ) 
is shown in  Fig- 2-21(a), and the po lar p lo i is shown in Fig, 2-21(b). N otice that Ihe nonm in im um - 
phase function has a net phase s h ift o f  270'- (fro m  - 180 ' to  +  90 ) as OJ varies from  -)C to 0, whereas 
th e  m in im u m -p h ase  tran s fe r  funciion  o f  E q . (2 -9 2 )  haii a  n e t p h ase  c h a n a e  o f  o n ly  9 0 ' (fro m
-  180’ to  -  90 '-) o v e r  the  sa m e  frequenc>  range .

2-2 Frequency-Domain Plots <  47
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45

-90

-135

-180_

N

10
to (rad/sec) 

(a)

Figure 2-21 (a) P h a se  c u rv e  o f th e  B o d e  p lo t, (b) P o la r  p lo t. G {s) ~  ('+2)(‘+s)'

C a re  s h o u ld  b e  ta k e n  w h e n  u s in g  th e  B o d e  d ia g ra m  fo r  th e  a n a ly s i s  a n d  d e s ig n  o f  sy s te m s  
w ith  n o n m in im u m -p h a se  t r a n s fe r  fu n c tio n s . F o r  s ta b ili ty  s tu d ie s ,  th e  p o la r  p lo t,  w h e n  used  
along w ith the Nyquisl criterion discussed in Chapter 8, is more convenient for nonminimum- 
phase systems. Bode diagrams o f nonminimum-phase forward-path transfer functions should not 
be used for stability analysis o f closed-loop control systems. The same is true fo r the magnilude- 
p h a se  p lo t.

H ere  a re  so m e  im p o rta n t no tes:

• A  Bode plot is also known as a comer plot or an asymptotic plot.

• The magnitude o f the pure lime delay term is unily for all Ơ).

• The magnitude and phase characteristics o f a minimum-phase function are uniquely related.

• Do not use the Bode plot and the gain-phase ploi o f a nonminimum-phase ưansfer function for 
sta b ili ty  s tu d ies .

T h e  to p ic  o f  f re q u e n c y  re sp o n se  h a s  a  sp e c ia l im p o rta n ce  in  th e  s tu d y  o f  co n tro l sy s te m s  a n d  is 

re v is ite d  la te r  in  C h a p te r  8.
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► 2-3 INTRODUCTION TO DIFFERENTIAL EQUATIONS
A  w ide range o f  systems in engineering are modeled m athem atica lly by d iffe ren tia l 
equations. These equations generally invo lve  derivatives and integrals o f  the dependent 
variables w ith  respect to the independent variable— usually tim e. For instance, a series 
e lectric  RLC  (resistance-inductance-capacitance) netw ork can be represented by the 

d iffe ren tia l equation:

dl c j

where R  is the resistance; L, ihe inductance; c , the capacitance; i(t), the current in the 
network; and e(t), the applied voltage. In this case. eU) is the forcing function; r, the 
independent variable; and /(r), the dependent variable o r unknown that is to  be determ ined 
by so lv ing  the d iffe ren tia l equation.

Eq. (2 -96) is referred to  as a second-order d iffe ren tia l equation, and we refer to the 
system as a second -o rde r system . S tr ic tly  speaking, Eq. (2-96) should be reíeưed to  as an 
in tegrod iffe ren tia l equation, because an in tegra l is involved.

2>3*1 Linear Ordinary Differential Equations

In  general, the d iffe ren tia l equation o f  an nth-order system is w ritten

^  ^  = /(') 

w h ich  is  also known as a lin ea r  o rd in a ry  d ifferen tia l eq u a tio n  i f  the coeffic ien ts  
a o ,a], . . .  . f ln - i  are not functions o f  v (/).

A  first-order linear ord inary d iffe ren tia l equation is therefore in the general form :

^  +  ao>'(l) =  / ( ' )  (2-98)

and the second-order general fo rm  o f  a linear ord inary d iffe ren tia l equation is

+  a i ^  +  aoyil) = m  (2-99)

In  th is text, because we treat o n ly  systems that contain lumped parameters, the d iffe ren tia l 
equations encountered are a ll o f  the ord inary type. For systems w ith  d istributed parameters, 
such as in heat-transfer systems, partia l d iffe ren tia l equations are used.

2-3-2 Nonlinear Differential Equations

M any physical systems are nonlinear and must be described by nonlinear d iffe ren tia l
equations. For instance, the fo llo w in g  d iffe ren tia l equation ihat describes the m o iion  o f  a
pendulum o f  mass m  and length /, later discussed in th is chapter, is

d ‘ 9(i)
m f — | ^  +  m e s ín ớ (/) =  0  ( 2 - 10 0 )

d ĩ '

Because e[i)  appears as a sine function, Eq. (2-100) is nonlinear, and the system is called a 
n o n lin e a r system.
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2-3-3 First-Order Differential Equations: State Equations^

In general, an /íth-order differential equation can be decomposed into n fiist-order 
differential equations. Because, in principle, first-order differential equations are simpler 
to solve than higher-order ones, first-order differential equations are used in the analytical 
studies o f control systems. For the differential equation in Eq. (2-96). i f  we let

X i(i) =  J iiÍ i{t)dt (2-101)

and

^ 2 ( / ) = ^  =  iW  (2 - 10 2 )

then Eq. (2-96) is decomposed into the following two first-order differential equations;

^  =  (2.103,
at

In a similar manner, for Eq. (2-97). let us define

M ' )  = >'('}

*  (2-105)

then the íỉth-order differential equation is decomposed into n first-order differential 
equations:

- a o x i U j - a , X 2 ( l j  -  ■■■ + / ừ j

Notice that the last equation is obtained by equating the highest-ordered derivative term in 
Eq. (2-97) to the rest o f the terms. In conưol systems theory, the set o f first-order
differential equations in Eq. (2-106) is called the state equations, and xi.x-<...........x„
are called the state variables.

2-3-4 Definition of State Variables

The stale o f  a system refers to  the past, present, and future conditions o f  the system. 
From  a m athematical perspective, i t  is convenient to  define a set o f  Slate variables and 
slate equations 10  model dynam ic systems. A s i t  turns out. the variables X ị ( t ) .  

X2 (t) ..........Xn(ĩ) defined in Eq. (2-105) are the state variables o f  the /7th-order svstem

•Please refer to Chapter 10 for more in-depth study o f Slate Space Syscems.



described by Eq. (2-97), and the n first-o rder d iffe ren tia l equations are the state equations, 
ỉn  general, there are some basic rules regarding the de fin ition  o f  a state variable and what 
constitutes a state equation. The state variables must satisfy the fo llo w in g  conditions:

• A t  any in itia l tim e Í =  to, ihe state variables X] {to). X2 (f(})..........Jc„(to) define the
in itia l s ta te s  o f  the system .

• Once the inputs o f  the system fo r I > to and the in itia l states ju s t defined are specified, 
the state variables should com plete ly define the future behavior o f  the system.

The state variables o f  a system are defined as a m in im a l set o f  variables. 
J ]  ị t ) ,X 2 ( i ) .___ Xn(t}. such  th a t k n o w le d g e  o f  th e se  v a riab le s  a t an y  lim e  ro a n d  in fo rm a
tio n  on  th e  ap p lied  in p u t a t tim e  Í0 a re  su ffic ien t to  d e te rm in e  the s ta te  o f  th e  sy stem  a t any  
tim e t > to. Hence, the space sta te  fo rm  fo r n state variables is

x ( t j  =  A x(t) +  Bu 

where x(t) is the state vector having « rows,

x(t) =

and u(t) is the input vector w ith  p  rows.

u (tj =

X i i t )

« ( 0

Xni t )

U ]iO
" 2(0

L " p (0

The coeffic ient matrices A  and B  are defined as:

'ứ l l a[2 - a],,'
021 02-> • ■ <32,1

a„2 ■• - a„„ _
'b]] h n  ■■ ■ b \ p '

h i b22 •• ■ b i p

h„2 ■ - ■

(2-107)

(2-108)

(2-109)

( i i  X P)

5 The Output Equation

One should not confuse the state variables w ith  the outputs o f  a system. A n output o f  a 
system is a variable that can he measured, but a state variable does not always satisfy this 
requirement. For instance, in an electric motor, such state variables as the w ind ing  current 
ro to r velocity, and displacement can be measured physically, and these variables all qua lify  
as output variables. On the other hand, magnetic flux can also be regarded as a state variable 
in an electric m otor, because i t  represents the past, present, and future states o f  ihe motor, 
but i t  cannot be measured d irectly  during operation and therefore does not o rd ina rily  
q u a lify  as an output variable. In general, an output variable can be expressed as an algebraic
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com bination o f  the state variables. F o r the system described by Eq. (2 -97), i f  >•(/) is 
designated as the output, then the output equation is s im p ly  y( t)  = J t i ( 0 - in  general,

y W  =

y iW
y i ị i )

yg(i)

= Cx(t) +  Du

We w il l  u tilize  these concepts in  the model

► 2-4 LAPLACE TRANSFORM

> 11 C12 • C i „ '

C21 C22 • C2n

_C,1 Cq2 ■ Cqn

d u d n  ■ d ip '
d2, d22 ■ d ip

d,2  ■ ^<ỈP.

(2- 112)

(2-113)

(2-114)

ng o f  various dynam ical systems.

The Laplace transform  is one o f  the m athematical loo ls  used to  solve linear ordinary 
d iffe ren tia l equations. In  contrast w ith  the classical m ethod o f  so lv ing  linear d ifferentia l 
equations, the Laplace transform  method has the fo llo w in g  tw o  features:

1. The homogeneous equation and the particu la r in tegra l o f  the so lu tion o f  the 
diffe ren tia l equation are obtained in  one operation.

2. The Laplace ưansíorm  converts the d iffe ren tia l equation in to  an algebraic 
equation in  i-dom a in . I t  is then possible to  manipulate the algebraic equation 
by sim ple algebraic rules to  obtain the so lu tion in  the i-dom a in . The fina l solution 
is obtained by taking the inverse Laplace transform .

2-4-1 Definition of the Laplace Transform

G iven the real function  y io  that satisfies the condition

f  d t<00  
Jo

fo r  some fin ite , real Ơ, the Laplace transfonn o f ^ O  is defined as

= r
Jo-

or

F (s) =  Laplace transform  o f  f { t )  = £ [ / { / ) ]

(2-115)

(2-116)

(2-117)

The variable s  is referred to  as the Lap lace  o p e ra to r, w hich is a com plex variable; that is, 
Í  =  Ơ +  j(o, where Ơ is the rea l component and (O is the im aginary component. The de fin ing 
equation in Eq. (2-117) is also known as the one-sided Lap lace  tra n s fo rm , as the 
integration is evaluated from  /  =  0  to 00 . Th is  s im ply means that a ll in fo rm ation  contained



iũ /Ị t)  p rio r to  r =  0 is ignored o r considered to be zero. Th is  assumption does not impose 
any lim ita tio n  on the applications o f  the Laplace transform  to linear systems, since in the 
usual tim e-dom ain studies, tim e reference is often chosen at f  =  0. Furtherm ore, fo r  a 
physical system when an inpu t is applied at Í  =  0 , the response o f  the system does not start 
sooner than t =  0; that is, response does not precede excita tion. Such a system is also 
known as being causal o r s im p ly  p h ys ica lly  rea lizab le .

Strictly, the one-sided Laplace ffansform should be defined from  Í  =  0 "  to Í =  oc. The 
symbol t =  0~ im plies the lim it o f  / —  0 is taken from  the le ft side o f  Í  =  0. This lim itin g  process 
w ill take care o f situations under which ứie function^/fo has a jum p  discontinuity or an impulse 
at Í  =  0. For the subjects ơeated in  ửiis text, the defin ing equation o f  the Laplace transform in 
Eq. (2 -1 17) is almost never used in  problem solving, since the ưansform expressions encountered 
are either given or can be found from  the Laplace transform lable, such as the one given in 
Appendix c .  Thus, the fine point o f  using 0 "  orO'^ never needs to  be addressed. For sim plicity, we 
shall s im ply use f =  0 or r =  fo( >  0 ) as the in itia l tim e in all subsequent discussions.

The fo llo w in g  examples illustra te how Eq. (2-117) is used fo r  the evaluation o f  the
Laplace transform  o fy (/) .

► EXAMPLE 2-4-1 L e t^ i)  be a unil-step function that is defined as

=  - > 0
=  0 r < 0

The Laplace transform o f fir) is obtained as

f  (s) =  £ [» ,(0 1  =  r  «.(t)e-"d l =  - ~ e - '
Jo •s

Eq. (2-119) is valid i f
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r  u,{r)e-^' d t=  [  
Jo Jo

d r < x  (2- 12 0 )

which means that the real part o f 5, a. must be greater than zero. In practice, we simply refer to the
Laplace ưansíorm o f the unit-step function as 1/i, and rarely do we have to be concerned with the
region in the i-plane in which the transform integral converges absolutely.

EXAMPLE 2-4-2 Consider the exponential function
f{ t)  = e ' “' t> 0  (2 - 12 2 )

where ữ is a real constant. The Laplace transform of_/íí) is written

F[s) =  r  e -° 'e - ''d i = 
Jo 5 +  0

1

Toolbox 2-4-1
Use the M A T L A B  sym bolic too lbox to find  the Laplace transforms.

»  syms t 
»  f = t^4

f =

t^ '4

»  laplace(f) 

ans =

2 4 / s ^ 5  ________



2-4-2 Inverse Laplace Transformation

G iven the Laplace transform  F ( i) ,  the operation o f  ob ta in ing f{ t )  is term ed the inverse 
Laplace transform ation and is denoted by

/ ( / )  =  Inverse Laplace transform  o f  f  ( j )  =  c ~ ' [F ( j ) |  (2-123)

T he inverse Laplace ưansíorm  integral is g iven as

1 rc+yoo
m = ~  /  F{s)e^'ds (2-124)

2 7 r;7 c -;o o

where c is a real constant that is greater than the real parts o f  a ll the s ingu la rities  o f  f ( i ) .  
Eq. (2-124) represents a line  integral that is to  be evaluated in  the j-p la n e . For simple 
functions, the inverse Laplace transform  operation can be carried out s im p ly  by  re fe rring  to 
the Laplace transform  table, such as the one g iven in  A ppend ix  c  and on ứie inside back 
cover. For com plex functions, the inverse Laplace transform  can be can ied  ou t by first 
perfo rm ing  a partia l-frac iion  expansion {Section 2-5) on F{s) and then using Uie Transform  
Table fro m  A ppendix D. You may also use the A C S Y S  "T ra n s fe r Function  S ym bo lic ”
Tool, T fsym , fo r  partia l-fraction  expansion and inverse Laplace transform ation.

2-4-3 Important Theorems of the Laplace Transform

The applications o f  the Laplace transform  in  many instances are s im p lified  by u tiliza tion  o f 
the properties o f  the transform . These properties are presented by the fo llo w in g  theorems, 
fo r  w hich no proofs are g iven here.

I  T heo rem  1. M ultiplication by a  C onstant
Le t ^  be a constant and Fis) be the Laplace transform  o f Then

Cmi)]=kF{s) (2-125)

T he o re m  2. S u m  a n d  D ifference  
Let Fị{s) and F2Ìs) be the Laplace iransform o f / | ( 0  and/ 2(0 . respectively. Then

£ [ / , ( / )  ±  f 2 {i)] =  F^[s) ±  F zis)  (2-126)

■  T heo rem  3. Differentiation
Le t F(s) be the Laplace transform  o f  j{ t) , andy(0) is the lim it  o ff(.0  as I approaches 0. The 
Laplace transform  o f  the tim e derivative o i j i o  is
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c

In general, fo r higher-order derivatives o f  Jịt)

=  sF is) -  lim  / ( 0  =  sF{s) -  m  (2-127)

dl"
=  s"F{s) -  lim

(2-128)d t dl'’- '

= s"F{s) -  5" - 7 (0 ) -  -------------/ " “ '>(0)

where / ‘ " ( 0 ) denotes the /th-order derivative o fy ( r )  w ith  respect to  /. evaluated at r =  0 .
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■  T he o re m  4. Integration
The Laplace transfonn o f  the firs t integral o f f ( t )  w ith  respect to  /  is the Laplace transforrn 

o f  J{t) d iv ided  by s\ that is.

For rtth-order integration.

i: f ( T ) d z
F(s)

r r - r f { t ) d T d t \ d t 2  ■ - ' d t n - x
F{s)

(2-129)

(2-130)

B  T heo rem  5. S h ift in Time
The Laplace transform  o f  f i t )  delayed by tim e T  is equal to  the Laplace tra n s fo rm ^ /)  
m u ltip lie d  by that is.

(2-131)

where Us{l — T )  denotes the unit-step function that is sh ifted in tim e to the righ t by T.

I  T he o re m  6 . Initia l-V alue Theorem
I f  the Laplace transform  o ĩfi,t)  is F(s), then

lim  f { t )  =  lim  sF ịs) (2-132)

i f  the lim it  exists.

i f  T he o re m  7. Final-V alue Theorem
I f  the Laplace transform  0 Ĩ  f{ t)  is F(s), and \ f  sF{s) is analytic (see Section 2-1-4 on the 
de fin ition  o f  an analytic function) on the im aginary axis and in  the r ig h t h a lf o f  the 5-plane, 
then

(2-133)

The fina l-va lue theorem is very useful fo r  the analysis and design o f  control systems, 
because i t  gives the fina l value o f  a tim e function by know ing the behavior o f  its  Laplace 
transform  at J =  0. The fina l-va lue theorem is not va lid  i f  sF(s) contains any pole whose 
real part is zero o r positive, w hich is equivalent to  the analytic requirement o f  sF{s) in  the 
r ig h t-h a lf i-p lane , as stated in the theorem. The fo llo w in g  examples illustra te  the care that 
must be taken in  apply ing the theorem.

EXAMPLE 2-4-3 Consider the function

F(s) =
sịs-^+ s+ 2)

(2-134)

Because sF(s) is analytic on the imaginary axis and in the right-half j-plane, the final-vaiue theorem 
may be applied. Using Eq, (2-133), we have

5 5
- Ò .T - + Í  +  2 2

lim  / ( f )  =  lim  sF{s) =  lim (2-135)



EXAMPLE 2-4-4 Consider the function
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which is the Laplace transform o f / ( / )  =  sin&jf. Because the function sF(s) has two poles on the 
imaginary axis o f  the i-plane, the final-value Uieorem cannot be applied in this case. In other words, 
although the final-value theorem would yield a value o f zero as ứie final value o f fit) , the result is 
erroneous.

(2-Ỉ36)

■  T h e o re m  8 . Com plex Sh iftin g
The Laplace transform  o f  J[ ti  m u ltip lie d  by where a  is a constant, is equaJ 10  the
Laplace transform  F(s), w ith  s  replaced by J ±  a : tha t is,

C {e= ^°'fit)]  =  F i s ± a ) (2-137)

TABLE 2-4 Theorems of Laplace Transforms

M ultiplication by a constant 

Sum and difference 

Differeniiation

Integration

Inilial'Value theorem 

Final-value iheorem

Complex shifting 

Real convolution

Complex convoiution

cm t) ]  =  kF{s)

C [ M t ) ± f 2 ( t ) ] ^ F l{ s ) ± F 2 (s)

di = sF{s) -  m

= 5 ^ f ( 5 ) - 5 " ' ‘ / ( 0 ) - ŝ - V { 0 )

d‘̂ m

dt” 

where 

/ “ '(0 ) =

c  =  —

c  C  ' ■■ r  i W r d x , d t 2 - - d t , . t  
Jữ Jo Jo

Cl f i t  -  TiuAl -  T)] =

lim  fU )  =  Hm sF(s)

Hm f i t )  = lim  sF(s) i f  sF(s) does not have poles on or to the right o f the imaginan- axis in 

the j-plane.

C [ e ^ ’ / { ! } ]  =  F { s ±  a )

F ịís)F 2 (sì= C  y  -  D íít

=  c  j f '  / 2( t j / r  ( ; -  T)dT =  c[fl « )  .  / 2(1)1

C ' i M i ) f 2 li>] =  h h i - F i i s )
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ft T heo rem  9. R eal C onvolu tion  (C om plex M ultiplication)
L e t F | ( j )  and ^ 2(5 ) be the Laplace transforms o f  / ị (0  and / 2ÍÍ) ,  respectively, and 
/ | ( / )  =  0 , / 2 (0  =  0, fo r  /  < 0 ,  then

= c

/ 1 ( 0  * / 2 (0 ]

f  Mr) h [ t - T ) d T  
Jo (2-138)

I
where the sym bol *  denotes co n vo lu tio n  in  the tim e domain.

Eq. (2-138) shows ửiat m u ltip lica tio n  o f  tw o  transformed functions in the com plex 
5 -dom ain is equivalent to  the convo lu tion  o f  tw o  corresponding real functions o f  I in the 
ỉ-dom ain. A n  im portant fact to  rem em ber is that the inverse Laplace transform o f  the 
product o f  two functions in the %-domain is not equal to ihe product o f  the two  
corresponding real functions in the i-domain\ that is, in  general,

£ - ' [ F , { s ) f 2 W l / / l ( < ) / 2 ( ')  (2-139)

There is also a dual re la tion to  the real convolution theorem, called the com plex 
co n vo lu tio n , o r rea l m u lt ip lic a tio n . Essentially, the theorem states that m u ltip lica tion  
in  the real i-dom ain is equivalent to  convo lu tion  in  the com plex i-dom a in : that is.

4 / l ( ' ) / 2 ( < ) l = f l W » f 2 W  (2-140)

where *  denotes com plex convolution in  this case. Details o f  the com plex convolution 
fo rm u la  are not given here. Table 2-4 summarizes the theorems o f  the Laplace transforms 
represented.

► 2 - 5  INVERSE LAPLACE TRANSFORM BY PARTIAL-FRACTION EXPANSION
In  a m a jo rity  o f  the problem s in contro l systems, the evaluation o f  the inverse Laplace 
transform  does not re ly  on the use o f  the inversion integral o f  Eq. (2-124), Rather, the
inverse Laplace transform  operation in vo lv ing  rational functions can be carried out using a
Laplace transform  table and partia l-fraction  expansion, both o f  w hich can also be done by 
com puter programs.

2-5-1 Partial-Fraction Expansion

W hen the Laplace transform  solution o f  a d iffe ren tia l equation is a rational function in s. it 
can be w ritten  as

where P(s) and Qis) are po lynom ia ls o f  5. I t  is assumed that the order o f  Pis) in s is greater 
than that o f  Qịs). The po lynom ia l P(s) may be w rilten

/*(s) - 5" +  - ■■ +ứ ,.í +  ữ„ (2-142)

w h e re o o .fli, . . .  ,ứ „_ i are real coefficients. The methods o f  partia l-fraction  expansion w ill 
now be given fo r the cases o f  sim ple poles, m u ltip le -o rder poles, and com plex-conjugate 
poles o f  G(s).



58 ► Chapter 2. Mathematical Foundation

G(s) H as Sim ple Poles I f  a ll the poles o f  G ( j)  are s im ple and real. Eq. (2 -117) can be
w ritten  as

(2-143)
p (s )  (5 +  5 l)(5  +  i 2 ) - - - { i +  in )  

where SỊ 7 ^ 5 2 ^  ■ ■ ■ ^ s „ .  A p p ly in g  the partia l-fraction  expansion. Eq. (2 -143) is w ritten

Í  +  Í1  S +  S2 i  +  i „
(2-144)

The coeffic ien t ATjj(i =  1 ,2 , . . . , n )  is determ ined by  m u ltip ly in g  both sides o f  Eq. (2-143) 
by the facto r {s  +  Si) and then setting ie q u a l to - S i -  To find  ứie coe ffic ien t AT,], fo r  instance, 
we m u ltip ly  both sides o f  Eq. (2-143) by ( i  +  i j )  and le t s =  - S i .  Thus,

=
(J2 - S l ) ( l 3  - S i )

(2-145)

EXAMPLE 2*5-1 C o n s id e r  th e  fu n c tio n

5 s +  3 5 i  +  3

' * ' ” ( s + l ) ( i  +  2 ) ( s  +  3 ) “ i 3 + 6 s 2  +  l l s  +  6

w h ic h  is  w ri tte n  in  th e  p

. f ( - \  , f ( - 2  , AT-3

T h e  c o e ffic ie n ts  K - \ .  K - 2, a n d  K - Ĩ  a re  d e te rm in e d  a s  fo llow s:

5 ( - l )  +  3
í : - ,  =  l ( j  +  i ) G (s ) l

i r - 2  =  l ( j  +  2 )G W ]

í í - 3  =  Ị(* +  3 ) g w i  

Th u s . E q . (2 -1 4 6 )  b e co m e s

C (s )

( 2 - l ) ( 3 - l )  ^

M - 2 )  +  3 ,

( l - 2 ) ( 3 - 2 )

_  5 ( - 3 )  +  3 _

,= - 3  ( 1 - 3 ) ( 2 - 3 )

- I  _ 2 _____ ^
J + I  j + 2  Í + 3

(2-146)

(2 -148 )

Í2 -149 )

(2 -150 )

(2 -1 5 1 )

Toolbox 2-5-1
For Example 2-5-1, Eq. (2-146) is a ra tio  o f  tw o  polynom ia ls.

» b = [ 5 3 ] %  mimerator polynomial coefficients 
»  a = [1 6 11 6] %  denominator polynomial coefficients

You can calculate the partia l fraction  expansion as

»  [r, p, k] = residueCb,a) 
r =

- 6 . 0 0 0 0
7 . 0 0 0 0

- 1 . 0 0 0 0
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- 3 . 0 0 0 0
- 2 .0 0 0 0
- 1 .0 0 0 0

Now. convert the pan ia l fraction  expansion back to po lynom ia l coefficients. 

»  [ b  , a ]  =  r e s i d u e C r . p . k )

1 . 0 0 0 0  6 . 0 0 0 0  1 1 . 0 0 0 0  6 . 0 0 0 0  

Note that the result is norm alized fo r the leading coe ffic ien t in  the denominator.

H as M ultiple-O rder P oles  I f  r  o f  the n  poles o f  G{s) are identica l, o r  we say that the 
pole at Í  =  - S i  is o f  m u lt ip lic ity  r, G(s) is w ritten

C(i)
(2-152)

■ p ( j )  (s +  S| )(s  +  Í 2 ) ■ ■ ■ (s +  s » - r ) ( l  +  SiY  

( i ^  1, 2, n — r), then G (5) can be expanded as

0 ( 5 ) = ^ + - % + . . .
5 +  5i S + S2 s +  s„-r

\*— n -  r  terms o f  sim ple poles —»I

A] Ả2 Ar

Í  +  Í Í  (s  +  I ,)^  ( s +  S i Ỵ

I «— r  terms o f  repeated poles —* I

Then (n — r )  coefficients, K si,K ;2 , ■ ■ • w h ich  correspond to simple poles, may be
evaluated by the method described by Eq, (2-145). The determ ination o f  the coefficients 
that correspond to the m u ltip le -o rder poles is described as fo llow s.

(2-153)

(2-154)

(2-155)

(2-156)

(2 -1 5 7 )



► EXAMPLE 2-5-2 Consider the function
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G{ ) =  1 ____________ Ị__________
s (s + I) ’ (s +  2) +  7j2 +  2 i

By using the format o f Eq. (2-153), G (j) is written

A2 .43
C W = ^  + ̂  +  A  + 7 7 ^  +  ̂ ^Í  S + 2 5 + 1  ( , +  1)2 ( i + i ) 3

The coefficients coưesponding to the simple poles 

K„ =  [sG(s)]

if-2=[(i +  2)GW]

and those o f the third-order pole

> l3 =  Ị(í + 1 ) 'G (5 ) ]

I
'S

_ d 1

s ^ - ~ d s [s{s+2)\

;is + 2 \

The completed partial-fraction expansion is

^  2 s 2(5 +  2) j + 1  ( s + ì ỹ

Í2-159)

(2-160)

(2-163)

(2-165)

T o o lb o x  2 -5 -2

For Exam ple 2-5-2, Eq. (2-158) is a ra tio  o f  tw o  polynom ia ls.

»  clear all
»  a = [1 5 9 7 2] %  coefficients of polynomial s''4 + 5*s^3 + 9*s''2 + 7*s + 2 

a =
1 5 9 7 2

»  b = [1] %  polynomial coefficients 

b =
1

»  [r , p  , k] = residueCb, a) %  b is the numerator and a is the denominator 

r =
- 1 . 0 0 0 0  

1.0000 
- 1.0000
1.0000
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P “
- 2.00 00
- 1.00 00
- 1 . 0 0 0 0

- 1 . 0 0 0 0

k  =

[ ]

»  [ b , a ]  =  r e s i d u e ( r , p , k ) %  O b t a in  t h e  p o ly n o m ia l  fo r m  

b  =
- 0 . 0 0 0 0  - 0 . 0 0 0 0  - 0 . 0 0 0 0  1 . 0 0 0 0

a  =
1 .0 0 0 0  5 .0 0 0 0  9 .0 0 0 0  7 .0 0 0 0  2 .

G(s) H as Sim ple Com plex-Conjugate Poles The partia l-fraction  expansion o f  Eq. (2-
144) is va lid  also fo r  sim ple com plex-conjugate poles. Because com plex-conjugate poles
are more d iff ic u lt to handle and are o f  special interest in  con tro l system studies, they 
deserve special treatment here.

Suppose that G(s) o f  Eq. (2-117) contains a p a ir o f  com plex poles:

s =  —Ơ +  jo) and 5 =  —a  — jco 

The corresponding coeffic ients o f  these poles are found by using Eq. (2-145),

=  (s +  ,7  -  (2-166)

=  (s +  a  +  (2-167)

► EXAMPLE 2-5-3 Consider the second-order prototype function

+  2^co„s + (úị
(2-168)

L et u s  a ssu m e  th a t th e  va lu e  o f  i; is  le ss  th a n  o n e , so  th a t th e  p o le s  o f  G(s) a re  c o m p le x . T h en . C (s)  is 
e x p an d e d  a s  fo llow s:

G ( i ) =  +  ‘ ^-■’ -1“  (2 -169 :
S +  Ơ -  j o j  i  +  ơ  +  ýoí

0 =  U J n ự V ^ ~



The coefficients in Eq. (2-169) are determined as

fi-a+jo, =  ( j  +  <7 -  ýíử)G(í)
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= -ơ+ja>

K-a-ju, =  ( j  +  Ơ +  jco)G{s) =
s=-a~j(o

The complete partial-fraction expansion o f Eq. (2-168) is

= i íẩ .  
2>

2j<o
(2-173)

(2-172)

1 1
■ + Ơ -  j(o S + Ơ + j(o

Taking the inverse Laplace transform on both sides o f the last equation gives

g { l ) = ệ - e - ’‘ (e‘“‘ ( > 0  (2-175)

s W = ự = = < '  ' > 0  (2-176)

■*

► 2-6 APPLICATION OF THE LAPLACE TRANSFORM TO THE SOLUTION OF LINEAR 
ORDINARY DIFFERENTIAL EQUATIONS

As we see later, the mathematical models o f most components o f control systems are 
represented by first- or second-order differenlial equations. In this textbook, we primarily 
study l in e a r  o rd in a r y  dUTerential eq u a tio n s  with constant coefficients such as the first- 
order linear system:

+o«y(l) = m  (2-177)

or the second-order linear system:

^  +  +  =  (2-178,

Linear ordinary differential equations can be solved by the Laplace transform method 
with the aid o f the theorems on Laplace transform given in Section 2-4. the panial- 
fraction expansion, and the table o f Laplace transforms. The procedure is outlined 
as follows:

1. Transform the differential equation to the i-domain by Laplace transform using
the Laplace transform table.

2. Manipulate the transformed algebraic equation and solve for the output variable.

3. Perform partial-fraction expansion to the ưansíormed algebraic equation.

4. Obtain the inverse Laplace ưansform from the Laplace transform table.

Let us examine two specific cases, first- and second-order prototype systems.
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2-6-1 First-Order Prototype System

C onsider Eq. (2-177), w h ich  may also be represented b y  the f ir s t-o rd e r  p ro to ty p e  
fo rm :

(2-179)

where, Ĩ  is know n as the tim e  cons tan t o f  the system, w h ich  is a measure o f  how  fast the 
system responds to in itia l conditions o f  external excitations.

► EXAMPLE 2-6-1 F ind  the solu tion o f  the first-order d iffe ren tia l Eq. (2-179). 

SOLUTION For a un it step input

E q . (2 -1 7 9 )  is  w ri tte n  as

» .( ')  =  r j ( ' )  +y(<)

I f  y {0 )  =  j  (0 ) =  0 , £  ( i / , ( l ) )  =  -  and =  y i s ) ,  w e  h av e

i - i r f W + f W

(2-180)

N o tic e  th a t th e  sy s te m  h a s  a  p o le  a i J  =  “ J /^ -  

U s in g  p a n ia l f ra c tio n s , E q . (2 -1 8 3 )  b e co m e s

(2 -1 8 3 )

(2 -1 8 4 )
rs +  1

w h ere , Kf} =  1 a n d K _ ị Ị j  =  - ! .  A p p ly in g  th e  in v e rse  L a p la c e  tran s fo rm  to  E q . (2 -1 8 4 ) , w e g e t the  
tim e  re sp o n se  o f  E q . (2 -179 ).

Voự) = \ (2 -185 ) 

w h e re  t  is  th e  tim e  fo r  >’( /)  to  rea ch  6 3 %  o f  its  final va lu e  o f  Hm )»(i) =  1.

T y p ic a l u n it-s te p  re sp o n se s  o f  y ( i} a re  sh o w n  in  F ig . 2 -2 2  fo r  a g e n e ra l va lu e  o f  Í. A s th e  va lu e  o f  
tim e  c o n s ta n t r  d e c rea ses , Ihe  system  r e sp o n se  a p p ro a ch e s  f a s te r  to  th e  f ina l va lue .

first-order RC  circuit system.
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Toolbox 2-6-1
The inverse Laplace transform for Eq. (2-183) is obtained using the MATLAB Symbolic Toolbox by ihe 
follow ing sequence o f M ATLAB functions.

»  syms s tau;
»  ilaplace(l/(tau*s^2 + s)) ;

The result is Eq. (2-185).
Note, the sym command lets you construct symbolic variables and expressions, and the command:

»  sym s s t a u ;

is equivalent to:

»  s = sym(‘s’);
»  t a u  = s y m ( ‘ t a u ’ ) ;

Time response o f Eq. (2*183), shown in Fig. 2-22, for a given value r  =  0.1 is obtained using

»  clear all;
»  t = 0:0.01:1;
» t a u  = 0.1:
»  plot(l-expC-t/tau));

You may wish to confinti that at t =  0.1, y(t) =  0.63.

2-6-2 Second-Order Prototype System

Similarly, for the second-order prototype o f the form:

+ = m  (2-186)

where Ị  is known as the damping ratio, and (o„ is the natural frequency o f the system. The 
prototype forms o f differential equations provide a common format o f representing various 
components o f a control system. The significance o f this representation w ill become more 
evident when we study the time response o f control systems in Chapter 5.

EXAMPLE 2-6-2 Consider the differential equation

^  +  3 ^ + 2 , ( , )  =  5 „.( ,)  ,2-187,

where Usd) is the unit-step function. The in itia l conditions are )-(0) =  - l  and y ‘ '(0 ) =  
dy(t)/dt\,^Q = 1. To solve the differentia] equation, we first take the Laplace transform on both 
sides o f Eq. (2-153):

! ^ n s )  -  J)-(O) -  v " '(0 )  +  S ir is )  -  3v(0) +  ir is }  =  5 /s  (2-188)

Substituting the values o f the in itia l conditions into the last equation and solving for y(s). we get

(2 -1 8 9 )
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Eq. (2-189) is expanded by partial-fraction expansion to give

Taking ưie inverse Laplace ưansform o f Eq. (2-190), we get the complete solution as

y ự ) = ị - 5 e - ' + ị e - ' ^  l > 0  (2-191)

The first term in Eq. (2-191) is the steady-state solution or the particular integral; the last two terms 
represent the transient or homogeneous solution. Unlike the classical method, which requires 
separate steps to give the transient and the steady-state responses or solutions, the Laplace ưansíorm 
method gives the entire solution in one operation.

I f  only the magnitude o f the steady-state solution of y (0  is o f interest, Ihe final-value Iheorem of 
Eq. (2-133) may be applied. Thus,

_hm , ( , )  =  lim  “  2

where, in order to ensure the validity o f the final-value theorem, we have firsl checked and found thai 
the poles o f function 5y (i) are all in the left-half j-plane.

*■ EXAMPLE 2-6-3 Consider the linear differential equation

The in itia l values o f >(0 and dy{t)Ịdl are zero. Taking the Laplace transform on both sides o f 
Eq. (2-193), and solving for KCj), we have

Vf ______ _________ ííể_______ (2* 194)
^ ^ “ 5 ( 5 2 + 3 4 .5 1+ 10 0 0 )  s ( j2 +  2 fw „s +  «;2) '  ̂

where, using the second-order prototype representation, f  =  0.5455 and a>„ =  31.62. The inverse
Laplace ưansform o f Eq. (2-194) can be executed in a number o f ways. The Lapiace Iransform table 
in Appendix c provides the time-response expression in Eq. (2-194) directly. The result is

V T
: ^ s in ( < o „ v ' l  - c ^ '  +  e) ' > 0

y(() =  1 -  l . l 9 3 i - ' ’ “ sin(26.5/ +  0.993S) f > 0  (2-197)

Eq. (2-197) can be derived by performing the partial-fraction expansion o f Eq. (2-194). knowing that 
the poles are at i  =  0 . -Ơ  +  ;o), and -Ơ  -  jo), where

ơ = Ị0)„= 17.25 (2-198)

<0 =  0 ) „v 'l - f -  = 26 .5  (2-199)
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The partial-fraction expansion o f Eq. (2-194) is written

s S +  Ơ -  j(0  S + Ơ + j(o

Ko = sY{s)

K-a^ju, = {s + ơ -  ja>)Y{s)

K - a - j ^  = l í  + ơ + jũ})Y(s)

The angle ệ  is given by

Ộ =  180" - c o s ~ 'c

and is illustrated in Fig. 2-23.
The inverse Laplace ttansform o f Eq. (2-200) is now written

I

e - j f

yịt) = 1 + ------J -------
2 j ự l  -  <2 I  J

-  1 +  s in \cù„\/\ -  -  (ýl

Substituting Eq. (2-204) into Eq. (2-205) for ộ, we have

>(0  =

(2-202)

(2-203)

(2-204)

y { l)  =  1 -  1.193e-'’ -“ ' sin(26.5? +  0.9938) í > 0

Figure 2*23 Root location in the j-plane.
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Toolbox 2-6-2
T im e  response o f  Eq. (2 -194) fo r  a unit-step inpu t may also be obtained using

Alternatively:

n u m =  [1000] ;
d e n =  [1 34. 5 1000] ; s = tf (‘s ’);
G = tf (num.den): G=1000/(s^2 + 34.5-s+1000):
stepCG): step (G) ;
title c ‘ Step Response ■ ) title c ‘ Step Response ’ )
xlabel ( ‘Time (sec ’ ) xlabel ( 'Time(sec ' )
ylabel ( ‘ Amplitude ’ ) ylabel ( ‘ Amplitude ’ )

■ ‘step ’ ’ produces the tim e response o f  a function  fo r  a  unit-step input.

Step Response

2-7 IM PULSE RESPO N SE AND TRANSFER FUNCTIONS OF LINEAR SYSTEM S
The classical way o f  m odeling linear tim e-invariant systems is to use t ra n s fe r Tunctions to 
represent inpu t-ou tpu t relations between variables. One way to  define the transfer function 
is to use the impulse response, w hich is defined as fo llow s.

2-7-1 Impulse Response

Consider that a linear tim e-invariant system has the input uU) and output y (0 . As shown 
in  Fig. 2-24, a rectangular pulse function  H(f) o f  a very large magnitude w /2fi becomes
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Figure 2-24 Graphical representation a 
impulse function.

an impulse f u n c t io n  for very s m a ll  durations as E —»0. The equation representing 
Fig. 2-24 is

« ( /)  =

0 t < T - e

0  / > r + e

(2-208)

For Ú =  1, « ( i)  =  á(r) is also know n as u n it im pulse o r D ira c  d e lta  function . F o r /  =  0 in 
Eq. (2-208), using Eq. (2-116) and noting the actual lim its o f the integral are defined from 
Í  =  0 “  to  r  =  oo, i t  is easy to  ve rify  that the Lap la ce  tra n s fo rm  o f  8{t) is  u n ity ,
i.e. C{S{t)] =  \ a s £ ^ 0 .

The important point here is that the response o f any system can be characteri:ed by its 
impulse response g ( t) , w hich is defined as the output when the in p u t  is a unit-im pulse 
func tion  Sự). Once the im pulse response o f  a linear system is know n, the output o f  the 
system  y ( t) ,  with any input, u ( t) , can be fo u n d  by using the transfer function . We define

G (i) = £ ( y ( 0 )  y{s)
C{u{t)) F{s)

(2-209)

as the transfer function o f the system.

^ EXAMPLE 2-7-1 For the second-order prototype system Eq. (2-186), shown in Example 2-5-3 as:

£ (« (/)) + 2ỉw„s + ũ)j,

is ihe transfer function o f ihe system in Eq. (2-210). Similar to Example 2-5-3, given zero initial 
conditions, the impulse response g(/) is

)„y/\ f > 0
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For a unii-step inpul «(r) =  using the convolution properties o f Uplace transforms,

C\ ỵ ( ‘ )] =  C{us*g{ t ) ]

G (j)

From the inverse Laplace transform o f Eq. (2-213), the output >-(i) is therefore

j  U s g ( t - T ) d T

y{i) = 1 - ^  — sin ^tUnV'l -  +  i > 0

w here, Ớ =  COS ' C-

(2-214)

Toolbox 2-7-1
The un it impulse response o f  Eq. (2-194) may be obtained using

Alternatively;

num =[1000]: s = tf (’s ’);
d e n =  [1 34.5 1000]; G=1000/(sA2+34.5*s+1000);
G = tf (num.den) ; impulse (G) :
impulse(G);

Imputee Response



2-7-2 Transfer Function (Single-Input, Singie-Output Systems)
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The transfer function  o f  a linear time-invariant system  is defined as the Laplace transfonn  
o f  the impulse response, with a ll the initial conditions se t 10 zero.

Le t G{s) denote the transfer function o f  a single-inpuu single-ouqput (SISO) system, wiứi 
input «(/), output y (0 , and impulse response gU). The ưansfer funcdon G iJ) is defined as

G(s) = C[git)] (2-215)

The transfer func tion  G(s) is related to  the Laplace ưansíorm  o f  the inpu t and the output 
through the fo llo w in g  relation:

w ith  a ll the in it ia l conditions set to  zero, and yCi) and U{s) are the Laplace ưansíonns o f 
>•(?) and u(i). respectively.

A lthough the transfer function  o f  a linear system is defined in  tenns o f  the impulse 
response, in  practice, the inpu t-ou tpu t re la tion o f  a linear tim e-invarian t system w ith  
continuous-data input is often described by a d iffe ren tia l equation, so i t  is more convenieni 
to  derive the transfer function  d irec tly  from  the d iffe ren tia l equation. Le t us consider ứiat 
the in p u t-o u tp u t re la tion o f a linear tim e-invariam  system is described by ứie fo llow ing  
m h-order d iffe ren tia l equation w ith  constant real coefficients:

d^y it) dy{t)

(2-217)

d f” ‘ d f ”-^  ' dt

The coefficients UQ. a \ .........a„-\ and bo. b \ ...........bm Sxt real constants. Once the input u(.t)
fo r 1 >  to and  the in itia l conditions o f  > '(0 and  ử ie  d eriva tives o f  v (0  a re  Sf)ecified a i d ie  initial 
tim e / =  to, die output response >-(0 fo r  f > / 0  is determined by solving Eq. (2-217J. However, 
from  ửie standpoint o f  linear-system analysis and design, die meửiod o f  using differential 
equations exclusively is quite cumbersome. Thus, differentia l equations o f  the fo rm  o f Eq. 
(2-217) are seldom used in  the ir orig ina l fo rm  fo r  ứie analysis and design o f  conơol systems. It 
should be pointed out that, although effic ient subroutines are available on d ig ita l computers 
fo r the solution o f  high-order differentia l equations, the basic philosophy o f  linear control 
iheorx is that o f  developing analysis and design tools lhar will avoU  the exact solution o f  the 
system differential equations, except when computer-simulation solutions are desired fo r final 
presentation or verification. In classical conưol ứieory, even computer simulations often start 
w ith  ưansfer functions, rather than w ith  differenrial equations.

To obtain the transfer function  o f  the linear system that is represented by Eq. (2-217), 
we s im p ly  take the Laplace transform  on both sides o f  the equation and assume ze ro  in it ia l 
cond itions. The result is

(ỉ* ' +  C t„-\^  * +  ■■■+ 0]S +  ứo) +  b m - ì ^   ̂ +  ■■■ -ị- b\S — í>o) ư (s)

(2-218)

The transfer function  between u(t) and v (/) is g iven by

G f . l  = Ĩ M =  (2-219)
ơ ( í )  í " +  • • • ' t - o i í  ^ a o



The properties o f  the transfer function  are sum marized as fo llow s:

• The transfer function is defined on ly  fo r  a linear tim e-invarian t system. It  is not 

defined fo r nonlinear systems.

• The transfer function between an inpu t variab le  and an ou tput variable o f  a system 
is defined as the Laplace transform  o f  the im pulse response. A lte rna te ly , the 
transfer function  between a p a ir o f  input and output variables is the ra tio  o f the 
Laplace transform  o f  the ou tpu t to  the Laplace transform  o f  the input.

• A l l  in it ia l conditions o f  the system are set to zero.

• The transfer function  is independent o f  the input o f  the system,

• The transfer function  o f  a continuous-data system is expressed on ly  as a function  o f  
the com plex variable s. I t  is not a function  o f  the real variable, tim e, o r any other 
variable that is used as the independent variable. F o r discrete-data systems modeled 
by difference equations, the transfer function  is a function  o f  z when the z- 
transform  is used (re fer to Append ix  D).

2-7-3 Proper Transfer Functions

The transfer function in  Eq. (2-219) is said to be s tr ic tly  proper i f  the order o f  the 
denom inator po lynom ia l is greater than that o f  the num erator po lynom ia l (i.e., n > m). I f  
n =  m, the transfer func tion  is called proper. The transfer function  is im proper i f  m >  «.

2-7-4 Characteristic Equation

The  characteristic equation o f  a linear system  is defined as the equation obtained by selling  
the denom inator polynom ial o f  the transfer function  to zero. Thus, from  Eq. 
(2-219), the characteristic equation o f  the system described by Eq. (2-217) is

5"  +  +  • • • +  ữ i í  +  ứo =  0 (2-220)

La te r we shall show that the s tab ility  o f  linear, sing le-input, single-output systems is 
com plete ly governed by the roots o f  the characteristic equation.
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2-7-5 Transfer Function (Multivariable Systems}

The defin ition o f  a transfer function is easily extended to a system w ith  m ultip le  inputs and 
outputs. A  system o f ửiis type is often reíeưed to as a multivariable system. In a multivariable 
system, a differential equation o f  the form  o f Eq. (2-217) may be used to describe the relationship 
between ã pair o f input and output variables, when all oứier inputs are set to zero. Because die
principle o f  superposition is valid fo r linear systems, the total effect on any output due to a ll the 
inputs acting simultaneously is obtained by adding up the outputs due to each input acting alone.

In general, i f  a linear system has p  inputs and q outputs, the transfer function between 
the ýth inpu t and the ith  output is defined as

=  ^  (2 -2 2 1 ,

w ith  Rk{s) =  0. k =  1 .2 ....... p A Ỷ  }■ Note lha l Eq. (2-221) is defined w ith  o n ly  the yth
inpu t in e ffect, whereas the other inputs are set to  zero. W hen a ll Ihe p  inputs are in action, 
the /th output transform is w ritten

Yi{s) =  G n{s)R i(s) +  Gn.{s}R2 (s } +  ■■■ + G ,J s ] R ^ (s ]  (2-222)



72 ► Chapter 2. Mathematical Foundatian

I t  is convenient to  express Eq. (2-222) in  m atrix -vecto r forrn:

\ { s ) = G { s ) R i s )

w h ere

Y{5) =

is the Ợ X 1 ư a n s ío rm e d  o u tp u t v ec to r;

R { i)  =

is th e  /5 X 1 tra n sfo rm e d  input v ec to r; an d  

G (s) =

is the <7 X p  ưansfer-function m atrix.

► 2-8 STABILITY OF LINEAR CONTROL SYSTEM S

'y\(s)
Y iis)

R ĩ{s)

(2 -2 2 3 )

(2-224)

(2-225)

'O i iW G iz W G ip (s )

0 2 1  (s) O iiis ) C 2p(s)
(2-226)

. c „ w G „ w .

From ứie studies o f  linear differentia l equations w ith  constant coefficients o f SISO systems, we 
learned that the homogeneous solution that corresponds to the transient response o f  die system is 
governed by the roots o f  the characteristic equation. Basically, the design o f  linear conưol systems 
may be regarded as a problem o f  arranging the location o f  the poles and zeros o f  the system 
transfer funclion such that the system w ill perfo im  according to the prescribed specifications.

Am ong Ihe many form s o f  performance specifications used in design, the most 
im portant requirem ent is that the system must be stable. A n  unstable system is generally 
considered to be useless.

W hen a ll types o f  systems are considered— linear, nonlinear, tim e-invariant, and time- 
varying— the de fin ition  o f  stab ility  can be given in  many d iffe ren t form s. We shall deal 
on ly  w ith  the s tab ility  o f  linear SISO tim e-invarian t systems in the fo llo w in g  discussions.

For analysis and design purposes, we can classify s tab ility  as abso lu te  s ta b il ity  and 
re la tive  s ta b ility . Absolute s tab ility  refers to  whether the system is stable o r unstable; it is 
a yes  o r no  answer. Once the system is found to  be stable, it is o f  interest to de ierm ine how 
stable i t  is, and th is degree o f  stab ility  is a measure o f  relative stab ility .

In  preparation fo r the de fin ition  o f  s tab ility , we define the tw o  fo llo w in g  types o f 
responses fo r  linear tim e-invariant systems:

• Z e ro -s ta te  response. The zero-state response is due to the input on ly : a ll the in itia l 
conditions o f  the system are zero.



• Z e ro - in p u t response. The zero-inpu t response is due to the in itia l conditions on ly; 

a ll the inputs are zero.

From the princ ip le  o f  superposition, when a system is subject to  both inputs and in itia l 
conditions, the total response is w ritten

Tota l response =  zero-state response +  zero-input response 

The de fin itions just given apply to  continuous-daia as w e ll as discrete-data systems.
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Ỉ -9  B O U N D E D - I N P U T , B O U N D E D -O U T P U T  (B I B O )  

i\B IL IT Y — C O N T I N U O U S -D A T A  S Y S T E M S

Let w(0. y(0 . and g (0  be the input, output, and the impulse response o f  a linear time-invariant 
system, respectively. With zero initiai conditions, ihe system bi saui to be BIBO  (bounded-input, 
bounded-output) stable, or simply stable, i f  its output y(t) is bounded to a bounded input u(t). 

The convo lu tion  integral re la ting uit), > (/), and gU) is

> ' [ / ) =  f  u { t - T ) g { T ) d T  (2-227)
Jo

Taking the absolute value o f  both sides o f  the equation, we get

W ') |  = u ( (  -  r ) s ( T ) r f r (2-228)

M O | < j ^ * W ( - r ) | | s ( r ) | < i r  (2-229)

I f  u(l) is bounded,

|« (r)| <  M  (2-230)

where A / is a fin ite  positive number. Then,

< A /  r \ g ( T ) \ d T  (2-231)
Jo

Thus, i f  y(i)  is to  be bounded, or

|j/( /) | < N < o o  (2-232)

where A/ is a fin ite  positive number, ihe fo llo w in g  cond ition  must hold;

m [  \ g { T } \ d T < N < o o  (2-233)
Jo

Or, fo r any fin ite  positive Q,

[  \ g { T) \ dT < Q < - ^  (2-234)
Jo



The cond ition  given in  Eq. (2-234) im p lies that the area under the |^ {r)|-ve rsu s -T -cu rve  
must be fin ite .

2 - 1 0  R E L A T IO N S H IP  B E T W E E N  C H A R A C T E R IS T IC  E Q U A T IO N  R O O T S  A N D  S T A B IL IT Y

To show the re la tion  between the roots o f  the characteristic equation and the cond ition  in 
Eq. (2-234), we w rite  the transfer function  C ( i) ,  according to  the Laplace ưansíorm 
d e fin ition , as

G W = 4 s ( t ) ] = j f “ s W i - “ *  (2-235)

Taking the absolute value on both sides o f  the last equation, we have

\G {S)\=  r g i t ) e - ^ ‘d t < r m \ \ e - ^ ‘ \dt (2-236)
Jo Jo

Because where Ơ is the real part o f  Í ,  when s  assumes a value o f  a pole o f
G ( i) ,  G ( i)  =  00 , Eq. (2-236) becomes
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\g [ t) \ \e - '\d ,  (2-237)

I f  one o r more roots o f  the characteristic equation are in  the r ig h t-h a lf 5-plane o r on theỹ£y- 
axis, Ơ >  0 , then

\ < M = \  (2-238)

Eq. (2-237) becomes

o c <  r M \ g i t ) \ d i =  r \ g { i ) \ d i  (2-239)
Jo Jo

w hich violates the B IB O  stab ility  requirem ent. T h u s ,/o r  BIBO  stability, the roots o f  the 
characteristic equation, or (hepoles o f  Q{%), cannot be h e a te d  in the r igh t-half s-plane or 
on the iin-axis; in other words, they m ust all lie in the left-ha lf s-plane. A system  is said to 
he unstable i f  it is not BIBO stable. W hen a system has roots on the yu)-axis. say, at 5 =  jojQ 
and  s  =  — jwQ- i f  th e  inpu t is  a  s in u so id , s in  0)0 /.  th en  th e  o u tp u t w ill be  o f  th e  fo rm  o f  f  sin 
a)(,/. w h ich  is unbounded, and the system is unstable.

2 -1 1  Z E R O -I N P U T  A N D  A S Y M P T O T IC  S T A B IL IT Y  OF C O N T I N U O U S -D A T A  S Y S T E M S

ỉn  th is section, we shall define zero-input stab ility  and asym ptotic s tab ility  and establish 
Ihe ir relations w ith  B IB O  stability .

Z e ro - in p u t s ta b il ity  refers to  the stab ility  cond ition  when the inpu t is zero, and the 
system is driven o n ly  by its in itia l conditions. We shall show that ihe zero-inpu l stab ility  
also depends on the roots o f  the characteristic equation.

Let the in p u t  o f  an nth -o rder system be zero and the output due to  the in it ia l conditions 
be ,v(/). Then, v (/) can be expressed as

L = ()
y ( t)  = '(to )  (2 -240)
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(2-241)

and g/c(i) denotes the zero-input response due to The zero-input s tab ility  is defined
as fo llow s: I f  the zero-input response  y (t), subject to the fin ite  initial conditions, 
reaches zero as  t  approaches infinity, the system  is sa id  to be zero-input stable, or stable; 
otherwise, the system  is unstable.

M athem atica lly, the fo regoing de fin ition  can be stated: A linear tim e-invariant system  
is zero-input stable if, fo r  any set o f  fin ite  there ex ists  a positive num ber M . which
depends on  y ^ ’ (to), such that

1.
| > ( r ) | < M < o c  fo ra U t> lQ  (2-242)

l i m | ) - ( i ) l = 0  (2-243)

Because the condition in  the last equation requires that the magnitude o f  >»(i) reaches 
zero as tim e approaches in fin ity , the zero-input stab ility  is also know n at the asym pto tic  
s ta b ility .

Taking the absolute value on both sides o f  Eq. (2-240), we gel

(2-244)
*=0 ;= 0  '

Because a ll the in it ia l conditions are assumed to  be fin ite , the cond ition  in  Eq. (2-242) 
requires that the fo llo w in g  cond ition  be true:

n - l
^ | S i ( ; ) | < o c  fo r  a l l ;  > 0  (2-245)
*=0

Le t the « characteristic equation roots be expressed as =  Ơ, +  jiOi. i =  1 .2 ......... n.
Then, i f  m  o f  the n roots are simple, and the rest are o f  m u ltip le  order, >|(/) w i l l  be o f  the 
form :

y{ tì =  Ỹ 2 K ie ‘‘' + " ỵ 2 ' ứ e ^ ‘' 
i= i i=0

(2-246)

where Ki and L, are constant coefficients. Because the exponential terms e^‘‘ in the last 
equation contro l the response yU) a s t —>oc. to satisfy the tw o conditions in  Eqs. (2-242) 
and (2-243), the real parts o f  Sj must be negative. In  other words, the roots o f  the 
characteristic equation must a il be in the le ft-h a lf .v-plane.

From  the preceding discussions, we see thai,/07- linear time-invariant system s, BIBO, 
zero-input, and  asym ptotic stability all have the sam e requirem ent that the roois o f  the 
characteristic equation m ust a ll be h e a te d  in the left-ha lf s-plane. Thus, i f  a system  is 
BIBO stable, it m ust also he zero-input or asym ptotically stable. For th is reason, we shall 
s im p ly  re fer to the s tab ility  condition o f  a linear system as stab le  or unstable. The latter



Stability Condition Root Values

Asymptotically stable or simply stable Ơ, <  0 for all i, i  =  1. 2........ n. (A ll the roots are io the
le ft'ha if i-plane.)

Marginally stable or marginally ơ i =  0 for any j  for simple roots, and no Ơ, >  0
unstable For i  =  1. 2, . . . .  n (at least one simple root, no

multiple-order roots on the jw-axis. and n  roots in the 
right-half i-plane; note exceptions)

Unstable Ơ, >  0 for any i  or ơj =  0 for any multiple-order root;
i =  1 , 2 , . . . ,  n (at least one simple root in the right- 
half j-plane or at least one multiple-order root on the 
ỹứ>-axis)
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TABLE 2 5 Stability Conditions of Linear Continuous-Data Time-Invariant SiSO System

cond ition  refers to the cond ition  that at least one o f  the characteristic equation roois is not 
in  the le ft-h a lf 5-plane. For practica l reasons, we often refer 10 the s ituation in  w h ich  ửie 
characteristic equation has sim ple roots on theỹíy-axis and none in  the r ig h t-h a lf plane as 
m a r g in a lly  s ta b le  o r m a rg in a lly  unstab le. An exception to  this is i f  the system  were 
intended to be an integrator (or, in the case o f  control system s, a  velocity contro l system)-, 
then the system  would have rootis) f l/  s =  0  and would be considered stable. S im ila rly , i f  
the system were designed to  be an oscilla tor, the characteristic equation w ou ld  have simple 
roots on the ỹ<w-axis. and the system w ould be regarded as stable.

Because the roots o f  the characteristic equation are the same as the eigenvalues o f  A  o f 
the state equations, the s tab ility  cond ition  places the same restrictions on the eigenvalues.

Le t the characteristic equation roots or eigenvalues o f  A  o f  a linear continuous-data
tim e-invarian t SISO system be Si =  Ơ, +  jo)i, i  =  1, 2 .........n. I f  any o f  the roots is
com plex, i t  is in  com plex-conjugate pairs. The possible s ta b ility  cond itions o f  ứie system 
are summarized in  Table 2-5 w ith  respect to  the roots o f  the characteristic equation.

The fo llo w in g  example illusưates the s tab ility  cond itions o f  systems w ith  reference to 
the poles o f  the system transfer functions that are also the roots o f  the characteristic 
equation.

EXAMPLE 2-11-1 The following closed-loop transfer functions and their assoc ia ted  stability c on d ition s are given.

M{s) =  ̂ ^  + 3 ) asymptotically stable (or, simply, stable)

=  +  Unstable due .he pole a. I

M {s ) =  ^  ̂^ j  M a rg in a lly  s ta b le  o r  m a rg in a lly  u n s ta b le  d u e  to  Í  =  ± j ĩ

M(s) = ----------- -------------- Unstable due to the multiple-order pole at 1  =  ±  /2
( ,2 + 4 ) 2 ( ,+  io )

Mis) = ---------  Stable i f  the pole at s =  0 is placed intemionallv+ 30^3+^2 +  105 ^
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E T H O D S  O F D E T E R M IN IN G  S T A B IL IT Y

The discussions in the preceding sections lead to  the conclusion that the s tab ility  o f  linear 
tim e-invariant SISO systems can be determ ined by checking on the location o f  the roots o f  
the characteristic equation o f  the system. For a ll practical purposes, there is no need to 
com pute the com plete system response to determ ine s tab ility . The regions o f  s tab ility  and 
ins tab ility  in  the i-p lane  are illustra ted in  Fig. 2-25. W hen the system parameters are all 
know n, the roots o f  the characteristic equation can be found using M A T L A B  as dem on
strated in  various M A T L A B  Too lbox w indow s discussed earlie r in  th is chapter. The 
Transfer Function Sym bolic Too l ( tfsym ) developed fo r this chapter may also be u tilize d  to 
find  the transfer function  poles and zeros. See the end o f  th is chapter fo r some examples. 
These programs are discussed in  deta il in  Append ix  G. For design purposes, there w il l  be 
unknown o r variable parameters im bedded in  the characteristic equation, so a Routh- 
H u rw itz  stab ility  routine has also been developed fo r  th is textbook ( t f ro u th ) ,  w hich is 
discussed at the end o f  th is chapter.

The meứiods outlined in  the fo llo w in g  lis t are w e ll know n fo r  determ in ing the s tab ility  
o f  linear continuous-data systems w ithou t in vo lv in g  root solving.

1. R o u th -H u n v itz  c r ite r io n . Th is  crite rion  is an algebraic method that provides 
in fo rm ation  on the absolute s tab ility  o f  a linear lim e-invarian t system that has a 
characteristic equation w ith  constant coefficients. The crite rion  tests whether any 
o f  the roots o f  the characteristic equation lie  in  the rig h t-h a lf 5-piane. The number 
o f  r o o t s  th a t  l i e  o n  th e  ;o ) - a x is  a n d  in  t h e  r i g h t - h a l f  5 - p la n e  is  a l s o  i n d ic a t e d .

2. N y q u is t c r ite r io n . This crite rion  is a sem i-graphical method that gives in fo rm a
tion  on the difference between the number o f  poles and zeros o f  the c losed-loop 
transfer function that are in the r ig h t-h a lf .y-plane by observing the behavior o f  the 
Nyquist p lo t o f  the loop  transfer function . Th is  topic is discussed in  detail in 
Chapter 8 . and the concepts o f loop  transfer function  and close-loop systems are 
discussed in Chapter 3.

3. Bode d ia g ra m . Th is  diagram is a p lo t o f  the m agnilude o f  the loop  transfer 
function G{jco)H{jcư) in  dB and the phase o f  G(Jũ))H{jco) in degrees, a ll versus 
freq u en cy  CO- T h e  co n cep ts  o f  lo o p  tra n sfe r  fu n c tio n  a n d  c lo se d -lo o p  sy s tem s  are

J(0‘

Stable
region

j-plane

Unstable
region

0

Stable Unstable
region region

Figure 2-25 Stable and unstable regions in ihe i-p la
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discussed in  Chapter 3. The s tab ility  o f  the c losed-loop system can be determ ined 
by observing the behavior o f  these plots. Th is  top ic is discussed in  de ta il in 
C hapter 8 .

Thus, as w i l l  be ev iden t th roughout the text, most o f  the analysis and design 
techniques on co n tro l systems represent alternate methods o f  so lv in g  the same problem . 
The designer s im p ly  has to  choose the best ana ly tica l too l, depending on the particu la r 
s ituation.

Details o f  the R o u th -H urw itz  s tab ility  crite rion  are presented in  the fo llo w in g  section.

►  2 - 1 3  R O U T H -H U R W IT Z  C R IT E R IO N

The R ou th -H urw itz  c rite rion  represents a method o f  de term in ing the location o f  zeros o f  a 
p o lynom ia l w ith  constant real coeffic ients w ith  respect to the le ft h a lf and r ig h t h a lf o f  the 
.9-plane, w ithou t actua lly so lv ing fo r the zeros. Because root-finding com puter programs 
can solve fo r  the zeros o f  a  polynom ial with ease, the value o f  the Routh-H urw itz criterion 
is a t best lim ited  to equations with a t least one unknown param eter.

Consider that the characteristic equation o f  a linear tim e-variant SISO system is o f  the 
fo rm

F (s) =  a„s" +  a „ -Ịs " - ' +  ■ ■ ■ +  i i | i  +  ao =  0 (2-247)

where a ll the coeffic ients are real. To ensure the last equation does not have roots w ith 
p ositive real parts, it is  necessary (but not sufficieni) that the fo llo w in g  con d ition s hold;

1. A l l  the coe fflc ien is o f  the equation have the same sign.

2. None o f  the coeffic ients vanish.

These conditions are based on the laws o f  algebra, w h ich  relate the coeffic ients o f 
Eq. (2-247) as fo llow s:

a ll roots (2-248)

^  products o f  the roots taken tw o  al a tim e (2-249)

products o f  the roots taken three at a time
(2-250)

Thus, a ll these ratios m usl be positive and nonzero unless ai least one o f  the roots has a 
positive real part.

The tw o necessary conditions fo r Eq. (2-247) to have no roots in the r ig h t-h a lf 5-plane 
can easily be checked by inspection o f  the equation. However, these cond itions are not 
suffic ient, fo r it  is qu ite  possible that an equation w ith  all its coefficients nonzero and o f  Ihe 
same sign s till may not have all the roots in the le ft h a lf o f  the i-p lane.
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Routh's Tabulation

The H u rw itz  c rite rion  gives the necessary and su ffic ien t cond ition  fo r  a ll roots o f  Eq. 
(2-247) to  lie  in  the le ft h a lf o f  the s-plane. The crite rion  requires that the equation ’s n 
H u rw itz  determ inants must a ll be positive.

However, the evaluation o f  the n  H u rw itz  determ inants is tedious to  caưy out. But 
Routh s im p lified  the process by in troduc ing  a tabulation m ethod in  place o f  the H urw itz  

determ inants.
The firs t step in  the s im p lifica tion  o f  the H u rw itz  crite rion , now ca lled the Routh- 

H u rw itz  crite rion , is to  arrange the coeffic ients o f  the equation in  Eq. (2-247) in to  tw o  rows.
The firs t row  consists o f  the firs t, th ird , f if th ........... coeffic ients, and the second row  consists
o f  the second, fourth , sixth , . . . , coeffic ients, a ll counting fro m  the highest-order teưn, as 
shown in  the fo llo w in g  tabulation:

On a „ -2  a„-A  ứ „_ 6  . , .

ứ„_ 3  a„ - 5  a „ -i . . .

The next step is to  fo rm  the fo llo w in g  aưay o f  numbers by the indicated operations, 
illustra ted  here fo r  a s ix th-order equation:

065^ +  05 /  +  ■ • ■ +  ữị J +  ao =  0 (2-252)

06 04 «2  ^0

^  05 03 a\ 0

4 0 50 4  -  06«3 . 0502 -  aeOị asOo -  Ỡ6 X 0
5 ------------------- — A  ---------------------— B  ------------------------= Uq U

«5 05 «5

3 A a i ~ a s B _ ^  A a \  -  asao

A A A

B C - A D  _  ^  Cao -  A  x O  _  C x O ~ A x Q  _  ^  ^

ED -  Cao
E

Fo q - E x O

T h is  array is called the R o u th ’ s ta b u la tio n  o r R o u th ’ s a rra y . The co lum n o f  s 's  on the le ft 
side is used fo r iden tifica tion  purposes. The reference colum n keeps track o f  the ca lcu la
tions, and the last row  o f  the Routh 's tabulation should always be the s° row.

Once the Routh’s tabulation has been completed, the last step in the application o f  the 
c rite rion  is to  investigate the signs o f  the coeffic ients in  the firs t column  o f  the tabulation, 
w hich contains in form ation on the roots o f  the equation. The fo llo w in g  conclusions are 
made;

T h e  ro o ts  o f  th e  e q u a tio n  a re  a ll in  ih e  le ft h a lf  o f  th e  .?-plane i f  al! th e  e le m e n ts  o f  th e  first 
c o lu m n  o f  th e  R o u th ’s ta b u la t io n  a re  o f  th e  sa m e  sig n . T h e  n u m b e r  o f  c h a n g e s  o f  s ig n s  in 
th e  e lem e n ts  o f  th e  first co lu m n  e q u a ls  th e  n u m b e r  o f  ro o ts  w i(h  p o s it iv e  rea l p a n s , o r  those  
in th e  r ig h t-h a lf  j-p la n e .



The fo llo w in g  examples illus tra te  the applications o f  the R o u th -H u rw iư  crite rion  
when the tabulation tenninates w ithou t com plications.

EXAMPLE 2.13.1 Consider the equation

2 i“  +  +  5j +  10 =  0 Í2-253;

Because the equation has no missing terms and the coefficients are all o f the same sign, i t  satisfies the 
necessary condition for not having roots in the right-half o r on the imaginary axis o f  ihe 5-plane. 
However, the sufficient condition must still be checked. RouUi’s tabulation is made as follows:

5“ 2 3 10

s ' 1 5 0

Sign change 

Sign change
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- 7  “  »
jO 10 0  0

Because there are two sign changes in the first column of the tabulation, the equation has two roots in 
the right ha lf o f the j-plane. Solving for the roots o f Eq. (2-253). we have the four roots al 5 =  
-1 .005 ±  jO.933 and s =  0.755 ±  ýl.444. Clearly, the last two roots are in the right-haư 5-plane, 
which cause the system to be unstable.

Toolbox 2-13-1
The roots o f  the po lynom ia l in  Eq. (2-253) are obtained using the fo llo w in g  sequence o f  M A T L A B  functions. 

»  c l e a r  a l l
»  p = [2 1 3 s 10] %Define polynomial 2*sA4+sA3+3*sA2+5*s+10 

p =
2 1 3 5 10

»  roots(p) 
ans =

0 .7 5 5 5  + 1 . 4 4 4 4 Í
0 .7 5 5 5  -  1 . 4 4 4 4 Ì  

-1.0055 + 0.9331Ì 
-1.0055 - 0.9331Ì

2-13-2 Special Cases when Routh's Tabulation Terminates Prematurely

The equations considered in  the tw o  preceding examples are designed so that Rouih 's 
tabulation can be carried out w ithou t any com plications. Depending on the coeffic ients o f 
the equation, the fo llo w in g  d ifficu ltie s  may occur, w hich prevent Routh 's tabulation from  
com pleting properly:



1 The firs t element in  any one ro w  o f  Routh ’s tabulation is zero, but the others are 

not.

2  The elements in  one row  o f  R outh ’s tabulation are a ll zero.

In  the firs t case, i f  a zero appears in  the firs t elem ent o f  a row , the elements in  the next 
row  w il l  a ll become in fin ite , and R outh ’s tabulation cannot continue. To rem edy the 
situation, w e  replace the zero elem ent in the firs t column by an arbitrary sm all positive  
num ber  e, a nd  then proceed with R o u th ’s tabulation. Th is  is illus tra ted  by the fo llo w in g  
example.
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XAMPLE 2-13-2 Consider the characteristic equation o f a linear system

i** +  +  25 +  3 =  0 (2-254)

Because all the coefficients are nonzero and o f the same sign, we need to apply Ihe RouUi-Hurwitz 
criterion. Routh’s tabulation is carried out as follows:

/ 1 2  3

1 2 0
0 3

Because ứie first element o f the row is zero, the elements in the j '  row would all be infinite. To 
overcome this difficulty, we replace the zero in the row with a small positive number £, and then 
proceed w ith the tabulation. Starting w ith ứie ^  row, the results are as follows:

Sign change 

Sign change 3 0

Because ứiere are two sign changes in the first column o f Routh’s tabulation, the equation in Eq. 
(2-254) has two roots in the right-half 5-plane. Solving for the rools o f Eq, (2-254), we get s =  
- 0 .0 9 1  ±  > 0 .902  and Í  =  0 .4 0 6  ±  y i.2 9 3 ;  the last tw o  roots are c learly  in the  r ight-half i-p lane.

I t  should be noted that the e-method described may not give correct results i f  the equation has 
pure imaginary roots.

In the second special case, when all the elements in one row o f Routh’s tabulation are zeros 
before the tabulation is properly terminated, it indicates that one or more o f the following conditions 
may exist;

1. The equation has at least one pair o f real roots w ith equal magnitude but opposite signs.

2 . T h e  e q u a tio n  h a s  o n e  o r  m o re  p a irs  o f  im a g in a ry  ro o ts .

3. The equation has paừs o f complex-conjugate roots forming symmetry about the origin of 
the j-plane; for example, s =  - 1  ± ) 1 , J =  1 ±  j l .

The situation with the entire row o f zeros can be remedied by using the auxilia ry equation 
,4(j) =  0, which is formed from the coefficients o f the row just above the row o f zeros in Routh's 
tabulation. The auxiliary equation is always an even polynomial; that is, only even powers of s appear. 
The roots o f the auxiliary equation also satisfy the original equation. Thus, by solving the auxiliary 
equation, we also get some o f the roots o f the original equation. To continue with Routh’s tabulation 
when a row o f zero appears, we conduct the following steps:

1. Form the auxiliary equation <4 (5) =  Oby using the coefficients from the row just preceding 
the row o f zeros.

2 . T ak e  th e  d e riv a tiv e  o f  th e  a u x ilia ry  e q u a tio n  w ith  re sp e c t to  5 ; th is  g iv e s  dA {s)/d .'ỉ =  0-



3. Replace the row o f  zeros with the coefficients o f dA{s)/ds = 0.

4 . Continue with Routh’s tabulation in the usual manner w ith the newly formed row of 
coefficients replacing the row o f zeros.

5. Interpret the change o f signs, i f  any, o f the coefficients in the first column o f ửte Routh's
tabulation in the usual manner. ^

► EXAMPLE 2.13.3 Consider the following equation, which may be the characteristic equation o f a linear control system;

+  4s'’  +  85  ̂+  +  7j  +  4 =  0 (2-255)

Routh's tabulation is

s’  I 8 7
s'* 4 8 4
s’  6 6 0

4 4 
s' 0 0

Because a row o f zeros appears prematurely, we form the auxiliary equation using the coefficients of 
the row:

/1(s) =  4s2 + 4  =  0 (2-256)
The derivative o f -4(5) with respect to s is

=  8s =  0 (2-257)
ds

from which the coefficients 8 and 0 replace the zeros in the row o f the original tabulation. The 
re m a in in g  p o r tio n  o f  th e  R o u th ’s ta b u la t io n  is

s' 8 0 coeffic ientsofrf-4(j)/t/j
>  4

Because there are no sign changes in the first column o f ihe entire Routh’s tabulation, ihe equation in 
Eq. (2-257) does not have any root in the righi-half .9-plane. Solving the auxiliary equation in Eq. 
(2-256), we get the two roots at 5 =  ;■ and Í  =  -  y, which are also two o f the roots o f Eq. (2-255). 
Thus, the equation has two roots on the ỹa>-axis, and the system is marginally stable. These imaginary 
ro o is  c au se d  th e  in it ia l R o u th ’s  ta b u la t io n  to  h a v e  th e  e n tire  ro w  o f  ze ro s  in  th e  s ’ row.

B e ca u se  a ll ze ro s  CKCurring in  a  ro w  th a t c o ư e s p o n d s  to  a n  o d d  p o w e r  o f  s c re a te s  an  aux ilia ry  
equation that has on ly  e v en  pow ers o f  J. the roots o f  the auxiliary equation m ay a ll lie  on  the jw -axis. 
For design purposes, we can use the all-zero-row condition to solve for the marginal value o f a system 
parameter for system stability. The following example illustrates the realistic value o f  the Routh- 
Hunvitz criterion in a simple design problem. <

► EXAMPLE 2-13-4 Consider that a ihird-order control system has the characteristic equation

I-' +  3 4 0 8 .3 s -  +  1 ,2 0 4 , OOOj +  1.5 X lo ’ *- =  0  (2-258)

T h e  R o u ih -H u rw ilz  c rite r io n  is  b e s t su ited  to  d e te rm in e  th e  c rit ica l va lu e  o f  K  fo r  s ta b ility , th a t is . the 
value o f K  for which at least one root w ill lie on theỳo>-axis and none in the right-half i-plane, Routh’s 
tabulation o f Eq. (2-258) is made as follows:

J-' 1 1,204,000

s- 3408.3 I .S x IO ’ *-

, 410.36 X 10’ -  1,5 X 10’ S'

* ------------ ẳ õ s i------------  “
l . i x i o ’ s- <
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&OX 2-13.2
to  Section 2-14-2 fo r  the M A T L A B  sym bolic tool to  solve th is problem.

F or the system to  be stable, a ll the roots o f  Eq. (2-258) must be in  the le ft-h a lf .y-plane, and, 
thus, a ll the coefficients in  the firs t co lum n o f  Routh ’s tabulation must have Ihe same sign. 
Th is  leads to  the fo llo w in g  condiiions:

|7 _  Í s V icJk’
(2-259)

3408.3

1 . 5 x l 0 ’ * - > 0  (2-260)

From  the inequa lity  o f  Eq. (2-259), we have K  <  273.57, and the cond ition  in  Eq. (2-260)
gives A T>0. Therefore, the cond ition  o f  K  fo r  the system to  be stable is

0 < / r < 2 7 3 .5 7  (2-261)

I f  we le t K  =  273.57. the characteristic equation in  Eq. (2-258) w il l  have tw o  roots on the 
ỹứ>-axis. To find  these roots, we substitute K  =  273.57 in  the au x ilia ry  equation, w h ich  is 
obtained from  Routh's tabulation by using the coeffic ients o f  the s '  row. Thus.

/ l ( i )  =  3 4 0 8 .3 i^ + 4 .1 0 3 6  X 1 0 ^ - 0  (2-262)

w h ich  has roots at Í  =  ;1097 and Í  =  - ;1097. and the coưesponding value o f  K  at these 
roots is 273.57. A lso , i f  the system is operated w ith  K  =  273.57, the zero-input response o f  
the system w il l  be an undamped sinusoid  w ith  a frequency o f  1097.27 rad/sec.

EXAMPLE 2.13.5 As another example o f using the Routh-Hurwitz criterion for simple design problems, consider that 
the characteristic equation o f a closed-loop conưol system is

r ’ +  3AT5- +  {A: +  2 ) j +  4 =  0 (2-263)

II is desired to find the range o f K so thal the system is stable. Routh's tabulation o f Eq. (2-263) is

i ’  1 S' +  2
ÌK  4

iK{K  + l] -  4 ^

From the r  row. the condition o f stability isK > 0 . and from the í '  row. the condition o f stabilily is 

ĨK - + 6 K  - 4 > 0  (2-264)
or

a: < -  2.528 or a:  >0.528 (2-265)

OX 2-13-3
to Section 2-14-2 fo r  the M A T L A B  sym bolic too l to  solve this problem.
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W hen the conditions o f  >  0 and K  >  0,528 are compared, i t  is apparent that the latter 
requirem ent is more stringent. Thus, fo r  the closed-loop system to  be stable. K  m ust satisfy 

K >  0.528 (2-266)

The requirement o f AT <  -  2.528 is disregarded because K  cannoi be negative.
It should be reiterated that the Routh-Hurwiiz criterion is valid only i f  the characteristic equation 

is algebraic with real coefficients. I f  any one o f the coefficients is complex, or i f  the equation is not 
algebraic, for example, containing exponential functions or sinusoidal functions o f 5. the Routh- 
Hurwitz criterion simply cannot be applied.

Another lim iia iion o f the Routh-Hunvitz criterion is that it is valid only for the determination of 
roots o f the characteristic equation with respect to the left half or the right ha lf o f the j-plane. The 
stability boundary is theýo)-axis o f the i-p!ane. The criterion cannol be applied 10 any other stability 
boundaries in a complex plane, such as the unit circle in the r-plane, which is ưie stability boundary of 
discrete-data systems (Appendix H),

>  2 - U  M A T L A B  T O O L S  A N D  C A S E  S T U D I E S

2-14-1 Description and Use of T ra n sfer  Function Tool

I f  you have access to the M A T L A B  Sym bolic Toolbox, you may use the A C S Y S  Transfer 
Function S ym bolic Tool by pressing the appropriate bunon in  the A C S Y S  w indow  or by 
typ ing  in tfsym  in  the M A T L A B  command w indow. The S ym bo lic  Tool w indow  is shown 
in Fig. 2-26. C lic k  the “ Help fo r 1 St T im e User”  button to  see the instructions on how to  use 
the too lbox. The instructions appear in  a H e lp  D ia log  w indow , as shown in Fig. 2-27. As 
instructed, press the “ Transfer Function and Inverse Laplace”  button to run the program. 
You must run th is program w ith in  the M A T L A B  command w indow . E nter the transfer 
function , as shown in Fig. 2-28, to gel the tim e response.

> Transiet Function Symbolic ior Kuo-G

Help for 1st Thne Usei

Tiansfer Function and Inverse Laplace

state-space

Slate-Space with (nil. Cond.

Figure 2-26 T h e  T ran sfe r  F u n c tio n  S y m b o lic  w indow .

__I You musi have access lo MATIAB Symbolic Toolbox. To tun Programs, go to
Ĩ Ỉ .  I MATLAĐ Command window aiter clicking each pushbutton.

figure 2-27 The Symbolic Help Dialog window.
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Transfer Function Symbolic. ©  Kuo & G olnaraghi 8th Edition, John W iley & 
Sons. e .g.. Use the following inpul format: (s+2)*(s ''3+2*s+ l)/(s*(s '‘2 + 2 * s+ l))

Enter G=5«(s+0.6V((s+I )*(s+2)‘ (s+3)) 

5s+3 
(s+i)'(s+2)'(s+3)

G in polynomial form:

Transfer function:

...
s^3+6s ''i+ iT s+6 

G factored:

Zero/pole/gain:

5(s-^ ,6 )
(s+3) (s+2) is*]]

Inverse Laplace ơansíorm:

Giime =

-cxp (-i)+7»exp(-2» l)-6*exp  (-3* t)

Figure 2-2B The inverse Laplace transform o f Eq. (2-267) for an impulse input, in the 
M ATLAB command window.

EXAMPLE 2-14-1 Find the inverse Laplace ưansíorm o f the transfer function

“  ( j  +  1 ) ( j  +  2)(s +  3) ~  5  ̂+  +  H i  +  6

You can do ưús either by using the ilaplace command in the MATLAB command window, as we 
demonstrated in Toolbox 2-5-1 for Example 2-5-1. or by utilizing ihe tfsvTTi function, as shown in Fig. 2-28.

To find the time representation o f Eq. (2-267) for a different input function such as a Mep or a 
sinusoid, the user may combine the input transfer function {e.g. 1/s for a unit-step input) with ihe 
transfer funciion in the TFtool inpul window. So lo obtain Eq. (2-267) time representation for a unit- 
Slep input, use the following transfer function:

C ( i)  =

and repeat the previous sieps-
Similarly. for the transfer function

5 i +  3
s ịs+  l ) ( i + 2 ) ( i  +  3)

y ( .)  = ______ ^  ^ ,
'  .ĨÍ.ÍÍ + 34.55 +  1000) (52 +  lỊíOnS + loỉ;)

(2-268)

(2-269)

using the tfsym tool, the lime representation o f this system is obtained as
l + ( - l / 2 +  13/40-i)‘ c x p ( ( -6 9 /4 -  53 /2 * i)) ’ f +  ( - 1 / 2 -  i3 /4 0 'i) 'e x p ( ( -6 9 /4 +

5 3 / 2 * » r o  ^

MATLAB Tools for Stability

The easiest way to  assess s tab ility  o f known transfer functions is to find ihe loca iion  o f  the 
poles. For that purpose, Ihe M A T L A B  code that appears in Toolbox 2-13-1 is the easiest



w ay fo r  find ing  the roots o f  the characteristic equation po lynom ia l— i.e., ứie poles o f  the 
system. However, many o f the other tools within ACSYS software may also be used to find 
the poles o f  the closed-loop system transfer function , includ ing  the “ Transfe r Function 
S ym bo lic ”  ( tfs y m ) and the “ T ransfer Function C a lcu la to r”  (tfc a l) . You m ay also conduct 
a m ore thorough stability  study o f  your system  using  the root lo cu s and phase and gain  
m argin concepts u tiliz in g  the “ C on tro lle r Design Tool,”  respectively. These top ics w il l  be 
thorough ly  discussed in  Chapter 9.

In  this section, we introduce the t f ro u th  too l, w h ich  may be used to  fin d  the Routh 
aưay, and more im portan tly  i t  may be u tilize d  fo r  co n tro lle r design applications where i t  is 
im portan t to  assess the s tab ility  o f  a system fo r  a con tro lle r gain, say k.

The steps invo lved in  setting up and then so lv ing  a g iven s ta b ility  prob lem  using 
tfrou th  are as fo llow s.

1. Type “ tfro u th ”  in  the M A T L A B  command m odule w ith in  the " tfs y m b o lic ”  
d irectory.

2. E nter the characteristic po lynom ia l in  sym bolic (e.g., s '^3+s^2+s+l) o r in  vectorial 
(e.g. [1 1 1 I ] )  forms.

3. Press the “ R ou th -H urw itz ”  button and check the results in  the M A T L A B  
com m and w indow,

4. In  case you w ish to  assess the s ta b ility  o f  the system fo r a design parameter, enter 
it  in the box designated as “ Enter S ym bo lic Parameters." F o r exam ple, fo r  s''3 
+ k l ‘ s^2 +  k2*s + 1. you need to enter " k l  k 2 ”  in  the “ Enter S ym bo lic  Parame
ters”  box, fo llow ed  by entering the po lynom ia l s''3 +  k l*s '^ 2  +  k 2 * s + 1 in the 
“ Characteristic E qua tion " box.

5. Press the “ R o u th -H urw itz ”  button to fo rm  the Routh table and conduct the Rouih- 
H u rw itz  stab ility  test.

To better illustra te how to  use tfrou th , le t us solve some o f  the earlier examples in this 
chapter.

EXAMPLE 2-14-2 Recall Example 2-13-1; let's use tfrouth for the fo llow ing polynomial:

Is^ +  +  55 +  10 =  0 (2-270)

In the M ATLAB command module, type in “ tfrou lh" and enter the characteristic Eq. (2-270) in 
polynomial form, followed by clicking the "Routh-Hurwitz”  button to get the Routh-Hurwitz matrix, 
as shown in Fig. 2-29.

The results match Example 2-14-2. The system is therefore unstable because o f two positive poles. 
The Routh’s array first column also shows two sign changes to confirm this result. To see the complete 
R ou th  (able, the  u se r  m u s t re fe r to  th e  M A T L A B  c o m m an d  w indow , as show n  in  F ig . 2 -30.

EXAMPLE 2-14-3 Consider Example 2-13-2 for characteristic equation o f a linear system:

s‘‘ +  P  +  2 s ^ + 2 s  +  3 =  0  (2 -271 )

After entering the transfer function characteristic equation using ifrouth and pressing the "Rouih- 
Hurw itz" button, we get the results shown in Fig. 2-31.

As a result, because o f the final two sign changes, we expect to see two unstable poles.

EXAMPLE 2-14-4 Revisiting Example 2-13-3. use tfrouth to study the following characteristic equation:

j> + 4 /  +  8j3 + 8 j2 +  7s +  4 =  0 (2-272)

to get the results shown in Fig. 2-32.

9 0  unap te r L. M atnem atica i houndation
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Enter the characteristic equation using a vector of polynomial 
coefficierts. Of h  symbofc form wiOl complex variable ‘s'. 
Enter ALL symbotic parameters in the box labeled 'Enter 
Symbolic Parameters.'

ex For(s''2 + 3*kp*s + ki'*2):
erter 11. 3*lq), Id '^r in the Characteristic Ecjuaiion box 
and 'kp w In the syrr*olic variables text box.

OR; Type in (s''2 + 3*kp*s + ki*^) in the Characteristic 
Equation box and Icp kf in the symtjcrfic vari^ les text toox,

ex. The foKowir^ are an equivalent:
‘(s'‘2 + 7*s + 12). [1712J. and (s+4)»(s+3)'.

Enter Symboftc Parameters 
(Fcr example:)

Charaderistic Equation

2*S'M +S^+3*S^2*5*S+10

Routh-Hurwaz

Figure 2-29 Entering characteristic polynomial for Example 2-14-2 using the ifrouth module.

Rouch-Hurwitz Matrix;

(2 3 10
(
(1 5 0
(
( - 7 10 0

[45/7
i

0 0

[1 0 0 0

0 sign changes in (he first column.

Figure 2-30 Stability results for Example 2-14-2. after using the Routh-Hurwitz test.
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Fứsi element o f row3 is zero. EpỉOon is used. 
Routh-Hunvitz Matrix;

[ 1 2 3 ]
[
[ 1 2

]
0 ]

[ eps 3 
[

]
0 ] 

1
[-3 + 2 eps 
[ -----------  0

J
1

0 1
( eps i

1 3 0 0 i
There are two sign changes in the firsi coiiimn.

Figure 2-31 Stability results for Example 2-14-3, after using the Routh-Hurfticz test.

Row of zeros found at row5- Auúliary polyDomial is used. 
Rou(h-Hurft’itz Maưix;

(1
r

8 7 ]
I
[4 8 4 ]
I
16r

6
]

0 ] 
11

[4 4
J

0 ] 
1[

[8 0
J

0 ]
[
|4 0

]
0 ]

There are two sign changes in the first colunưi.

Figure 2-32 Stability results for Example 2-14-4. after using the Routh-Hur«itz lesL

In this case, the program has automatically replaced ihe whole row o f zeros in the fifth  row 
the coefficienis o f Ihe polynomial formed from the derivative o f an auxiliary polynomial formed fro 
the founh row. As a result, the system is unstable. Further, because o f the final zero sign changes. V 
expect to see no additional unstable poles. The unstable poles o f the system mav be obtained direct 
by obtaining the roots o f the auxiliary- polynomial;

^ (j)  =  4 j- -1-4 =  0

EXAMPLE 2-14-5 Considering the characteristic equation o f a ciosed-loop conưol system

r  -  < A :-2 j j - 4  =  0 (2-27

It is desired to find the range o f K so that the svstem is stable. See Figs. 2-33. 2-34. and 2-?5 for mo 
details..

In the end. the user is encouraged to make use o f the software to solve examples and -ler 
appearing in this chapter.
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Erter the chffl-acterlstic equation UOTig a vector of pdyriomial 
coetticiaTts, or in symkKJlic form wBi complex variabte ‘s’ . 
Erter ALL symbdic parameters in the box labeled ‘Enier 
Syniofe Parameters'

ex; For (s '^  + 3*kp*s +Id-2):
enter . 3*kp. \ữ*7ĩ i i  the Characteristic Equation box 
and lip  Ù' tn ihe symbofc variables text box.

OR: Type in ( s ^  + 3 ^ » s  + k i^ )  in the Charaderistic 
Equatim box and'kp kf BìữiesymboSc variables text box.

ex: The follow ing sre all e q u iv a ie r t
■(s^ + 7*s + 12), [1712], and (s+4)*(s+3)'.

Enter SymboSc Parameters 
(For exampte:)

Characteristic Equation

s^+3*k*s''2+(k+2)*s+4

Figure 2-33 Entering characteristic polynomial for Example 2-14-5 using the tfrouth module.

Routh-H unvitz Matrix;

I k + 2 

3 k  4

2
- 4  +  3 k + 6 k

Figure 2-34 The R outh's array for Example 2-14-5.
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Fứ st elem ent o f  row3 is zero. Epsilon is used. 
Rouch-Hurw iu Matrix:

[ 1 2 
I

3 1 
1I

( 1 2
J

0 )

[ eps 3 
[

]
0 I 

]
[ -3  + 2 eps 1
[............... 0 0 ]
[ eps 
r

]
1

[ 3 0
J

0  ]

There are two sign changes in the first column.

F igu re  2-31 S ta b il ity  re su l ts  fo r E x am p le  2 -1 4 -3 , a f te r  u s in g  th e  R o u d i-H u rw itz  le s t.

Row of ze ros found at row5. A uxiliaiy polynomial is used. 
rw iư Matrix:

[1
r

8 7 I 
1I

[4 8
J

4 ]
[
[6 6

]
0  ]

[
[4
1

4
]

0 ] 
1I

18 0
J

0 ]
[
[4 0

]
0 ]

There are two sign changes i,n the fưst column.

F ig u re  2-32 S tab ility  r e su l ts  fo r  E x am p le  2 -1 4 -4 , a f te r  u s in g  th e  R o u th -H u rw itz  te s t.

In  th is  c ase , th e  p ro g ra m  h a s  a u to m a tic a lly  r e p la c e d  th e  w h o le  ro w  o f  z e ro s  in  th e  fifth  ro w  wiứ 
th e  c o e ffic ie n ts  o f  th e  p o ly n o m ia l fo rm e d  fro m  th e  d e riv a tiv e  o f  an  a u x ilia ry  p o ly n o m ia l fo rm e d  fron 
th e  f o u n h  row . A s a  re su l t, th e  sy s te m  is  u n sta b le . F u rth e r, b e ca u se  o f  th e  final z e ro  s ig n  c h an g e s . W( 
e x p ec t to  see  no  a d d itio n a l u n s ta b le  p o le s . T h e  u n s ta b le  p o le s  o f  th e  sy s te m  m ay  b e  o b ia in e d  d irec ti' 
b y  o b ta in in g  th e  ro o ts  o f  th e  auxiliary- p o ly n o m ia l:

= 4 i -  +  4  =  0

E X A M PL E  2 -1 4 -5  C o n s id e r in g  th e  c h a ra c te r is t ic  e q u a tio n  o f  a  c lo se d - lo o p  c o n tro l sy stem

r ’ +  3A:j 2 +  (A -+  2)5  +  4  =  0 Í2 -2 7 4

It is d e s ired  to  find th e  ran g e  o f  K  so  th a t th e  sy s te m  is stab le . See  F ig s. 2 -3 3 . 2 -3 4 . a n d  2 -3 5  fo r  m on  
de ta ils .

In th e  en d . th e  u se r  is  e n c o u ra g e d  to  m a k e  u se  o f  th e  so f tw are  to  so lv e  e x a m p le s  a n d  p ro b te m  
a p p ea rin g  in  th is  chap te r.
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li M đ  * *
Equation:-----------------------------------------------------|t | -  Enter Characteristic Equation

Enter the characteristic equdion uãng 8 vector ot 
coefficlenis, or in symbolic form with comptex variafiiB ■s’. 
Enter ALL symbolic parameters in the box labeled ir te r  
SymboBc Parameters.’

ex: For (s"2 + 3*kp*s + Id '^-
enter 11, 3*kp, ki*2J* jn the Characteristic EquaBori box 
and 'kp ki' !n the symbolic vew-iables text box.

OR; in (s''2 + 3*kp*s + ki*2) in the Charaderisiic 
Eetuation box and 'kp ki' in the symbcHic variables text box.

e x  The following are all equivalent
■(s''2 + 7»s + 12), [1712], and (s+4)*(s+3)’.

Enter Symbolic Parameters 
(Fot example;)

Characteristic Equation

s''3+3*k*s''2+(k+2)*s+4

Routh-Hurwitz

Figure 2-33 Entering characteristic polynomial for Example 2-14-5 using the tfrouih module

Routh-Hunviiz Malrix;

[ 1 k +  2 ] 
1

[
[ 3 k

1
4 ] 

1

[ 2
J
1

1 - 4  +  3 k +  6 k  ]
[ 1 / 3 - .....
[ k 
r

•...... 0  ]

)
I
[ 4

1
0 ]

Figure 2-34 The Routh’s aưay  for Example 2-14-5.
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»  k=.4; 
»  RH

RH =

( 1.
[ 3*k,
[ l/3*(-4+3*k«2+6*k)/k. 
[ 4.

k+2 ] 
4  ] 
0  ] 
0  ]

»  evaURHj

ans =

1.0000 2.4000 
1.2000 4.0000 

-0.9333 0
4.0000 0

There are two sign changes in the first column.

»  k= l:

»  eval(RH)

ans =

1.0000 3.0000
3.0000 4.0000 
1.6667 0
4.0000 0

There are no sign changes in Ihe first column.

Figure 2-35 T h e  R o u th 's  a rray  fo r E x am p le  2 -14 -5 .

2 - 1 5  S U M M A R Y

In  th is  c h ap te r, w e p rese n te d  so m e  fu n d am e n ta l m a th em atic s  r e q u ire d  fo r th e  s tu d y  o f  lin e a r  conư o l 
sy ste m s. Spec ifica lly , w e s ta n e d  w ith  c o m p lex  n u m b e rs  a n d  th e ir  b a s ic  p ro p e r tie s  le ad in g  10 
f re q u en c y  d o m a in  m a th em atic s  a n d  p lo ts . T h e  L ap lac e  tran s fo rm  is  u se d  fo r  th e  so lu t io n  o f  linear 
o rd in a ry  d if fe ren tia l e q u a tio n s . T h is  tran s fo rm  m e th o d  is  c h a ra c te r iz e d  by  first tra n s fo rm in g  th e  real- 
d o m a in  e q u a tio n s  in to  a lg eb ra ic  e q u a tio n s  in  th e  tran s fo rm  do m a in . T h e  so lu t io n s  a re  f irst o b ta in e d  in 
the  tran sfo rm  do m ain  by u s in g  th e  fa m ilia r  m e th o d s  o f  so lv in g  a lg eb ra ic  e q u a tio n s . T h e  final so lu tion  
in  th e  rea l d o m a in  is o b ta in e d  by ta k in g  th e  inve rse  tran s fo rm . F o r  e n g in e e rin g  p ro b lem s, the 
tran s fo rm  ta b les  a n d  ih e  p a n ia l- f ra cc io n  ex p an s io n  m e th o d  are  re c o m m e n d e d  fo r  th e  inverse 
tran s fo rm a tio n .

in  th is  c h ap te r, the  d e fin itio n s  o f  B IB O , z ero -in p u t, a n d  a sy m p to tic  s ta b ili ty  o f  lin e a r  tim e- 
inva rian t c o n tin u o u s-d a ta  a n d  d isc re te -d a ta  sy s te m s  a re  g iv en . I t is  sh o w n  th a t th e  c o n d itio n  o f  ứ iese 
ty p e s  o f  s ta b ili ty  is  re la te d  d irec tly  to  th e  ro o ts  o f  th e  c h a ra c te r is t ic  e q u a tio n . F o r  a  c o n tin u o u s-d a ia  
sy stem  to  b e  stab le , ihe  ro o ts  o f  th e  c h a rac te r is t ic  e q u a tio n  m u sl a ll be  lo c a te d  in  th e  le ft h a lf  o f  ihe 
,T-plane.

T h e  n e ce ssary  c o n d itio n  fo r a p o ly n o m ia l F(,v) to  h av e  no  ze ro s  on th e  > > a x i s a n d  in th e r i e h t  ha lf 
o f  the  ,v-plane is lha t a ll ils c o e ffic ie n ts  m u st b e  o f  th e  sa m e  sig n  a n d  n o n e  c an  v an ish . TTie n e c e s ^ -  
and  su ffic ien t c o n d itio n s  (if Fi  V) Í0 have  ze ro s  o n l)  in th e  le ft h a lf  o f  th e  i -p la n e  a re  c h ec k ed  V. ith  the 
R o u lh -H u rw itz  c rite r io n . T h e  va lue  o f  the  R ou th -H urw  ilz  c rite r io n  is  d im in ish e d  i f  th e  c h a rac te r is tic  
eq u a tio n  c an  b e  so lv e d  u sing  M A T L A B .
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:w  QUESTIONS
1. Give the definitions o f the poles and zeros o f a function o f the complex variable s.

1. What are the advantages o f the Laplace transform method o f solving linear ordinary 
differential equations over the classical method?

3. What are state equations?

4. What is a causal system?

5. Give the defining equation o f the one-sided Laplace ưansform.

6. Give the defining equation o f the inverse Laplace ưansfonn.

7. Give the expression o f the final-value theorem o f the Laplace transform. What is the
condition under which the theorem is valid?

8. Give the Laplace transform o f the unit-step function, U,(1).

9. What is the Laplace ưansíorm o f the unit-ramp function, lUsilỴ!

10. Give the Laplace ffansform o ij{ i)  shifted to the right (delayed) by Td in terms o f the 
Laplace transform o f fit). F{s).

11. I f  a m ]  =  F\{s) and c \h { t ) \  = F2 {s), then find c[f^ {t)]f2 {t)\ in terms o f f ,  ( i)  and 
^2(5).

12. Do you know how lo handle the exponential term in performing the partial-fraction 
expansion o f

'0  , . - 2.
{ s + l) is  + 2)

13. Do you know how to handle the partial-fraction expansion o f a function whose denominator 
order is not greater than that o f the numerator, for example.

( s + l ) ( s  +  2 )

14. In trying to find the inverse Laplace transform o f the following function, do you have to 
perform ửie partial-fraction expansion?

Fịs) =
U + 5Ỷ

15. Can the Routh-Hurwitz criterion be direcily applied to the stability analysis o f the 
fo llow ing systems?

(a) Continuous-data system with the characteristic equation

s'* +  5 ?  +  2s  ̂ +  3s +  =  0

(b) Conlinuous-data system with ihe characteristic equation

1 -“ -  5 p  +  3s^ +  Ks +  K -  =  0

16. The first two rows o f Routh’s tabulation o f a third-order system are

2 2 
r  4 4

Select the correct answer from the following choices:

(a) The equalion has one root in the right-haif s-plane.

(b) The equation has two roots on the ýto-axis at Í  =  ;  and - j .  The third root ib in the left-half 
j-plane.
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(c) The equation has two roots on the jcw-axis at 5 =  2ý and 5 =  - 2 /  The ứiữđ ro «  is in tíie 
left-half i-plane.

(d) The equation has two rcx)ts on Ihe jù>-axis at Í  =  2 ;  and Í  =  - 2 j. The ứiứd root is in ưie 
right-half i-plane.

17. Ơ the numbers in the first coiumn o f Routh’s tabulation turn out to be all 
negative, then the equation for which the tabulation is made has at least one root not in
the left ha lf o f  the 5-plane. (T ) (F)

18. The roots o f the auxiliary equation, i4 (j) =  0, o f Roulh’s tabulation o f a characteristic equation
must also be the roots o f the latter. (T ) ÍF)

19. The following characteristic equation o f a continuous-data system represents an unstable 
system because it contains a negative coefficient.

s’  -  +  5s +  10 =  0
20. The following characteristic equation o f a cominuous-data system represents an unsuble 
system because there is a zero coefficient.

5  ̂+  +  4 =  0
21. When a row o f Routh’s tabulation contains all zeros before the tabulation ends, this means
that the equation has roots on the imaginary axis o f the j-plane. (T ) (F)

Answers to these review questions can be found on this book’s companioD Web site:
www.wiley.com/coliege/golnaraghi.
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PROBLEM S FOR SECTION 2-1
2-1. F ind  the poles and zeros o f  the fo llo w in g  functions ( in c lud in g  the ones at in fin ity , i f  any). M ark  
the fin ite  poles w ith  X and the fin ite  zeros w ith  o in  the j-p lane.

”  (j + 2 ) ( j2 +  3s  +  2 )  “  I 0 s ( s + l ) ( l  +  2)

2-2. Poles and reros o f a function are given; find the function:

(a) Simple poles: 0, - 2 ;  poles o f order 2: - 3 ;  zeros: - 1 ,  oo

(b) Simple poles: - 1 .  - 4 ;  zeros: 0

(c) Simple poles: - 3 ,  oo; poles o f order 2: 0 ,-1 ; zeros; ± j .  oc

2-3. Use M ATLAB to find the poles and zeros o f the functions in Problem 2-1.

PROBLEM S FOR SECTION 2-2
2-4. Find the polar representation o f C(5) given in Problem 2-1 for s = jcu, where w is a constant 
va ry ing  from  zero to in fin ity .

2-5. Find the polar plot o f the following functions:
10

<a) G{ja>] -
0 - 2 )

C ( » = ---------- ;-------i ^  0 < { < !

M J T a > +  1)
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2-6. Use M ATLAB to find the polar plot o f ưie functions in Problem 2-5. 

2-7. Draw the Bode plot o f the following functions:

(a) 2 0 0 0 Q  +  0.S)
■ > ( 7 ^ + 1 0 ) 0  +  50)

, , „  . ' ( j a . - 100a i^ + 100)

- c o ^ O  -  25i»2 +  100)

------T T X T  “ Í Ỉ S >

(e) G( j<o) ■
Q.03(g>' +  1 )^

( i > ' -  1)(3€>“" +  l) ( e > ' +  0.5)

2-8. Use M ATLAB to draw the Bode plot o f the functions in Problem 2-7.

PROBLEM S FOR SECTION 2-3
2-9. Express the following set o f first-order differential equations in the vector-matrix form of 

^  =  A x(0  +  Bu(l).

■ ^ = - . , ( 0  +  2. , «

<“ > =  - 2 j^2(0 +  3jT3(') +  »1 (0

^ 3 ( 0  
dt

ị ^ ^ = - X ị { ĩ )  + lX2{t) + lu][Ị)

(b) ^ ^  =  2j : i ( f ) - x 3(í} +  ií2 (í)

^ ^  =  3 ;c i( ( } -4 j:2 (0 - - í3 ( f )

PROBLEMS FOR SECTION 2-4 
2-10. Prove theorem 3 in Section 2-4-3.
2-11. Prove the integration theorem 4 in Section 2-4-3.
2-12. Prove the shifi-in-time theorem, which is

C [ g ( t - T ) u , ( t - T )  = e-'^'G{s)]

2-13. Prove the convolution theorem in both time and s domain, which is

£ U i( í ) * Ỗ 2(01 =  G|(5)G2(í)
£ l ^ i ( 0 g 2 ( 0 ] = c , ( , r ) * c 2 ( i )

2-14. Prove theorems 6 and 7.
2-15. Use MATLAB to obtain £ {s in^2 /}- Then, calculate £ {cos^2 f} when you know £{s in^2 /}. 
Verify your answer by calculating £ {co s -2 f} in MATLAB.



2-16. Find che Laplace transforms o f the following functions. Use the theorems on Laplace 
transforms, i f  applicable.

(a) g(() =  5re-'‘« M
(b) g (l) =  (tsin2 l  +

( C ) g ( l ) = 2 e - 2 's in 2 tu , ( ( )

(d) ^ ( i)  =  sin2/cos2/« ,( i)

(e) g(f) =  -  kT) where s{t) =  unit-impulse function
*=0

2-17. Use M ATLAB to solve Problem 2-16.

2-18. Find the Laplace ưansíorms o f the functions shown in Fig. 2P-18. First, write a complete 
expression for ̂ (0 . and then take the Laplace transform. Let gT{t) be the description o f the function 
over the basic period and then delay gTU) appropriately to get^(i). Take the Laplace transform o f gU) 
to get the following;

1 ____ 2 3^____ 4 5 _____ 6 7

Figure 2P-18

2-19. Find the Laplace transform o f the following function.

/ + 1  0 <  f < 1  
0 1 <  f < 2  
2 - t  2 < t< 3  
0 / > 3

2-20. Find the Lapỉace transform o f the periodic function in Fig. 2P-20.

Figure 2P-20

2-21. Find the Laplace transform o f the function in Fig. 2P-21.
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Figure 2P-21

2-22. Solve the following differential equations by means o f the Laplace transform.

(a) + 5 ^ ^ + 4 / ( f )  =  e~-'u,{t) Assume zero in itia l conditions.
1 ?

dxx(t)

dt

dX2{t]

di

= Xlil)

=  -2 x ị{ f ) -3 x 2 ị i )  + u , { l ) X i{ 0 )  =  1, JT2 (0) = 0

d^yU) , dyU)

I

Ệ ( 0 ) =  - l  | ( 0) =  1 v(0 ) =  0

2-23. Use M ATLAB to find the Laplace transform o f Ihe functions in Problem 2-22. 

2-24. Use M ATLAB to solve the following differeniial equation:

d-y
dt-

-V  =  e' (Assuming zero in itia l conditions)

2-25. A  series o f a ihree-reacior tank is arranged as shown in Fig. 2P-25 for chemical reaciion.

iD

Reactor 1

Figure 2P-25

The state equation for each reactor is defined as follows;



í 2 : í ạ ỉ  =  ị l l lO O C ^ ,  - l lO O C ^ l- fe V z Q z ]
at ^2

R-ì : ^  =  1 [1 0 0 0 C «  -  1000CA3 -  h V ^C a ị 
dí v-ì

when Vj and kị represent the volume and the temperature constant o f each tank as shown in the 
following table;

Reactor V'i k,

1 1000 o.l

2 1500 0.2

3 100 0,4

Use M ATLAB to solve the differential equations assuming Caì = Ca2 =  C43 =  0 at r =  0.

PRO BLEM S FOR SECTION 2-5
2-26. Find the inverse Laplace transforms of the fo llowing functions. Fừst, perform partial-ữaction 
expansion on G(5); then, use the Laplace transform table.

s{s + 2)is + ĩ )  

10
(b ) G(s) = ---------- r

(s +  1 ^ 5  +  3)

(e) G (j) =
( J + I ) '

, , 2 + 2se~‘ + 4e -2-’

®  =  ? T 6 Í t ĩ ĩ 7 T 6

3s’  +  IOs= +  8s +  5 
< '> ‘ '<‘ > =  / T 5 Ĩ 5 T 7 Í t Ì T 6

2-27. Use M ATLAB to find the inverse Laplace transforms o f the functions in Problem 2-26. First 
perform parlial-fraction expansion on G (j); ihen. use the inverse Laplace transform.



(a) A =

(b) A =

2-29. The following differential equations represent linear time-invariani systems, where KO 
denotes the input and yU) the output. Find the ưansíer function for each o f the systems.
(Assume zero in itia l conditions.)
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2-28. Given the state equation o f the system, convert it to the set o f first-order differential equation.

■ 0 - 1 2 ' '0  -- 1 '
1 0 1 B = 1 0

- 1  - 2  1 0 0

' 3  1 - 2 ' - I
- 1 2  2 B = 0
0 0 1 2

(a)
di^ di-

d r  a t-  at

,c, / 'v ( . W ,  =  í í ^ + 2 . ( „
dt^ at- dr Jo at

, d , 2 í ậ Ọ  +  : í ^ + 5 v ( , )  =  . (0  +  2 . ( , - l )

(f)

----- ----------- -̂-----------------r j m  -p i ;  = ^ ^ + 2 r { f }  + 2 f  r(T)dT
at- at at J

-5t

d^\{t) j^ \( t)  t/v ifl , ^ , d r i r - 2 )  ^ ,
^ ^ + 2 ^ ^  +  ̂ + 2 v  /) +  2 /  y  T ) d T =  — — ' - + 2 r ( i - 2 )  

dt~ d t ^ d l  j  dĩ

2-30. Uise MATLAB to find Y[s]IR{s) for the differential equations in Probiem 2-29.

2-31. Use MATLAB to find the panial-fraction expansion to the following functions. 

1 0 (5 +  1)
(a) ơ { j)  =  

(b| G (j) =  

(C) G (j) =

52 (i +  4 ) ( i  +  6 j

( ĩ +  1 ) 
j(s  +  2 ](52^25  +  2) 

5 (^ ^ 2 )
Ì - Í 5 +  l ) ( i  +  5)

« ‘ ' =  ( 7 T Ì 1 ( Í t 7 T T Ĩ

s ( i-  +  5 i - 3 i

(f) G(s) = ---------- !------------^
j ( i -  -  1 ) (5 -0 .5 j-

25-’  -  5'  ^  8s -  6
(g) G {s)= -

(h) G(s) = -
^9s-  -  15.V- - i

5 - ( . s - : ) l i -  i i '

2*32. Use MATLAB to find the inverse Laplace transforms o f the functions in Problem 2-31.
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PROBLEM S FOR SECTIONS 2-7 TH R O U G H  2-13
2-33. Without using the Routh-Hurwitz criterion, determine i f  the fo llow ing systems are asymp
totically stable marginally stable, or unstable. In each case, the closed-loop system transfer function 
is given.

(í + 5 ) ( j2 +  2) 

1 0 0 ( 5 - 1 )

'  {s + 5){s^ + 2s+ 2] 

1 0 ( i+  12.5)(f) M(j) =
+  3.5’ +  5 0 i- + 1  +  10^

2-34. Use the ROOTS command in M ATLAB lo solve Problem 2-33.

2-35. Using the Rouch-Hurwitz criterion, determine the stability o f the ciosed-loop system that has 
ihe following characteristic equations. Determine the number o f roots o f each equaiion that are in the 
r ight-half j-p lane  and on the ja>-'d\h.

(a) 5 ^ + 2 5 j 2 +  I05 +  450 =  0

(b) j  ̂+  25s2 +  10j +  50 =  0

(c) 5 ^ +  255^ +  2 5 0 5 + 1 0  =  0

(d ) 2s-  ̂ +  lO p  +  5.55^ +  5 .5 j + 1 0  =  0

(e )  /  + 8 s-^  +  15i^  +  20 s2 +  16s +  16 =  0

(f) /  +  2s^ +  10s2 +  20 i +  5 =  0

(g ) 5* +  2s^ 4- 8/  +  12j5 +  205'* +  16i^ +  16j^ =  0

2-36. Use MATLAB to solve Problem 2-35.

2-37. Use MATLAB Toolbox 2-13-1 to find the roots o f the following characteristic equations of
linear continuous-data systems and detennine the stability condition o f the systems.

( a )  p  +  IOs^ + 1 0 1 + 1 3 0  =  0

(b) s * +  12s3+j2 +  2s +  10  =  0

(c) /  +  12 s’  +  10 j 2 +  10s +  10  =  0

(d ) 1 - '+  12j 3 + s-  +  1 0 i+  I = 0

(e)  j "  +  +  125s" +  100s-’  +  lO O i- +  20s +  10 =  0

(D s* +  I25j“  +  IOOjJ +  100s- +  20s +  10 =  0

2-38. Fo r each o f the cha racte ris tic  equations o f  feedback c on tro l systems g ive n , use M A T L A B  
to  d e te rm in e  th e  ra n g e  o f  K  so  th a t th e  sy s te m  is  a sy m p io t ic a l ly  s ta b le . D e te rm in e  ih e  v a lu e  o f  K  so  
that the system is marginally stable and determine the frequency o f sustained oscillation, i f  
applicable.

(a) /  +  25s^ +  I5s^ +  20.Ĩ + A" =  0

(b) + Ks^ +  2s- +  (ẢC +  +  10  =  0

(c) r ’  +  (A" +  2 ).v̂  +  2Ks + 1 0  =  0
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(d ) j - '+ 2 0 j ^ + 5 s + 1 0 * :  =  0

(e )  s"  +  +  5s^ +  10s +  lO K  =  0

(0  .1" +  12.5.!-’ + i2  +  5s +  / 1- =  0

2-39. The loop transfer function o f a single-loop feedback conưol system is given as

i(s + 2)(i + rj)

The parameiers K and T may be represented in a plane wiUi K as Ihe horizontal axis and T  as Ihe 
vertical axis. Determine the regions in the r-versus-Af parameter plane where the closed-loop system 
is asymptotically slabie and where it is unstable. Indicate the boundary on which ihe system is 
marginally stable.

2-40. Given the forward-palh transfer I'unction o f unity-feedback control systems, apply the Roulh- 
Hurwitz criterion lo determine the stability o f the closed-loop sysiem as a function o f  K. Determine 
the value o f K that w ill cause sustained constam-amplitude oscillations in the system. Determine the 
frequency o f oscillation.

’  '  ^  100)(i +  500)

(0  G(s) =

ì 2(,v +  2 ) 

K
i ( j +  10 ) ( s + 20)

2-41. Use M ATLAB to solve Problem 2-40.

2-42. A  controlled process is modeled by the following Slaie equaiions,

=  „ ( , ) - 2 , .  (0  ( , )+ « ( , )

The control u{t) is obtained from state feedback such lhat

H(f) =  -  kiX2(t)

where Ati and k^aie real conslants. Deiermine the region in theAi-versus-Ả:-. parameter plane in 
which Ihe closed-loop syslem is asymptolically stable.

2-43. A  linear lime-invariant system is described by the following slaie equations.

dx(0  ^

0 1 0 ■ ‘ 0
0 0 1 B = 0
0 - 4  - 3 1

The closed-loop system is impiememed by state feedback, so thai «(f) =  - K x ( f ) .  where K  =  
[kị k2 Ai] and Ati. K-2. and i ' ,  are real constants. Determine the consirainis on the elements of K 
so that ihe closed-loop system is asymptotically stable.

2--I4. Given the system in state equation form.

i ^  =  A xW  +  B „(.) 
lit
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1 0 0 " 1
(a) A  = 0 - 3 0 B = 0

0 0 ) 1

1 0 0 ' roi
(b) A  = 0 - 2 0 B = 1

0 0 3 1

Can the system be stabilized by state feedback u{t) -  - K x ( i ) ,  where K  =  [ i i  k2 kĩ]'!

2-45. Consider the open-loop system in Fig. 2P-45(a).

F(s)~

Figure 2P*45a

Our goal is to stabilize this system so the closed-loop feedback control w ill be defined as shown in 

the block diagram in Fig. 2P-45(b).

H{s)
Fịs)

ơ ( í)
Y(S)

f
Figure 2P-45b

Assuming / ( / )  =  kpe +

(a) Find the open-loop transfer function.
(b) Find the closed-loop transfer function.
(c) Find the range o f ẨTp and Atj in which the system is stable.

2-46. The block diagram o f a motor-conlrol system w ith  tachometer feedback is shown in 
Fig. 2P-46. Find the range o f the tachometer constant K, so that the system is asymptotically 
stable.

Figure 2P-46

2-47. The block diagram o f a control system is shown in Fig. 2P-47, Find the region in the fi- 
a plane for the system to be asymptotically stable. (Use fC as the venical and a  as ihe horizonti

-------------------.................. versus-
the venical and a as ihe horizontal axis.)
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Hi) / “ N  f(0 X (s +  2) 

/ - 1

Figure 2P-47

2-48. The convenlional Routh-Hunvitz criierion gives information only on ihe location o f  the zeros 
o f a polynomial F(s) with respect to the left ha lf and right ha lf o f the 5-plane. Devise a linear 
transformation s =  f [ p ,  a), w h e re is  a complex variable, so lhai ihe Routh-Hurwitz criterion can 
be applied to determine whether F{s) has zeros to the righl o f the line s =  - a .  where a  is a posilivc 
real number. Apply the ưansíormation to the following characieristic equations to detennine how 
many roots are to the right o f the line J =  - 1  in the j-plane.

(a) f ( s )  =  s ^ + 5 s  +  3 =  0

(b) s’  +  3s^ +  3s +  I =  0

(c) /■(*) =  s’  +  4,!  ̂ +  3s +  10 =  0

(d) +  4 i +  4 =  0

2-49. The payload o f  a space-shuttle-pointing conưol system is modeled as a pure mass M. The 
payload is suspended by magnetic bearings so that no fric tion  is encoumered in the conưol. The 
attitude o f  the payload in the >' direction is conưolled by magnetic actuators located at the bas«. 
The total force produced by the magnetic actuators is y i/) . The controls o f  ihe other degrees of 
motion are independent and are not considered here. Because there are experiments located on the 
payload, electric power must be brought to the payload through cables. The linear spring with
spring constant K, is used to model Ihe cable attachment. The dynamic system model for the
c o n tro l o f  ih e  y-axi.s m o tio n  is  sh o w n  in  F ig u re  2 P -4 9 . T h e  fo rc e  e q u a t io n  o f  m o tio n  in  th e  V- 
direction is

/ ( / )  =  K,y(l) + M

Primary 
lagnet turns

Spindle
motor

ỊT T á ỉl
2 ẩ A - 2

Figure 2P-49



control o f the y-axis motion is shown in Figure 2P-49. The force equation o f  motion in the y- 
direction is

where =  O.SN-m/m and A/ =  500kg. The magnetic actuators are conữolled through state 
feedback, so that

m  = -K p y [ l) - K D ‘‘- ^

(a) Draw a functional block diagram for the system.

(b) Find the characteristic equation o f (he closed-loop system.

(c) Find ứie region in the Ko-'^tnm-Kp plane in which the system is asymptotically stable.

2-50. An inventory-control system is modeled by the following differential equations:

where X i(/) is ừie level o f inventory; ̂ 2(0 . the rate o f sales o f product; w(/), the production rate; and AT, 
a real constant. Let the output o f the system by y{f) =  (/) and r(f) be the reference set point fo r the
desired inventory level. Let u(f) =  r ( i)  -  >(0- Detennine the consưaint on K so that the closed-loop 
system is asymptotically stable.

2-51. Use MATLAB to solve Problem 2-50.

2-52. Use MATLAB to

(a) Generate symbolically the time function of_/ĨO

/ ( / )  =  5 +  2e“ ^ 's in ^ 2 i +  0  -  4e“ ^ 'co s^2 / “  ^

(b) Generate symbolically C M  =  +  2)

(c) Find the Laplace transform o f jit)  and name it F(5).
(d) Find the inverse Laplace ưansform o f G(s) and name it g(t).
(e) I f  G{s) is the forward-path tfansfer function o f unity-feedback control systems, find the transfer 
function o f ửie closed-loop system and apply the Routh-Hurwitz criterion to determine its stability. 

(0  i f  F(s) is the forward-palh Uansfer function o f unity-feedback conưol systems, find the ưansíer 
function o f the closed-loop system and apply the Rouih-Hurwitz criterion to determine its stability.
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Block Diagrams and 
Signal-F low Graphs

In  th is chapter, we discuss graphical techniques fo r  m odeling contro l systems and their 
underly ing mathematics. We also u tilize  the b lock diagram reduction techniques and the 
M ason’s gain fo rm u la  to find  the transfer function o f the overa ll contro l system. L a te r on in 
Chapters 4 and 5, we use the material presented in this chapter and Chapter 2 to  fu l ly  model 
and study the performance o f  various con tro l systems. The m ain objectives o f  th is  chapter are:

1. To study b lock  diagrams, the ir components, and th e ir underly ing  mathematics.

2. To obta in  transfer function  o f  systems through b lock  diagram  m an ipu la tion  and 

reduction.

3. To introduce the s igna l-flow  graphs.

4. To establish a para lle l between b lock  diagrams and signa l-flow  graphs.

5. To use Mason’s gain fo rm u la  fo r  find ing  transfer func tion  o f  systems.

6 . To introduce state diagrams.

7. To demonstrate the M A T L A B  tools using case studies.

►  3 - 1  B L O C K  D I A G R A M S

The b lo ck  d ia g ra m  m odeling may provide con tro l engineers w ith  a better understanding 
o f  the com position and interconnection o f  the components o f  a system. O r i t  can be used, 
together w ith  transfer functions, to  describe the cause-and-effect re lationships throughout 
the system. For example, consider a s im p lified  b lock  diagram  representation o f  the heating 
system in  you r lecture room , shown in  Fig. 3-1, where by setting a desired temperature, also 
defined as the in p u t, one can set o f f  the furnace to p rovide heat to  the room . The process is 
re la tive ly  straightforward. The actual room  temperature is also known as the o u tp u t and is 
measured by a sensor w ith in  the thermostat. A  sim ple electronic c irc u it w ith in  the 
thermostat compares the actual room  temperature to  the desired room  temperature

Figure 3-1 A simplified block diagram representation of a heating system.
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Disturbance
torque

1 (úU)
f l+ / f n ( j)

Figure 3-2 (a) Block diagram o f a dc-motor control system, (b) Block diagram with transfer 
functions and amplifier characteristics.

(c o m p a ra to r). I f  the room  temperature is below  the desired temperature, an e r ro r  voltage 
w il l  be generated. The eưor voltage acts as a sw itch to  open the gas valve and turn on the 
furnace (o r the actu a to r). Opening the w indow s and the door in  the classroom w ou ld  cause 
heat loss and. naturally, w ou ld  disturb the heating process (d is tu rbance ). The room  
temperature is constantly m onitored by the output sensor. The process o f  sensing the output 
and com paring i t  w ith  the input to establish an erro r signal is know n as feedback. Note that 
the eưor voltage here causes the furnace to turn on, and the furnace w ou ld  f in a lly  shut o f f  
when the eư or reaches zero.

As another example, consider the b lock diagram o f  F ig. 3-2 (a), w hich models an open- 
loop, dc-motor, speed-control system. The block diagram in  th is case s im ply shows how the 
system components are interconnected, and no mathematical details are given. I f  the 
mathematical and functional relationships o f  a ll the system elements are known, the b lock 
diagram can be used as a too l fo r  the analytic o r computer solution o f  the system. In  general, 
b lock diagrams can be used to  model linear as w e ll as nonlinear systems. For example, the 
inpu t-ou tpu t rela lions o f  the dc-m otor contro l system may be represented by the b lock  
diagram shown in  F ig. 3-2 (b). In  th is figure, the input voltage to the m otor is the output o f the 
power am plifier, w hich, realistically, has a nonlinear characteristic. I f  the m otor is linear, or, 
more appropriately, i f  i t  is operated in  the linear region o f  ils  characteristics, its dynamics can 
be represented by transfer functions. The nonlinear am plifie r gain can on ly  be described in 
tim e dom ain and between the tim e variables v,</) and v „(0 . Laplace transform variables do 
not apply to  nonlinear systems: hence, in th is case, v^ s)  and ^ „ (5 ) do not exist. However, i f  the 
magnitude o f  v,<0 is lim ited  to the linear range o f  the am plifier, then the am plifie r can be 
regarded as linear, and the am plifie r may be described by the transfer function

K (3-1)

where AT is a constant, which is the slope o f  the linear region o f  the a m p lifie r characteristics.
A lte rna tive ly , we can use s ignal-flow  graphs or state diagrams to provide a graphical 

representation o f  a contro l system. These topics are discussed la ter in th is chapter.
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We shall now define the b lock-d iagram  elements used frequently  in  conưol systems and the 
related algebra. The com m on elements in b lock  diagrams o f  m ost conưol systems include:

• Comparators

• B locks representing ind iv idua l com ponent transfer functions, inc lud ing :
• Reference sensor (o r input sensor)
• Output sensor
• A ctuator
• C ontro lle r
• Plant (the com ponent whose vanables are to  be con tro lled)

• Inpu t o r reference signals

• Output signals

• Disturbance signal

• Feedback loops

F ig. 3-3 shows one configuration where these elements are in terconnected. You may 
w ish to compare Fig. 3-1 o r Fig. 3-2 to  F ig. 3-3 to  find the con tro l te rm ino logy fo r each 
system. As a ru le , each b lock  represents an element in  the con tro l system, and each element 
can be modeled by one o r more equations. These equations are norm ally  in  the tim e domain 
o r preferably (because o f  ease in  m anipu lation) in  the Laplace dom ain. Once the block 
diagram  o f  a system is fu lly  constructed, one can study in d iv id u a l components o r the 
overa ll system behavior.

One o f  the im portant components o f  a contro l system is the sensing and the elecưonic 
device that acts as a ju n c tio n  po in t fo r signal comparisons— otherw ise know n as a 
c o m p a ra to r. In  general, these devices possess sensors and perform  sim ple mathematical 
operations such as addition and subtraction (such as the thermostat in  Fig. 3-1). Three 
examples o f  comparators are illustra ted in  F ig. 3-4. N ote that the addition and subtraction 
operations in  Fig. 3-4 (a) and (b) are linear, so the input and ou tpu t variables o f  these block- 
diagram elements can be tim e-dom ain variables o r Laplace-ưansíorm  variables. Thus, in 
F ig. 3-4 (a), the b lock  diagram im plies

<!(>) = '■ M - J ’W (3-2)

£ ( i)  =  R{s) -  y(s) (3-3)

As mentioned earlier, b locks represent the equations o f  the system in tim e dom ain o r the 
t ra n s fe r  fu n c tio n  o f  the system in the Laplace dom ain, as demonstrated in  F ig. 3-5.

Figure 3-3 Block diagram representation o f a general control system.
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>(0

O eU )s , r i t )*y  

E(S) = RU) +
y(t)

Yịs)

riơ) e ( l ) - r ^ l )  + r2U) -  y(l)

Riis) + \ ^  £(s) = « |( i)  + R2{s)-  y(i)

m

(c)

A co m p ara to r  
perform s addition 
and subữaction

Figure 3-4 Block-d
(b) Addition, (c) Addition and subữaction.

;s o f typical sensing devices o f conưol systems, (a) Subưaction.

« (0  , g{x.u) (0 J Time Figure 3-5
domain diagrams.

Uis) ^ X (i) Laolace
(i) domain

In  Laplace dom ain, the fo llo w in g  inpu t-ou tpu t re la tionship can be w ritten  fo r the system in  
F ig. 3-5:

X { s )  =  G i ^ ) U { s ) (3 -4 )

I f  signal X ( j)  is the output and signal U(s)  denotes the input, the transfer function  o f  the 
b lock  in  Fig. 3-5 is

G (s ) =
X j s )

U { s )
(3-5)

Typ ica l b lock  elements that appear in  the b lock  diagram representation o f  most control 
systems include p la n t, c o n tro lle r , a c tu a to r, and sensor.

EXAMPLE 3-1-1 Consider the block diagram o f two transfer functions G i( j)  and G2( i)  that are connected in series. 
Find die transfer function G (j) o f the overall system.

SOLUTION The system ưansíer function can be obtained by combining individual block equations. 
Hence, for signals /4(5) and X(i), we have
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ơ ( i )
G ,(i)

>4(i)
G tis )

Figure 3-6 Block diagrams Ơ 1Í5) and 
Gĩis) connected in series.

X (5 )= ,4 ( i)G 2 ( i)

A(s) = U(s)Gi(s)
X{s] = G,{s}G2 is)Uis]

G { í ) = G , ( j ) G 2( i) (3-6)

Hence, using Eq. (3-6), the system in Fig. 3-6 can be represented by the system in Fig. 3-5. <

EXAMPLE 3-1-2 Consider a more complicated system o f two ưansíer functions G i( i)  and Czis) that are connected in 
parallel, as shown in Fig. 3-7. Find the tfansfer function G(5) o f the overall system.

SOLUTION The system transfer function can be obtained by combining individual block equations. 
Note for the two blcxks C](s) and C z W .A iii)  acts as the input. andA2(5) and/43(5) are the outputs, 
respectively. Further, note that signal U(s) goes through a branch point p  to become .41 (s). Hence, for 
the overall system, we combine the equations as follows.

-4 iW  =  ỉ / { í )

^ 2W - A , ( j ) C , W  

A,(s) = A iis)G 2 {s)

X is )= A 2 Ìs)+ A ĩ{s)

X{s) ^ U { s){Gi (s) + G2(s)}

U{s)

G{s) = G , ( í )  +  G2( j) (3-7)

For a system to be classified as a feedback contro l system, it is necessary that ưie controlled 
variable be fed back and compared w ith the reference input. After the comparison, an e rro r signal is 
generated, which is used to actuate the conưol system. As a result, the actuator is activated in the 
presence o f ứie error to minimize or eliminate that very eưor. A  necessary component o f every 
feedback control system is an output sensor, which is used to convert the output signal to a quaDtiiy 
that has the same units as the reference input. A  feedback conưol system is also known a closed-ioop 
system. A  system may have multiple feedback loops. Fig. 3-8 shows the block diagram o f a linear

Figure 3-7 Block diagrams G i( j)  and 
G iíí)  connected in parallel.



U(s) Y(s)

J  u{l)
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Figure 3-8 Basic block diagram o f a 
feedback control system.

feedback control system with a single feedback loop. The following terminology is defined with 
reference to the diagram:

r(r), R(s) =  reference input(command) 

y(i), Y{s) =  output (controlled variable) 

fc(/).B(s) =  feedback signal

«(/) , u{s) = actuating signal = e rT o rs ig n a le (f) .f{ j) ,  w henW (i) =  1 

H(s) = feedback transfer function 

G{s)H{s] =  L{s) =  loop transfer function 

C ( i)  =  forward-path transfer function

M{s) =  Y(s)/R(s) =  ciosed-loop transfer function or system transfer function

The closed-loop transfer function M(s) can be expressed as a function o f C{s) and His). From Fig. 3-8,
we write

y(5) =  G (í)ư (í) (3-8)

and

B(5) =  W(ì )>'(í ) (3-9)

The actuating signal is written
ơ ( í)  =  R(s) -  B{s) (3-10)

Substituting Eq. (3-10) into Eq. (3-8) yields

y ( i)  =  Gis)R{s) -  G(s)H{s) (3-11)

Substituting Eq. (3-9) into Eq. (3-7) and then solving for K(5)//?(5) gives ihe closed-loop transfer 
function

The feedback system in Fig. 3-8 is said to have a negative feedback loop because the comparator 
subtracts. When the comparator adds the feedback, il is called positive feedback, and the transfer 
function Eq. (3-12) becomes

I f  G and H are constants, they are also called gains. I f  / /  =  1 in Fig. 3-8, the system is said to have a 
un ity  feedback loop, and i f  w  =  0 . the system is said to be open loop. ,

Relation b e tw een  M a th em atica l Equations and B lock Diagram s

Consider the fo llo w in g  second-order p ro io iype system:

Jc(/) +  + o j ; j : ( r )  =  u ị u ị l )  (3-14)
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Figure 3-9 Graphical representation o f Eq. (3-17) 
using a comparator.

w hich has Laplace representation (assuming zero in it ia l cond itions jr(0 ) = i { 0 )  =  0):

X{s) s ^ + 2 ^ c 0 „ x ( s ) s  +  ci)lx  (5 ) =  a?„ u {s )  (3 -15)

Eq. (3-15) consists o f  constant dam ping ra tio  constant natural frequency io„, inpu t U(s), 
and output A:(í). I f  we rearrange Eq. (3-15) to

a ) l U { s ) - 2 Ị a ) „ X { s ) s - a ) l x { s )  = x ( s ) s ^ (3-16)

it  can g raph ica lly  be shown as in  F ig. 3-9.
The signals 2^0)nsX{s) and a>lx{s) may be conceived as the signal X ( i )  go ing  into 

blocks w ith  transfer functions 2Ịco„s and Ù>1, respectively, and the signal X (s) may be 
obtained by in tegrating tw ice  or by p os t-m u ltip ly ing  by -ỳ, as shown in  F ig. 3-10.

Because the signals X ( i)  in  the righ t-hand side o f  Fig. 3-10 w  the same, they can be 
connected, leading to  the b lock  diagram representation o f  the system Eq. (3 -17), as shown 
in  F ig . 3-11. I f  you  wish, you can fu rthe r dissect the b lock  diagram  in  F ig. 3-11 by factoring 
out the term  -  as in Fig. 3 -12(a) to  obtain F ig. 3 -12(b).

I f  the system studied here corresponds to  the spring-mass-damper seen in  F ig. 4-5 (see 
Chapter 4), then we can designate internal variables A{s) and H i ) ,  w h ich  represent 
acceleration and ve loc ity  o f  the system, respectively, as illustra ted  in  F ig . 3-12. The best 
way to see this is by reca lling  that -  is the integration operation in  Laplace dom ain. Hence, 
i f  A (5) is integrated once, we get V (i). and after in tegrating V ( j) ,  we get the X ( i)  signal.

I t  is evident that there is no unique way o f  representing a system model w ith  block 
diagrams. We may use d iffe ren t b lock  diagram  form s fo r  d iffe ren t purposes, as long as the

Eq. (3-17).

Figure 3-11 Block diagram 
representation o f Eq. (3-17) in Laplace 
domain.



3-1 Block Diagrams <  111

Figure 3-12 (a) Factorization o f i  term in the internal feedback loop o f Fig. 3-11. (b) Final block 
diagram representation o f Eq. (3-17) in Laplace domain.

Figure 3-13 Block diagram o f
Eq. (3-17) in Laplace domain with V(5)
represented as the output.

overa ll transfer function  o f  the system is not altered. For example, to  obtain the transfer 
func tion  V{s)/U{s), we may yet reaưange F ig. 3-12 to  get V íí)  as the system output, as 
shown in  F ig. 3-13. Th is  enables us to  determ ine the behavior o f  ve loc ity  signal w ith  
input U{s).

EXAMPLE 3-1-3 Find the transfer function o f the system in Fig. 3-12 and compare that lo the transfer function o f 
system in Eq. (3-15).

SOLUTIONS The Oil block at the input and feedback signals in Fig. 3-12(b) may be moved to the 
right-hand side o f the comparator. This is ihe same as factorization o f O)̂  as shown;

ojI U is) -io ịx  is) =  0)1 (U{s) -  X  {s)) (3-17)

Fig. 3-14(a) shows the factorization operation o f Eq. (3-17), which results in a simpler block diagram 
representation o f the system shown in Fig. 3-14 (b). Note that Fig. 3-12(b) and Fig. 3-14(b) are 
equivalent systems.
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''20)isliics3,

Figure 3-14 (a) Factorization o f a>ị. (b) Alternative block 
in Laplace domain.

1 1 relations:

= -Ì(s )G 2(s )= -Ì(s )G 2(s )

Considering Fig. 3-12(b), it is easy to identify the ime 
simplified using Eq. (3-12). or

V ( i)  _  i

s
After pre- and post-multiplication by tu5 and ị .  respe 
simplified lo what is shown in Fig. 3 -IS. which ullim

''(■ ’ I
m  ^  i  ^  =  > 'ừ W i Is)
A(s) ,_^ẾỈJ!ỈÍ icon

X(s) s(s  + 2cco„) 
ư(s) J "

'*’ 5 ( í +  2 fcy„)
Eq. (3-19) is also the transfer funclion o f system Ei

► EXAMPLE 3-1-4 Find the velocity transfer function using Fig. 3-13 a 

SOLUTIONS Simplifying the two feedback loops i.

^t(s)

Vis) _ 
U(s]''

m s ) '-
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’ ‘ O f+ J _
r 2)

35 +  2

. ( 5 + 1 )

(3-43)

'ỉ!

(s)

'> ^ d p ị

-^ed.

(3-21)

^-22)

s im p lified  version o f  a b lo ck  diagram. The 
i  cause-and-effect representation o f  linear 

>ns. Besides the differences in  the physical 
the s ignal-flow  graph is constrained by more 

iagram  notation is more libera l. A n  SFG may 
ng the inp u t-o u tp u t relationships among the 

.ons.
ibed by a set o f  N  a lgebraic equations: 

; = 1 , 2 ,  . . . , w  (3-44)

juations are w ritten  in  the fo rm  o f  cause-and-effect

3-23)

(3-34;

' ( g a in f r o m t o  j )  X (fcthcause)

apu t =  ^ ( g a i n )  X (inpu t)

(3-45)

(3-46)

ax iom  in  fo rm ing  the set o f  algebraic equations fo r  SFGs. 
Ỉ  b y  a set o f  integrodifferencia l equations, we m ust firs t 

—  equations and then reaưange the la tter in the form

k=\
(3-47)

It variables. The 
ise-and-effect 

n transm it 
•quaiions 
latter o f
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-X (s )
(a)

, ,  2 1 V{si 1
5

Figure 3-14 (a) Factorization o f ù)ị. (b) Alternative block diagram representation o f Eq. (3-17) 
in Laplace domain.

■ x f)
Figure 3*15 A  block diagram

representation o f 5+0)2.

Considering Fig. 3 -12(b), it is easy to identify the internal feedback loop, which in turn can be 
simplified using Eq. (3-12), or

7
/l(s)  J  ̂ 2Ịg}„ s +  2^a>„ 

s
After pre- and post-multiplication by W2 and respectively, the block diagram o f ứie system ii 
simplified lo what is shown in Fig. 3-15, which ultimately results in

____ 112____  ,
^(■^) _  5 (5 +  2 ^&;n) _ ______ ________
ư { s ) ~   ̂ col ~  +  2 Ịù J „s  +  coị

(3-19;

s{s +  Ĩ Ị ù j „ )
Eq. (3-19) is also the transfer function o f system Eq. (3-15).

EXAMPLE 3-1-4 Find the velocily iransfer function using Fig. 3-13 and compare Uiat to the derivative o f Eq. (3-19)

SOLUTIONS Simplifying the two feedback loops in Fig. 3-13. starting with the internal loop first 
we have

V ( 5 l _________SCO-
i/(7 )  ~  + 2 Ị oj„ s +  ùẠ



Eq. (3-20) is the same as the derivative o f Eq. (3-19), which is nothing but multiplying Eq. (3-19) by 
an 5 term. Try to find the A{s)/U{s) ưansfer function. Obviously you must get: s^X(s)/U(.s). <
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lock Diagram Reduction

A s you  m igh t have noticed fro m  the examples in  the previous section, the transfer function  
o f  a con tro l system may be obtained b y  m anipu lation o f  its b lock  diagram  and by its 
u ltim ate  reduction in to  one b lock. For com plicated b lock  diagrams, i t  is o ften necessary to 
move a c o m p a ra to r o r a b ra n c h  p o in t to  make the b lock  diagram  reduction process 
simpler. The tw o  key operations in  th is case are:

1. M o v in g  a branch po in t fro m  p  to  Q , as shown in  F ig . 3 -16(a) and F ig . 3 - Ỉ 6 (b). 
Th is  operation must be done such tíia t the signals y {5) and B is) are unaltered. In  
Fig, 3-16(a), we have the fo llo w in g  relations:

Y {s ) = A { s )G 2 { s )

B{s) =  Y {s)H ,{s)
(3-21)

In  Fig. 3-16(b), we have the fo llo w in g  relations:

J '( s ) = A ( í ) G 2 (s) 

B W = A ( s ) í / , ( s )  G jW

B ut

= !.b ( í ) =  r w w i  w

(3-22)

(3-23)

2. M o v in g  a comparator, as shown in  F ig. 3-17(a) and Fig. 3 -I7 (b ), should also be 
done such that the output y ( j)  is unaltered. In  Fig. 3 -17(a), we have the fo llo w in g  
relations:

Y { s ) ^ A { s ) G2{s ) + B {s )H x {5) (3-24)

Figure 3-16 (a) Branch point relocation 
from point p  to (b) point Q,
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(a)

Gi[s)

Figure 3-17 (a) Comparator relocation 
from the right-hand side o f  block Glis) to
(b) the left-hand side o f block Ơ2(5).

In  F ig . 3 -17(b), we have the fo llo w in g  relations:

y , ( i ) = A ( j )  +  s(i) H ijs )

G 2 {s)

r ( j )  =  y .W G z W

(3-25)

> y W = A W C 2 ( s )  +  B ( i ) H , ( i )

(3-26)

► EXAMPLE 3-1-5 Find the input-output ưansíer function o f the system shown in Fig. 3-17(a).

SOLUTION To perform the block diagram reduction, one approach is to move the b ran c h  point at Ki 
to the left o f block C2. as shown in Fig, 3-18(b). After that, the reduction becomes UiviaJ. first by 
combining the blocks G2, C 3, and Gi as shown in Fig. 3-18(c), and then by  elim inating the two

Figure 3-18 (a) Original block diagram, (b) Moving the branch point at to the left o f block G j. (c) 
Combining the blocks G i. G2, and G3. (d) Eliminating the inner feedback loop-
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- [ ĩP K Ĩh ^ ố T

G2 Gị + G4

Ĩt Ệ õ Ĩ Ĩ ,  ----------- --------- *1 gjGĩ->C4

Figure 3-18 (Continueíỉ)

feedback loops. As a result, the ttansfer function o f the final system after ihe reduction in Fig- 3-18(d) 
becomes

y(s) _ G1G2G Ĩ + G 1G4

E(s) ~  1 + G 2G 3H 1 + G 1C2G3 +  G 1G4
(3-27)

•4

lock Diagram of Multi-input Systems— Special Case; Systems with a Disturbance

A n im portant case in  ihe study o f  con tro l systems is when a disturbance signal is present. 
Disturbance (such as heat loss in  the example in  F ig. 3-1) usually adversely affects the 
performance o f the contro l system by placing a burden on the contro ller/actuator com po
nents. A  simple b lock  diagram w ith  tw o  inputs is shown in Fig. 3-19. In  th is case, one o f  the 
inputs, D(s), is known as disturbance, w h ile  R(s) is the reference input. Before designing a 
proper contro ller fo r  the system, i t  is always im portant to leam the effects o f  D(s) on the 
system.

We use the method o f  superposition in m odeling a m u lti- in p u t system.

S uper P os ition : For linear systems, the overa ll response o f  the system under 
m u lti-inpu ts  is the summation o f  the responses due to the ind iv idua l inputs, i.e., in  th is case,

yma/ =  ^ « lo =0 ■*' ^o|/?=o (3-28)
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Figure 3-19 Block, diagram o f a system undergoing disturbance

Figure 3-20 Block diagram o f the 
system in Fig. 3-19 when D ịs) =  0.

W hen D ( i)  =  0, the b lock  diagram is s im p lified  (F ig . 3-20) to  give the ưansíer function

(3-29)

W hen R{s) -  0, the b lock  diagram  is rearranged to  g ive  (F ig . 3-21):

(3-30)

Y{s) G ,i s )G 2 js) 
R{s) 1 + G , ( 5 ) G 2 / / i ( í )

y (^ )  ^  -G 2 { s )

D{s) l + G , ( 5 ) G 2 ( 5 ) H , ( i )

GzH,
Figure 3-21 Block diagram o f the 
system in Fig. 3-19 when /?í,s) =  0.
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A s a result, fro m  Eq. (3-28) to Eq. (3-32), we u ltim a te ly  get

Y,o,ai R{s) +

Y{s) =

D=0

G 1 G2 

1 + G 1G 2W 1

Y{s)
D is)

'D (s)

- G ^
(3-31)

R{s) +
1 + G 1 G 2H 1

■D{s)

O b serva tions : and have the  same denominators i f  the disturbance signal
goes to  the fo rw ard  path. The negative sign in  the num erator o f  o l«=0 shows ứỉat ứie 
disturbance signal interferes w iứ i the conữ o lle r signal, and. as a result, i t  adversely affects 
the perform ance o f  ihe system. N atura lly, to  compensate, there w il l  be a h igher burden on 
the contro ller.

lock Diagrams and Transfer Functions of Multivariable Systems

In  th is section, we shall illusưate the b lock  diagram and m a trix  representations (see 
A ppend ix  A ) o f  m u ltiva riab le  systems. Tw o block-d iagram  representations o f  a m u lti-  
variable system w ith  p  inputs and q  outputs are shown in  F ig. 3 '22 (a ) and (b). In  F ig . 3-22
(a), the ind iv idua l inpu t and output signals are designated, whereas in  the b lo ck  diagram  o f 
Fia. 3-22(b). the m u lr ip lic iiy  o f  ửie inputs and outputs is denoted by vectors. The case o f 
F ig . 3-22(b) is preferable in  practice because o f  its  s im p lic ity .

F ig. 3-23 shows the b lock  diagram o f  a m u ltiva riab le  feedback conữol system. The 
transfer function  relationships o f  ứie system are expressed in  vector-m aưix fo rn i (see 
A ppendix A ):

\ { s )  =  G (5 )U ( í)  

V {s) =  R { s ) - B { s )  

B[s) =  H {s)Y {s)

(3-32)

(3-33)

(3-34)

r,(f1 f.

MULTIVARIABLE
SYSTEM

fA )

la)

MULTTVARIABLE
SYSTEM

v,(f)

Figure 3-22 Block diagram representations o f 
a multivariable svstem.
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Figure 3-23 Block diagram o f a multivariable 
feedback conưol system.

where Y ( j )  is the Ợ X 1 output vector; U ( i) ,  R ( i) ,  and B ( i)  are a ll /? X 1 vectors; and G (i; 
and H ( i)  are Ợ X p  and p  X Ợ transfer-function matrices, respectively. S ubstitu ting Eq
(3-11) in to  Eq. (3-10) and then from  Eq. (3-10) to Eq. (3-9), we get

Y ( j )  =  G (5 )R (5 )  -  G { í )H (5 )Y ( s ) (3-35;

S o lv ing  fo r  Y ( j )  fro m  Eq. (3-12) gives

Y ( j )  =  [I +  G ( j)H (s ) ] - 'G (s )R (s )  (3-36)

provided that I  +  G (5 ) H ( i )  is nonsingular. The closed-loop transfer m aư ix  is defined as

Then Eq. (3-14) is w ritten

Y{s) = M{s)R{s)

(3-37)

(3-38)

• 1 1 -
5 + 1  J 

.  1 H{s) = 1 0
0 1

5 +  2-

► EXAMPLE 3-1-6 Consider that the forward-path transfer funclion matrix and the feedback-path ưansíer function 
matrix o f ứie system shown in Fig. 3-23 are

G(s) =

respectively. The closed-loop transfer function matrix o f the system is given by Eq. (3-15). and 
is evaluated as follows:

I  +  G (s )H (i) =

The closed-loop transfer function matrix i;

1

1 '5  +  2 
5 +  1

1 •

2 2
j+ ^3  
5 +  2.

Í +  1

2

,5 +  2 J  +  3 2  i -  +  5 i• +  2
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3j2 + 9 5  +  4
s + l ) { s  + 2) s

2 s { s + i)

(3*43)

IGNAL-FLOW GRAPHS (SFGs)

A  s ignal-flow  graph (SFG) m ay be regarded as a s im p lified  version o f  a b lo ck  diagram. The 
SFG was in troduced b y  s. J. Mason [2 ] fo r  the cause-and-effect representation o f  linear 
systems that are modeled by algebraic equations. Besides the differences in  the physical 
appearance o f  the SFG and the b lock  diagram, the s igna l-flow  graph is constrained b y  more 
r ig id  mathem atical rules, whereas the b lock-d iagram  notation is more libera l. A n  SFG may 
be defined as a graphical means o f  portray ing  the in p u t-o u tp u t relationships among the 
variables o f  a set o f  linear algebraic equations.

C onsider a linear system that is described b y  a set o f  N  algebraic equations:

N
y j  =  j = l , 2 ,  . . . , N  (3-44)

k=i

I t  should be pointed out that these N  equations are w ritten  in  the fo rm  o f  cause-and-effect 
re lations:

N
y th e ffe c t =  y~ ^(g a in fro m fe to  j )  X (Arthcause) (3-45)

*=1

or s im ply

Th is  is the single most im portant axiom  in  fo rm ing  the set o f  algebraic equations fo r  SFGs. 
W hen the system is represented by a set o f  in tegrod iffe ren tia l equations, we must first 
transform  these in to  Laplace-transfo im  equations and then rearrange the la tter in  the fo rm  
o f  Eq. (3-31), or

yj(s) =  j = l , 2 , . . . , i V  (3-47)
k= l

asic Elements of an SFG

W hen constructing an SFG, junc tion  points, o r nodes, are used to represent variables. The 
nodes are connected by line segments called branches, according to the cause-and-effect 
equations. The branches have associated branch gains and directions. A signal can transm it 
through a branch only in the direction o f  the arrow. In general, g iven a set o f equations 
such as Eq. (3-31) or Eq. (3-47), the construction o f  the SFG is basically a m atter o f
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* ^2 Figure 3-24 Signal flow graph o f y2 =  í ỉ i2.Vi-

fo llo w in g  through the cause-and-effect re lations o f  each variab le in  term s o f  its e lf  and the 
oứiers. F o r instance, consider that a linear system is represented by the s im p le  algebraic 

equation

y2 = 0 ]2y\

where is the input, >2 is the output, and ữ i2 is  the gain, o r  ưansmittance, between the two 
variables. The SFG representation o f  Eq. (3-48) is shown in  F ig . 3-24. N otice that the branch 
d irecting from  node (input) to node y 2 (output) expresses the dependence o f  >'2 on V| but not 
the reverse. The branch between the input node and the output node should be interpreted as a 
unilateral am plifie r w ith  gain Ớ12, so when a signal o f one u n it is applied atứie input> 'i, a signal 
o f  strength 0 i 2>'i is delivered at node >»2. A lthough algebraically Eq. (3-48) can be written as

y , = — y2 (3-49)
^12

the SFG o f  F ig. 3-24 does not im p ly  th is relationship. I f  Eq. Í3 -49 ) is va lid  as a cause-and- 
e ffect equation, a new SFG should be drawn w ith  >>2 as the in p u t and >•] as the output.

EXAMPLE 3-2-1 As an example on the construction o f an SFG. consider ưie following set o f algebraic equations:

>'2 = a i2 > l  +032>'3 

J3 =  023J2 +  043.V4 

>'4 =  fl24>'2 +  034>’3 +  <^uyA

ys = aisyi + OiiVA
The SFG for these equations is consưucted, step by step, in Fig. 3-25.

3-2-2 Summary of the Basic Properties of SFG

The im portan i properties o f  the SFG that have been covered thus fa r are summarized as 
fo llow s.

1. SFG applies on ly  to  linear systems.

2. The equations fo r  wh ich  an SFG is drawn must be algebraic equations in  the form
o f  cause-and-effect.

3. Nodes are used to  represent variables. N orm ally , the nodes are aưanged from  left 
to  righ t, from  the input to  the output, fo llo w in g  a succession o f  cause-and-effeci 
re lations through the system.

4. Signals travel along branches o n ly  in  ihe d irection  described by the arrows o f  the 
branches.

5. T h e  b ra n c h  d ire c tin g  from  no d e  \ k  to  Vj rep re se n ts  th e  d e p e n d e n c e  o f  Ufwn }’k 
but not the reverse.

6 . A  signal Vfc trave ling  along a branch between J* and Vy is m u ltip lie d  by ứie gain of
the branch a ^j, so a signal a^jVk is delivered at \ j .

3-2-3 Definitions of SFG Terms

In  addition to  the branches and nodes defined earlier fo r  the SFG. the fo llo w in g  lenns are 
useful fo r  the purpose o f  iden tifica tion  and execution o f  the SFG algebra.
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(b)>2 = «l2)'l+«32)'3 >3 = ajjya +

«32 "43 «-U .

(c)y2  =  ‘’ l2yi+<»32>’3 >3 =  «23X2 + «4iy4 n  = «24X2 +  «34X3 +  «44>’4

(d) Complete signal-flow graph 

Figure 3-25 Step-by-step construction o f the signal-flow graph in Eq. (3-50).

In p u t  Node (S ource): An  input node is a node tha t has only outgoing branches 
(example; node y\ in  F ig. 3-24).

O u tp u t N ode (S in k ): An  output node is a node tha t has only incoming branches: 
(example; node >»2 in  Fig- 3-24). However, th is cond ition  is not always read ily  met by an 
output node. For instance, the SFG in Fig. 3-26(a) does not have a node that satisfies the 
cond ition  o f  an output node. I t  may be necessary to regard >2 and/or as output nodes to 
fin d  the effects at these nodes due to  the input. To make >>2 an output node, we s im ply 
connect a branch w itì i un ity  gain fro m  the ex is ting  node y>2 to  a new node also designated as 
>̂ 21 as shown in  F ig. 3-26(b). The same procedure is applied to >3 . N otice that, in  the 
m od ified  SFG o f  Fig. 3-26(b), the equations y 2 =  y i  and y j  =  >»3 are added to the o rig ina l 
equations. In  general, we can make any non inpu t node o f  an SFG an output by the 
procedure ju s t illustrated. However, we canno t convert a noninput node in to  an inpu t node 
by reversing the branch d irection  o f  the procedure described fo r output nodes. For instance, 
node y 2 o f  die SFG in  F ig. 3-26(a) is not an input node. I f  we attem pt to  convert i t  in to  an 
inpu t node by adding an incom ing  branch w ith  un ity  gain from  another identica l node y 2 , 
the SFG o f  Fig. 3-27 w ould result. The equation that portrays the relationship at node >’2 
now  reads

w  =  w  +  a u y i  +  032W  (3-51)

w h ich  is d iffe ren t fro m  the o rig ina l equation g iven in  Fig. 3-26(a).
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(a) O riginal signal-flow  graph

(b) M odified signal-flow  graph 

OVi

Figure 3-26 Modification o f a 
signal-flow graph so that y2 and 
ys satisfy the condition as output 
nodes.

/^ 3  Figure 3-27 Erroneous way to make node V2 an input 
node.

P a th : A  path is any collection o f  a  continuous succession o f  branches traversed in the 
sam e direction. The de fin ition  o f  a path is en tire ly  general, since i l  does not prevent any 
node from  being traversed more than once. Therefore, as s im ple as the SFG o f  F ig. 3-26(a) 
is, i t  may have numerous paths ju s t by traversing the branches 023 and «32 continuously.

F o rw a rd  P a th : A  fo rw a rd  path is a pa th  that sta rts a t an input node a nd  ends at an 
output node and  along which no node is traversed m ore than once. F o r example, in the 
SFG o f Fig. 3-25(d), >>) is the input node, and the rest o f  the nodes are a ll possible output 
nodes. The fo rw ard  path between y i and )>2 is s im p ly  the connecting branch between the 
tw o  nodes. There are tw o  fo rw ard  paths between y  I and J 3 : One contains the branches from 
yi] to  >>2 to >>3 , and the other one contains the branches fro m  y] 10  y 2 to  >’4 (through the 
branch w ith  gain and then back to J 3 (through the branch w ith  gain Ữ43). The reader 
should try  lo  determine the tw o  fo rw ard  paths between >'i and >'4 . S im ila rly , there are three 
fo rw ard  paths between y\ and ys.

P ath  G a in : The product o f  the branch gains encountered in traversing a pa th  is called
the path gain. For example, the path gain fo r  the path Vi - y i - y i ~ y ậ  in  F ig. 3-25(d) is 

ai2«23fl34-

L o o p : A  loop is a path  that originates and  term inates on the sam e node and  along which 
no other iiode is encouniered m ore than once. For example, there are fou r loops in  the SFG 
o f  F ig. 3-25(d). These are shown in  Fig. 3-28.

F o rw a rd -P a th  G a in : The forw ard-path gain is the pa th  gain o f  a fo rw a rd  path.

L o o p  G a in : The loop gain is (he pa th  gain u f  a loop. For example, the loop  gain o f  the
loop >'2 -  V4 - > ’3 - > '2  in Fig. 3-28 is 024043032-

N o n to u ch in g  Loops: Two parts o f  an SFG  are nontouching i f  they do not share a
c o m m o n  no d e .  F o r  ex a m p le , the  loops .V-) -  >'3 — V2 and  >-4 -  \'4 o f  th e  S F G  in F is .  3-25(d) 
are nontouching loops.
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V

FG Algebra

Figure 3-28 Four loops in the signal-fiow graph o f Fig. 3-25(d).

Based on the properties o f  the SFG, we can ou tline  the fo llo w in g  m an ipu lation rules and 
algebra;

1. The value o f  the variable represented by a node is equal to the sum o f  a ll the 
signals entering the node. For the SFG o f  Fig. 3-29, the value o f  >'1 is equal to the 
sum o f  the signals transm itted through a ll the incom ing  branches; that is.

y \  =  a i \y i  +  O ìơ ĩ  +  a iứ 4  +  asiys (3-52)

2. The value o f  the variable represented by a node is transm itted through a ll branches 
leaving the node. In  the SFG o f  Fig. 3-29, we have

y-7 =  a ijy i
ys = a i 8y i

(3-53)

3. Parallel branches in  the same direction  connecting tw o  nodes can be replaced by a 
single branch w ith  gain equal to the sum o f  the gains o f  ihe para lle l branches. A n  
example o f  this case is illusưated in  Fig. 3-30.

Figure 3-29 Node as a summing point and as a 
transmitting point.
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Figure 3-30 Signal-flow graph with parallel paths replaced by one w ith a single branch.

Figure 3-31 Signal-flow graph with cascade unidirectional branches replaced by a single branch.

-m.5)

Figure 3-32 Signal-flow graph o f ihe feedback control system shown in Fig. 3-8.

4. A  series connection o f  un id irectiona l branches, as shown in  F ig. 3-31, can be 
replaced by a single branch w ith  gain equal to  the product o f  the branch gains.

3-2-5 SFG of a Feedback Control System

The SFG o f  the single-loop feedback contro l system in  F ig. 3-8 is draw n as shown in Fig. 
3-32. Using the SFG algebra already ou tlined , the closed-loop transfer func tion  in  Eq. 
(3-12) can be obtained.

3-2-6 Relation between Block Diagrams and SFGs

The re la tion between b lock  diagrams and SFGs are tabulated fo r three im portan t cases, as 
shown in Table 3-1.

3-2*7 Gain Formula for SFG

G iven an SFG o r b lock  diagram, the task o f  so lv ing  fo r the inpu t-ou tpu t relations by 
algebraic m anipu lation could be quite tedious. Fortunately, there is a general gain formula 
available that a llow s the determ ination o f  the in pu t-ou tpu t relations o f  an SFG by 
inspection.
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Block diagrams and their SF6 equivalent representations

Block Diagram Signal Flow Diagrar

is fe r Function

--- ---------- 1
'------------- ' C|{J)

--------- J G jM  I----------1 " ----- -—
'----- ---------* c,ls)

G(»)
+  a (s )N (s )

I G(SI 1

Given an SFG w ith  N  fo rw ard paths and A" loops, the gain between the input node yin 
and output node youl is [3]

y>, u
(3-54)

where
>>,„ =  input-node variable 

youi =  output-node variable 

M  =  gain between yin and youl

=  to ta l number o f  forward paths between )>i„ and V„UI 

Mk — gain o f  the Ẩih forw ard paths between y,„ and y„ui

(3-55)

Lmr =  gain product o f the m th {m =  i . j . k .  . . .) possible com bination o f  r non
touching loops { ! < / • <  K).

A =  1 -  (sum o f the gains o f a ll in d iv id u a l loops) +  (sum o f products o f gains o f  all 
possible combinations o f  tw o  nontouching loops) -  (sum o f products o f gains o f
a ll possible combinations o f  th ree  nontouching loops) H------

=  the A  fo r  that part o f  the SFG that is nontouching w ith  the h h  fo rw ard  path.



The gain fo rm u la  in  Eq. (3-54) m ay seem fo rm idab le  to  use at firs t glance. However,
and A *  are the o n ly  terms in  the fo rm u la  that cou ld  be com plicated i f  the SFG has a larj
num ber o f  loops and nontouching loops. 

Care must be taken when apply ing the gain fo rm u la  to  ensure that i t  is applied betwei 
an in p u t node and an o u tp u t node.

EXAMPLE 3-2-2 Consider that the closed-loop transfer function Y{s)/R{s) o f the SFG in Fig. 3-32 is to be determim 
by use o f the gain formula, Eq. (3-54). The following results are obtained by inspection o f the SF(

1. There is only one forward path between R(s) and y ( j) .  and the forward-path gain is

M l =  G(s) C3-5I

2. There is only one loop; the loop gain is

L u =- G { s ) H { s )  (3-5'

3. There are no nontouching loops since there is only one loop. Furthermore, ửie forward pal 
is in louch with the only loop. Thus, A| =  1. and

A =  1 -  £,1 , =  l+ G {s)H {s)  (3-5Í

Using Eq. (3-54), the closed-loop ưansfer function is written
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y M _ A f |A |  G{s)
R{s) A 1 +  G{s)His)

which agrees with Eq. (3-12).

(3-5‘

EXAMPLE 3-2-3 Consider ihe SFG shown in Fig. 3-25(d). Lei us first determine the gain between V| and V5 using th 
gain fonnula.

The three forward paths between yi and ys and the forward-path gains are

M| = ^ 12023^34045 Forwardpath: >’ i -  >-2 -  V3 - J 4 -  ys
M l = 012025 Forwardpaih: V i—V2 —yj
Mĩ =«12024045 Fonvardpalh; V| -  y2 - V 4 - J 5

The four loops o f the SFG are shown in Fig. 3-28. The loop gains are

£•11=023032 Í-2Ì =  Í-3I =  ^24043^32 Í41 =  đ44

There is only one pair o f nontouching loops; that is. ihe two loops are

>’2 -  >'3 -  >’2 and V4 -  V'4 
Thus, the product o f the gains o f the two nontouching loops is

i '\2  =  ữ 2ì0 ỉ20 i4  {3-6C

A li ihe loops are in touch with forward paths M | and M y  Thus. A] =  ii.i =  1. Two of the loops are m 
in touch with forward path A/-.. These loops are V3 -  >’4 -  >'3 and V’4 — V'4. Thus,

^ 2  == I — 034043 — «44 (3-61

Substituting these quantities into Eq. (3-54). we have

ys A /|A | + M 2A2 +A^3A 3 

V] A
_ (0|2a23Q34«345) +  (g|2fl25)(l -  ^34^43 -<^44) +0|2Q24Q4.‘i 

1 — (ứ->3íl32 +  034043 +  i^24fl32^43 +  044) +  ^̂ 23̂ 3̂2̂ 44

(3-6:
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where

A =  1 -  (Z-ll + Z -21 +^31  + i-4 l)  + Ỉ -12

=  1 -  (o 23‘J32 +  ữ 34fl43 +  024^32043 +  O44) +  023032^44 

The reader should verify that choosing >»2 as the output,

>2 _  012(1 - Q 34g43 -Q44)

where A  is given in Eq. (3-63).

(3-63)

EXAMPLE 3-2-4 Consider the SFG in Fig. 3-33. The following input-output relations are obtained by use o f the gain 
formula:

y r  A
(3-65)

y 4 _ G ]G 2 (l+ H 4 )
A

y6 _  y? _  G 1G2G3G4 +  c?iCs(i +  GìHì) 
yi y\ A

A  =  1 +  G i Wi +  G3W2 +  G | G 2G 3//3  +  H i+ G i  G ĩH ị H i

+  G ịH ịH ị  +  G-ị H i H í, +  G 1 G 2 G 3 //3 //4  +  G \C ì H\H2H ì
(3-68)

Figure 3-33 Signal-flow graph for Example 3-2-4.

pplication of the Gain Formula between Output Nodes and Noninput Nodes

I t  was pointed out earlier that the gain fo rm u la  can o n ly  be applied between a pa ir o f  input 
and output nodes. O ften, i t  is o f  interest to  find  the relation between an output-node variable 
and a noninput-node variable. For example, in  the SFG o f F igure 3-33, i t  may be o f  interest 
to find the relation y n /y i,  w hich represents the dependence o f  >'7 upon V2: the la tte r is not 
an input.
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We can show that, by inc lud ing  an inpu t node, ứie gain fo rm u la  can s t i l l  be app lied  { 
f in d  the gain between a non input node and an output node. Let>>jn be an in p u t and >out t>e a 
ou tpu t node o f  a SFG. The gain, y o w h i .  where y 2 is not an inpu t, m ay be w ritten  as

>out )>in A  /-J f.c

>in A

Because A  is independent o f  the inputs and the outputs, the last equation is w ritten

(3 -7C
y c i »0>'w

y2 Z M k^k\in^y,,^oy^

N otice  that A  does no t appear in  the last equation.

► EXAMPLE 3-2-5 From the SFG in Fig. 3-33. the gain between >>2 and yn is written

yi ỹ iịy\ _  G^C2G^Gi +  C iơ s(i +  G M  
y i y i!y\ 1 +  G3W2 +  W4+ G3W2W4

3-2-9 Application of the Gain Formula to Block Diagrams

Because o f the s im ila rity  between the blcx:k diagram  and the SFG. the gain fo rm u la  in Eq 
(3-54) can d irec tly  be applied to  the b lock  diagram  to  determ ine the transfer func tion  o f  ih( 
system. However, in  com plex systems, to  be able to  id e n tify  a ll the loops and nontouchinj 
parts clearly, i t  may be he lp fu l i f  an equivalent SFG is draw n fo r  the b lo ck  diagram firs 
before app ly ing  the gain form ula.

► EXAMPLE 3-2-6 To illusirate how an equivalent SFG o f a block diagram is constructed and how the gain formula i
applied to a block diagram, consider the block diagram shown in Fig. 3-34(a). The equivalent SFG 0
the system is shown in Fig. 3-34(b). Notice thal since a node on the SFG is interpreted as the summini 
point o f all incoming signals to the node, the negative feedbacks on the block diagram are represents 
by assigning negative gains to the feedback paths on the SFG. Fừst we can identify the forward path 
and loops in the system and their corresponding gains. Thai is:

Forward Path Gains: 1. G\G-<Gy. 2. G 1G4

Loop Gains: 1. -G \G iH y. 2. -G iG iH i. 3. - C 1C2G3; 4. -G iH r. 5. -C ịC i

The closed'loop transfer function o f the system is obtained by applying Eq. (3-54j to eiứier the biocl 
diagram or the SFG in Fig. 3-34. That is

y(s) C ,C 2C 3 + G ,G 4 
R i s ] -  1

where

A =  1 + G 1 C 2 //1  + G 2 G ĩH i^ G iG 2 G ỉ +  G iH 2 ~ G \G i  ( 3-73

Similarly.

E{s) 1 +C,G2//| +C2G3W2 +  C4W:
Ris) A

K ÍJ) _  C 1G 2G 3 +  C1G 4

E{s) 1 + G1C2W1 ^  C2C3W2 +  C4W2 

The last expression ib obtained using Eq. (3-70).
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<b)

1 (a) Block diagram o f a control system, (b) Equivalent signal-flow graph.

timpMfied Gain Formula

From  Exam ple 3-2*6, we can see that a ll loops and forw ard  pa ths are touching  in  th is case. 
As a general ru le, i f  there are no nontouching loops and fo rw ard  paths (e.g., y 2 ~ y i  — y i  
and y4 -  >4 in Example 3-2-3) in  the b lock  diagram o r SFG o f the system, then Eq. (3-54) 
takes a fa r s im p le r look, as shown next.

Forward Path Gains
_yin 1 — Loop Gains

Redo Examples 3-2-2 through 3-2-6 to  con firm  the v a lid ity  o f  Eq. (3-76).

(3-76)

1 A T L A B  T O O L S  A N D  C A S E  S T U D I E S

There is no specific software developed fo r  this chapter. A lthough  M A T L A B  Controls 
Toolbox offers functions fo r  find ing  the transfer functions from  a given b lock  diagram, it 
was fe lt that students may master th is subject w ithou t re ferring to  a computer. For simple 
operations, however, M A T L A B  may be used, as shown in the fo llo w in g  example.

EXAMPLE 3-3-1 Consider the following transfer functions, which correspond to the block diagrams shown in Fig- 3*35.

H{s) =  10 (3-77)

Use MATLAB Í0 find the transfer function Y(s)IR{s) for each case. The results are as follows.
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(a)
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C l(i)

Figure 3'35 Basic block diagrams 
used for Example 3-3-1.

Toolbox 3-3-1
Case (a) Use M A T L A B  to  find  G] *  Ơ2

y ( i )  Í  +  1 1

^  “  ? T 3 7 + 2  “  (7 T 2 )

Approach 1

»  clear all 
»  s = t f C’s’) :
»  G l = l / Ù + 1 )

Transfer function:

1

s + 1

»  G2=Cs+l)/Cs+2)

Transfer function: 

s + 1

s + 2

»  YR=G1-G2 

Transfer function: 

s + 1

s"2 + 3 s + 2

»  YR_simple=minreal(YR)

Transfer function:

1

Approach 2

»  clear all 
»  Gl=tf([l],[1 1])

Transfer function: 

1

s + 1

»  G2=tfC[ll],[12])

Transfer function: 

s + 1

s + 2

»  YR=G1'G2

Transfer function: 

s + 1

s^2 + 3 s + 2

»  YR_simple=minreal(YR)

Transfer function:

1
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n in re a l(Y R )”  fo r  pole zero cancellation, i f  necessary 

Itive ly  use “ Y R = se ries (G l,G 2)”  instead o f  “ Y R = G 1 ^G 2 ”  

3) Use M A T L A B  to  find  G\ +  G j

2 s +  3 2 (5 + 1 .5 )
s2 +  3ĩ  +  2 ~ ( s + 1 ) ( i  +  2)

ch 1 Approach 2

=ar all 
t f C s ’);
1/Cs+l)

;fer function:

=(s+l)/Cs+2) 

;fer function:

jfer function: 

3 s + 3

3 s + 2

=parallelCGl,G2) 

>fer function:

»  clear all

Transfer function: 

1

»  G2=tf([l 1] , [1 2])

Transfer function: 

s + 1

s + 2

»  YR=G1+G2

Transfer function: 

s^2 + 3 s + 3

s^2  + 3 s + 2

»  YR=parallel(Gl,G 2 )

Transfer function: 

s^2  +  3 s + 3

s^2 + 3 s + 2

m irưeaKYR)”  fo r pole zero cancellation, i f  necessary 

a tive ly  use “ Y R = p a ra lle l(G l.G 2 )”  instead o f  “ YR =G 1+G 2*’

o le /G iiin  form at:

jkCYR)

''pole/gain:

4- 3s + 3)

Use “ zero(YR )’' to  obta in  transfe r Use “ po le (Y R )”  to  obtaii
func tion  zeros: trans fe r fu nc tion  poles;

»  ze ro C Y R ) »  p o le ( Y R )

a n s  = a n s  =

- 1 .5 0 0 0  + 0 . 8 6 6 0 Ì - 2
- 1 .5 0 0 0  -  0 . 8 6 6 0 Ì - 1

) ( s + 1 )
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Toolbox 3-3-2
Case (b) Use M A T L A B  to find  the c losed-loop feedback function  -

y{s) 1
R{s) 5 2 + 5  +  10

Case (c)

A p p ro a c h  1

»  clear YR 
»  s = t f (‘s'):
»  G=l/(s.(s+D)

Transfer function: 

1

s ^ 2  +  s  

»  H=10 

H =

10

»  YR=G/(1+G'H)

Transfer function: 

s^2 + s

s^4 + 2 s^3 + 11 s''2 + 10 s

»  YR_simple=minreal(YR)

Transfer function:

1

A p p ro a c h  2

»  clear all 
»  G=tf([l],[1 1 0])

Transfer function:

s''2 + s 

»  H=10 

H =

10

»  YR=G/(1+G'H)

Transfer function: 

s^2 + s

s''4 + 2 s^3 + 11 s^2 + 10 s

»  YR_simple=minreal(YR)

Transfer function:

1

s^2 + s + 10

Use “ in in re a l(Y R )”  fo r pole zero cancellation, i f  necessary 

A lte rn a tiv e lv  use :

»  YR=feedbackCG,H) 

Transfer function:

1

s ''2  + s + 10

U se  '‘p o le (Y R )” to  o b ta in  t r a n s fe r  fu n c 
tio n  po les:

»  pole(YR) 

ans =

- 0 . 5 0 0 0  +  3 . 1 2 2 5 Ì  

- 0 . 5 0 0 0  -  3 . 1 2 2 5 Ì
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S U M M A R Y

This chapter was devoted to the mathematical modeling o f physicaJ systems. Transfer functions, 
block diagrams, and signal-flow graphs were defined. The transfer function o f a linear system was 
defined in terms o f impulse response as well as differential equations. Multivariable and single- 
variable systems were examined.

The block diagram representation was shown to be a versatile method o f portraying linear and 
nonlinear systems. A  powerful method o f representing the interrelationships between the signals o f a 
linear system is the signaJ-flow graph, or SFG. When applied properly, an SFG allows the derivation of 
the transfer functions between input and output variables o f a linear system using the gain formula. A  
state diagram is an SFG that is applied to dynamic systems that are represented by differential equations.

A t the end o f the chapter. M ATLAB was used to calculate transfer functions o f simple block 
diagram systems.

E W  Q U E S T I O N S

1. Define the ưansíer function o f a linear time-invariant system in terms o f its impulse response.

2. When defining the ưansfer function, what happens to the in itia l conditions o f the system?

3. Define the characteristic equation o f a linear system in terms o f the transfer function.

4. What is refeưed to as a multivariable system?

5. Can signal-flow graphs (SFGs) be applied to nonlinear systems?

6. How can SFGs be applied to systems that are described by differential equations?

7. Define the input node o f an SFG.

8. Define the output node o f an SFG.

9. Slate the form to which the equations must first be conditioned before drawing the SFG.

10. W h a l d o e s  th e  a ư o w  on  th e  b ran c h  o f  an  S F G  rep rese n t?

11. Explain how a noninput node o f an SFG can be made into an output node.

12. Can the gain formula be applied between any two nodes o f an SFG?

13. Explain what the nontouching loops o f an SFG are.

14. Does the á  o f an SFG depend on which pair o f input and output is selected?

15. List the advantages and utilities o f ihe state diagram.

16. G iven  the Slate diagram  o f  a  linear dynam ic system , how  d o  you define the state variables?

17. Given the slate diagram o f a linear dynamic system, how do you find the transfer function
between a pair o f input and output variables?

18. Given the state diagram o f a linear dynamic sysiem. how do you write the state equations o f the 
system?

19. The Slate variables o f  a dynam ic system  are not equal to  the num ber o f  en ergy-siorage e lem en ts  
under what condition?

Answers to these review questions can be found on this book’s companion Web site: 
ww-w.wiley-com/college/golnaraghi.

;r e n c e s

iagram s and S ig n a l-F lo w  Graphs

1. T. D. Graybeal, "B lock Diagram Network Transformation." Ell'v. Eng.. Vol. 70. pp. 985-990.1951.
2. S. J. Mason. "Feedback Theory— Some Propenies 0 Í' Signal Flow Graphs," Proc. IRE. Vol. 41. No. 9

pp. 1144-1156. Sept. 1953.



132 ► Chapter 3. Block Diagrams and Signal-Flow Graphs

Toolbox 3-3-2
Case (b) Use M A T L A B  to  find  the c losed-loop feedback func tion  -

y j^ )  _  1
R{s) s ^ + s + \ 0

C ase(c)

A p p ro a c h  1

» clear YR 
»  s = t f (‘s’) ;
»  G=l/(s*(s+D)

Transfer function: 

1

s"2 + s 

»  H=10 

H =

10

»  YR=G/(1+G‘H)

Transfer function: 

s^2 + s

s M  + 2 s''3 + 11 s^2 + 10 s

»  YR_siraple=rninreal(YR)

Transfer function:

1

A p p ro a c h  2

»  clear all 
»  G=tf([l] ,[110])

Transfer function:
1

s^2 + s 

»  H=10 

H =

10

»  YR=G/(1+G-H)

Transfer function: 

s^2 + s

s"4 + 2 s^3 + 11 s'2 + 10 s

»  YR_simple=minreal(YR)

Transfer function:

1

Use ‘ ‘m in re a l(Y R )”  fo r  pole zero cancellation, i f  necessary

U se  ''p o le (Y R ) '' to  ob tiiiii t r a n s fe r  fu n c 
tio n  po les:

»  YR=feedback(G,H) 

Transfer function:

»  pole(YR) 

ans -

- 0  . 5 000  + 3 . 1 2 2 5 Ì  
- 0 .5 0 0 0  -  3 .1 2 2 5 1
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This chapter was devoted to the mathematical modeling o f physical systems. Transfer functions, 
block diagrams, and signal-flow graphs were defined. The transfer function o f a linear system was 
defined in terms o f impulse response as well as differential equations. Multivariable and single
variable systems were examined.

The block diagram representation was shown to be a versatile method o f portraying linear and 
nonlinear systems. A  powerful method o f representing ứie interrelationships between the signals o f a 
linear system is the signal-flow graph, or SFG. When applied properly, an SFG allows the derivation of 
the transfer functions between inpul and output variables o f a linear system using the gain formula. A 
state diagram is an SFG that is applied to dynamic systems that are represented by differential equations.

A t the end o f the chapter, M ATLAB was used to calculate transfer functions o f simple block 
diagram systems.

\\N Q U E ST IO N S

1. Define the transfer function o f a linear time-invariant system in terms o f its impulse response.

2. When defining the transfer function, what happens to the in itia l conditions o f the system?

3. Define the characteristic equation o f a linear system in terms o f the transfer function.

4. What is referred to as a multivariable system?

5. Can signal-flow graphs (SFGs) be applied to nonlinear systems?

6 . How can SFGs be applied to systems that are described by differential equations?

7. Define the input node o f an SFG.

8. D efine  th e  o u tp u t n ode  o f  an  SF G .

9. State the form to which the equations must first be conditioned before drawing the SFG.

10. What does the aưow on the branch o f an SFG represent?

11 . E x p la in  h o w  a  n o n in p u t no d e  o f  an  S F G  c an  b e  m a d e  in to  an  o u tp u t node.

12 . C a n  th e  g a in  fo rm u la  b e  a p p lied  b e tw ee n  a n y  tw o  n o d e s  o f  an  S F G ?

13. Explain what the nontouching loops o f an SFG are.

14. Does the A o f an SFG depend on which pair o f input and output is selected?

15. List the advantages and utilities o f the state diagram.

16 . G iv e n  th e  Slate d ia g ra m  o f  a  lin e a r  d y n a m ic  sy s te m , how  d o  y o u  de fine  th e  s ta te  v a ria b le s?

17. Given the state diagram o f a linear dynamic system, how do you find the transfer function 
between a pair o f input and output variables?

18. Given the state diagram o f a linear dynamic system, how do you write the state equations of the 
system?

19. The state variables o f a dynamic system are not equal to the number o f energy-storage elements 
under what condition?

Answers to these review questions can be found on this book’s companion Web site: 
www.wiley.com/college/golnaraghi.
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► P R O B L E M S

PROBLEM S FOR SECTION 3-1
3-1. Consider the block diagram shown in Fig. 3P-1.

Find:

o

Figure 3P-1

(a) The loop transfer function.
(b) The forward path transfer function,

(c) The error transfer function.
(d) The feedback transfer function.
(e) The closed loop transfer function.

3-2. Reduce the block diagram shown in Fig. 3P-2 to unity feedback form and find the system 
characteristic equation.

Figure 3P-2

3-3. Reduce the block diagram shown in Fig. 3P-3 and find the Y /X .



3-4. Reduce the block diagram shown in Fig. 3P-4 to unity feedback form and find the Y /X .
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3-5. The aircraft turboprop engine shown in Fig. 3P-5(a) is conưolled by a closed-loop system with 
block diagram shown in Fig. 3P-5(b). The engine is modeled as a multivariable system with input 
vector E (j), which contains the fuel rate and propeller blade angle, and output vector Y (j), consisting 
o f the engine speed and turbine-inlet temperature. The ưansfer function matrices are given as

G{s) = s{s + 2)
5 1 H ( i)  =

‘ 1 0 ' 
0  1

5 J + U
Find the closed-loop transfer function matrix [I +  G ( i)H ( i) ]  G (i).

COM BUSTION

^  n n r .
=o

5 u u i  •m -  ( ^ [  = >  3 =*>•

PROPELLER

Figure 3P-5(a)

Figure 3P-5(b)

3-6. Use MATLAB to solve Problem 3-5.

3-7. The block diagram o f the position-control system o f an electronic word processor is shown in 
Fig, 3P-7.

(a) Find the loop transfer function 0 o ( i ) /0 ^(5) (the outer feedback path is open).
(b) Find the closed-loop ưansfer function 0 o ( i ) /0 r ( i ) .
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Sensor Preamp

Current feedback

Tachom eter feedback

J^ + B,

Figure 3P-7

3-8. The block diagram o f a feedback conưol system is shown in Fig. 3P-8- Find the following 
ưansfer functions:

(a)

(b)

(0

(d) Find the output K(i) when R(s) and Nịs) are applied simultaneously.

R{s) A/=0
Yis)
E(s) A-=0
Y{s)
N(s) «=0

Figure 3P-8

3-9. The block diagram o f a feedback control system is shown in Fig. 3P-9.
(a) Apply the SFG gain formula directly to the block diagram to find ứie ưansfer functions

Y{s) Y(s)
s=0

Express K ii)  in terms o f  /? (i) and N{s) when both inputs are applied s im ultaneously.

(b) Find the desired relation among ihe transfer functions G i( j) .G 2 ( í) .C 3 ( j) .C 4 ( í) . / / |( i) .  and 
W :(i) so that the oulpul K(J) is not affected by the disturbance signal N(s) at all.
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3-10. Fig. 3P-10 shows the block diagram o f the antenna control system o f the solar-collector field 
shown in Fig. 1-5. The signal Nịs) denotes the wind gusi disturbance acted on the antenna. The 
feedforward transfer function Gj{s) is used to eliminate the effect o f N(s) on the output y (j). Find the 
transfer function Determine the expression o f Gj{s) so that the effect o f N(s) is
entirely eliminated.

N(s)

Figure 3P-10

3-11. Fig. 3P-11 shows the block diagram ofadc-m otor control system. The signal Nịs) denotes Ihe 
frictional torque at the motor shaft.
(a) Find the transfer function His) so lhat the output K(j) is not affected by the disturbance torque N{s).
(b) With Hịs) as determined in part (a), find the value o f K so thal the sleady-state value o f eự) is
equal to 0.1 when the input is a unit-ramp function. r(r) =  =  l / i “ . and N{s) — 0. Apply
ihe final-value Iheorem.

Figure 3P-11
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3-12. The block diagram o f an elecuic train control is shown in Fig. 3P-12. The syscem parameters 
and variables are 

^r) =  voltage representing the desired train speed, V 
v(f) =  speedof ưain, ft/sec 

M  = Massofưain =  30.0001b/sec^

K =  amplifier gain

K, = gain o f speed indicator =  0.15 v /ft/s e c

erU).. ~ \ j Ị ỉ K AMPLIFIER CONTROLLER At) ^ X v(f) .
K G/s) Ms Train

speed

SPEED

Figure 3P-12

To determine the ưansfer function o f the controller, we apply a step function o f 1 volt 10 the input of 
Ehe co n tro l le r , th a t is . e d i)  =  u.s{f)- T h e  o u tp u t o f  th e  c o n tro l le r  is  m e asu re d  a n d  d e sc r ib e d  by  the 
following equation;

/ ( / )  =  100(1  - 0 . 3 e " ® ' - 0 . 7 i - ' “> , { / )

(a) Find the ưansíer function Cc(s) o f the conưoller.

(b) Derive the forward-path transfer function V{ j ) /£ (5) o f the system. The feedback path is opened in 
this case.

(c) Derive the closed-loop transfer function V{s)/Er{s) o f the system.
(d) Assuming that K is set at a value so that the train w ill not run away (unstable), find the steady-state 
speed o f the ưain in feet per second when the input is er(t) =  « i(/)V .

3-13. Use MATLAB to solve Problem 3-12.

3-14. Repeat Problem 3-12 when the output o f the controller is measured and described by the 
following expression:

f i t )  = 100(l -  -  0.5)

when a step input o f 1 V  is applied to the controller.

3-15. Use MATLAB 10 solve Problem 3-14,

3 -1 6 . A  linear tim e-invariant m ultivariable system  w ith inputs /■](?) and r2( / )  and outputs V) ( 0  and 
>•:(/) is described by the following set o f differential equations.

-  /-|(f) +  r2(f)

di- ' dt 
Find the followins transfer functions:

dt

Ylis) y\{s) >”2(5)

/?I=0 /?2(.v)

PROBLEMS FOR SECTION 3-2
3-17. Find the state-flow diagram for ihe system shown in Fig. 3P-4.



3-18. Draw a signal-flow diagram for the system with the fo llow ing state-space representation;

u
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■ - 5  - 6 3 ■ '0.5 0 ■

x  = 1 0 - 1 x  + 0 0.5

L -0 .5  1.5 0.5. .0.5 0,5.

0.5 0.5 0

0.5 0 0.5

3-19. Find the state-space representation o f a system with the fo llow ing transfer function;

Í ^ + ^ | 5 + A qJ

3-20. Draw signal-flow graphs for the following sets o f algebraic equations. These equations should 
first be arranged in the form o f cause-and-effect relations before SFGs can be drawn. Show that there 
are many possible SFGs for each set o f equations.

(a) Xi  =  - X2  - Ĩ X Ỉ  +  Ĩ  

X2 =  5X] - 2 x 2 + X 2

X Ị =  4x ị +  JT2 -  5^3 +  5

(b ) 2X[ + Ĩ X 2 + X Ì  =  - 1

XỊ - 2 X 2 - X3 = I

ĨX2  +  X3 =  0

3*21. The block diagram o f a control system is shown in Fig. 3P-21.

(a) Draw an equivalent SFG for the system.
(b) Find the following transfer functions by applying the gain formula o f the SFG directly to the 
block diagram.

y{s) y(i) E(s) E{s)
R{s) N=0 N(s) R=0 R[s) A/=0 N[s)

(c) Compare the answers by applying the gain formula to the equivalent SFG.

3-22. Apply the gain formula to the SFGs shown in Fig. 3P-22 to find the following transfer

A. ; . ủ  ỵ± hfunctions: TT ^  7T TT
Y\ Y\ y\ yi
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Figure 3P-22
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3-23. Find the ưansíer functions and J'2 / i ' i  o f  the SFGs shown in Fig. 3P-23.

Figure 3P-23

3-24. Signal-flow graphs may be used to solve a variety o f electric network problems. Shown in Fig. 
3P-24 is the equivalent circuit o f an elecưonic circuit. The vollage source e^ụ) represents a 
disturbance voltage. The objective is to find the value o f the constant k  so that the output voltage

Figure 3P-24
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Coil) is not affected by ej{i). To solve the problem, i t  is best to first write a set o f  cause-and-effect 
equations for the network. This involves a combination o f node and loop equations. Then consưuct an 
SFG using these equations. Find the gain eg /e j w ith all other inputs set to zero. Forej not to affect eg, 
set eo/e^ị to zero.

3-25. Show that the two systems shown in Figs 3P-25(a) and (b) are equivalent.

Figu re  3P-25

3-26. Show thai the two systems shown in Figs. 3P-26(a) and (b) are not equivalent-

C|

Figu re  3P-26

3-27. Find the following transfer functions for the SFG shown in Fig. 3P-27.

Figure 3P-27(a)
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Figure 3P-27|b)

3-28. Find the fo llowing ừansĩer functions for ihe SFG shown in Fig. 3P-28. Comment on why the 
results for parts (c) and (d) are not the same.

- I

Figure 3P-28

3*29. The coupling between the signals o f the turboprop engine shown in Fig, 3P-4(a) is shown in 
Fig. 3P-29. The signals are defined as 

Ri ( i)  =  fuel rate

=  propellerblade angle 
Y\ (s) =  engine speed 

Yiis) =  turbine in let temperalure

(a) Draw an equivalent SFG for ửie system.

(b) Find the A o f the system using Ihe SFG gain formula.
(c) Find the following transfer functions:

J 'lW > 2̂(5) yzis]

«;=0 R iis ) «1=0 R \is} R;=0 ỈÌ2ÌS)

(d) Express the iransfer functions in matrix form. Y { j)  =  G(s)R(5).
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Figure 3P-2S

5-30. Fisuie 3P-30 shows ưie block diagram o f a conơol sysiein with coDdirionaJ feedback. The 
ơansfer function G;,(51 denotes ưie conữoUed process, and Gf (s) and His) are the controUer transfer 
ftinctions.

u )  Derive ứie transfer functions Y [s ) , 'R [s ) \ f ;^  and > '(í)/A^(í)|r=o- =  0  »'ỉ>en
Gc(s) = Gp[sì.
(b> Lei

Find ứie output response %•(/) when N {s) =  0 and r ( r )  =  U j(0 -

(C) U lứ i G p (it and C f( j)  as áven in pan (bt. select Hịs) amona the fo llo ttins  choices such thai 
when n i/ i  =  « j{ / i and r(r) =  0. the steadv-state value o f is equal to zero. (Tbere may be nwxe 
than one answer.)

H[S)  =
10

1 0 ( 5 -  n H(s) —— {n = posibve integer) Seieci n

Keep in  m ind that the poles o f  ihe closed-loop ffansfer function  must a ll be in  the le ft-ha lf 
5-plane for ửie final-value ứieorem to be valid.

-rC^-?0 —
G^s)

o
Figure 3P-30

3-31. Use M ATL.\B  to sohe Problem 3-30.
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3-32. Consider the following differential equations o f  a system:

=  - Z t , { 0  + 3X2(0

đX2Ìt) _ 
dt -5X1 ( 0 - 5 X 2 ( 0 +  2r(0

(a) Find the characteristic equation o f the system.

(b) Find the ưansíer functions Xi{s)ỊR{s) and Xi{s)ỊR{s).

3-33. The differential equation o f a linear system is

r{t)dfi ' '' dl 
where ><0 is the output, and rịt) is the inpul.

(a) Write the state equation o f the system. Ctefine the state variables from right to left in ascending 
order.
(b) Find the characteristic equation and its roots. Use M ATLAB to find the roots.

(c) Find ứie transfer function Yịs)/R(s).
(d) Perform a paitial-fraction expansion o f

(e) Find the output y(l) for /  >  0 when r ( i)  =  «,(0-
(f) Find Ihe final value o f yU) by using the final-value theorem.

3-34. Consider the differential equation given in Problem 3-33. Use M ATLAB to

(a) Find the partial-fraction expansion o f Y(s)/R(s).
(b) Find the Laplace ưaDsform o f the system.

(c) Find the output >(0 for /  >  0 when r{f) =

(d) Plot the step response o f the system.

(e) Verify the final value ứiat you obtained in Problem 3-33 part (0.

3-35. Repeat R-oblem 3-33 for the following differential equation:

.......................^
dfidt* dt r{l)

3-36. Re| jlem 3-34 for the differential equation given in Problem 3-35.

3-37. The block diagram o f a feedback control system is shown in Fig. 3P-37.

Figure 3P-37



(a) Derive the following transfer functions:

r(£)

« ( ^ ) a
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E{s)

/V=0 R=0 Ris) N=0

(b) The controller with the ưansíer function 0 4 (5) is for the reduction o f ihe effect o f the noise 
Find C afi) so that the output Y(s) is totally independent o f N(s).
(c) Find the characteristic equation and its roots when G^is) is as determined in part (b).

(d) Find the steady-state value o f e(f) when the input is a unit-slep function. Sei N{s) =  0.
(e) Find y(r) for f  >  0 when the input is a unit-step function. Use Ga(s ) as determined in pa

3-38. Use MATLAB to solve Problem 3-37.

A D D IT IO N A L  PROBLEM S
3-39. Assuming

P i =  2/  +  9s* +  1 5 /  +  2 5 s’  +  25 i^  +  1 4 j +  6  

P2 = s'‘ + 8s= +  23s*' +  36s^ +  38s^ +  28s +  16

(a) Use M ATLAB to find roots o f P\ and Pi-
(b) Use M ATLAB to calculate P ĩ = P 2 ~  P\, P4 = P2 +P ], and Pi = {Pi -  P2Ì*P\-

3-40. Use M ATLAB to calculate the polynomial

(a )P 6 =  ừ + l ) ( j ^  +  2 ) ( j +  3 ) ( 2 s ^ + 5 + l)

(b) p^ =  (s ^ +  l)(s  +  2)(s +  4 )( i^  +  2 s +  1)

3-41. Use MATLAB to perform partial-fraction expansion to the follow ing functions:

, , ^  ( i + l ) ( » C 2 ) ( »  +  4 )(» + 1 0 )
' s(s +  2 ) fs 2 + 2 i +  5)(2sZ +  s +  4)

. , , ______________ĩ- ' +  1 2 ĩ^ +4 7 ^  +  60______________

'  4s‘  +  28j 5 +  83r> +  135j3 +  126j2 +  6 2 j +  12

3*42. Use MATLAB 10 calculate unity feedback closed loop transfer function in Problem

3-43. Use M ATLAB to calculate
(a) 0 3 (5) =  C| (,t) +  C 2(.t)

( b )  G 4 (s ) - G | [ 5 ) - G 2 ( 5 )



►4
Theoret ica l  Foundation and 
Background Material :  
Model ing of Dynamic 
Systems

One o f  the most im portant tasks in  the analysis and design o f  contro l systems is 
m athem atical m odeling o f  the systems. The tw o  most com m on methods o f  m odeling 
linear systems are the transfer function  method and the state-variable method. The transfer 
func tion  is va lid  on ly  fo r linear tim e-invarian t systems, whereas the state equations can be 
applied to  linear as w e ll as nonlinear systems.

A lthough  the analysis and design o f  linear contro l systems have been w e ll developed, 
th e ir counterparts fo r  nonlinear systems are usually quite com plex. Therefore, the contro l- 
systems engineer often has the task o f  determ in ing not on ly  how to accurately describe a 
system m athem atica lly but, more im portantly, how  to  make proper assumptions and 
approxim ations, whenever necessary, so that the system may be rea lis tica lly  characterized 
by a linear mathematical model.

A  c o n tro l system  m ay be com posed o f  various com ponents in c lu d in g  m echan i
ca l, the rm a l, f lu id , pneum atic , and e le c tr ic a l; sensors and actuators; and com puters. 
In  th is  chapter, we re v ie w  basic p roperties  o f  these systems, o the rw ise  know n  as 
d y n a m ic  system s. U s ing  the basic m o de ling  p rin c ip le s  such as N e w to n 's  second law  
o f  m o tio n  o r  K irc h o ff 's  law , the m odels o f  these d ynam ic  systems are represented by 
d if fe re n tia l equations. I t  is  no t d if f ic u lt  to  understand that the a n a ly tica l and 
com puter s im u la tio n  o f  any system  is o n ly  as good as the m ode l used to  describe 
i t .  I t  shou ld  also be em phasized tha t the m odern co n tro l engineer should place 
specia l emphasis on the m athem atica l m o de ling  o f  systems so tha t ana lysis and 
design p rob lem s can be co n ven ien tly  so lved  by com puters. In  th is  tex tbook , we 
cons ide r systems tha t are m odeled by o rd in a ry  d iffe re n tia l equations. The m ain 
ob jec tives  o f  th is  chapter are:

• To introduce m odeling o f  mechanical systems.

• To introduce m odeling o f  e lectrical systems.

• To introduce m odeling therm al and flu id  systems.

• To discuss sensors and actuators.

• To discuss linearization o f  nonlinear systems.

• To discuss analogies.



Furtherm ore, ứie m ain objectives o f  the fo llo w in g  sections are:

• To demonstrate mathematical m odeling o f  contro l systems and components.

• To demonstrate how  com puter so lutions are used to  obtain the response o f  these 
models.

• To p rovide examples that im prove learning.

T h is  chapter represents an in troduction to  the method o f  m odeling. Because numerous 
types o f  contro l-sysiem  components are available, the coverage here is by no means 
exhaustive. Th is  chapter fu rthe r is intended to be se lf-su ffic ien t and w il l  not a ffect the 
general flo w  o f  the text. In  Chapters 5 and 9, through various examples and case studies, ửit 
fundamentals discussed here are u tilized  to model more com plex con tro l systems and to 
establish the ir behavior.

4 - 1  I N T R O D U C T I O N  T O M O D E L I N G  OF M E C H A N I C A L  S Y S T E M S

M echanical systems may be modeled as systems o f  lum ped masses (r ig id  bodies) o r as 
distributed mass (continuous) systems. The laner are modeled by partia l differentia] 
equations, whereas the fo rm er are represented by ord inary d ifferentia ] equations. O f  course, 
in  rea lity  a ll systems are continuous, but, in  most cases, i t  is easier and therefore preferred to 
approximate them w ith  lum ped mass models and ord inary d iffe ren tia l equations. 

D e fin it io n : M ass is considered a  property o f  an elem ent that stores the kine tic  energy o f
translational m otion. Mass is analogous to the inductance o f  e lectric  networks, as shown in 
Section 4-10. I f  w  denotes the weight o f  a body, then M  is g iven by

w
M  = -  Í4-1)

g

where g  is the acceleration o f  free fa ll o f  the body due to g rav ity  (g = 32.174 fưsec' in 
B ritish  units, and g =  9.8066 m/sec^ in  SI units).

The equations o f  a linear m echanical system are w ritten  by firs t constructing a model 
o f  the system conta in ing interconnected linear elements and then by app ly ing  Newton's 
law  o f  motion to  the free -body  d ia g ra m  (F B D ). For translational m otion, the equation o f 
m otion is Eq. (4 -2). and fo r rota tional m otion. Eq. (4-33) is used.

The m otion o f  mechanical elements can be described in  various dimensions as 
tra n s ỉa tio n a l. ro ta tio n a l, or a com bination o f  both. The equations governing the motion 
o f  mechanical systems are often d irec tly  or ind irec tly  fo rm ulated fro m  N e w to n 's  law  o f 
m otion .
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4-1-1 Translational Motion

The m otion o f  translation is defined as a m otion that takes place along a straight o r curv ed 
path. The variables that are used to describe translational m otion are acce le ra tion , 
ve loc ity , and d isp lacem ent.

Newton 's law  o f  m otion states that the algebraic sum o f  external forces acting on a 
r ig id  body in a given d irection is equal to  the product o f  the mass o f  the bodv and its 
acceleration in the same direction. The law  can be expressed as

forces =  Ma (4-2)
exierriul
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►yio
Figure 4-1 Force-mass system.

where M  denotes ứie mass, and a  is ứie acceleration in  ứie d irection  considered. F ig. 4-1 
illustra tes the situation where a force is acting on a body w id i mass M. The force equation is 
w ritte n  as

/ W = A í a W = M ^  =  M ^  (4-3)

where a{i) is the acceleration. v(r) denotes linear ve loc ity , and y (r) is the displacem ent o f  
mass M. respectively.

For linear ưansladonal m otion , in  addition 10  the mass, die fo llo w in g  system elements 
are also invo lved.

• L in e a r  sp rin g . In  practice, a linear spring may be a m odel o f  an actual spring o r a 
com pliance o f  a cable o r a belt. In  general, a spring is  considered 10  be an element 
ỉlĩũỉ srores po ten tia l energy.

f i t )  =  K y(t)  (4-4)

where K  is the spring constant, o r s im p ly  stifftiess. Eq. (4-4) im plies ứiat the force 
actina on the spring is d irectly  proportional to the displacement (defonnation) o f  ứie 
spring. The model representing a linear spring element is shown in  Fig. 4-2. I f  ứie 
sprins is preloaded w iứ i a preload tension o f  T. ứien Eq. (4-4) should be m odified to

m  - T =  K y(t) (4-5)

• F r ic t io n  fo r  tra n s la tio n  m o tio n . W henever ửìere is m otion o r tendenc)' o f  m otion
between tw o  physical elements, fr ic tio n a l forces exist. The fr ic tio n a l forces 
encountered in  physical systems are usually o f  a non linear nature. The character
istics o f  ửie fr ic tio n a l forces between tw o  contacting surfaces often depend on such 
factors as the com position o f  the surfaces, the pressure betu een the surfaces, and 
iheừ  rela tise ve lo c ity  amona others, so an exact m athematical descrip tion o f  the 
fr ic tio n a l force is d iff ic u lt. Three d iffe ren t types o f  fr ic tio n  are com m only used in
practical systems: nscous fr ic t io n ,  s ta tic  f r ic t io n ,  and C o u lo m b  fr ic t io n . These
are discussed separately in ứie fo llo w in g  paragraphs.
• M scous fr ic t io n .  Viscous friciiofi represeiiis a retarding fo rce  lhai is a linear 

relationship benveeti the applied fo rce  and  velociry-. The schematic diagram 
element fo r  viscous fr ic tio n  is often represented by a dashpot. such as ứiat shown 
in  Fig. 4-3. The mathematical expression o f  viscous fr ic tio n  is

=  (4-6)

I— ► yv)

Figure 4-2 Forc'e-spring svsiem.
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I— ►)<')

Figure 4-3 Dashpot for viscous fricdon.

/ /

0 ỹ 0 ỳ

-F,

Figure 4-4 Graphical representation o f linear and nonlinear friclionaJ forces, (a) Viscous fricUon.
(b) Static friction, (c) Coulomb friction.

where B is the viscous fr ic tio n a l coeffic ient. F ig . 4-4(a) shows the functional 
re la tion between the viscous fr ic iio n a l force and ve locity.

• S ta tic  f r ic t io n .  Static friction represents a  retarding force that tends to prevent 
motion from  beginning. The static frictional force can be represented by ứie expression

(4-7)

w h ich  is defined as a fric tiona l force that exists o n ly  when the body is stationary 
but has a tendency o f  m oving. The sign o f  the fr ic t io n  depends on the dừection o f 
m otion  o r the in itia l d irection  o f  ve locity. The fo rce-to -ve loc ity  re la tion o f  static 
fr ic tio n  is illustra ted in  F ig. 4-4(b). N otice that, once m otion begins, the static 
fr ic tio n a l force vanishes and other fr ic tio n s  take over.

• C o u lo m b  f r i ct ion.  Coulom b fric tion  is a retarding fo rce  that has constant 
am plitude with respect to the change o f  velocity, but the sign o f  the fric tional 
fo rce  changes with the reversal o f  the direction o f  velocity. The mathematical 
re lation fo r the C oulom b fr ic tio n  is given by

/ ( 0  =  Fc (4-8)

where f , .  is the C o u lo m b  fr ic t io n  coe ffic ien t. The functiona l descriptioD o f the 
fric tio n -to -ve lo c ity  relation is shown in Fig. 4-4(c).

i t  should be po inted out that the three types o f  fr ic tio n s  cited here are m erely practical 
models lhat have been devised to  portray fr ic iio n a l phenomena found in  physical systems. 
They are by no means exhaustive o r guaranteed to  be accurate. In  many unusual situations, 
we have to use other fr ic tiona l models lo  represent the actual phenomenon accurately. One 
such example is ro llin g  dry fr ic tio n  [3 ,4 ], w hich is used to  model fr ic tio n  in  high-precis ion
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TABLE 4-1 Basic Translational Mechanical System Properties and Their Units

Parameter Symbol Used SI Units Other Units Conversion Factors

Mass M kilogram
(kg)

slug
ft/sec^

1 k g -  lOOOg

=  2.2046 Ib(mass) 

=  35.274 oz(mass) 

=  0.06852 slug

Disiance y meter (m) ft
in

lm  =  3.2808 ft =  39.37 in 
l in .  -  25.4 mm 
1 ft =  0.3048 m

Velocity m/sec fưsec
in/sec

Acceleration a m/sec^ fưsec^
in/sec^

Force f Newton
(N)

pound  
Ob force) 
dyne

IN  =  0.2248 Ib(force) 

=  3.5969 oz(force) 

1 N =  1 k g -m /s “ 
ld y n  =  lg - c m /s 2

Spring Constant K N/m lb /ft
Viscous Friction Coefficient B N/m/sec lb/fưsec

ba ll bearings used in spacecraft systems. I t  turns out that ro llin g  d ry  fr ic tio n  has nonlinear 
hysteresis properties that make i t  im possible fo r  use in  linear system m odeling. 

Table 4-1 shows the basic translational mechanical system properties w ith  the ir 
coưesponding basic SI and other measurement units.

EXAMPLE 4-1-1 C o n s id e r  Ihe mass-spring-friction system shown in Fig. 4-5(a). The linear motion concerned is in the 
honzontal direction. The free-body diagram o f the system is shown in Fig. 4-5(b). The force equation
o f Ihe system is

(4-9)

The last equation may be rearranged by equating the highest-order derivative lerm to the rest o f the 
temis:

Figure 4-5 (a) M ass-spring-friction system, (b) Free-body diagra

1----------- ► yU)

Kyịtì M--------------
M ----------- ► * ) ,w

di

(a) (b)
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Figure 4-6 The mass-spring-friction 
system o f Eq. (4-11) block diagram 
represcDtation.

where and I represent velocity and acceleration, respectively. Or, 

alternatively, the former equation may be rewritlen inio an input-ouipui form as

(4-11)

(4-12)

For zero initial conditions, the transfer function between ỵ (ỉ) and F{s) i& obtained by laklng the 
Laplace transform on both sides o f Eq. (4-11) with zero in itia l conditions;

V ( i )  1

F{s) Aij2 + B i +  a:

The same result is obtained by applying the gain formula to the block diagram, which is shown 
in Fig. 4-6-

Eq. (4-iO) may also be represented in the space state form  using a slate vector x<u having n 
rows, where n is the number o f state variables, so that

x  =  A x ^ B u  Í4-13)

where

y { ỉ ) = X ị { l )  v (f)= X 2 (0

(4-14)

(4-15)

-.Ũ11 
M

So using Eqs. (4-13) through (4-16). Eq. (4-10) is rewriuen in vectoral form asI. t q .  ( 4 - iu )  IS rewi

=  ( J  _i)
V M M /

ritten as a set o f fir

(4-17)

The state Eq. (4-17) may also be written as a set o f first-order differemial equations:

dl  
dxiii) 

d ỉ  ~  M  

y(r) =

K B 1

For zero in itial conditions, the transfer function between H i)  and Fin) is obuined by taking ihe 
Laplace iransfomi on both sides or Eq. <4-18>;

V is ] =  X ilJ ]

KỈ5) I
Fls) ~ Ms- Bs H
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Figure 4-7 Block diagram 
representation o f mass-spring- 
friclion system o f Eq. (4-19).

Figure 4-8 Block diagram 
representation o f mass-spring' 
friction system o f Eq. (4-20) with 
in itia l conditions X](0) and X2Í0 ).

The same result is obtained by applying the gain formula to the block diagram representation o f the 
system in Eq. (4-19), which is shown in Fig. 4-7.

For nonzero in itia l conditions, Eq. (4-18) has a different Laplace transform representation that 
may be written as:

s X , W - i , ( 0 ) = X 2 ( i )

5 X 2(i) - X 2 ( 0 )  =  -  - | x , ( s )  + l f ( i )  (4-20)

Upon simplifying Eq. (4-20) or by applying the gain formula to the block diagram representation of 
the system, shown in Fig. 4-8. the oulput becomes

>ox 4-1-1
domain step  response fo r  Eq. (4-12) is calculated using M ATLAB fo r  K  = Ỉ. M  = Ỉ. B  ^

M = l;  B = l ;
0 . 0 2 : 3 0 ;
= [ 1 ] :
: [M B K ]  : 
f ( n u m . d e n ) ;
STEP ( G , t )  ;
( t  y j ) ;
e l (  ‘ T im e  (S e c o n d )  ' )  ; y l a b e l (  ‘ S te p  R e s p o n s e  ’ ) 
e (  ‘ R e s p o n s e  o f  t h e  s y s te m  t o  s te p  i n p u t  ’ )
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EXAMPLE 4-1-2 As another example o f writing the dynamic equations o f a mechanical system with translational 
motion, consider the system shown in Fig. 4-9(a). Because the spring is deformed when it is subject to 
a force/( /) .  Iwo displacements, yi and )'2. must be assigned to the end points o f  the spring. The free- 
body diagrams o f the system are shown in Fig. 4-9(b). The force equations are

/M  = nv,(0-»(01 ( « 2)

These equations are rearranged in input-outpul form as

^ 2 ( 1 )  , B d n { t )  K

(4-23)

(4-24)

Figure 4-9 Mechanical 
system for Example 4 -I-;
(a) Mass-spring-damper 
syslem. (b) Free-body 
diagram.
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Figure 4-lD Mass-spring-1 
representation, (b) Block d

For zero in itia l conditions, the transfer function between l'i(s) and i'ai'S) is obtained by taking the 
Laplace transform on both sides o f Eq. (4-24):

= (4-25)  
( j)  Ms^ + Bs + K

The same result is obtained by applying the gain formula to the block diagram represeniation o f the 
system, which is shown in Fig. 4-10. Note thal in Fig. 4-10, Eq. (4-22) was also used.

For state representation, these equations may be rearranged as

1

‘^̂ >’2(0
d f l ' - +  5 b 'i(0  - n M l

For zero in itia l conditions, the transfer funclion o f Eq. (4-26) is the same as Eq. (4-25). By using the 
last two equations, the state variables are defined as X\ (/) =  y i i t )  and X2{t) = dy2 ( f ) ld i .  The state 
equations are therefore written as

dx\ {t) 
dt 

dx2(l)

The same result is obtained after taking Ihe Laplace transform o f Eq. (4-27) and applying the gain 
formula to the block diagram representalion o f the system, which is shown in Fig. 4-11. Noie that in 
Fig. 4-11, F{s), K |(j), X)(5), ^2(5). and X2(.y) are Laplace transforms o{fit), ytH). JTiiO. yiiO. and 
a:2(/), respectively.
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Figure 4-11 Block diagram representation 
o f mass-spring-friction system o f Eq. (4-27).

EXAMPLE 4-1-3 Consider the two degrees o f freedom (2-DOF) spring-mass system, w ith two masses m i and m2, (wo 
springs ÍT| and * 2. and two forces / |  and / 2. as shown in Fig. 4-12. Find the equations o f motion.

SOLUTION To avoid any confusion, we first draw the free-body diagram (FBD) o f ứie system by 
assuming the masses are displaced in Ihe positive direction, so that yi >  >'2 >  0 (i.e., springs are boih 
in tension). The FBD o f the system is shown in Fig, 4-13. Applying Newton’s second law lo the 
masses My and Mj, we have

f\{ t) -  Kịyị + K iiyị -  y2) = M{ỳị 

f l i t )  -  fỈ2 Ìy \ - n )  =  M 2ỷ2  

Reafranging the equations into the standard input-output form, we have

(4-28)

A /,y ,+ (A T , + A T 2 )y (-A :m  =  / l ( r )
A/2ý| -  K2y,  +  K j y i  =  f l i t )

Altemaiively, Eq. (4-29) may be represented in ihe standard second-order mauix form, as

(4-29)

Mi  0 ■ ỳ\ ^ K ^ + K 2 - K 2 ' -VI 7 i '
0  M l h . - K 2 K2 . y^. , / 2 .

(4-30)

In state space form, assuming the following state vector x(t), the inputs Ui(/) and U2(t), and the output 
yiO. we get

. «1 =  / i ( f ) .  «2 =  /z iO iM O  = j r i (0

y i W
X2{ l) >’2 (0
M l ) ỳ ] it )
X4 (t) .V2(0 .

— ^
M, WAA M2

K. Figure 4-12 A 2-IX )F  spring-mass sysiem.

, .V2(0

AT,yi(0 /Í2Lvi(f)-y2(í)l Figure 4-13 FBD o f the 2-DOF spring-mass system.
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Then, using Xi  -  ỷ ị  and X4 = ỷ i. we gel the state-space representation a

'X] • 0 0 1 0 ' ' X ì '

X2 0 0 0  1 X2

Ì3 - K i / M ,  ,K i / M i 0  0 X3

.X4 . L K 2 / M 1

' X l '

0  0 , .XA.

> = \ \  0 0  0 ]
X2

Xi
+  0 - U I  +  0 -H 2

.-T4.

0

0

1/AÍ,

0

0
0

0

1/W2

U2 (state equation)

(output equation)

(4-32)

where the state equation is a set o f four first-order differential equations.

rtationai Motion

The ro tational m otion o f  a body can be defined as m otion about a fixed  axis. The extension 
o f  N ew ton ’s law  o f  motion fo r  ro ta tional m otion  states that the algebraic sum  o f  m om ents  
or torque about a f ix e d  a xis  is equal to the product o f  the inertia and  the angular 
acceleration about the axis. O r

y~^ torques =  Ja (4-33)

where J  denotes the inertia  and a  is the angular acceleration. The other variables generally 
used to  describe the m otion o f  ro ta tion are to rq u e  r , a n g u la r  ve lo c ity  íư, and a n g u la r  
d isp lacem en t 6. The elements invo lved w ith  the rotational m otion are as fo llow s :

• Inertia . Inertia, J, is considered a properly o f an elem ent that stores the kinetic  
energy o f  rotational m otion. The inertia  o f  a given element depends on the 
geometric com position about the axis o f  ro ta tion and its  density. For instance, 
the inertia  o f  a c ircu la r d isk or shaft, o f  radius r and mass M , about its  geom etric 
axis is g iven by

1  (4-34)

W hen a torque is applied to a body w ith  inertia  y, as shown in  Fig. 4-14. the lorque 
equation is w ritten

(4-35)

where d{t) is the angular displacement; (ư{i), the angular ve loc ity ; and a { i) ,  the 
angular acceleration.

u J Figure 4-14 Torque-inertia system.



no

&U) Figure 4-15 Torque torsional spring system.

• T o r s io n a l s p r in g . As w ith  the linear spring fo r translationaj m otion, a torsional
sp rin g  con stan t K. in torque-per-unit angular displacem ent, can b e devised  to  refffesent 
the compliance o f  a rod or a shaft when i t  is subject to  an applied ttxque. R g. 4-15
illusữates a simple torque-spnng system that can be represented by the equation

T (l) =  Kỡ{l) (4-36)

I f  the torsional spring is preloaded by a preload torque o f  TP, Eq. (4-36) is modified to

T{i) -  TP ^  K 9{l) (4-37)

• F r ic t io n  fo r  ro ta t io n a l m o tio n . The three types o f  fr ic t io n  described fo r  transla
tional m otion  can be carried over to  the m otion o f  ro tation. Therefore. Eqs. (4-6). 
(4-7), and (4-8) can be replaced, respectively, by th e ir counterparts:

• V iscous fr ic t io n .

T{r) =  B ^  (4-38)
at
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• Static friction.

n O  =  ± ( F , ) | ^ o  (4-39)

d m

M l )
(4-40)

Table 4-2 shows ứìe SI and other measurement units fo r  inertia  and the variables in 
rotational mechanical systems.

EXAMPLE 4-1-4 The rotational system shown in F ig-4 -16(a) consists o f a disk mounted on a shaft that is fixed atone 
end. The moment o f inertia o f the disk about the axis o f rotation is J. The edge o f the disk is riding on 
ứie surface, and the viscous friction coefficient between ihe two surfaces is B. The inertia o f the shaft 
is negligible, but the torsional spring constant is K.

Assume that a torque is applied to ứic disk, as shown; then ihe torque or moment equation aboul 
the axis o f (he shaft is written from ihe free-body diagram o f Fig. 4 -16(b):

Notice that this system is analogous to Ihe translational system in Fig. 4-5. The state equations may be 
w ritten by defining the slate variables as J i( / )  =  9{i) and JT2(0  =
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Figure 4-16 Rotational system for Example 4-1-4.

TABLE 4-2 Basic Rotational Mechanical System Properties and Their Units

Symbol SI 
Used Units

Other
Units Conversion Factors

kg-m ' slug-ft^
Ib-ft-sec^

Angular Displacement T Radian Radian

Angular Velocity 0 radian/sec radian/sec

Angular Acceleration A radian/sec' radian/sec
Torque T (N-m)

dyne-cm
Ib-ft

Spring Conslani K N-m/rad fl-lb/rad
Viscous Friction Coefficient B N-m/rad/sec ft-lb/rad/sec
Energy Q J (joules) Btu

Calorie

lg -cm  =
1.417 X 10"®oz-in.-sec2 

1  Ib-ft-sec^

=  192oz-in.-sec^
=  32.2 Ib-ft^
loz-in.-sec’̂  =  386oz-in^ 
1 g-cm-sec^ -  980 g-cm^ 

180
l r a d =  — =  57.3deg

=  0.1047 rad/sec 
1 rpm =  6 deg/sec

Ig -cm  =  0.0139 oz-in. 
l lb - f t  =  192oz-in. 
loz -in . =  0.00521 Ib-ft

1 J =  1 N-m 
lB tu  =  1055J 
le a l =  4.184 J

EXAMPLE 4-1-5 Fig. 4-17(a) shows the diagram o f a motor coupled 10 an inertial load through a shaft with a spring 
constant K. A non-rigid coupling between two mechanical components in a conưol system often 
causes lorsional resonances that can be transmitted to all parts o f the system. The system variables 
and parameters are defined as follows:

r„ ,( i)  = motor torque 

B„, = motor viscous-friction coefficient 

K = spring consum o f the shaft 

e„,{l) = motor displacement 

= motor velocity
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MOTOR

T„ K LOAD

i  i
ớ_ fl.

h

„ú}„*Kte„-eo K id „ -e o ^

(b)
Figure 4-17 (a) Motor-Ioad 
system. <b) Free-bod) diagram.

J„ = motor inertia 

6l ( i ) = load displacement 

0)i(t) = load velocity 

J l  = load inenia

The free-body diagrams o f ihe system are shown in Fig. 4-17ib). The lorque equations o f the 
system are

K \9„ {t)-eL{t)]= JL
d-Oiii]

dt^

Í442)

(4-43)

In ứũs case, the system contains three energy-storage elements in J„„ Ji_. and K. Thus, there should be ửưee 
state variables. Care should be taken in construciing the slate diagram and assigning ứie statt variables so 
lhai a minimum number o f ửie latter are incorporated. Eqs. (4-42) and (4-43 J are rearranged as

d ^ 9 J t)  B„ d6„U) K , , , 1

d^edt)

Í4-44) 

(4-45)

The state variables in this case are defined as X] ( l )  = 0 „ ( t j  -  ỠLÍt }.  X2 Í I Ì  = d ê iii) /d t .  and 
X3 ÌI) = d9„(r)/dt. The stale equations are 

dxiit) _
dì

dx2Ít) _  K

=  X y { t ) - X 2 { í )

The SFG representation is shown in Fig. 4-18.



inversion between Translational and Rotational Motions

In motion-control systems, i t  is often necessary to convert rotational m otion in to  ttanslational 
motion. For instance, a load may be controlled to move along a straight line through a rotary 
motor-and-lead screw assembly, such as that shown in Fig. 4-19. Fig. 4-20 shows a sim ilar 
situation in which a rack-and-pinion assembly is used as a mechanical linkage. Another fam iliar 
system in motion conữol is ứie control o f  a mass through a pulley by a rotaiy motor, as shown in  
Fig. 4-21. The systems shown in Figs. 4-19,4-20, and 4-21 can all be represented by a simple 
system w ith  an equivalent inertia connected dừectly to  ứie drive motor. For instance, the mass in 
Fig. 4-21 can be regarded as a point mass ứiat moves about the pulley, which has a radius r. By 
disregarding the inertia o f  the pulley, the equivalent inertia that the m otor sees is

(4-47)
s

I f  the radius o f  the p in ion  in  Fig. 4 -20  is r, the equivalent inertia  that the m otor sees is also 
g iven by Eq. (4-47).

N ow  consider the system o f  Fig. 4-19. The lead o f  the screw, L , is defined as the linear 
distance that the mass ưavels per revo lu tion  o f  the screw. In  princ ip le , the tw o systems in 
F ig, 4-20 and F ig. 4-21 are equivalent. In  F ig. 4-20, the distance traveled by the mass per 
revo lu tion  o f  the p in ion  is 2nr. B y  using Eq. (4-47) as the equivalent inertia  fo r  the system 
o f  F ig. 4-19, we have
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-7 (ắ ) (4-48)

Tự), eu)

Figure 4-19 Rotary-lo-linear moUon control 
system (lead screw).

Drive 
m otor V.Ỉ)

Figure 4-20 Rotary-to-linear moiion control 
system (rack and pinion).

I— ►i(f)

Figure 4-21 Rotary-to-linear motion
control system (belt and pulley).
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Ti’ ^  Figure 4-22 Gear ữain.

4-1-4 Gear Trains

A  gear tra in , lever, o r t im in g  b e lt ove r a p u lle y  is a m echan ica l dev ice  tha t transm its 
energy fro m  one pa rt o f  the system  to  ano ther in  such a w ay tha t fo rce , to rque , speed, 
and d isp lacem ent m ay be a lte red . These devices can a lso be regarded as m atching 
devices used to  a tta in  m a x im u m  pow er transfer. T w o  gears are show n cou p le d  together 
in  F ig . 4 -22 . The in e rtia  and fr ic t io n  o f  the gears are neg lected in  the idea l case 
considered.

The relationships between the torques T\ and Ĩ 2, angular displacem ent Ớ) and Ớ2 ' and 
the teeth numbers N | and N 2 o f  the gear tra in  are derived from  the fo llo w in g  facts:

1. The number o f  teeth on the surface o f  the gears is proportiona l to  the rad ii ri and Ĩ2 
o f  the gears; that is,

(4-49)

2. The distance traveled along the surface o f  each gear is the same. Thus.

Ớ l / - 1 - Ỡ 2 r 2  (4 -5 0 )

3. The w ork  done by one gear is  equal to that o f  the other since there are assumed to 
be no losses. Thus,

T ^ e \= T 2 9 2  (4-51)

I f  the angular velocities o f  the tw o  gears O)] and (i>2 are brought in to  the p icture. Eqs. (4-49) 
through (4-51) lead to

T\ 02 N i o>2 n
72 ^1 Â 2 0)\ Ĩ2

In  practice, gears do have inertia  and fr ic tio n  between the coupled gear teeth that often 
cannot be neglected. A n  equivalent representation o f  a gear tra in w ith  viscous fric tion . 
C oulom b fr ic tio n , and inertia  considered as lum ped parameters is shown in  F ig. 4-23. 
where T denotes the applied torque, Tị and 7‘2 are the transm itted torque, f c i  and are the
C oulom b fr ic tio n  coefficients, and B ị and B 2 are the viscous fr ic tio n  coeffic ients. The 
torque equation fo r  gear 2  is

d ^ i i t )  d O i i t )  o>2
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Figure 4-23 Gear ưain with friction and inertia.

The torque equation on the side o f  gear 1 is

(4-54)

Using Eq. (4-52), Eq. (4-53) is converted to

Eq. (4-55) indicates that i t  is possible to  re flect inertia , fr ic tio n , com pliance, torque, speed, 
and displacement from  one side o f  a gear tra in  to  the other. The fo llo w in g  quantities are 
obtained when reflecting from  gear 2  to  gear 1 :

Ine rtia : y ,

V isco u s -fr ic tio n co e ffic ie n t: f — i  B 2 
\ N l )

Torque: ^ 7-2
(4-56)

A ngu la r disp lacem ent; —  Ớ2 
N2

A ngu la r v e lo c ity : - ~ ( ^ 2  
ỉ^2

C oulom b fr ic tio n  to rque : —  Fc2 T - ^
N 2 \(i>i\

S im ila rly , gear parameters and variables can be reflected fro m  gear 1 to gear 2 by s im ply 
interchanging the subscripts in  the preceding expressions. I f  a torsional spring effect is 
present, the spring constant is also m u ltip lie d  by {N\ ỊNiÝ in  re flecting fro m  gear 2 to  gear 
1. N ow  substituting Eq. (4-55) in to  Eq. (4-54), we get

(4-57)

—  (I) (4 -5 8 )



164 Chapter 4. Theoretical Foundation and Background Material; Modeling of Dynamic Systems

— Fc\ r - h  +  T T ^ c 2 T \  k i |  \(ứi\

(4-59

(4-60

EXAMPLE 4-1-6 Given a load that has inertia o f  0.05 oz-in.-sec^ and a Coulomb friction torque o f  2 oz-in „ find the 
inertia and frictional torque reflected through a 1:5 gear train (/V]/A 2̂ =  1/5, w ith Nz on the load 
side). The reflected inertia on the side o f Nị is ( l/5 )^x 0 .0 5  =  0.002oz-in.-sec^. The reflectwi 
Coulomb friction is (1 /5 ) X 2 =  0.4oz-in. ^

4-1-5 Backlash and Dead Zone (Nonlinear Characteristics)

Backlash and dead zone are com m on ly  found in  gear tra ins and s im ila r  mechanical 
linkages where the co u p lin g  is  no t perfect. In  a m a jo r ity  o f  s itua tions, backlash m ay give 
rise to  undesirable inaccuracy, o sc illa tions , and in s ta b ility  in  co n tro l systems. In 
add ition , i t  has a tendency to  wear o u t the m echanica l e lem ents. Regardless o f  the 
actual m echanica l e lem ents, a phys ica l m odel o f  backlash o r dead zone betw een an input 
and an ou tpu t m em ber is shown in  F ig . 4-24. The m odel can be used fo r  a rotational 
system as w e ll as fo r  a trans la tiona l system. The am ount o f  backlash is b H  on e ithe r side 
o f  the reference pos ition .

In  general, the dynam ics o f  the m echanical linkage w ith  backlash depend on the 
rela tive in e rtia -to -fr ic tio n  ra tio  o f  the output member. I f  the inertia  o f  the ou tput member is 
very small compared w ith  that o f  the inpu t member, the m otion  is con tro lled  predominantly 
by fr ic tio n . Th is  means that the output m ember w il l  no t coast whenever there is no contact 
between the tw o  members. W hen the output is d riven  by the inpu t, the tw o  members w ill 
travel together un til the input member reverses its  d irection ; then the ou tpu t m em ber w ill be 
at a standstill u n til the backlash is taken up on the other side, at w h ich  tim e  i t  is assumed 
that the output m em ber instantaneously takes on the ve loc ity  o f  the inpu t member. The 
transfer characteristic between the input and ou tpu t displacements o f  a system with 
backlash w ith  neg lig ib le  output inertia  is shown in  F ig. 4-25.

—►j:(0

I— ►)■«)

Ouipul

Figure 4-24 Physical model o f backlash 
between two mechanical elements.

figure 4-25 Input-output characteristic o f 
backlash.



4-2 Introduction to Modeling of Simple Elecưical Systems 165

; s :l  Figure 4-26 Basic passive electrical
'^ 1  elements, (a) A  resistor, (b) An inductor,

(a) (b) (c) (c) A  capacitor.

J T R O D U C T IO N  TO M O D E L IN G  OF S I M P L E  E L E C T R IC A L  S Y S T E M S

F irs t we address m odeling o f  e lectrica l networks w ith  sim ple passive elements such as 
resistors, inductors, and capacitors. Later, in  the next section, we address operational 
am plifiers, w h ich  are active e lectrica l elements.

Ddeling of Passive Electrical Elements

C onsider F ig . 4-26, w h ich  shows the basic passive e lectrica l elements: resistors, inductors, 
and capacitors.

R esistors: O h m ’ s law  states ửiat the voltage drop, en{t), across a resistor R  is proportional
to ứie cuưent iự) going through tíie resistor. O r

€f({l) =  i{t)R  (4-61)

In d u cto rs: The voltage drop, e i{ t) ,  across an inducto r L  is p roportional to  the tim e rate 
o f  change o f  cuưent iự ) go ing through the inductor. Thus,

e i(< ) =  (4-62)
at

C a p a c ito r : The voltage drop, e c{t), across a capacitor c  is proportional to  the integral
cuưent / (0  go ing through the capacitor w ith  respect to  tim e. Therefore,

e c { t)  =  p - ^ d t (4-63)

D d e iin g  of Electrical Networks

The classical way o f  w ritin g  equations o f e lectric networks is based on the loop method or 
the node method, both o f  w hich are form ulated from  the tw o  laws o f  K irchho ff, w hich state:

C u r re n t L a w  o r  L o o p  M e th o d : The algebra ic sum m ation o f  a ll currents en te ring  a 
node is  zero.

V o ltage  L a w  o r  N ode M e th o d : The algebraic sum o f  a ll voltage drops around a 
com plete closed loop is zero.

•XAMPLE 4 -2 -1  L ei us c o n s id e r  the  R L C  n e tw o rk  sh o w n  in  F ig . 4-27. U sin g  th e  v o lta g e  law

= eR + e i + ec
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L
- n n n r ^

c  : ±  e,{t)

eJQ)

Figure 4-27 RLC network, (a) Electrical schematics, (b) Signal-flow graph representation, 
(c) Block diagram represeniation.

Ck =  Voltage across the resistor R 
=  Voltage across the inductor L 

e, =  Voltage across the capacitor c

Using current in C:

( 4 ^

and taking a derivative o f Eq. (4-54) w idi respect to time, we get the equation o f the RLC network a;

(4-67
di(i) i(t) de{t) 

dt^ dr ^  c  dt
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A  practical approach is to assign the cujTent in ứie inductor L, id), and the voltage across the 
capacitor c  Ể’c(0, as the state variables. The reason for this choice is because ihe state variables are dừectìy 
related to the energy-storage element o f a system. The inductor stores kinetic energy, and the capacitor 
stores elecưic potential energy. By assigning i(f) and CcU) as stale variables, we have a complete 
descTÌptíon of the past history (via the initial states) and the present and future states o f ihe network.

The state equations for the network in Fig. 4-27 are wrinen by first equating the current in c  and 
the voltage across L in terms o f the state variables and the applied voltage e(0- In vector-maưix form, 
the equations o f the system are expressed as

[ * . (0 1
di \eA t)]

o'
I

di{t) 1 R . . i

z. dt . L L .

This format is also known as the state form i f  we set

xyit}' edt)
X2(f). . w

eil)

XI [ »  ẻ l ' x ị ' +
0'
1

.-'2, 1 R 
. L L.

z
e{t) (4-70)

The transfer functions o f the system are obtained by applying the gain formula to the SFG or block 
diagram o f the system in Fig. 4-27 when all the in itia l states are set to zero.

. -  J  (4-71)
Eịs) \+ { R /L )s '^  + ị] /L C )s-^  ì+ R C s+ L C s^  ‘

l{s) ( l / ^ ) s - ‘ Cs
E{s) 1 +  [RlL)s-^ +  ( l/Z .C )j-2  1+RCS + LCs^

(4-72)

)X 4-2-1
ĩm ain step  responses fo r  Eqs. (4-7!) and  (4-72) are shown using M ATLAB fo r  R  = Ỉ. L = 1. c  = Ỉ: 

,=1 : c=l:.=1 : c=l:
. 0 2 :3 0 :
 ̂ [1 3 :
: [L» c  R * c  1 ] :
: c 0 ] ;
: [L * c  R *c  1 ]  : 
f ( n u m l , d e n l ) : 
f ( n u m 2 , d e n 2 ) ; 
cep  ( G l . t )  : 
cep  ( G 2 , t )  : 
t . y l .  ‘ r ’ ) :  
m
t , y 2 , ‘ g ’ ) ;  
L C T i in e ’ )
L (‘G a i n’)
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EXAMPLE 4-2-2 As another example o f  w riting  the state equations o f  an electric network, consider the networl 
shown in Fig. 4-28(a). According 10 (he foregoing discussion, the voltage across Ihe capacitor 
eM), and Ihe currents o f the inductors, /i(0 an d  /2( 0 . are assigned as state variables, as shown ii 
Fig. 4-28(a). The stale equations o f the network are obtained by w riting  the voltages across thi

Figure 4-28 Network o f Example 4-2-2. (a) Electrical schematic, (b) SFG represenlalion
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in d u cto rs  and the c urrents in  the c a p a c ito r  in term s o f  the th ree  sta te  v a r ia b le s . The Slate  

e q u a tio n s  are

L-\  ̂ -  ^cit) + e{t)

L 2 ^ = - R 2 h { ' i + ‘c{!)

c M > = / , ( , ) - M O

(4-73)

(4-74)

(4-75)

In vector-maữix form, the state equations are written as

e(t) (4-76)

X\ r « i ( i ) i
XI = «'2(0
-*3 . ic W .

(4-77)

The s igna l-flow  diagram  o f  the ne tw ork , w ith o u t the in it ia l states, is shown in  F ig. 4 -28(b). The 
transfer functions between / 1(5)  and £ (5), /2(5) and £ (5), and Ec(s) and £ ( 5). respective ly, are w rin en  

from  the state diagram

/ 1 (5) L 2Cs^ +  R2C s + 1  
E{s) ~  A

£ (5) A 

£ .( .)  L2S + R2 
E{s) A

(4-78)

(4-79)

(4-80)

A =  LiL2Cs^ +  (R ịL2+R 2Lì)C s^ +  (Lì +  L ỉ +  RịR2C)s +  Rị +  R2 (4-81)

Toolbox 4-2-2
Time domain step  response fo r  the gain fo rm ula  explained by step responses o f  Eqs. 4 -78-4-80  are shown  
using M ATLAB as illustra ted  below ự o r R Ì  =  I, R 2 ^ ] ,  U  =  I. L2 =  i ,  c ^  i):

R l = l ;  R 2 = l;  L l = l ;  L 2 = l ;  c = l ;
t=0:0.02:30;
n uml= [L2*CR2*C1];
num2 = [1]:
num3 = [L2 R2] ;
den = [L1*L2*C R1*L2*C+R2*L1*C L1+L2+R1*R2*C R1+R2] ;
G1 = tf(numl,d e n ) ;
G2 = tf(num2,den)
G3 = tf(num3,den) 
yl = step (G1, t) ; 
y2 = step (G2 , t) : 
y3 = step (G3 , t) :
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plot(t,yl, ‘r ’) 
hold on
plot(t,y2, ‘g ’) 
hold on
plot(t,y3, ‘b ’) 
xlabeic‘Ti m e’) 
ylabeic‘Ga i n’)

• EXAMPLE 4-2-3 Consider the RC circuit shown in Fig. 4-29. Find the differential equation o f the system. Using th' 
voltage law

ei„{t)=e/i{t) + ec{t)

where

6R =  iR

and Ihe voltage across the capacitor v,.(f) is

ec (0  J  idt

But from Fig. 4-29

eoịỉ) = c /

(4-82

Figure 4-29 Simple electrical R C  circuit.
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'• de,{l)
c  dt

I f  we differentiate Eq. (4-85) with respect to  time, we get

(4-86)

Cèoit) = i

This implies that Eq. (4-85) can be written in an input-output form

e^„(t)^RC èo(t)+ e„(l)

In Laplace domain, we get the system ưansfer function as

gp(^) 1 
Ei„{s) R C s + \

(4-89)

where ưie r  =  i? c  is also known as the lim e constant o f Uie system. The significance o f this term is 
discussed earlier in Chapter 2, and the in itia l conditions are assumed to be ei„{r = 0) = 
e^{t =  0) = 0.

► EXAMPLE 4-2-4 Consider the RC circuit shown in Fig. 4-30. Find the differential equation o f the system.

Figure 4-30 Simple elecưical RC circuit.

As before, we have

(4-90) 

(4-91)

(4-92)

is the differential equation o f the system. To solve Eq. (4-92), we difTerentiate once with respect to 
time:

But Vo(r) =  iR. So

einit) = ed t) + e/i{t) 

e m { r )= ^ Ị  idt + iR

In Laplace domain, we get the system transfer function as

£ 0 (5 ) _  RCs 
Ei„{s)~ RCs-¥  1

where, again, r  =  /?c is the time constant o f the sysiem.

(4-93)

(4-94)

► EXAMPLE 4-2-5 Consider the voltage divider o f Fig. 4-31 - Given an input voltage <?o(f). find the output voltage e,{t) in 
ửie circuit composed o f two resistors /?| and /?2.
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> ^2

I Figure 4-31 A  voltage divider.

The currents in the resistors are

,4.95
' «1

Í2 =  Í l í t ì  (4-96
/?2

The node equation al the ei(l) node is
i, - / 2  =  0 (4-97

Substituting Eqs. (4-95) and (4-96) into the previous node equation:

=  0 (4-98
/?| /?2

Rearrangement o f Ihis equation yields the following equation for the voltage divider:

In Laplace domain, we get

The SI and most other measurement units for variables in electrical systems are the same, as shown ir 
Table 4-3.

TABLE 4-3 Basic Electrical System Properties and Their Units

Parameter Notation Units

Charge Q coulomb =  newton-meter/volt

Current i ampere (A)
Voltage e voU(V)
Energy H joule =  volt X coulomb
Power p joule/sec
Resistance R ohm (O) -  volưamp
Capacitance c farad (F)

=  coulomb/voit =  amp sec/vol 
=  second/ohm

Inductance L henry (H)
=  volt sec/amp 
=  ohm sec

► 4 -3  M O D E L IN G  OF A C T IV E  E LE C TR IC A L  E L E M E N T S : O P E R A T IO N A L  A M P L IF IE R S

O perational am plifiers, or s im p ly  op-am ps. o ffe r a convenient way to bu ild , im plem ent, 0 
realize continuous-data o r .Ỹ-domain transfer functions. In contro l systems, op-amps ari 
often used to  im plem ent the contro llers or compensators that evolve fro m  ihe control 
system design process, so in this section we illustra te  com m on op-amp configurations. Ai
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Figure 4-32 S c h e m a tic  d ia g ra m  o f  an o p -am p .

in -depth presentation o f Op-amps is beyond the scope o f  this text. For those interested, 
many texts are available that are devoted to  a ll aspects o f  op-amp c ircu it design and 
applications [8 , 9].

O ur prim ary goal here is to show how to  im plem ent first-o rder transfer functions w ith  
op-amps w h ile  keeping in  m ind  that higher-order transfer functions are also im portant. In 
fact, sim ple high-order transfer functions can be im plem ented by connecting first-order op- 
amp configurations together. O n ly  a representative sample o f  the m u ltitude  o f  op-amp 
configurations w il l  be discussed. Some o f  the practica l issues associated w ith  Op-amps are 
demonstrated in  Chapters 5 and 9.

4-3-1 The Ideal Op-Amp

W hen good engineering practice is used, an op-amp c ircu it can be accurately analyzed by 
considering the op-amp to  be ideal. The ideal op-am p c ircu it is shown in  F ig. 4-32, and i t  
has the fo llo w in g  properties:

1. The voltage between the +  and — teưninals is zero, that is, =  e ~ . Th is  property 
is com m only called the virtual ground  or virtual short.

2. The currents in to  the + and -  input term inals are zero. Thus, the input impedance 
is in fin ite .

3. The impedance seen look ing  in to  the output term inal is zero. Thus, the output is an 
ideal voltage source.

4. The inp u t-o u tp u t relationship is e„ =  A ịe''' — e~ ), where the gain A approaches 
in fin ity .

T h e  i n p u t - o u t p u t  r e l a t i o n s h i p  f o r  m a n y  O p - a m p  c o n f i g u r a t i o n s  c a n  b e  d e t e r m i n e d  b y  

using these p rin c ip le s . A n  Op-amp cannot be used as shown in  F ig . 4 -32 . Rather, 
lin e a r opera tion  requires the a d d ition  o f  feedback o f  the o u tpu t s ignal to the -  inpu t 
te rm in a l.

4-3-2 Sums and Differences

As illustra ted in  Chapter 3, one o f the most fundamental elements in a b lock  diagram o r an 
SFG is the addition or subtraction o f  signals. W hen these signals are voltages, op-amps 
provide a simple way to add o r subtract signals, as shown in Fig. 4-33. where a ll the 
resistors have the same value. Using superposition and the ideal properties given in  the 
preceding section, the inpu t-ou tpu t relationship in  Fig. 4-33(a) is v „ =  - f v ’a -  Vf,]. Thus, 
the output is the negative sum o f the input voltages. W hen a positive sum is desired, the 
c ircu it shown in  Fig. 4-33(b) can be used. Here the output is given by e„ =  ea +  et,. 
M o d ify in g  Fig. 4-33(b) s ligh tly  gives the d ifferencing c ircu it shown in Fig. 4-33(c). which 
has an inpu t-ou tpu t relationship o f  e„ =  eh -  ea.
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Figure 4-33 Op-amps used to add and subtract signals.

4-3-3 First-Order Op-Amp Configurations

In  a d d i t i o n  to  add ing  and sub trac ting  s ignals, O p - a m p s  can be used to  im plem ei 
transfe r fu n c tio n s  o f  con tinuous-da ta  systems. W h ile  m any a lte rna tives are availab l 
we w i l l  exp lo re  o n ly  those th a t use the in ve rtin g  op-am p co n fig u ra tio n  shown in  Fi; 
4-34. In  the figu re , Z | ( i )  and Z jU )  are im pedances c o m m o n ly  com posed o f  resisto 
and capacito rs . In duc to rs  are not co m m o n ly  used because they tend to  be b u lk ie r  ar 
more expensive. U s in g  idea l op-am p properties, the in p u t-o u tp u t re la tio n sh ip , '
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Figure 4-34 inverting op-amp configuratiol

trans fe r fu n c tio n , o f  the c irc u it  show n in  F ig . 4 -3 4  can be w r it te n  in  a num ber o f  ways, 
such as

G ( .)  =
E q{s ) Z 2 ( i )  _
Ei(s)

^ - Z 2 {s)Yi{s] =  -

z ,( i)  A { s ) Y 2 (s)

y\{s)
Y2ÌS)

(4-101)

where Y\ ( j )  =  1 /Z |  (s) and =  I / ^ 2 {s) are the admittances associated w ith  the c ircu it 
impedances. The d iffe ren t transfer function  form s given in  Eq. (4-101) apply conveniently 
to  the d iffe ren t com positions o f  the c irc u it impedances.

U sing  the inverting  op-amp configuration shown in  F ig. 4-34 and using resistors and 
capacitors as elements to  compose Z](s) and Zzis), i t  is possible to  im plem ent poles and 
zeros along the negative real axis as w e ll as at the o rig in  in  the 5-plane, as shown in  Table 
4-4. Because the inverting  op-amp configuration has been used, a ll the transfer functions 
have negative gains. The negative gain is usually not an issue because i t  is sim ple to add a 
gain o f  - 1  to  the inpu t and output signal to  make the net gain positive.

TABLE 4-4 Inverting Op-Amp Transfer Functions

Input
Element

Feedback
Element

Transfer
Function

(a)

(b)

Z| =/?!

^ W V -
z, =/?i H h

Z2 = Rz

Ẽ1
Ri

\ R 1 C2J  s 

( - R 2 C , ) s

Invening gain, e.g., i f  Rị

Pole at the origin, i.e.. an 
integrator

Zero at the origin, i.e., a 
differenciator

z, = /i |

R2C 2

Ì Ỉ2C 2 ’  
o f - R 2 / R 1

(Continued)
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TABLE 4-4 (Continued)

Input Feedback Transfer
Element Element Function Comments

(e) /?! ^2 1 1 Ca -R 2 f.S  + l/R 2 C 2 \ Pole at the origin and a zerc

Z| =« |
^ v w - |  p R i I » ) - I / R 2C2 . i.e.. a PI conữoll

(f)
- | - v ^

R2 Zero at 5 =  „  \  . i.e., a PE 
i t iC i

h IJ Z2 = «2 conữoUer

(g) «2
C2 V f l . c j

Poles at s =  and a zei 
R 2C 2

M i?
+ *C|

M i at 5 =  -  I, . i.e.. a lead or I / Ỉ 1C 1 
conưoller

► EXAMPLE 4-3-1 As an example o f Op-amp realization o f transfer functions, consider the ưansíer function

G ị s ) = K , + ĩ í  +  K o s  (4-10

where Kp, Kd. and Ki are real constants. In Chapters 5 and 9, this transfer function w ill be called I 
PID  controller, since the first term is a proportional gain, the second an integral term, and the thi 
a derivative term. Using Table 4-4, the proportional gain can be implemented using line (a), t 
integral term can be implemented using line (b), and the derivative term can be implemented usi] 
line (c). By superposition, the output o f G(s) is the sum o f the responses due to each lerm in G(. 
This sum can be implemented by adding an additional input resistance to the circuit shown 
Fig. 4-33(a). By making the sum negative, the negative gains o f the proportional, integral, aj 
derivative term implementations are canceled, giving the desứed result shown in Fig. 4-35. Tl 
transfer functions of the com ponents o f the Op-amp circuit in Fig. 4-35 are

Proportional: Id

Integral:

Ep{s) Rj
E{s) R\

E,(s) 1

Eis)

£ d {s)
E{s)

-RdCdS

The oulput voltage is

£ „ ( 5 ) =  - [ £ p ( i )  +  E i{s )  +  £ d ( í ) ]  (4-10

Thus, the transfer function o f the PID op-amp circuit is

By equating Eqs. (4-102) and (4-107), the design is completed by choosing the values o f the resistc 
and the capacitors o f th e  op-amp circuit so that th e  desired values o f Kp. K/. and Kp are matched. T 
design o f the controller should be guided by the availability o f standard capacitors and resislor 

It is important to note that Fig. 4-35 is just one o f many possible implemeniations o f Eq. (4-10; 
For example, it is possible lo implement ihe PID controller w ilh just three O p-am ps. Also, it 
c o m m o n  to add components to lim it the high-frequency gain o f the differentialor and to lim it t
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integrator output magnitude, which is often referred to as aniiwindup protection. One advantage o f 
the implementation shown in Fig. 4-35 is that each o f the three constants Kp, K,, and Ko  can be 
adjusted or tuned individually by varying resistor values in its O p-am p circuits. Op-amps are also used 
in control systems for A /D  and D /A conveners, sampling devices, and realization o f nonlinear 
elements for system compensation. M

► 4 - 4  IN T R O D U C T IO N  TO  M O D E L IN G  OF T H E R M A L  S Y S T E M S

In  this section, we inữoduce thermal and flu id  systems. Because o f the complex mathematics 
associated w ith  these nonlinear systems, we only focus on basic and sim plified models.

4-4-1 Elementary Heat Transfer Properties^

The tw o  key variables in  a therm al process are temperature T  and therm al storage or heat 
stored Q, w hich has the same units as energy. Heat transfer is related to  the heat flow  rate q, 
w h ich  has the units o f  power. That is

(4-108)

As in  the electrica l systems, the concept o f  capacitance in a heat transfer problem  is related 
to  storage (o r discharge) o f  heat in  a body. The capacitance c  is related to  the change o f  the 
body temperature T  w ith  respect to  tim e and the rate o f  heat flow  q:

q = c f

'For more in-depth study o f this subject, refer to references [1-7],

(4 -1 0 9 )
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-► Figure 4-36 One-dừectional heat conduction flow.

where the therm al capacitance c  can be stated as a product o f  p  m ateria l density, c  materia 
specific heat, and vo lum e V:

C  =  p cp V (4-110

In  a therm al system, there are three d iffe ren t ways that heat is transferred; by conduction 
convection, o r radiation.

C o n d u c tio n : Therm al conduction describes how an object conducts heat. In  general thi; 
type o f  heat transfer happens in so lid  m aterials due to  a temperature d ifference betweei 
tw o  surfaces. In  this case, heat tends to travel from  the hot to  the co ld  region. The ưansfer 0 
energy in  this case takes place by m olecule d iffus ion  and in  a d irection  perpendicular to ŨÌÍ 
object surface. C onsidering one-d irectional steady state heat conduction along -V. as showt 
in  Fig. 4-36, the rate o f  heat transfer is given by

kA
q =  — A T  =  D , - 2 ^ T (4-1 l i :

where q  is the rate o f  heat transfer (flo w ), k  is the therm al conduc tiv ity  related to ih( 
materia l used, A  is the area norm al to the d irection  o f  heat flow  .V, and AT" =  T\ - T i  is the 
difference between the temperatures at X =  0 and X =  í , O ĩ  T I  and T2 . N ote in  this case 
assuming a perfect insu lation, the heat conduction in  other directions is zero. A lso  note thai

(4-112:

where R  is also known as th e rm a l resistance. So the rate o f  heat transfer q  may bi 
represented in  terms o f  R  as

A r  
9 =  D (4-113:

C onvec tion : Th is  type o f  heat transfer occurs between a so lid  surface and a flu id  exposed 
to  it, as shown in  F ig. 4-37. A t the boundary where the flu id  and the so lid  surface meet, the 
heat transfer process is by conduction. B ut once the flu id  is exposed to the heat, i t  can be 
replaced by new flu id . In therm al convection, the heat flo w  is given by

(4-114:

Figure 4-37 Fluid-boundary heat convection.
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Figure 4*38 A  simple heat radiation system with dữectls' 
opposite ideal radiators.

w here q  is the rate o f  heat transfer o r heal flow, h is the coe ffic ien t o f  convective heal 
transfer. A  is ứie area o f  heat tfansfer. and I T  - T ị ,  -  T f  is the d ifference between the 
boundan- and flu id  temperatures. The term  fiA may be denoted by D(f where

(4-115)

A sa in . ửie rate o f  heat ưansíer q  may be represented in  terms o f  ứierma] resistance R. Thus

\ T
(4 -1 16j

R a d ia tio n : The rate o f  heat ưansíer through rad ia tion between w o  separate objects is 
deteraiined b> the Siephan-Bolưm ann law.

q ^ ơ A [ T ị - T ị ) (4-117)

where q  is the rate o f  heat ưansfer. a  is the S iephan-Bolư m aiu i constant and is equal to 
5.667 X 10"^ \v /m -  Á is the area norm al to ứie heat flow , and Tị and Ĩ2  are the 
absolute temperarures o f  the tw o  bodies. Note ứiai Eq. ( A - Ì 17) applies to  d irec tly  opposed 
ideal radiators o f  equal surface area A  that perfectly  absorb a ll the heat w ithou t reflection 
(see F ig. 4-38).

The SI and other measurement units fo r  variables in thennal systems are shown in 
Table 4-5.

TABLE 4-5 Basic Thermal System Properties and Their Units

Parameter S>mbol Used SI Umc.' CKher Units Conversion Factors

Temperature T c iCel'iius)
K iK e lM fi)

'¥  iFahrenheiti = F - 3 2  X Ó 9 
-c =^K-273

Energy 'Heal Stored) Q J Ijoulet Biu
calorie

1 J =  Ỉ N-m
I Btu = 
lea ] =  4 - li4 J

Hciii FIom Rale y SliỀC
\v

Bcu/sec

Resistance R CAV
K.^v

F iBra-Tin

Capacitance c J 'k g  Cr 
J 'k g K .

B ta -F  
Btu/' R



► EXAMPLE 4-4-1 A  rectangular object is composed o f a material that is in contact w ith fluid on its top side while beinị 
perfectly insulated on three other sides, as shown in Fig. 4-39. Find the equations o f the heat ttansfei 
process for the following:
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J  _ Figure 4-39 Heat ưansíer problem between 
A. p ,c .k  a fluid and an insulated solid object.

Ti = Solid object temperature; assume that the temperature distribution is uniform

Tf =  T o p  flu id  te m p e ra tu re

Í  = Length o f the object

A = Cross sectional area o f the object

p = Material density

c = Material specific heat

k = Material thermal conduciivity

h = Coefficient o f convective heat transfer

SOLUTION The rate o f heat storage in the solid from Eq. (4-109) is

(4-118)

Also, the convection rate o f heal transferred from the fluid is

q = h A { T f- T ( )  (4-119)

The energy balance equation for the system dictates q to be the same in Eqs. (4-118) and (4-119). Hence, 
upon inữoducing thermal capacitance c from Eq. (4-109) and the convective thermal resistance R from 
Eq. (4-113) and substituting the right-hand sides o f Eq. (4-118) into Eq. (4-119), we get

R C f, = -T , + T f  (4-120)

In Laplace domain, the transfer function o f the system is written as

T i{s)_  1 
Tfis) R C s + \ (4-121)

where the fiC  =  r  is also known as the time constant o f the system. The significance o f this lerm is 
discussed earlier in Chapter 2. and the in itia l conditions are assumed to be 7‘i { f  =  0) 
= t,{r  = 0) = 0. M

► 4 - 5  IN T R O D U C T IO N  TO  M O D E L IN G  OF F L U ID  S Y S T E M S  

4-5-1 E lem entary Fluid and Gas System Properties^

In  th is section, we derive the equations o f  flu id  and pneumatic systems. Understanding the 
models o f  these systems w il l  later help in  appreciating the models o f  hydrau lic  and 
pneumatic actuators. 10 be discussed in more detail in Chapter 5. In  flu id  systems there are 
five parameters o f  im portance— pressure, flow  mass (and flo w  rate), temperature, density.

’ For a more in-depili study o f this subject, refer to references [1-7],
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Figure 4-40 C o n tro l v o lu m e  a n d  th e  n e t m a ss  f low  ra te .

and flo w  volum e (and volum e rate). In co m p re ss ib le  f lu id  systems, ju s t like  electrica l 
systems, can be modeled by passive components inc lud ing  resistance, capacitance, and 
inductance. In  case o f  incom pressible flu ids, the flu id  volum e remains constant.

To understand these concepts better, we must look  at the f lu id  c o n tin u ity  equa tion  or 
the  law  o f  conse rva tion  o f  mass. For the contro l volum e shown in  F ig. 4-40 and the net 
mass flo w  rate, we have

(4-122) 

q = q i -  qo

where m  is the net mass flow, p  is flu id  density. q,„ =  WI is the mass flow  rate, and q  is  the net 
flu id  flo w  rate (volum e flow  rate o f  the ingo ing  flu id  qi m inus vo lum e flow  rate o f  the 
outgo ing  flu id  qo). The conse rva tion  o f  mass states;

,4 - ,2 3 ,

—  = p V + V j3  (4-124)
at

where m  is the net mass flow  rate, AÍ,.,. is the mass o f  the control volum e (o r fo r s im p lic ity  
" th e  con ta iner" flu id ), and V is the container volum e. Note

=  ( 4 -1 2 ! »

w hich is also known as the conse rva tion  o f  vo lum e fo r the flu id . For an incompressible 
flu id , p  is constant. Hence.

in = p V  (4-126)

C apacitance— Incom press ib le  F lu id s : S im ila r to the e lectrical capacitance, flu id  capac
itance relates to  how energy can be stored in a Huid system. The flu id  capacitance c  is the 
ra tio  o f  the flu id  flow  rate q  to  the rate o f  pressure P\

C ^ ị  (4-127)

i/ =  C P  (4 -1 2 8 )



► EXAMPLE 4-5-1 The pressure in the tank shown in Fig. 4-41, which is filled to height h, is
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A

Figure 4-41 Incompressible fluid flow into a 
cylindrical container.

As a result, noting that q = v .

C  =  ^  =  —  (4^130)
pgh pg

For the general case, what is happening in Fig. 4-40, as the fluid flows into the control volume, ihe 
fluid mass w ill change; so does the pressure. Capacitance expresses the rate o f change o f the fluid 
mass w ith respect to pressure. That is

d P Ịd t dP

In general, the fluid density p  is nonlinear and may depend on temperature and pressure. This 
nonlinear dependency. Pni (p. T). known as the equation o f slate, may be linearized using the fin i- 
order Taylor series relating p„! to p  and T.

where p. Pref̂  and are constant reference values o f density, pressure, and temperature, 
respectively. In this case.

are the bulk modulus and the thermal expansion CMfflcient. respectively. In most cases o f  interest, 
however, the temperatures o f the fluid entering and flowing out o f the container are almost the same. 
F u rth e r, i f  the  c o n ta in e r  o f  v o lu m e  K i s a r i g id  o b je c t, u s in g  E q . (4 -1 3 3 ) . E q . (4 -1 2 4 )  m a y  b e  rewTirten
as

^  =  pq =  V p = ^ q  =  ^ P = C P  (4-135)

EXAMPLE 4-5-2 In practice, accumulators are fluid capacitors, which may be modeled as a spring-loaded piston 
system, as shown in Fig, 4-42, In this case, assuming a spring-loaded piston o f area A ưaveling inside 
a rigid cylindrical container, the pressure rate is shown as

P =  ^ { < ỉ - V )  (4 -136)

where V — Ax.
For a pneumatic system, the law o f conservation o f volume does not apply because ưie volume 

o f a gas varies with pressure or olher external effects. In this case, only the conservation o f mass 
applies. As a result. i( is cusiomar>' to use the mass flow rate q „  as opposed to volume flow rate q in 
the equations involving pneumatic systems.

Capacitance— Pneumatic Systems: As in the previous case, capacitance relates to how cDcrgv- 
can be stored in the system, and it defines the rate o f change o f gas siored in a control volume as
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y y y :
p , Figure 4-42 A  spring-loaded piston system.

shown in Fig. 4-40 with respect to pressure. For a constant volume container, the general gas 
capacitance relation Eq. (4-131) becomes

where the container volume V' is a constant.
For a perfect gas under normal temperatures and pressures, the perfect gas law states:

PV = mRgT (4-138)

where V  is  th e  v o lu m e  o f  a g a s  w ith  a b so lu te  p ressu re  p  and  m a ss  m , TÌS th e  a b so lu te  te m p e ra tu re  o f  
the gas, and Rg is the gas constant, which depends on the type o f gas used. Notice in this case four 
parameters p. V, r  and m  are mathematically relaied- As a result, to solve one, the other chree must be 
somehow related. Using a polytropic process, which is a general process for all fluids relating the 
pressure, volume, and mass, we have:

i / \ ”  / IN "
(4-139)

where « is called the poly irop ic exponent and can vary from 0 to oc. As a result, the capacitance 
relation Eq. (4-137) may be restated as

C = (4-140)

Or. using Eq. (4-138) and knowing m = pv.

A s a  s id e  no te , i f  in  a  p o ly lro p ic  p ro c e ss  th e  m a s s  m  is  c o n s ta n t ,  and  g iv e n  a  p ro c e ss  f ro m  sla te  ] to  
state 2 , ihe general gas law may also be defined by

(4-142,
T\ Ĩ2

For a constant temperature or an isothermal process, the gas temperatures at any two given 
instants are ihe same. Or

In this case, rt =  1 in the capacitance relation Eq. (4-140),
For a constant pressure or an isobaric process.

p^ = P i
Vị _ V 2  (4-144)

In this case, n =  0 in ihe capacitance relation Eq. Í4-140).
For a constant volume or an isovolumetric process, the relation becomes 

Vị = V'2
h _ T ỵ  (4-145)
P i ~  Ĩ2

In this case, n =  oc in the capacitance relation Eq. Í4-140).
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- 0 -
Pi Pi

Figure 4-43 Fluid forced through a frictionless 
pipe o f length t.

For a reversible adiabatic or an isentropic process, the relation becomes

P iV f =  /> iy | (4-146)

In this case, n =  it in the capacitance relation Eq. (4-140), where k  is the ratio o f specific heats: 

k = ‘- i  (4-147)

w h ere  Cp is  th e  sp e cific  h e a t o f  th e  g a s  a t c o n s ta n t p re s su re  a n d  c,. is  ih e  g a s  sp e c ific  h e a t a t constan t 
volume. In pneumatic systems, k =  1-4 (for air).

Inductance— Incompressible F luids: Fluid inductance is also referred to as fluid inertance in
relation to the inertia o f a moving fluid inside a passage (line or a pipe). Inertance occurs mainly in 
long lines, but i t  can also occur where an external force (e.g., caused by a pump) causes a significant 
change in the flow rate. In the case shown in Fig. 4-43, assuming a frictionless pipe w ith a uniform
f lu id  flow  m o v in g  a t ih e  sp e ed  V, in  o rd e r  to  a cc e le ra te  th e  flu id , an  e x te rn a l fo rc e  F  is  a p p lied . From
Newton’s second law,

^ P  = {P ^-P 2 )

But

V = A v  = q (4-149)

So

(P \~ P 2 ) = Lq (4-150)

where

(4-.51)

is known as the flu id  inductance. The concept o f inductance is rarely discussed in the case of 
compressible fluids and gases and, therefore, is not discussed here.

Resistance— Incompressible F lu ids: As in the electrical systems, flu id  resistors dissipate 
energy. For the system shown in Fig. 4-44. the force resisting the flu id passing through a passage 
like a pipe is

F f = A A P  (4-152)

where ÁP = P\ -  P2 is the pressure drop and A is the cross-sectional area o f the pipe. Depending on 
the type o f flow (i.e., laminar or turbulent) the fluid resislance relationship can be linear or nonlinear 
and relates the pressure drop 10 the mass flow rate q„,. For a laminar flow, we define

\ P  = Rq,„=Rpq  (4-153)

\ p
R =  —  (4 -154 )

q>n
w here  q is th e  v o lu m e  flow  rate . T ab le  4 -6  sh o w s R fo r  v a rio u s  p a s sa g e  c ro ss  se c tio n s , a ssu m in g  a 
laminar flow.

Figure 4-44 Flow o f an incompressible fluid through 
a pipe and a fluid resistor R.
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TABLE 4-6 Equations of flesistance R iof Laminar Flows

Ruid resistance P ,-

Symbois used

Circular cross section 

Square cross section 

Rectangular cross section

Rectangular cross section: Approximation 

Annular cross section

Annular cross section: Approximation

Fluid volume flow rate: q 
Pressure drop: A P  =  Pi2 =  P \ -  P ‘1 
Lam inar resistance: R  
f i  : Fluid viscosity
w =  width; h = height: i  =  length: d = diameter

A d i

dh =  hydraulic diameter =
4 A

perimeter

R  = 

R  = 

R  =

I2 8 ụ ỉ  

Tzd̂
32

wh^
( l  +  h / w ý

w /h  =  small

do = outer diameter; d, =  innerdiameter

R  = ^
ndodf

d„ld, = small

When the flow becomes turbulent, the pressure drop relation Eq. (4-153) is rewritten as

AP = R r C  (4-155)

where Rr is the turbulent resistance and « is a power varying depending on the boundary used— e.g., 
n = 1/4  for a lo n g  pipe and. most useful, n =  2 for a flow through an orifice or a valve.

EXAMPLE 4-5-3 For the liquid-level system shown in Fig. 4-45. water or any incompressible fluid {i.e.. fluid densily p 
A One-Tank Liquid-Level is constant) enters die lank from the top and exits through ihe valve in the bottom. The volume flow 

System 'he vaive inlet and the volume flow rate at the valve outlet are q, and q„. respectively. The fluid
height in the tank is h and is variable. The valve resistance is R. Find  the system equation for the input. 
q„ and output, /)-

SOLUTION T h e  c o n se rv a tio n  o f  m ass su g g e sts

dm _ d ( p V ) ___

where pq, and pq„ are the mass Row rate in and out o f Ihe valve, respectively. Because the fluid 
density /7 is a constanl, ihe conservalion o f volume aiso applies, which suggests the time rate of
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T
:x: Figure 4-45 A  single-tank liquid-level system.

change o f the fluid volume inside the tank is equal to the difference o f incoming and outgoing flov 
races.

d{V) _  d{Ah) _
= (4-157

In this case, A is the tank cross-sectional area, and h is the fluid inside the tank height and is a variable 
Recall from Eq. (4-131)

dm/dt
c  =  - (4-158

dP/dt 

Hence

^  =  (4-159:dt dt
Or from Eq. (4-158).

c ^  = n - p g ,  (4-160:

Using relation Eq. (4-154), the fluid valve resistance R. assuming a laminar flow, is defined as

(4-161.

(4-162.

where A /7 is the pressure drop across the valve. Relating the pressure 10 fluid height A, which i; 
variable, we get

Pi = Palm +  pgh 
P2 = Palm

where Pi is in the pressure at the valve inlet and P2 is the outlet pressure, and Pa,„ is the atmospheric 
pressure. After combining Eqs. (4-157) through (4-162), we gel the system equation; 

dh
(4-163

Or

R C h ^ h  = - q i

where c  =  AỊg  is the capacitance zná p = R is the resistance. As a result, system time constant Ì! 
t  = RC. <

EXAMPLE 4-5-4 Consider a double lank system, as shown in Fig. 4-46. with ÌĨỊ and ÌÌ2 representing the two tan! 
A Two-Tank Liquid-Level heights and /?] and representing the two valve resistances, respeclively. Find Che differentia 

System equations.

SOLUTION Using the same approach as in Example 4-5-3. it is not difficult to see

[ ) -  
R\

P\ -  P i  ipam +  pgh\)  -  pghz]
PỌ: -  P‘/\ =  P(Ji -3— = =  pq ;-------------------------------------------------------------------- (4_]65
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Aị.p
hj

y  — ►

r
Ả2.P

Figure 4-46 Two-tank liquid-level system.

_  p i  -  P i  _  P2 -  Pi

'  R] Ri
^  ipam  +  pgh\)  -  (pam +  pghl)  {pam +  p g h )  -  ;

Thus, the equations o f system are

Í4-166)

(4-167)

(4-168)

Resistance— atic Systems: The resistance for pneumatic systems is a bit more compli-
caled. For a gas following the perfect gas law Eq. (4-138). the flow through a valve or an orifice of
cross-sectional area A. shown in Fig. 4-47. is related to the outlet pressure p. Note that ihe mass flow 
rate q,„ on both sides o f the valve, by the virtue o f continuity, is the same. Not considering the 
theoretical details, for a laminar flow Ú \ p  = p, -  p  is small, we have

Rl = —  (4-169)
qm

where p, is the in let pressure, p  is outlet pressure, q is the volumetric flow rate, and /?£ is the 
equivalent resistance, which is obtained experimentally. For a turbulent flow, we get 

ẤP
Rt = ^  (4-170)

where Rỵ is the turbulent resistance. We use the next example to better illustrate these concepts.

:x; Figure 4-47 A ir flow through a pipe with an orifice.

► EXAMPLE 4-5-5 Consider air passing through a valve and entering a rigid container system, as shown in Fig. 4-48. In this 
case, the valve is modeled as an orifice, inlet pressure is p,. the mass flow rate is q,„. and the pressure 
inside the container (or the valve outlet pressure) is p. In this case, it is cufstomary to ửiink o f the pressures 
in both sides o f the valve as a conbtant pressure p, (or steady state pressure) plus a variation. Thai is,

p , = p .  +  p, 
p  =  p . - p

14-171)

Figure 4-48 Gas flow into a rigid container.



For the rigid container in  Fig, 4-48 with constant volume V, ihe law o f conservation o f mass dictates 
chat in ứie container

(4.172)
dt dt dt

where Pi is fluid density before reaching the valve. A t the inlet (left side o f ửie valve), we have

~  = Pịq = q„ (4-173)
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Recall from Eq. (4-131)

dP/di dP 

dm dm/dp
dt dpỊdt

(4-174)

(4-175)

But from Eq. (4-169) we have

=  (4-176)
dt dt

(4-177)
Rl

Thus from Eqs. (4-176) and (4-173), and using R = Rl  for simplicity, we get
P i - P= (4-178)

dt R
or

+  ,4 . ,7 9 ,

The differenlial equation can be rearranged as
R C p + p = p i  (4-180)

In Laplace domain, the ưansíer function o f the system is written as

1
Pi{s) R C s + \

where the /ỈC  =  T is also known as the time constant o f the system. The significance o f this term
is discussed earlier in Chapter 2, and the in ilia l conditions are assumed to be p ( t  =  0) =
P i t  =  0) =  0.

Using an isothermal process, where temperature is constant, and taking a derivative o f Eq. 
(4-138) with respect to time, we have

= <4-182,

From Eq. (4-172) and Eq. (4-182), we gel

(4-181)

y d p  1 dp
dt R J  di

B ui from  Eqs. (4-169), (4-172), and (4-173), we have 

(it R i
Thus,

_ L  ^  =  P' ~ p
R J  dl R

After substituting

the differential Eqs. (4-186) and (4-179) become Ihe same.



4-6 Sensors and Encoders in Control Systems 189 

TABLE 4-7 Basic Fluid and Pneumatic System Properties and Their Units

Parameter Symbol Used SI Units Other Units Conversion Factors

Temperature T °c (Celsius) °F (Fahrenheit) ° c  =  ( ° F - 3 2 )  X 5 /9

°K  (Kelvin) °R (Rankin) = °  K  +  273

Energy (Hear Stored) Q J (joule) Btii
calorie

1J =  1 N-m 
lB t u =  1055 J 
lc a l =  4.184J

Volume Flow Rare Í m^/sec ft^/sec
in-VVec

Mass Flow Rare k g /sec lb /sec

Resistance (hydraulic) R N-sec/m^ Ibrsec/in^
Resistance (pneumatic) R sec/m ^ lb fh r /(f t ' Ib^)

Capacitance [hydraulic) c m’ /N in^/lb
Capacitance (pneumatic) c
Time Constant t  = R C sec

Using the polytropic process defined in Eq. (4-139), it is easy to see
R Cp + P =  Pi (4-187)

where

The SI and other measurement units for variables in eiectrica] systems are tabulated in Table 4-7.

► 4 - 6  S E N S O R S  A N D  E N C O D E R S  IN C O N T R O L  S Y S T E M S

4-6-1 Potentiometer

Sensors and encoders are im portant components used to m on ito r the perform ance and fo r 
feedback in  control systems. In  this section, the p rinc ip le  o f operation and applications o f  
some o f  the sensors and encoders that are com m only used in contro l systems are described.

A  potentiometer is an electromechanical ưansducer that converts mechanical energy into 
electrical energy. The input to the device is in the fo rm  o f  a mechanical displacemeni, either 
linear or rotational. When a voltage is applied across the fixed terminals o f  the potentiometer, 
the output voltage, which is measured across the variable term inal and ground, is profwrtional 
to  die input displacement, either linearly o r according to some nonlinear relation.

Rotary potentiometers are available com m ercially in single-revolution o r m ullirevolution 
form , w ith  lim ited  or unlim ited rotational motion. The potentiometers are com m only made w ith  
wirewound or conductive plastic resistance material. Fig. 4-49 shows a cutaway view o f  a rotary 
potentiometer, and Fig. 4-50 showsalinearpotentiometer that a lsocontainsabuilt-inoperahonal 
amplifier. For precision control, the conductive plastic potentiometer is preferable, because i l  has 
in fin ite  resolution, long rotational life , good output smoothness, and low static noise.

Fig. 4-51 shows the equivalent c ircu it representation o f  a potentiom eier. linear or 
rotary. Because the voltage across the variable term inal and reference is proportional to  the 
shaft displacement o f  the poientiom eter. when a voltage is applied across the fixed 
term inals, Ihe device can be used to indicate the absolute position o f  a system o r Ihe
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Mckel ribbon 
coil termmation 
(not shown)

Dual slider contact 
position guides

Solũerable brass 
terminals

Figure 4-49 Ten-turn rotary potentiometer (courtesy o f Helipot Division o f Beckman 
Instnimenis, Inc.),

Figure 4-50 Linear motion potentiometer with built-in operational amplifier (courtesy of 
Waters Manufacturing. Inc.).

relative position o f  tw o  mechanical outputs. Fig. 4-52(a) shows the aưangement when the 
housing o f  the potentiom eter is fixed at reference; the output voltage e<ỉ) w i l l  be 
proportional to  the shaft position 6>f(r) in  the case o f  a ro tary m otion. Then

e(r) =  K M ) (4-189)

Fixed
terminals

Q Variable 
terminal

Figure 4-51 Electric circuit representation o f a poientiometer.
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+

E  \

Figure 4-52 Potentiometer used as a position indicator, (bj Two potemiomeiers used to sense the 
positions o f two shafts.

where is the proportional constant. For an iV-tum potentiom eter, the to ta l displacement 
o f the variable arm is 2ni^  radians. The proportional constant Ks is g iven by

2ttN
v / ra d (4-190)

where £  is the magnitude o f  the reference voltage applied to  the fixed term inals. A  more 
flex ib le  arrangement is obtained by using tw o  potentiometers connected in  para lle l, as 
shown in F ig. 4-52(b). This arrangement allows the comparison o f  tw o  rem ote ly located 
shaft positions. The output voltage is taken across the variable term inals o f  the tw o 
potentiometers and is given by

e(t) =  Ks [ e ị { i } ~e 2 Ìt}\ (4-191)

F ig . 4-53 illus tra tes the b lo ck  d iagram  representation o f  the setups in  F ig . 4-52, In  
d c -m o to r con tro l systems, po ten tiom eters  are often used fo r  p o s itio n  feedback. F ig. 
4 -54(a) shows the schem atic d iagram  o f  a typ ica l dc -m o to r, p o s itio n -co n tro l system. 
The potentiom eters are used in  the feedback path to  com pare the actual load pos ition  
w ith  the desired reference pos ition . I f  there is a d iscrepancy between the load  pos ition  
and the reference inpu t, an e rro r s ignal is generated by the po ten tiom eters  tha t w il l  
d rive  the m o to r in  such a w ay tha t th is  e rro r is m in im ize d  qu ick ly . As shown in  F ig . 4-54
(a), the e rro r s ignal is a m p lif ie d  by a dc a m p lif ie r  whose ou tput drives the arm ature o f  a 
perm anent-m agnel dc m otor. T yp ica l w aveform s o f  the signals in  the system when the 
in p u t dr{t) is a step fu n c tio n  are shown in  F ig . 4 -54 (b ). N ote  tha t the e lec tric  s ignals are 
a ll unm odulated. In con fro l-system s tennino logw  a dc signa l usually refers to an 
u nm odu la ted  signal. On the o ther hand, an ac signa l refers to signals th a t are 
m od u la ted  by a m odula tion  process. These d e fin itio n s  are d iffe re n t fro m  those 
co m m o n ly  used in  e lec trica l eng ineering , where dc s im p ly  refers to u n id irec tiona l 
signals and ac ind icates a lte rna ting  signals.

Figure 4-53 Block diagram representation of poteniiometer arrangements in Fig. 4-52.
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9ilt)

X -----

Figure 4-54 (a) A  dc-motor. position-control sysiem with potentiometers as error sensors,
(b) Typical waveforms o f signals in ihc control system o f part (a).

F ig . 4 -55 (a ) illu s tra te s  a c o n iro l system th a i serves essen tia lly  the same purpose as 
that o f  the system in  F ig . 4 -54 (a ). except tha t ac s ignals p re va il. In  th is  case, the 
vo ltage app lied  to  ihe e rro r d e ie c io r is  s inuso ida l. The frequency o f  th is  s igna l is 
usua lly  m uch h ighe r lhan th a i o f  the s ignal tha t is be ing  transm itted  th rough ihe 
system. C on tro l sysiem s w ilh  ac s ignals are usua lly  found in  aerospace system s that 
are more susceptib le  to  noise.

Typica l signals o f an ac cornrol system are shown in F ig. 4-55(b). The signal V(I) is 
referred to  as the carrier whose frequency is o jc. or

.’( /)  =  £ s in o j(7 (4 -1 9 2 )
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Two-phase ac 
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Figure 4-55 (a) An ac conưol system with potentiometers as error detectors, (b) Typical waveforms 
o f signals in the control system o f part (a).

A na ly tica lly , the output o f the error signal is g iven by

e{t) =  K ,e^(t)v{t) (4-193)

where 6e(i ] is the difference between the input displacement and the load displacement, or

Oeịt) =  9r{t ) -  9 i ( t ) (4-194)

For the ỡe(t) shown in Fig. 4-55(b), e(l) becomes a su p p r essed -ca rr ier -m o d u la ted  signal. 
A  reversal in phase o f  eU) occurs whenever the signal crosses the zero-magnitude axis. This 
reversal in  phase causes the ac m otor to  reverse in  d irection according to  the desired sense 
o f  coưection o f the error signal 9e( t) .  The term  suppressed-carrier modulation  stems from  
the fact that when a signal 6e{t) is modulated by a carrier signal v(/) according to  Eq.



(4-193). the resultant signal e{i) no longer contains the o rig ina ] carrie r frequenc>- it>c. To 
illustra te  th is, le t us assume that ỡe{i) is also a sinusoid given by
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6 e { t )  =  s in c ư í/ (4-195)

where, norm ally, o ji  <Sia>c- Using fa m ilia r  tr igonom eu ic  re la tions and substitu ting Eqs. 
(4-192) and (4-195) in to  Eq. (4-193). we get

e{t) =  ịífi£ [cos(ít»c — coị)i — cos{o)c + (4-196)

4-6-2 Tachometers

Therefore. e(t)  no longer contains the carrie r frequency a>c or the signal frequency (Hf bul 
has o n ly  the tw o  sidebands OJC +  (Os and Cjc -  OJS.

W hen the m odulated signal is transm itted through the system, the m o to r acts as a 
dem odulator, so that the displacem ent o f the load w il l  be o f  the same fo rm  as the dc signal 
before m odulation. Th is  is c learly  seen from  the waveform s o f  F ig. 4*55(b). I i  should be 
pointed out that a contro l system need not contain a ll dc o r a ll ac components. I i  is quite 
com m on to  couple a dc component to  an ac com ponent through a m odulator, o r an ac 
device to a dc device through a demodulator. For instance, the dc a m p lifie r o f  the sysiera in 
Fig. 4-55(a) may be replaced by an ac a m p lifie r that is preceded by a m odu la io r and 
fo llo w e d  by a dem odu la io r

Tachometers are electromechanical devices that convert mechanical energ>’ in to  elecoical 
energy- The device w orks essentially as a voltage generator, w ith  the ou tput vo luge 
proportional to  the m agnitude o f  the angular ve loc ity  o f  the input shaft. In  conưol systems, 
m ost o f the tachometers used are o f  the dc varie ty: that is. the output voltage is a dc signal. 
D C  tachometers are used in contro l systems in  many ways; they can be used as ve loc itj' 
indicators to  provide shaft-speed readout, ve loc ity  feedback, speed conưol. o r stabilization. 
F ig. 4-56 is a b lock  diagram o f  a typ ica l ve loc ity -con tro l system in w h ich  ứie tachometer 
output is compared w ith  the reference voltage, w hich represents the desired ve lociụ- to be 
achieved. The d ifference between the tw o signals, or the eưor. is am plified  and used to 
d rive the m otor so Uiat the ve loc ity  w il l  eventually reach the desired value. In  th is type o f 
application, the accuracy o f  the tachometer is h ig h ly  c ritica l, as the accuracy o f  the speed 
con tro l depends on it.

In  a pos ition-con tro l system, ve loc ity  feedback is often used 10 im prove the s tab ilit}' or 
the dam ping o f the closed-loop system. F ig. 4-57 shows the b lock  diagram  o f  such an
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application. In  th is case, the tachom eter feedback form s an inner loop  to im prove the 
dam ping characteristics o f  the system, and the accuracy o f  the tachometer is not so critica l.

The th ird  and most trad itiona l use o f  a dc tachometer is in  p rov id ing  the v isual speed 
readout o f  a rotating shaft. Tachometers used in th is capacity are generally connected 
d irec tly  to  a vo ltm eter calibrated in  revo lutions per m inute (rpm ).

M a th e m a tic a l M o d e lin g  o f  T achom eters
The dynam ics o f  the tachometer can be represented by the equation

e,{i) =  K,
de(t)

dt
(4-197)

where ể ,(0  is the output voltage; 9{t), the ro to r displacem ent in radians; the ro to r 
ve loc ity  in  rad/sec; and K„ the ta chom ete r constan t in  v /rad/sec. The value o f  K, is 
usually g iven as a catalog parameter in  vo lts  p e r 1000 rp m  (V /krpm ).

The transfer function o f  a tachometer is obtained by taking the Laplace transform  on 
both sides o f  Eq. (4-197). The result is

E,{s)
e(5)

=  K,s (4-198)

where E,ịs) and 0 ( i )  are the Laplace transforms o f  e,(l) and 9{r), respectively.

4-6-3 Incremental Encoder

Increm ental encoders are frequently found in  modern control systems fo r converting linear 
o r rotary displacement in to  d ig ita lly  coded or pulse signals. The encoders that output a 
d ig ita l signal are known as absolute encoders. In  the simplest terms, absolute encoders 
p rovide as output a d is tinc t d ig ita l code ind ica tive  o f  each particu lar least s ignificant 
increm ent o f  resolution. Incremental encoders, on the other hand, provide a pulse fo r each 
increm ent o f  resolution but do not make d is tinctions between the incremems. In practice, 
the choice o f  wh ich  type o f encoder to  use depends on economics and contro l objectives. 
For the most part, the need fo r absolute encoders has much to do w ith  the concern fo r data 
loss during power fa ilure or the applications in vo lv ing  periods o f  m echanical m otion 
w ithou t the readout under power. However, the incremental encoder's s im p lic ity  in 
construction, low  cost, ease o f application, and versa tility  have made it by fa r one o f 
the most popular encoders in contro l systems. Increm ental encoders are available in rotary
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Figure 4-58 Rotary incremental encoder 
(courtesy o f DISC Instruments, Inc.).

Figure 4-59 Linear incremenial encoder 
(courtesy o f DISC Instruments. Inc.).

and linear form s. Fig. 4-58 and Fig. 4-59 show typ ica l rotary and linear incremental 
encoders.

A  typ ica l rotary increm ental encoder has fou r basic parts: a lig h t source, a rotary disk, 
a stationary mask, and a sensor, as shown in  F ig. 4-60. The d isk has alternate opaque and 
transparent sectors. A ny  pa ir o f  these sectors represents an increm ental period. The mask is 
used to  pass o r b lock  a beam o f  lig h t between the lig h t source and the photosensor located 
behind the mask. For encoders w ilh  re la tive ly  low  resolution, the mask is  no i necessary. For 
fine-resolution encoders (up to ihousands o f  increm enis per evo lu tion), a m u ltip le -s lit mask 
is often used to m axim ize reception o f  the shutter ligh t. The waveform s o f  the sensor 
outputs are generally triangular o r sinusoidal, depending on the reso lution required. 
Square-wave signals com patib le w ith  d ig ita l log ic  are derived by using a linear amplifier 
fo llow ed by a comparator. Fig. 4-61(a) shows a typ ica l rectangular ou tpu t waveform  o f a 
single-channel increm ental encoder. In  th is case, pulses are produced fo r  both directions of 
shaft rotation. A  dual-channel encoder w ith  tw o sets o f  output pulses is necessary for 
d irection  sensing and other contro l functions. W hen the phase o f  the tw o-ou tpu t pulse ưain 
is 90° apart e lectrica lly , the tw o  signals are said to  be in  quadrature, as shown in  Fig. 4-61
(b). The signals un iquely define 0 -to - l and 1-to-O log ic  transitions w ith  respect to  the 
d irection o f  rotation o f  the encoder d isk so that a direction-sending log ic  c ircu it can be 
constructed to  decode the signals. F ig. 4-62 shows the single-channel output and the

Stationaiy 
mask

Figure 4-60 Typical incremental optomechanics.

Sensor 
photovoltaic cell, 
pholoiransisior, 

phntodiode)
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Figure 4-61 (a) Typical rectangular output waveform o f a single-channel encoder device 
(bidirectional), (b) Typical dual-channei encoder signals in quadrature {bidirectional).

Figure 4-62 (a) Typical sinusoidal output waveform o f a single-channel encoder device.
(b) Typical dual-channel encoder signals in quadrature.

quadrature outputs w ith  sinusoidal wavefonns. The sinusoidal signals from  the incremental 
encoder can be used fo r fine position con tro l in feedback contro l systems. The fo llo w in g  
example illustrates some applications o f the increm ental encoder in  con tro l systems.

EXAMPLE 4-6 Consider an incremental encoder that generates two sinusoidal signalb in quadrature as the encoder 
disk rotates. The output signals o f the two channels are shown in Fig. 4-63 over one cycle. Note that 
the two encoder signals generate 4 zero crossings per cycle. These zero crossings can be used for 
position indication, position control, or speed measurements in control systems. Let us absume that 
th e  e n c o d e r  sh a ft is  co u p led  d irec tly  to  th e  ro to r  sh a ft o f  a m o to r  th a t directly d n v e s  th e  p r in tw h ee l o f  
an electronic typewriter or word processor. The printwheel has %  charactcr positions on its periphery, 
a n d  th e  e n c o d e r  has 4 8 0  cy cle s . T h u s , the re  a re  4 8 0  X 4  =  1920 z e ro  c ro ss in g s  p e r  rev o iu tio n . F o r  the  
96-character printwheel. this coưesponds to 1920/96 = 20 zero crossings per character; that is. there 
are 20 zero crossings between two adjacent characters.
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O utput channel I O utput channel 2

Figure 4-63 One cycle o f the output 
signals o f a dual-channel 
incremental encoder.

One way o f measuring the velocity o f the printwheel is to count the number o f pulses generated 
by an electronic clock that occur between consecutive zero crossings o f the encoder outputs. Let us 
assume that a 500-kHz clock is used; thal is. the clock generates 500,000 pulses/sec. I f  the counter 
records, say. 500 clock pulses while the encoder rotates from the zero crossing to the next, ứie shaft 
speed is

500 pulses/zero crossing

.  lono^^rocrossings/sec ^  „  52083rev/sec 
1920 zero crossings/rev 

=  31.25 rpm

The encoder arrangement described can be used for fine position control o f the priniwheel. Let the 
zero crossing A o f the waveforms in Fig. 4-63 correspond to a character position on ihe printwheel 
(the next character position is 20 zero crossings away), and the point corresponds to a stable 
equilibrium point. The coarse position control o f the system must first drive the printwheel position to 
within 1 zero crossing oneiUierside o f position/4; then, by using the slope of the sine wave at position 
A. the control system should null the error quickly.

4 - 7  D C  M O T O R S  IN C O N T R O L  S Y S T E M S

D irec t-cu rren t (dc) m otors are one o f  the m ost w id e ly  used prim e  m overs in  the industry 
today. Years ago, the m a jo rity  o f  the sm all servom otors used fo r  co n tro l purposes were 
ac. In  rea lity , ac m otors are more d if f ic u lt  to  co n tro l, espec ia lly  fo r  po s itio n  co n tro l, and 
th e ir characteristics are qu ite  nonlinear, w h ich  makes the ana ly tica l task m ore d iff ic u lt. 
D C  m olors. on ihe other hand, are more expensive, because o f  th e ir  brushes and 
com m utators, and va ria b le -flu x  dc m otors are suitab le  o n ly  fo r  certa in  types o f  contro l 
app lications. B e fo re  perm anent-m agnet techno logy was fu l ly  developed, the torque- 
per-un it vo lum e o r w e igh t o f  a dc m o to r w ith  a perm anent-m agnet (P M ) fie ld  was far 
fro m  desirable. Today, w ith  the developm ent o f  the rare-earth m agnet, i t  is possible to 
achieve very  h igh  to rque-to -vo lum e PM  dc m otors at reasonable cost. F urtherm ore, the 
advances made in  b rush-and-com m uia to r techno logy have made these wearable parts 
p ra c tica lly  m aintenance-free. The advancements made in  pow er e lectron ics have made 
brushless dc m otors qu ite  popu la r in h igh-perfo rm ance con tro l systems. Advanced 
m anufactu ring  techniques have also produced dc m otors w ith  iron less ro to rs  tha t have 
very low  ine rtia , thus ach iev ing  a very  h igh  to rq u e -to -ine rtia  ra tio . Low -tim e-cons tan t 
properties have opened new app lica tions fo r  dc m otors in com puter periphera l equ ip 
ment such as tape drives, p rin ters, d isk drives, and w o rd  processors, as w e ll as in  the 
au tom ation and m ach ine-too l industries.
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Ạ U iiifonn. radially, 
\  \  I  /  oriented magnetic

Conductor 
carrying 
current /

Cenier o f
rotation Figure 4-64 T o rq u e  p ro d u c tio n  in a  d c  m otor.

4-7-1 Basic Operational Principles of DC Motors

The dc m otor is basically a torque transducer that converts e lectric energy in to  mechanical 
energy. The torque developed on the m otor shaft is d irec tly  p roportional to the fie ld  flux
and the armature cuưent. A s  shown in  F ig . 4-64, a current-carry ing conductor is
established in  a magnetic fie ld  w ith  flu x  <p. and the conductor is located at a distance r 
fro m  the center o f  rotation. The re la tionship among the developed torque, flux  Ộ, and 
current is

T„ = K„,ộia (4-200)

where Tm is the m o to r torque (in  N -m , Ib -ft, or oz-in .); 0 , the magnetic flux  (in  webers); ia, 
the armature cuưent (in  amperes); and K„, a p roportional constant.

In  addition to  the torque developed by the arrangement shown in  F ig. 4-64, when the 
conductor moves in  the m agnetic fie ld , a voltage is generated across its term inals. This 
voltage, the back em f, w hich is p roportional to  the shaft ve locity, tends to  oppose the 
current flow. The relationship between the back e m f and the shaft ve loc ity  is

e h = K ^ ộ u ^ „  (4-201)

where eh denotes the back em f (vo lts) and 0)m is the shaft ve loc ity  (rad/sec) o f  the motor. 
Eqs. (4-200) and (4-201) form  the basis o f  the dc-m otor operation.

4-7-2 Basic Classifications of PM DC Motors

In  general, the magnetic fie ld  o f  a dc m o to r can be produced by fie ld  w ind ings o r permanent 
magnets. Due to the popu la rity  o f  PM  dc motors in  con tro l system applications, we shall 
concentrate on th is type o f  motor.

PM  dc motors can be classified according 10  com m utation scheme and armature 
design. Conventional dc motors have mechanical brushes and commutators. However, an 
im portant type o f  dc motors in w h ich  the com m utation is done e lectron ica lly  is called 
b riish less dc.

Accord ing  to  the armature construction, the PM  dc m otor can be broken down into 
three types o f  armature design: iro n -co re , su rface -w ound , and m o v in g -co il motors.

Iro n -C o re  P M  D C  M o to rs
The ro to r and stator configuration o f  an iron-core PM  dc m otor is shown in Fig. 4-65. The 
permanent-magnet m aterial can be barium  ferrite . A ln ico , or a rare-eanh compound. The 
magnetic flux produced by the magnet passes through a lam inated ro to r structure that 
contains slots. The armature conductors are placed in the ro lo r slots. Th is  type o f  dc m otor
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Conductors 
(bonded to  rotating

Figure 4-65 Cross-section view o f a permanent- 
magnet (PM) iron-core dc motor.

Figure 4-66 Cross-section view o f a surface- 
wound permanent-magnei (PM) dc motor.

is characterized by re la tive ly  high ro to r inertia  (since the ro ta ting  part consists o f  the 
armature w indings), h igh inductance, low  cost, and h igh re liab ility .

S u rfa ce -W o u n d  D C  M o to rs
Fig. 4-66 shows the ro to r construction o f a surface-wound PM  dc m otor. The armature 
conductors are bonded to the surface o f  a cy lin d rica l ro to r structure, w h ich  is made o f 
lam inated disks fastened to  the m otor shaft. Because no slots are used on the ro to r in this 
design, the armature has no "co g g in g ”  e ffect. The conductors are la id  ou t in  the a ir gap 
between the ro to r and the PM  fie ld , so th is type o f  m otor has low er inductance than that o f 
the iron-core structure.

M o v in g -C o ii D C  M o to rs
M oving-co il motors are designed to have very low  moments o f  inertia and very low  armature 
inductance. This is achieved by placing the armature conductors in ứie a ir gap between a 
stationary flux return paửi and the PM  structure, as shown in Fig. 4-67. In this case, the 
conductor structure is supported by nonmagnetic material— usually epoxy resins or fiber
glass— to form  a hollow  cylinder. One end o f  the cylinder form s a hub. w hich is attached to the 
m otor shaft. A  cross-section v iew  o f  such a m otor is shown in  Fig. 4-68. Because aU

Conductors 
(bonded together by

Figure 4-67 Cross-section view o f a surface- 
wound permanent-magnet (PM j dc motor.
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Figure 4-68 Cross-section side view o f a moving-coil dc motor.

unnecessary elements have been removed from  the armature o f  the m oving-co il motor, its 
m oment o f  inertia is very low, Because the conductors in the m oving-co il armature are not in 
dưect contact w ith  iron, the m otor inductance is very low, and values o f  less ửian 1 0 0 /iH  are 
common in  this type o f  m o to r Its low -inertia  and low-inductance properties make the moving- 
co il m otor one o f the best actuator choices fo r high-performance conưol systems.

B rush less D C  M o to rs
Brushless dc motors d iffe r from  the previously mentioned dc motors in  that they employ 
e lectrica l (rather than mechanical) com m utation o f  the armature cuưent. The most common 
configuration o f  brushless dc motors— especially fo r  increm ental-m otion applications— is 
one in  w hich the ro to r consists o f  magnets and “ back-iron " support and whose commutated 
w ind ings are located external to  the rotating parts, as shown in Fig. 4-69. Compared to the 
conventional dc motors, such as the one shown in F ig. 4-68, i t  is an inside-out configuration.

Depending on the specific application, brushless dc motors can be used when a low 
m om ent o f  inertia  is needed, such as the spindle drive in  high-perform ance disk drives used 
in computers.

4-7-3 Mathematical Modeling of PM DC Motors

Dc motors are extensively used in conưol systems. In  this section we establish the 
mathematical model fo r dc motors. As it w il l be demonstrated here, the mathematical model 
o f  a dc m otor is linear. We use the equivalent circu it diagram in Fig. 4-70 to represent a PM  dc

Figure 4-69 Cross-section view o f a brushless. 
permaneni-magnet (PM), iron-core dc motor.
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Figure 4-70 Model o f a separately 
excited dc motor.

motor. The armature is modeled as a cừcuit w ith  resistance R„ connected in  series w ith an
inductance La, and a voltage source €h representing the back e m f (elecữomoiive force) in the
annature when the ro tor rotates. The m otor variables and parameters are defined as follows:

=  arm aturecuưent Lo =  armature inductance

=  armature resistance Bait) =  applied voltage

ef,(t) =  b a cke m f K h  =  back-em f constant

T i{ t )  =  load torque 4> =  m agnetic flu x  in the a ir  gap

T „ , ( i )  =  m otorto rque to,n{t) =  ro to r angular ve loc ily

6m{t) =  ro to r displacement Jn, — ro to rin e rtia

K i =  torque constant Bj„ =  v iscous-fric tion  coe ffic ien t

W ith  reference to the c ircu it d iagram o f  F ig. 4-70, the contro l o f  the dc m o to r is applied at 
the armature term inals in the fo rm  o f  the applied voltage e^(l). For linear analysis, we
assume that the torque developed by the m otor is p roportional to the a ir-gap flux  and the
armature cuưent. Thus,

T„,(l) =  (4-202)

Because Ộ is constant. Eq. (4-202) is w ritten

=  K ii^ự ) (4-203)

where K, is the to rq u e  cons tan t in N -m /A , lb -fư A , or oz-in /A .
S tarting w ith  the contro l input voltage e^ịi), the cause-and-effect equations fo r  the 

m otor c ircu it in Fig. 4-70 are

T ,M  =  (4-205)

Shit) =  (4-206)
at

where TiU ) represenis a load fric tiona l torque such as C ou lom b fr ic tio n .
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Figure 4-71 Signa]-flow graph diagram o f a dc-motor system with nonzero iniiia l conditions.

Eqs. (4-204) through (4-207) consider that the applied voltage CaU) is the cause; Eq. 
(4-204) considers that d ij,t) ld i is the im m ediate effect due to in  Eq. (4-205), i j .t)  
causes the torque Eq. (4-206) defines the back em f; and, fina lly , in  Eq. (4-207). the 
torque 7 „,( /)  causes the angular ve loc ity  C0m{t) and displacement

The state variables o f  the system can be defined as and ỡm(í). B y direct
substitution and e lim ina ting  a ll the nonstate variables from  Eqs. (4-204) through (4-207), 
the state equations o f  the dc-m otor system are w ritten  in  vector-m atrix form :

r d ia { t )  1
d t

dco m il)

dr
d 0 ,n {t)

. d t  .

Ra
i-a La

Ki Bm
Ũ
0 1

■ ỉ« (í) ■
• 1 • 0  •

+ i'O
0 ea{l) +

1

~ T m

. 0 . . 0  .

Tl {í ) (4-208)

N otice  that, in  th is case, T iịt)  is treated as a second inpu t in  the state equations.
The SFG diagram o f  the system is drawn as shown in  Fig. 4-71, using Eq. (4-208). The 

transfer function between the m otor displacement and the input voltage is obtained from  
the state diagram as

Ki
Ea{s) +  [RaJm +  B,„La)s'^ +  [Kt,Ki +  R M s

(4-209)

where TiU ) has been set to zero.
Fig. 4-72 shows a b lock-diagram  representation o f  the dc-m otor system. The advan

tage o f  using the b lock  diagram is that i t  gives a clear picture o f  the transfer function

U s)

Figure 4-72 Block diagram of a dc-motor system.



re la tion between each b lock  o f  the system. Because an s  can be factored ou t o f  the 
denom inator o f  Eq. (4-209), the significance o f  the tr a n te r  function  €>m{s)/Ea{s) is that 
the dc m otor is essentially an integrating device between these two varktbies. Th is  is 
expected because, i f  CaU) is a consiant inpu t, the ou tput m o to r d isplacem ent w i l l  behave as 
the output o f an integrator; that is. it  w ill increase linearly w ith time.

AlU iough a dc m o to r by its e lf is basica lly an 0 f>en-l00p system, the SFG diagram  o f  Fig. 
4-71 and the b lock  diagram o f  Fig. 4-72 show that the m o to r has a “ b u ilt- in ”  feedback loop 
caused by the back emf. Physically, the back e m f represents the feedback o f  a signal that is 
proportional to the negative o f  the speed o f  the motor. As seen fro m  Eq. (4-209), the back- 
e m f constant K(, represents an added term  to  the resistance Ra and the viscous-friction 
coe ffic ien t B„. Therefore, the b a ck -em f effect is equivalent to  an ' 'electricfriction, ’ ■ which 
fends to improve the stabiỉity o f  the m otor and, in general, the stability o f  the system.

R ela tio n  b e tw een  Ki a n d  Ki,
Although  fu n c tiona lly  the torque constant K, and back-em f constant Kb are tw o  separate 
parameters, fo r  a g iven m otor the ir values are c losely related. To show the relationship, we 
w rite  the m echanical pow er developed in  the armature as

P =  e b { tM l)  (4-210)

The m echanical power is also expressed as

P  =  Tr„it)(o„it) (4-211)

where, in SI units. T„{t) is in N-m and is in rad/sec. Now, substituting Eqs. (4-205) 
and (4-206) in  Eq. (4-210). we get

P  =  7 - „ ( ;)a ) ,( ( )  =  * r K » „ ( i ) ^  (4-212)

from  w h ich  we get

Kh{Vhaà/sec) =  K i(N -m /A )  (4-213)

Thus, we see that, in SI units, the values o f  K/f and Kị are identica l i f  Kh is represented in 
v/rad/sec and K, is in N-m/A.

In  the B ritish  un it system, we convert Eq. (4 -210) in to  horsepower (hp); that is,

np  =  — hp (4-214)

In  terms o f  torque and angular ve loc ity , p  is

where is in ft-lb  and (Jửm[t) is in rad/sec. Using Eq. (4-205) and (4-206). and equating 
Eq. (4-214) to E q . (4-215). we get

T̂{t)w„{t) ___
-  550

204 ► Chapter 4. Theoretical Foundation and Background Material: Modeling of Oynamic Systems



4-8 Systems with Transportation Lags {Time Delays) 205

Thus,

550 '

where Kh is in v/racưsec and Kị is in ft-lb/A.

(4-217)

y 'S T E M S  W IT H  T R A N S P O R T A T I O N  L A G S  (T IM E  D E L A Y S )

Thus far, the systems considered all have transfer functions that are quotients o f 
polynomials. In practice, pure time delays may be encountered in various types o f systems, 
especially systems with hydraulic, pneumatic, or mechanical transmissions. Systems with 
computer control also have time delays, since it takes time for the computer to execute 
numerical operations. In these systems, the output w ill not begin to respond to an input 
until after a given time interval. Fig. 4-73 illustrates systems in which ưansporiation lags or 
pure time delays are observed. Fig. 4-73(a) outlines an arrangement where two different 
fluids are to be mixed in appropriate proportions. To assure that a homogeneous solution is 
measured, the monitoring point is located some distance from the mixing point. A  time 
delay therefore exists between the mixing point and the place where the change in 
concentration is detected. I f  the rate o f flow o f the mixed solution is V inches per second 
and d  is the distance between the m ixing and the metering points, the time lag is given by

(4-218)

I f  it  is assumed that the concentration o f the mixing point is >>(f) and that it  is reproduced 
without change Td seconds later at the monitoring point, the measured quantity is

(4-219)

Thickness- 
measuring gauge

“ 0 “

Figure 4-73 Systems with transportation lag.
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The Laplace transform  o f  Eq. (4-219) is

where y ( i)  is the Laplace transform  o f  > (/). The ưansíer fu n c tio n  between b{t) and j ( 0  is

(4-221)

Í4-220)

Y(s)

Fig . 4 -73(b) illustra tes the con tro l o f  th ickness o f  ro lled  steel plates. The transfer funciioD 
between the thickness at the ro lle rs  and the m easuring po in t is again given by Eq. (4-221).

4-8-1 Approximation of the Time-Delay Function by Rational Functions

Systems that are described inherently by transcendental transfer functions are more 
d if f ic u lt to  handle. M any analytica l tools such as the R ou th -H urw itz  c rite rion  (Chapter 2) 
are restricted to  rational transfer functions. The root-locus technique (Chapter 7) is also 
more easily applied o n ly  to  systems w ith  rational transfer functions.

There are many ways o f  approxim ating by a rational function . One way is to 
approxim ate the exponentia l func tion  by a M aclaurin  series; that is,

j i p .
e-'^“  \ ĩấ T js  + - ỉi^  (4-222)

\ + T i S  +  T y i 2
(4-223)

where on ly  Ihree terms o f  the series are used. Apparently, the approxim ations are not valid 
when the m agnitude o f  7 >  is large.

A  better approxim ation is to  use the Fade approxim ation [5, 6 ], w h ich  is given in  the 
fo llo w in g  fo r a tw o-term  approxim ation:

The approxim ation o f  the transfer function  in  Eq. (4-224) contains a zero in  the right-ha lf 
i-p lane  so that the step response o f  the approxim ating system may e xh ib it a sm all negative 
undershoot near I =  0.

4 - 9  L IN E A R IZ A T IO N  OF N O N L IN E A R  S Y S T E M S

From  the discussions g iven in  the p receding sections on basic system m ode ling , we 
should rea lize  tha t m ost com ponents found in  phys ica l systems have no n lin e a r char
acteristics. In  practice, we may find  tha t some devices have moderate nonlinear 
characteristics, o r non linea r properties that w ou ld  occur i f  they were d riven  in to  certain 
operating regions. For these devices, ihe m ode ling  by linear-system  m odels m ay give 
quite  accurate ana ly tica l results over a re la tive ly  w ide  range o f  opera ting  conditions.



H ow ever, there are numerous phys ica l devices tha t possess strong non linea r character
is tics . F o r these devices, a linearized  m ode l is v a lid  o n ly  fo r  l im ite d  range o f  operation 
and often  o n ly  a t the operating p o in t at w h ich  the line a riza tio n  is  caư ied  out. M ore  
im p o rta n tly , when a non linear system is linea rized  at an opera ting  p o in t, the linea r 

m ode l m ay con ta in  tim e -va ry in g  elements.

earization Using Taylor Series: Classical Representation

In  general. T ay lo r series may be used to  expand a nonlinear function  / ( x ( 0 )  about a 
reference o r operating value Xo(t)- A n  operating value could be the e q u ilib r iu m  position in 
a spring-mass-damper, a fixed  voltage in  an e lectrica l system, steady state pressure in  a 
flu id  system, and so on. A  function  ^ x ( i ) )  can therefore be represented in  a form

f{x(t)) = Ỳ,c,{x{t)-M<))‘ (4-225)
i= l

where the constant c, represents the derivatives o f ^ x ( / ) )  w ith  respect to  x{t)  and evaluated 
at the operating po in t X(^t). That is
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1

'  /!
(4-226)

f i m  = f M i )  +  -  M ' ) )  +  -  M i ) f +
d t  2  *  (4_227)

I f  A (x ) =  j: ( f )  — is  sm a ll, the series Eq. (4 -2 2 7 ) converges, and a lin e a riza tio n  
scheme m ay be used by re p lac ing  y (x ( f ) )  w ith  the firs t tw o  term s in  E q. (4 -227). 
T h a t is,

f(xự)) « / ( ^ o ( 0 )  +  - Mt)i (4.228)

=  C0 +  C ii: lr

earization Using the State Space Approach

A lte rna tive ly , let us represent a nonlinear system by the fo llo w in g  vector-m atrix state 
equations:

^ = f | x ( ( ) , r ( , ) l  (4-229)

w here x ( 0  represents the rt X 1 slate vector; r ( /) ,  the /7 X 1 input vector; and f[x (i). r  
( Í ) ] ,  an n X 1 fu n c tio n  vector. In  genera l, f  is a fu n c tio n  o f  the state ve c to r and the in p u t 
vector.
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Being able to  represent a non linear and/or tim e-vary ing  system by state equations is a 
d is tin c t advantage o f  the state-variable approach over the ttansfe r-function  m e th o d  since 
the la tte r is s tric tly  defined o n ly  fo r  linear tim e-invarian t systems.

As a sim ple example, the fo llo w in g  nonlinear state equations are g iven:

<fa2 (0
dt

-  jr i ( /)  +  r (t)

(4-230)

(4-231)

Because nonlinear systems are usually d if f ic u lt  to  analyze and design, i t  is desirable to 
perform  a lineariza tion  whenever the s ituation jus tifies  it.

A  lineariza tion  process that depends on expanding the non linear state equations into a 
Tay lo r series about a nom inal operating po in t or tra jectory is now described. A l l  the terms 
o f  the Tay lo r series o f  order h igher than the firs t are discarded, and the linear approximation 
o f  the nonlinear state equations at the nom inal po in t results.

Let the nom inal operating ưajectoiy be denoted by xo(0- w hich corresponds to the 
nom inal input ro (0  and some fixed in itia l states. Expanding the nonlinear state equation o f Eq, 
(4-229) in to  a Taylor series about x ( /)  =  xo (/) and neglecting all the higher-order terms yields

í i í

where f =  1, 2 ......... /Ỉ. Let

( r , - r „ ị )  (4-232)

ÌJt/ =  X, -  xo, (4-233)

Eq. (4-232) is w ritten

M i  -  Xi -  XQi

Xoi =  / i( x o ,ro )

(4-234)

(4*237)

Eq. (4-237) may be w ritten  in vector-m atrix form ;

A x  =  A A x ^ B ’ A r
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(4-239)

m 3 f r

d x Ị dX2 3 x „

d h Ẽ ẩ d f i

d x i dx2 d x „

d h d f .

d x Ị 6X2 d x „ .

f i . S A '

S r i d r i d r ,

% Ể .
ổ r . B n d r p

% L  . .
d n d r2

(4-240)

The fo llo w in g  examples serve to  illus tra te  the lineariza tion  procedure ju s t described.

m with a mass m  and a massless rod o f length /. as shown iiXAMPLE 4-9-1 Find the equation o f motion o f a 
Fig. 4-74.

SOLUTION Assume the mass is moving in  the positive direction as defined by angle 0. Note that 6 is 
measured from the X axis in the counter-clockwise direction. The first step is to draw the free-body 
diagram o f the components o f the system, i.e., mass and the rod, as shown in Fig. 4-74(b). For the 
mass m, the equations o f motion are

'Y ^F ^ =  ma:, (4-241)

Y ^ F y  =  timy  (4 -2 4 2 )

where f v  and Fy are ihe external forces applied to mass m, and and Oy are ihe components of
acceleration o f m ass m  in X and y, respectively. Acceleration o f mass m  is a vector with tangential and
cenữipeial components. Using the rectangular coordinate frame (x, y) representation, acceleration vector is 

a =  ( fẽ c o s e - íé ^ s in » ) j (4-243)

w h ere  I a n d  J are the un it vectors a lo n g  X  and y  directions, respective ly. A s a result,

a , =  ( - ( ’ớ s i n ớ  -  (4 -2 4 4 )

Oy =  ^ÍỠCOSỠ-

▼

o
Figure 4-74 (a) A  spring-supponed pendulum,

(b) (b) Free-body diagram o f mass m.



Considering the external forces applied to mass, we have

^  =  - F t cos e + mg (4-246)

- F t sine  (4-247)

Eqs. (4-241) and (4-242) may therefore be rewritten as

- F t cose + mg = m(^-e 'àúne -  eế^ sine )  (4-248)

- P ĩ ú n e  = m ^eecose -  eè^ sindj (4-249)

Premuliiplying Eq. (4-185) by ( -s in ỡ )  and Eq. (4-186) by (cos Ớ) and adding the two, we get 

-m g  sin Ớ =  m íẻ  (4-250)

w here (sin^ớ +  COS =  1 ). A fter rearranging, Eq. (4 -2 5 0 )  is  rew ritten as

mee + mgsin9 = 0 (4-251)

^  S .ớ +  |s in ớ  =  0 (4-252)

In brief, using static equilibrium position Ỡ =  0 as the operating point, for small motions the
linearization o f the system implies AỠ =  Ỡ s= sin Ỡ. Hence, the linear represenlaiion o f the system is

9 +  | e  =  0 .

Alternatively in the state space form, we define X] =  Ớ and X2 =  Ớ as state variables, and as a result ihe 
state space representation o f Eq. (4-252) becomes 

i |  =X2
8 : _ Í4-253)

X2 =  s in x j

Substituting Eq. (4-253) into (4-173) with r( f)  =  0, since there is no input (or external excitations) in 
this case, we gel

^ l ( 0  (4-254)
9X2

=  ( « 5 5 )

where Ajt| (i) and ầX2{t) denote nominal values o f XiU) and X2U). respectively. Notice ứiat the lasi
two equations are linear and are valid only for small signals. In vector-maưix form, these linearized
Slate e q u a tio n s  a re  w ri tte n  as

Ffl lir Av.^fAl

Í4-257)

It is o f interest to check the significance of the linearization. If  Xoi is chosen to be at the origin o f the 
nonlinearity, xo\ = 0, ứien a = K'.Eq. (4-255) becomes

A x2 (n  = K S x i { i )  (4-258)
Switching back to classical representation, we gel

6 +  Ke =  0 (4-259)
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’^ i ( 0 0  r 'A x , (I)
. ^ 2 ( 0 , ữ 0 ^ A x2(r)

► EXAMPLE 4-9-2 For the pendulum shown in Fig, 4-74, re-derive the differentia] equation using the moment equation.

For the momem equatic 
nt o.

Mo =  m ỉ^a  

- Ỉ  sinớ • mg =

SOLUTION The free-body diagram for the rnomem equation is shown in Fig. 4-74. Applying ỨK 
moment equation about the fixed point o.



Rearranging the equation in the standard input-output differential equation form,

m ế è  +  m g Ề ĩ\ĩ i6  =  Q (4 -2 6 1 )

or

ớ +  |s in ỡ  =  0 (4-262)

which is the same result obtained previously. For small motions, as in Example 4-9-Ỉ,
sinớ *= 9 (4-263)

The linearized differentiai equation is

9 + ojl9 = 0 (4-264)

where

= Ậ  (4-265)

<

KAMPLE 4-9-3 In Example 4-9-1, the linearized system turns out to be time-invariant. As mentioned earlier,
linearization o f a nonlinear system often results in a linear time-varying system. Consider the
follow ing nonlinear system:

(4-266,

iz (< )= « ( f ) j t l ( ')  ( « 6 7 )

These equations are 10 be linearized about the nominal trajectory [;to i(i)' -̂ 02(0 1 ' which is the solution 
to  the equations w ith  in itia l conditions X\ (0 ) =  X2 (0 ) =  1 and inp u t u { t)  =  0.

Integrating boUl sides o f Eq. (4-267) w ith respect to t, we have

;c2(i)=X2(0) =  l  (4-268)

Then Eq. (4-266) gives

=  (4-269)

Therefore, the nominal trajectory about which Eqs. (4-266) and (4-267) are to be linearized is described by 
^ o ,(f) =  - r + l  (4-270)

XQzit) =  1 (4-271)

Now evaluating the coefficients o f Eq. (4-237), we get

„  s / i (0  2 % ( »  S/2 Í0
d x ,{ ,} ° ai2(>) ii(0 aii(i) M , )

Eq. (4-237) gives

<^2(0 =  « o ( 0 ^ ! ( 0  (4-274)

B y substitu ting Eqs. (4-270) and (4-271) in to  Eqs. (4-273) and (4-274), the linearized equations are

A«(i) (4-275)

4-9 Linearization of Nonlinear Systems -*i 211

A ii( / ) 0 2 ^ l ( i ) 0
A Ì2( í) . 0 0 ủjT2(í) 1 - f

which is a set o f linear state equations with time-varying coefficients.
Fig. 4-75 shows the diagram o f a magnetic-ball-suspension system. The objective o f the system 

is to control the position o f the steel bail by adjusting the current in the eiecưomagnet ihrough the 
input voltage e(l). The differential equations o f the system are

H i ) =  « i( ')  +  (4-277)at
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Mg
Figure 4-75 Magnetic-ball-suspension system.

where

e{t) =  input voltage

y{t) =  ball position

i{t) =  winding current

R =  winding resistance

L =  winding inductance

M — mass o f ball

g =  gravitational acceleration

Let us define the slate variables 
equations o f the system are

Ỉ X ][ f)^ y { t) ,X 2 (t)= d y{l)ld t. and XĩU) = i{t). The stale 

dxi it)
dt

dX2(t)

■ = X2Ìt)

1 # )
M x iit)

Let us linearize the syslem about ihe equilibrium point >>o(i) =  JTOI =  constant. Then,

di

=  0

(4-278)

(4-2791

(4-280)

(4-281;

(4-282:

The nominal value o f J(0 is determined by substituting Eq. (4-282) into Eq. (4-276) 

Thus.

'o(f) = -ro3(i) =  \/MgX0ị
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The linearized stole equation is expressed in the form o f Eq. (4-238). w ith the coefficient maữices A" 
and B ’  evaluated as

• 0  1 0 • ■ 0  1 0  -Ị

^  0
- 2*03 -ẵ-  0

— Mxoi
R

~ ■«Í)1 \M xoi)
R

0  0
~ L

0  0
~ L

(4-285)

N A L O G IE S

C om paring Eqs. (4-11), (4-41), and (4-65), i t  is not d if f ic u lt  to  see that the mechanical 
systems in  Eqs. (4-11) and (4-41) are analogous to  a series R L C  e lectric netw ork shown in 
Exam ple 4-2-1. As a result, with this analogy, mass  M  and ine rtia  J  are analogous  to 
inductance L , the spring constant K  is analogous to  the inverse o f  capacitance 1/C, and the 
viscous-friction coefficient B is analogous to resistance R.

AMPLE 4-10-1 It is logical, in Example 4-1-1. to assign KO. the velocity, and/* (0 . the force acting on the spring, as 
state variables, since ihe former is analogous to the currenl in L and ihe latter is analogous to the 
voltage across c. W riting die force on M  and Ihe velocity o f the spring as functions o f the state 
variables and the input force /(/), we have 
Force on mass;

at

Velocity o f spring:
1 d M t)

=  v(0

(4-287)

(4-288)
K di

The final equation o f motion Eq. (4-11) may be obtained by dividing both sides o f Eq. (4-287) by M 
and multiplying Eq. (4-288) by K. Hence, in terms o f displacement y{/).

d h U ) ^ B d y { t )  K f ( t )

Considering Example 4-2-1, after rewriting Eq. (4-67) as

= -e Ặ t)  -  Riự) + eự) 

and using the current relation Eq. (4-66):

(4-289)

the comparison o f Eq. (4-287) with Eq. (4-290) and Eq. (4-288) w ilh Eq. (4-29 J) clearly shows the 
analogies among the mechanical and electrical components.

■CAMPLE 4-10-2 As another example o f writing the dynamic equations o f a mechanical system with (ranslalionai 
motion, consider the system shown in Fig. 4-9(a). Because the spring is deformed when it is subject 
to a force/{/), two displacemenis. y, and >2. must be assigned Í0 the end points o f the spring. The
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Figure 4-76 Elecưic network analogou; 
the mechanical system in Fig. 4-10.

free-body diagra 1 o f the system is shown in Fig. 4-9(b). The force equations are

K \ y ^ { t ) - y 2 { t ) ] -  

These equations are rearranged as
d t

dh2{t) _ 
dl^ ''

(4-294)

(4-295)

By using the Iasi two equations, the SFG diagram o f the system is drawn in Fig. 4-10(a). The stale 
variables are defined as X\ (/) =  >'2(0  and X2U ) = dv2(f)/<^^- state equations are written directly 
from the state diagram:

di - =  X2{t)

dX2ịl)

As an alternative, we can assign the velocity v(/) o f the mass M a: 
on the spring as the other state variable. We have

<̂v(f)  ̂
d i

1

(4-296)

(4-297)

,e state variable and the force/*(f) 

(4-298)

/ * (0  =  m  (4-299)

One may wonder why there is only one state equation in Eq. (4-287), whereas there are two state vari^les 
in v(f) andfkU)- The IWO state equations of Eqs. (4-296) and (4-297) clearly show that the system isoíứie 
second order. The situation is better explained by referring to the analogous electric network of ứie system 
shown in Fig. 4-76. Although ứie network has two energy-storage elements in L and c . and thus ứiere 
should be two state variables, the voltage across the capacitance e,.ự) in this case is redundant, since it is 
equaJ to ihe applied voltage eU). Eqs. (4-298) and (4-297) can provide only the solutions to the velocity of 
M. v(i). which is the same as (hiUydt. once / / )  is specified. Then >'2(/) is determined by integrating v(i) 
with respect to I. The displacement >’i(0  is then found using Eq. (4-292). On the other hand. Eqs. (4-296) 
and (4-297) give Ihe solutions to V2(/) and dy2(l)kll dứectly. and >-|(f) is obtained from Eq. (4-292).

The transfer functions o f Uie system are obtained by applying the gain formula to the stale diagram.

W ^ _ L _
F{s) s[Ms +  B)

(4-300)

y'l (s) Ms^ - r B s ^ K  
F ( s ) ~  Ks{Ms + B) (4-301)

EXAMPLE 4-10-3 Dry air passes through a valve into a rigid 1 nr’  container, as shown in Fig. 4-77, at a constant 
A Pneumatic System temperature T  =  25^C(= 298''K).The pressure at the left-hand side ofthe valve is;j,. which ishigher 

than the pressure in the tank p. Assuming a laminar flow, the valve resistance becomes linear. 
R = 200 s e c /m --  Find the time constant o f the system.



4-10 Analogies •• 215

Figure 4-77 A  pneumatic system with a valve and a 
spherical rig id tank.

SOLUTION Assuming aữ as an ideal gas, isothermal process, and low pressures, from Example 4-5-5. 
ữie equation o f ửie system is

+ p =  Pi (4-302)
R^lrT^

where air at standard pressure and temperature is represented as an ideal gas,
1

pv =  ^  = R ^ iJ  p = - ^ p (4-303)

Thus, the time constant is

(4-304)

where, from reference [ 1 ] at the end o f this chapter,

. ft Ibf 0.3Q48 m 4.45 N kg m/sec^ Ibm
/ỉair =  53.35

lb™»R ft  Ibf N  0.4536 kg " K (9 /5 ) ’

iMPLE 4-10-4 For the liquid-level system shown in Fig. 4-45, C = A /g  is the capacitance and ;0 =  ^  is the 
; Liquid-Level resistance. As a result, system time constant isT =  RC. Comparing the thermal, fluid, and electrical 

System systems, sim ilar analogies may be obtained, as shown in Table 4-8.

TABLE 4-8 Mechanical. Thermal, and Fluid Systems and Their Electrical Equivalents

System R .Q L Analogy

Mechanical (translation) F  =  Bv{t) e =  > F
R  = B i{ t ) = > v ( t)

F ^ K  jv l,t}d t
where 
e =  voltage

C =  1 i{t) — current
K F  =  force

m = j ị j F é , v{t) = linear velocity

L = M
Mechanical (rotation) T  = B(0(t) e = > T

R = B i(t) = >co{t)

T  = k J  a ịtìd t
where 
e =  voltage
i{t) -  current 
T  =  torque

i0 = - T d t  

L =  J

io{t) = angular velocity

Fluid (incompressible) A P  =  Rq(t) (laminar flow) e = > A P
R depends on flow regime i{t) = >q(i)
q{t) = C P where
c  depends on flow regime e = voltage

{C on tin ue d)

2(f) =  current
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TABLE 4-8 (Continued}

System R .C .L Analog}’

where p  =  pressure
A  = area o f cross section 
I = length 
p  =  flu id  density

qịt) =  volmneflowraii

Thermal e = > T
R  = —  

q
1  f where

e =  voltage 
i(t) = current 
T  = temperature 
q(t) =  heal flow

4 - 1 1  C A S E  S T U D I E S

EXAMPLE 4-11-1 Consider the system in Fig, 4-78. The purpose o f the system considered here is to cODưol the position 
o f the fins o f a modem airship. Due to the requirements o f improved response and reliability, tb 
surfaces o f modern aữcraử are conưolled by elecữic actuators with electronic conưols. Gone are tit 
days when the ailerons, rudder, and elevators o f the aữcraft were all linked to the cockpit ihrougl 
mechanical linkages. The so-called fly-by-wire conưol system used in modern aircraft implies tha 
the attitude of aircraft is no longer conưolled entirely be mechanical linkages. Fig. 4-78 illustrates thi 
controlled surfaces and the blcx:k diagram o f one axis o f such a position-conơol system. Fig. 4-7! 
shows the analytical block diagram o f the system using the dc-motor model given in Fig. 4-72. Thi 
system is simplified to the extent that saturation o f ưie amplifier gain and motor torque, gear backlasti 
and shaft compliances have all been neglected. (When you get into the real world, some o f ibesi 
nonlinear effects should be incorporated into the mathematica] model to come up wiưi a bene 
coniroller design that works in reality. The reader should refer to Chapter 6. where ứiese topics an 
discussed in more detail.)

The objective o f the system is lo have the output o f the system. ớy(0, fo llow  the inpu t dr(t). Tbi 
following system parameters are given in itia lly:

Gain o f encoder 
Gain o f preamplifier 
Gain o f power amplifier 
Gain o f cuưent feedback 
Gain o f tachometer feedback 
Amature resistance o f motor 
Annature inductance o f motor 
Torque constant o f motor 
Back-emf constant o f motor 
Inertia o f motor rotor 
Inertia o f load
Viscous-friclion coefficient o f motor 
Viscous-friction coefficient o f load 
Gear-train ratio between motor and lo

K ,  =  1 v/rad 
K  =  adjustable 
K ị =  10 v /v  
K2 = 0 .5 V /A  
X , =OV/rad/sec 

=  5 .o n  
0.003 H 

K , = 9 .0 o2-in./A 
■̂6 =  0.0636 v/rad/sec 

Jn, =  0.0001 oz-in.-sec 
J l  = O.Oloz-in.-sec^ 
Bm =  0-005 oz-in.-sec 
BL =  l.Ooz-in.-sec

N =  =  1 / 10

Because the motor shaft is coupled to the load through a gear train with a gearratio o f M  6y = SBm 
the total inertia and viscous-friction coefficient seen by die motor are

n '̂ Jl = 0.0001 +  0.0 1/ 10 0  =  0.0002 oz-in.-sec- 
_ 1 r  (4-305

B, =  0.005 +  1/100 =  0.015oz-in.-sec
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Sensor I------------------1

j - j Q - .  PREAMP - j Q - . POWER AMPLIRER 
W ư H  CURRENT FB

TACHOMETER

GEAR
TOAIN Position 

o f conưol 
surface

Figure 4-78 Block diagram o f an attitude-control system o f an aircraft.

Preamp

Power amplifier 

Cuiient feedback

Tachometer feedback

Gear
ratio

Figure 4-79 Transfer-function block diagram o f the system shown in Fig. 4-78.

respectively. The fonvard-path tfansfer function o f the unity-feedback system is written from 
Fig. 4-79 by applying the SFG gain fonnula:

C{s) =
0 ,(5 )

K .K ịK iK N
(4-306)

j[Z^ J, j2 +  {R^ J, +  La B, + K ị K2J,)s +  RgB, +  K ị K iB , +  KiKb +  KK] K,K, ]

The system is o f the third order, since Oie highest-order term in G(s) is s^. The electrical time constant 
o f the amplifier-motor system is

=  „  „  = | ^  =  0 .0 0 0 3 s e c  (4-307)
Aa +  ft) ̂ 2 5 + 5

The mechanical time constant o f the motor-load system is

„ = i  =  ̂  =  0^01333.ec (4-308)

^MPLE 4-11-2 In this case study, we shall model a sun-seeker conưol system whose purpose is to control the attitude 
o f a space vehicle so that it w ill track the sun with high accuracy. In the system described here, 
ưacking the sun in only one plane is accomplished. A  schematic diagram o f the system is shown in
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E ưor discriminator

Figure 4-80 Schematic 
diagram o f a sun-seeker 
system.

Fig. 4-80. The principal elements o f the error discriminator are two small rectangular silicon 
photovoltaic cells mounted behind a rectangular slit in an enclosure. The cells are mounted in such a 
way that when the sensor is pointed at the sun, a beam of light from the slit overlaps both cells. Silicon 
cells are used as current sources and connected in opposite polarity to the input o f an op-amp. Any 
difference in the short-circuit current o f ửie two cells is sensed and amplified by the op-amp. Because 
the current o f each cell is proportional to the illumination on ihe cell, an error signal w ill be present al 
the output o f the amplifier when the light from the slit is not precisely centered on the cells. This error 
voltage, when fed to the servoamplifier, w ill cause the motor to drive the syslem back into alignment. 
The description o f each part o f the system is given in the following sections. ^

Coordinate System
The center o f  the coordinate system is considered to  be ai the ou tput gear o f  the system. The 
reference axis is taken to be the fixed fram e o f  the dc m otor, and a ll rotations are measured 
w ith  respect to  this axis. The solar axis, or the line  fro m  the output gear to the sun. makes an 
angle ỡ r { t )  w ith  respect to  the reference axis, and 6o{t) denotes the vehicle axis w ith  respect 
to  the reference axis. The objective o f  the contro l system is to m ainta in  the e rro r between 

and 6>o(0 . “ (0 * near zero:

(4-309)

The coordinate system described is illustra ted in  F ig. 4-81.

E rro r D iscrim inator
W hen the vehicle is aligned perfectly w ith  the sun, a{t) =  0, and f'a(i) =  ib{t) =  /,  or 
ia(f) =  ib{i) =  0. From the geometry o f  the sun ray and the pho tovo lta ic ce lls shown in 
F ig. 4-81. we have

w

7 =  —  -  Z-tanơ(í)

(4-310)

(4-311)
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Figure 4-81 Coordinate system o f the sun-seeker system.

where oa  denotes the w id th  o f  the sun ray that shines on ce ll A  and ob is the same on ce ll B, 
for a g iven a (r). Because the cuưent iait) is proportiona l to  oa  and ibự) is proportiona l to 
ob, we have

i , w = /  +  ^ t a n a { ( ) (4-312)

(4-313)

fo rO  <  ta n a ( l)  <  H '/2 L .F o r  1V/2L <  tan<«(() <  ( C -  M '/2 )/Z ,,th e s u n ra y is c o ra p le tc ly  
on ce ll A . and i „ ( ( )  =  2 /, .(,(») =  0. For ( c  -  w ỊV ị L <  ta n a (()  <  (c ị  H '/ 2 ) i ,  4 { i )  
decreases linea rly  fro m  2 / to  zero. ia{t) =  ib{t) =  Ó fo r  ta n a ( f)  >  (C  +  V y /2 ) /L  There
fore, the eư or d iscrim ina to r may be represented b y  the nonlinear characteristic o f  Fig. 
4-82, where fo r  sm all angle a { / ) ,  ta n a ( /)  has been approxim ated by a (i)  on the abscissa.

T he relationship between the output o f  the op-amp and the cuưents ia(i) and i'*(0  is

eo{t) =  [ỉa (/) -  «*(?)] (4-314)

Figure 4-82 Nonlinear characteristic o f the eưor discriminator. The abscissa is tan a, but it 
is approximated by a  for small values o f a.
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. -R . Js +  B

Figure 4-83 Block diagram o f the sun-seeker system.

Servoamplifier
The gain o f  the servoam plifier is - K .  W ith  reference to Fig. 4-83, the output o f  thf 
servoam plifier is expressed as

ea{t) =  -K [e o { t)+ e ,{ t)]  =  -K e s{ t) (4-315]

T a c h o m e t e r
The output voltage o f  the tachometer e, is related to  ứie angular ve loc ity  o f  the motoi 
through the tachometer constant K,:

e,{t) - (4-316)

The angular pos ition o f  the output gear is related to  ửie m o to r position through the geai 
ra tio  \/n . Thus,

e o = - e „  (4-317)

DC Motor
The dc m otor has been modeled in Section 4-6. The equations are

ea(l) = Raiait) + eb{t)

eb{t) =

T ^ ii)  =  Kii^U)

(4-318)

(4-319)

(4-320)

(4-321)

where J  and B  are the inertia  and viscous-fric tion  coe ffic ient seen at the m otor shaft. The 
inductance o f  the m otor is neglected in Eq. (4-318). A  b lock diagram  tha l characterizes all 
the functiona l relations o f  the system is shown in Fig. 4-83.

► EXAMPLE 4-11-3 Classically, the quaner-car model is used in  ihe s tu d y  o f  vehicle suspension systems a n d  the resulting 
dynamic response due to various road inputs. Typically, ihe inertia, stiffness, and dampins character
istics o f ihe system as illuslraied in Fig. 4-84(a) are modeled in a iwo degree o f freedom (2-DOF, 
sy s te m , a s  sh o w n  in  (b). A lth o u g h  a 2 -D O F  sy s te m  is  a  m o re  a cc u ra le  m o d e l, it is  su ffic ie n t fo r ỨK 
following analysis to assume a l-DO F model, as shown in (c).
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■ s

E  s
(b) (c)

Figure 4-84 Quarter-car model realization, (a) Quarter car. (b) Two degrees o f freedom, (c) One 
degree o f freedom.

O p e n -L o o p  Base E xc ita tio n
G iven the system illustra ted  in  F ig . 4-84(c), where

m  Effective Va car mass 10 kg
K Effective stiffness 2.7135 N/m
c  Effective damping 0.9135 N -m /s"‘
x(t) Absolute displacement o f the mass m  m
y (0  Absolute displacement o f the base m

z(t) Relative displacement W O -yCO ) m

the equation o f  m otion  o f  the system is defined as fo llow s;

m x(t) +  cx{i) +  kx{t) =  cỳ{t) +  ky{t) (4-322)

w hich can be s im p lified  by substituting the re la tion z{t) =  x{t) - ^ ( r )  and non-dim ension- 
a liz ing  the coeffic ients to  the form

m  +  =  - ỹ ị l )  =  - o ( i )  (4-323)

The Laplace transform  o f  Eq. (4-323) yie lds the in pu t-ou tpu t relationship

Z { s ) _  - 1
A{s) + 2i;co„s + aiị

(4-324)

where the base acceleration ^ ( 5 ) is the Laplace transform  o f  a(i) and is the input, and 
rela tive displacement z ( i)  is the output.

C losed -Loop  P os ition  C o n tro l
A c tive  con tro l o f  the suspension system is to  be achieved using the same dc m otor 
described in Section 4-7 used in conjunction w ith  a rack as shown in F ig. 4-85.

Ỵ - ‘ Figure 4-85 Active control o f the 1-DOF model via a dc motor 
and rack.
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In Fig. 4-85, Tịt) is ứie torque produced by the motor with shaft rotation 6, and r  is die radiusi 
the motor drive gear. Thus, Eq. (4-322) is rewritten to include ứìe active component,/(r;

mx + cx + kx = cy +  k y +  f{ t) (4-32Í

mz + cz + kz = f ( t )  -  my = / ( r )  -  ma{t) (4-32(

(4-32'

Because z = ớr, we can substitute Eq. (4-327) into Eq. (4-326), rearrange, and take th 
Laplace transform to get

Noting that z (j ) /r  =  © {i) ,  this is analogous to previous inpul-output relationships wher 
0 ( i )  =  Geq{T{s]-Td{s))\ hence, the term mrA{s) is interpreted as a disturbance torqu< 
The block diagram in Fig. 4-86 can thus be compared to Fig. 4-85, wher 
J = mr^ +Jm, B = cr^ + Bm, and K = kr^. Using the principle o f superposition, Ihi 
system is rearranged to the following form:

Kmr

{ ^ s + \ Ỵ j s '̂  + Bs +  K ) +  ' ^ s

,rA(s)

(4-32Í

4 - 1 2  M A T L A B  T O O L S

Apart from the MATLAB toolboxes appearing with the chapter, this chapter does n( 
contain any software because o f its focus on theoretical development. In Chapters 6 and‘ 
where we address more complex control-system modeling and analysis, we w ill imroduc 
the Automatic Control Systems MATLAB and S IM ULIN K tools. The Automatic Conư(

\  £ (i) K „ r Z{s)
)  *

Figure 4-86 Block diagram o f an arm ature-controlled dc motor.



Systems software (A C S Y S ) consists o f  a num ber o f  m *files and G U Is  (graphical user 
in terface) fo r  the analysis o f  sim ple con tro l engineering transfer functions. I t  can be 
invoked fro m  the M A T L A B  command line  by s im p ly  typ ing  A c s js  and then by c lic k in g  on 
the appropriate pushbutton. A  specific M A T L A B  too l has been developed fo r most chapters 
o f  th is textbook. Throughout this chapter, we have iden tified  subjects that m ay be solved 
using A C S Y S , w ith  a box in  the le ft m argin o f  the text tit le d  “ M A T L A B  T O O L .”

The most relevant components o f  A C S Y S  to the problem s in  th is chapter are V irtua l 
Lab  and S IM Lab , w hich are discussed in  deta il in  Chapter 6 . These sim ulation tools 
p rov ide  the user w ith  v irtua l experiments and design projects using systems in vo lv in g  dc 
m otors, sensors, electronic components, and m echanical components.
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Ư M M A R Y

This chapter is devoted to the mathematical modeling o f physical systems. The basic mathematical 
relations o f electrical, mechanical, thermal, and fluid systems are described using differential equations, 
state equations, and transfer functions. Analogies were used to relate the equaữons o f these systems. 
The operations and mathematical descriptions o f some o f the commonly used components in control 
systems, such as error detectors, tachometers, and dc motors, are presented in this chapter.

This chapter includes various examples. However, due to space limitations and the intended scope 
o f this text, only some o f the physical devices used in practice are described. The main purpose o f this 
chapter is to illusUate the methods o f system modeling, and ứie coverage is not intended to be exhaustive.

Because nonlinear systems cannot be ignored in the real world, and this book is not devoted to 
the subject, Section 4-9 introduced ứie linearization o f nonlinear systems at a nominal operating 
point. Once the linearized model is determined, the performance o f the nonlinear system can be 
investigated under the small-signal conditions at the designated operating point.

Systems with pure time delays are modeled, and methods o f approximating the transfer 
functions by rational ones are described.

In the end, three case study examples were presented that reflect mathematical modeling o f 
practical applications.

V  Q U E S T I O N S

1. Among the three types o f friction described, which type is governed by a linear mathematical 
relation?

2. Given a two-gear system with angular displacement ỡ| and Ớ2, numbers o f teeth Ni and N 2, and 
torques Tị and Tz, write the mathematical relations between these variables and parameters.

3. How are potentiometers used in control systems?

4. Digital encoders are used in control systems fo r position and speed detection. Consider that an 
encoder is set up to output 3600 zero crossings per revolution. What is the angular rotation o f the 
encoder shaft in degrees i f  16 zero crossings are delected?

5. The same encoder described in Question 4 and an electronic clock with a frequency o f I MHz 
are used for speed measurement. What is the average speed o f the encoder shaft in rpm i f  500 clock 
pulses are detected between two consecutive zero crossings o f the encoder?

6. Give the advantages o f dc motors for control-systems applications.

7. What are the sources o f nonlineariiies in a dc motor?

8 . What are the effects o f inductance and inertia in a dc motor?

9. What is back emf in a dc motor, and how does it affect the performance o f a control system?

10. What are the electrical and mechanical time constants o f an electric motor?

11. Under what condition is the torque constant K, o f a dc moior valid, and how is it related to the 
back-emf constant Khl
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12. An inertial and frictional load is driven by a dc motor with torque T„. The dynamic equaUon c
the system is

I f  the inertia is doubled, how w ill it affect the steady-state speed o f the motor? How w ill the steady 
state speed be affected if, instead, the frictional coefficient B„, is doubled? What is the mechanica 
constant o f the system?

13. What is a tachometer, and how is it used in conưol systems?

14. Give the transfer function o f a pure time delay Td-

15. Does the linearization technique described in this chapter always result in a linear time
invariant system?

The answers to these review questions can be found on this book’s COI 
www.wiley.com/college/golnaraghi.

I Web site
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PROBLEM S FOR SECTION 4-1
4-1. Consider the mass-spring system shown in Fig. 4P-1.

Figure 4P-1

(a) Find the equation o f the motion.

(b) Calculate its natural frequency.

4-2. Consider the five-spring one-mass system shown i
(a) Find its single spring-mass equivalent.
(b) Calculate its natural frequency.

Fig. 4P-2,

http://www.wiley.com/college/golnaraghi
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4-3. Fig. 4P-3 shows a simple model o f a vehicle suspension system hitting a bump. I f  the mass of 
the wheel and its mass moment o f inertia are m  and J, respectively, then:
(a) Find the equation o f the motion.

(b) Determine the transfer function o f the system.

(c) Calculate its natural frequency.
(d) Use M ATLAB to plot the step response o f the system.

Figure 4P-3

4-4. Write the force equations o f the linear ưanslational systems shown in Fig. 4P-4.

>1

M2

K
-------- nnnp---------

W|

M

a. ^

Figure 4P-4



(a) Draw the system block diagrams or SFGs.

(b) Define the slate variables as follows:
( i)  X] =  y-2. X2 =  d y j /d t ,  X3 =  y i .  andA:4 =  d y \ /d t

( i i )  X ị =  y 2, X2 =  y \ .  m d x ĩ  =  d y t /d i

(iii) X\ =  y i . X2 =  y i .  andx3 =  dy2Ịd t

(c )  W rite  th e  s ta te  e q u a tio n s . F in d  Uie ư a n s íe r  fuD ctions a n d  Y2(s )!F (s ) .

4-5. Write the force equations o f the linear translational system shown in Fig. 4P-5- Draw sysien 
block diagrams. Write the state equations. Find the tfansfer functions ỵ ,( í) /F (5) and Y2(s)ỊF{s). So 
Mg =  0 for the transfer funciions.
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Figure 4P-5

4-6. Consider a train consisting o f an engine and a car. as shown in Fig. 4P-6.

Figure 4P-6

A  con tro lle r is applied to Ihe tra in so lha i it  hab a sm oolh Sian and stop, along w ith  a constant-speec 
ride. The mass o f the engine and the car are M  and m. respectively. The two are held togeiher by i 
spring with Ihe stiffness coefficienl o f K. F represents the force applied by the engine, and ịi 
represents the coefficient o f rolling friction. I f  the train only ưavels in one direction:
(a) Draw the free-body diagram.
(b) Find ửie stale variables and output equations.

(c) F ind  th e  ữ a n s fe r  function .

(d) Write ihe state-space equations o f ihe system.
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4-7. A  vehicle towing a trailer through a spring-damper coupling hitch is shown in Fig. 4P-7. The 
following parameters and variables are defined: M  is the mass o f the trailer; Kh. the spring constant o f 
ưie hitch- By, the viscous-damping coefficient o f  the hitch; B„ the viscous-friction coefficient o f the 
ưailer;> i(f). the displacement o f  the towing vehicle; y2(i), the displacement o f the trailer; and/(f), the 
force o f  the towing vehicle.

Figure 4P-7

(a) Write Ihe differential equation o f the system.

(b) W rite the state equations by defining the following state variables; X |(f) = y i ( i )  —>2(0 
■tz(') =  dyiựìdt.
4-8. Assume that ứie displacement angle o f the pendulums shown in Fig. 4P-8 are small enough that 
the spring always remains honzontal. I f  the rods with the length o f L are massless and the spring is 
attached to the rods I  from the top. find the state equation o f the system.

N
Figure 4P-8

4-9. Fig. 4P-9 shows an inverted pendulum on a cart.
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I f  the mass o f the cart is represented by M  and the fo rc e /is  applied to hold the bar at the desừs 
position, then
(a) Draw the free-body diagram.

(b) Determine the dynamic equation o f the motion.
(c) Find the transfer function.

(d) Write the state space o f the system.

I f / i s  an impulse signal, plot the impulse response o f the system by using M ATLAB.

4-10. A  two-stage inverted pendulum on a cart is shown in Fig. 4P-10.

I f  the mass o f the cart is represented by M and the fo rc e /is  applied to hold ihe bar at the desirec 
position, then
(a) Draw th e  free-body diagram o f mass M.
(b) Determine the dynamic equation o f the motion.
(c) Find the transfer function.

(d) Write the stale space equations o f the system.

4-11. Fig. 4P-11 shows a well-known “ ball and beam" system in control systems. A  ball is locatec 
on abeam to roll along the length of the beam. A  lever arm is attached to the one end o f the beam and Í 
servo gear is attached to the other end o f the lever arm. As the servo gear turns by an angle Ớ, the leve: 
arm goes up and down, and then the angle o f ihe beam is changed by a. The change in angle causes tht 
ball to ro ll along the beam. A  controller is desired to manipulate the ball’s position.



Assuming:
m =  mass o f ửie ball 

r =  radius o f the ball 

lever arm offset 

g  =  gravitational acceleration 

L =  length o f the beam 

J’ =  baH’s moment o f inenia 

p  =  ball position coordinate 

ữ =  beam angle coordinate

9 = servo gear angle

(a) Determine the dynamic equalion o f the motion.

(b) Find the ưansíer function.

(c) Write the state space equations o f the system,
(d) Find the step response o f the system by using MATLAB.

4-12. The motion equations o f an aircraft are a set o f six nonlinear coupled differential equations.
Under certain assumptions, they can be decoupled and linearized into the longitudinal and lateral
equations. Fig. 4P-12 shows a simple model o f airplane during its flight. Pitch conừol is a longitudinal
problem, and an autopilot is designed to control the pitch o f the airplane.
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Figure 4P-12

Consider that the airplane is in steady-cruise at constant altitude and velocity, which means the 
thrust and drag cancel out and the lif t  and weight balance out each other. To simplify the problem, 
assume that change in pilch angle does not affect ihe speed o f an aircraft under any circumstance.
(a) Determine ứie longitudinal equations o f motion o f the aircraft.
(b) Find the transfer funciion and state-space variables.

4-13. Write the torque equations o f the rotational systems shown in Fig- 4P-13. Write Ihe state 
equations. Find the transfer function 0 ( j ) / r { s )  for the system in (a). Find the transfer functions 
Q i[s)/T(s) and 0 2 (s ) /7'( i )  for ihe systems in pans (b). (c), (d). and (e).

4-14. Wrile the torque equations o f the gear-lrain system shown in Fig. 4P-14. The moments o f 
inertia o f gears are lumped as 7|. J2. and Jị. T,„ự) is the applied torque; jV|, /V->. Nĩ. and Ni are the 
number o f gear teeth. Assume rigid shafts
(a) Assume that y 1, 72- and J ị  are negligible. Write Che torque equations o f the system. Find the total 
inenia ihe motor sees.

(b) Repeat part (a) with the moments o f inenia Jị. J2. and Jy
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ớ,(r)

4= R exible
shaft

^",(0 I-------------- 1 o„ụ> f. Ơ|V

TU) ----- } -------  T(t)

(d)

0„U) f. ỡ,(0

H t)  ỠJi)

Figure 4P-13

Figure 4P-14

4-15. Fig. 4P-15 shows a molor-load system coupled through a gear train w ith gear ratio 
n =  N ị/N 2 - The motor torque is T„,ịl). and Ti_[i) represents a load torque.
(a) Find the optimum gear ratio n ' such that the load acceleration a t  =  is maximized.
(b) Repeat pan (a) when the load torque is zero.

Figure 4P-15
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4-16. Fig. 4P-16 shows the simplified diagram o f the printwheel control system o f an old word 
processor The printwheel isconữóued by adc motor through belts and pulleys. Assume that the belts 
L e  rigid. The following parameters and variables are defined: TJ,l) is the motor torque; ihe 
motor displacement; y(/), the linear displacement o f ứie printwheel; J„, the motor inertia; B„, Ae 
motor viscous-friction coefficient; r, the pulley radius; M. the mass o f the printwheel.
(a) Write the differential equation o f the system.
(b )  Find the ữansfer function Y{s)/T„{s).

Jm'

Figure 4P-16

4-17. Fig. 4P-17 shows the diagram o f a printwheel system with belts and pulleys. The belts are 
modeled as linear springs with spring constants Kị and K2.
(a) Write the differential equations o f the system using ớm and y  as the dependent variables.

(b ) W rite the state equations u s ing  X\ =  r9 m ~  y , X i =  d y ịd t,  and X3 =  =  d 6 „ /d t  as the state
variables.
(c) Draw a state-flow diagram for the system,

(d) Find the transfer function Y{s)/T„,{s).
(e) Find the characteristic equation o f the system.

J,„. =0

Figure 4P-17

4-18. The schematic diagram o f a steel-rolling process is shown in Fig. 4P-18. The steel plate is fed 
through the rollers at a constant speed o f V fưs. The distance between the rollers and the point where

Figure 4P-1
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the thickness is measured is d  ft. The rotary displacement o f the motor, is converted to 
linear displacement by the gear box and liaear-actuator combination >>(/) =  where n
positive constant in íưrad. The equivalent inertia o f the load that is reflected to the motor shaft is

„ ( / ) ,  is converted to the 
nisa

positive constant in íưrad. The equivalent inertia o f the load that is reflected to the motor shaft is Ji_.
(a) Draw a functional block diagram for the system.
(b) Derive the forward-path transfer function Y{s)/E(s) and the closed-loop ơansfer funciiOD
Y{s)/R{s).

4-19. The schematic diagram o f a motor-load system is shown in Fig. 4P-19. The following 
parameters and variables are defined; T„(t) is the motor torque; ù}m{l), the motor velocity; the 
motor displacement; <U£.(/), the load velocity; ỡí.(r). the load displacement; K. ửie torsional spring 
constant; J„, the motor inertia: B„, the motor viscous-friction coefficient; and Bl, ứie load viscous- 
friction coefficient.
(a) Write the torque equations o f the system.

(b) Find the ưansíer functions 0 i,(s ) /rm ( i)  and 0 „ ( i) /rm (5 )-
(c) Find the chaiacterisiic equation o f the system.
(d) Let Tm(r) = T „ b sa  constant applied torque; show that Wm = 0)L =  constant in  the steady state. 
Find the steady-state speeds Wm and (I)L.
(e) Repeat part (d) when the value o f J t  is doubled, bul J„ stays the same.

T jr )
(OJO

l,r

Figure 4P-19

4-2«. This problem deals with ihe attitude conưol o f a guided missile. When ưaveling through the 
atmosphere, a missile encounters aerodynamic forces that tend to cause instability in ứie attitude of 
the missile. The basic concern from the flight-control standpoint is the lateral force o f the aừ, which 
tends to rotate ihe missile about ils center o f gravity. I f  the missile centerline is not aligned with the 
direction in which the center o f gravity c  is ưaveling, as shown in Fig. 4P-20, w ith angle 6. which is 
also called the angle o f attack, a side force is produced by the drag o f the air ứưough which the missile 
ưavels. The total force Fq may be considered to be applied at the center o f pressure p. As shown in 
Fig- 4P-20. this side force has a tendency to cause the missile to tumble end over end, especially i f  the 
point p  is in  front o f the center o f gravity c  Let the angular acceleration o f the missile about the poim 
c . due to the side force, be denoted by O f. Normally. ữF is directly proponional to the angle o f attack 
Q and is given by

OF = - ^ 9



where Kp is a constant that depends on such parameters as dynamic pressure, velocity o f Ihe 
missile, air density, and so on, and

J  — missile moment o f inertia about c  

d\ = distance between c  and p
The main objective o f ứie flight-control system is to provide the stabilizing action Í0 counter the 

effect o f Ihe side force. One o f the standard conữol means is to use gas injection a( the tail o f Ihe 
missile to deflect the direction o f ihe rocket engine thrust Ts, as shown in the figure.
(a) W rite a torque differential equation to relate among T„ Ỗ, Ỡ, and the system parameters given. 
Assume that 5 is very small, so that sin ỗ(/) is approximated by ỗ(/).

(b) Assume thal T, is a consiant torque. Find Uie transfer function 0 (s )/A (s ), where 0 (s ) and A ( i)  
are the Laplace transforms o f 0{t) and S{t), respectively. Assume that 5(i) is very small.
(c) Repeat parts (a) and (b) with points c  and p  interchanged. The dị in the expression o f Off should 
be changed to c/2-

4-21. Fig. 4P-21(a) shows a well-known “ broom-balancing”  system in control systems. The 
objective o f the control system is 10 maintain the broom in the upright position by means o f the 
force «(/) applied to the car as shown. In practical applications, the system is analogous to a one
dimensional control problem o f the balancing o f a unicycle or a missile immediately after launching. 
The free-body diagram o f the system is shown in Fig. 4P-21(b), where
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CAR

--► uU)--► ^ 0
------ ► uự)--

( • )  { • ) ( • )  C - )
(a) (b)

Figure 4P-21

/ ,  =  force at broom base in horizontal direction 

/v =  force at broom base in vertical direction 
Mh =  mass o f broom 

g =  gravitational acceleration 

M,- =  mass o f car

Jh = moment o f inertia o f broom about center o f gravity c c  = M hLijl
(a) Write the force equations in the X and the y  directions at the pivot po in t o f the broom. Write the 
torque equation about the center o f gravity c c  o f the broom. Wriie the force equation o f the car in the 
horizontal direction.

(b) Express the equations obtained in part (a) as state equations by assigning the slate variables as 
X\ = 9 ,  X 2 =  d ờ ịd ỉ.  J 3 =  X. andjT4 =  d x /d t.  S im p lify  th ese  equation s for  sm all 0 by m aking the 
approximations s inớ^ỡandcosớ^ 1 .



(c) Obtain a small-signal linearized state-equation model for the system in the forni o f

i ? ^  =  A -A x(,)+B -A rW

at the e q u ilib rium  po in t JToi(0 =  -̂ 02(0  =  0, JC03(i) =  0, and X0 i{ t )  =  0.
4-22. Most machines and devices have rotating parts. Even a small irregularity in the mass 
disdibution o f rotating components can cause vibration, which is called rotating unbalanced. Fig. 
4P-22 represents the schematic o f a rotating unbalanced mass o f m. Assume that the frequency of 
rotation o f the machine is 0).
(a) Draw the state-flow diagram o f the system.

(b) Find the ttansfer function.
(c) Use M ATLAB to obtain the time response o f the system.
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Friction
^Free

4-23. Vibration absorbers are used to protect machines that work at the constant speed from steady- 
state harmonic disturbance. Fig. 4P-23 shows a simple vibration absorber.

Figure 4P-23

Assuming the harmonic force F[t) = Asin(o>0 is the disturbance applied to the mass M:
(a) Derive the state space equations o f the system.

(b) Determine the u-ansfer function o f the system.

4-24. Fig. 4P-24 represents a damping in the vibration absorption.
Assuming the harmonic force F([) =  i4sin(w/) is the disturbance applied to the mass M:
(a) Derive the state space equations o f the system.

(b) Determine the transfer function o f the system.
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Figure 4P-24

PROBLEM S FOR SECTION 4-2
4-25. Consider the elecuical circuits shown in Figs. 4P-25(a) and (b).

r L ị ụ  R
o — f ' Ti f r ^ I— A V ^ —o

at) ^ c ,  = k c 2  v l ,

o-------------------------1----------------------1----------------o

Figure 4P-25

For each cữcuit:
(a) Find the dynamic equations and state variables.

(b) Determine ihe transfer function.
(c) Use MATLAB 10 plot th e  step response o f ihe system.

4*26. An electromechanical system shown in Fig. 4P-26 represents a moveable-plate capacity.



Assume lhat the plate a o f the parallel capacitor is fixed and the plate b w id i mass M  is moved by 

force/. I f  C (j:) =  when the £ is the dielectric constant and A is Ihe surface o f ư»e plaics. then the 

elecinc field produces a force opposing the motion o f  the plates, and it is related to ỨK charge (^) 

across Ihe plates: f t  =

(a) Find the differential equations o f this system.

(b) Determine X(s)/Cịs).

4-27. Consider the electromechanical system shown in Fig. 4P-27.
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(b) Find the differential equation that describes the operation o f the system.

(c) Calculate ihe transfer funciion o f the system,

4-28. Repeat Problem 4-27 for ihe elecưomechanical system shown in Fig. 4P-28.

Figure 4P-28

PROBLEMS FOR SECTION 4*3
4-29. Find the transfer function o f the circuit for the simple Op-amp cừcuit given in Fig. 4P-29-

4-3 0 . An O p-am p circuit with connection to bolh lerminals is shown in Fig. 4P-30.
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Figure 4P-30

The op-amp can be modeled as

«v =  Í -  =  0

when v+ and v_ represent the voltaces o f positive and negative terminals, respectively, and /+ and i .  
show the current o f ứiese terminals.
(a) Find the positive feedback ratio.
(b) Find the negative feedback ratio.

(c) Determine when the circuit remains stable.
4-31. Find the transfer fiinction for each cừcuil given in Fig. 4P-31.

PROBLEMS FOR SECTION 4-4
4-32. A  Ihermal lever is shown in Fig. 4P-32.
As shown. Ihe actuator is a pure electtic resistance and the heal flow is senerated by the elecuic 
power input. The lever (at the top) moves up or down proportionally, dependins on the difference 
between the temperature o f the ambient air and the temperature o f the actuator. Calculate UtiVXCi). 
assuming zero in iiia l conditions.
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JZL

Figure 4P-32

4-33. Hot o il forging in quenching vat with its cross-sectional view is shown in Fig. 4P-33.

Figure 4P-33

The radii shown in Fig. 4P-33 are r |, r 2, and r3 from inside to outside. The heat is ưansíened to the 
atmosphere from the sides and bottom o f the vat and also the surface o f the o il w ith a convective 
heat coefficient o f ko. Assuming:

k,. =  The thermal conductivily o f the vat 

kị = The thermal conductivity o f the insulator 

Cg — The specific heat of the oil 
da = The density o f the oil 

c =  The specific heat o f the forging 

m = Mass o f the forging 

A =  The surface area o f the forging 

h =  The thickness o f the boltom o f the val 

To =  The ambient temperature 

Determine the system model when Uie temperature o f the o il is desired.

4-34. A power supply within an enclosure is shown in Fig, 4P-34. Because the power supply 
generates lots o f heat, a heat sink is usually attached 10 dissipate the generated heat. Assuming the rate 
o f heal generation within the power supply is known and constant, Q. the heat transfers from ihe power 
supply to the enclosure by radiation and conduction, the frame is an ideal insulator, and the heal sink 
temperature is constant and equal to the atmospheric temperature, determine the model o f the system 
that can give the temperature o f Ihe power supply during its operation. Assign any needed parameters.

Figure 4P-34
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4-35. Fig. 4P-35 shows a heat exchanger system. 

Fluid B

Figure 4P-35

Assuming the simple material transport model represents the rale o f heat energy gain for this 
system, then

{mc)[T2 -  T i) =qgained

where m represents the mass flow, T[ and T2 are the entering and leaving fluid temperature, and c 
shows the specific heat o f fluid.

I f  the length o f the heat exchanger cylinder is L, derive a model to give the temperature o f Fluid 
B leaving the heat exchanger. Assign any required parameters, such as radii, thermal conductivity 
coefficients, and the thickness.

PROBLEM S FOR SECTION 4-5
4-36. The objective o f this problem is to develop a linear analytical model o f the automobile engine 
for idle-speed control system shown in Fig. 1-2. The input o f the system is the ihrollle position that 
controls the rate o f air flow into the manifold (see Fig. 4P-36). Engine torque is developed from the 
buildup o f manifold pressure due to air intake and the intake o f the aữ/gas mixture into the cylinder. 
The engine variations are as follows:

Figure 4P-36

q,{l) = amount o f air flow across throttle into manifold 

dq,{t)ldl =  rate o f air flow across throttle into manifold 

=  average a ir mass in manifold

=  amounl o f a ir  leaving intake manifold through intake valves 
dỌoiO/dt =  rate o f air leaving intake manifold through intake valves 

T{t) — engine torque 

Ta = disturbance torque due to application o f auto accessories =  constant



eưịt) =  engine speed 

ữ(f) =  thronie position 

TD = lime delay in engine 

Je =  inenia o f engine 

The following assumptions and maưiematical rel
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Q die engine variables are given;
1. The rate o f air flow into the manifold is linearly dependent on ihe ihrotUe positíoo:

dqtjr)
di

■ = K\ — proportional constaDt

2. The rate o f air flow leaving the manifold depends linearly on ứie aữ mass in the manifold aad the 
engine speed:

dqo(t)
dr

- = K2q„(i) +  Kĩù}{l) K2- Kị  =  coDstant

3. A  pure time delay o f To seconds exists between the change in the manifold ail mass and the eDgine 
torque:

T(t) = Ktqmir -  t d ) =  constant

4. The engine drag is modeled by a viscous-friction torque where B is the viscous-friction
coefficient.

5. The average air mass is determined from

6. The equation describing the mechanical components is

T U } = J ^  + Ba,(l) + Tj

(a) Draw a functional block diagram of the system with a(r) as the input, o)(/) as the output, and Tjas 
the disturbance input. Show the ưansfer function o f each block.

(b) Find the Iransfer function Q ( i) /a ( i)  o f the system.

(c) Find the characterislic equation and show that it is not rational with constant coefficients.

(d) Approximate ihe engine lime delay by

1 +  t d s / 2
and repeat pans (b) and (c).

4-37. Vibration can also be exhibited in fluid systems. Fig. 4P-37 shows a u  tube manometer.

_ yit)

Figure 4P-37

Assume the length o f fluid is L. the weight density is fi. and the cross-section area o f die tube is A.
(a) Write the state equation o f the system.

(b) Calculate the natural frequency o f oscillation o f the fluid.

4-38. A long pipeline connects a water reservoir to a hydmiJic generaior system as shou-n in Fig. 4P-38.
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Figure 4P-38

A t the end o f the pipeline, there is a valve conưoUed by a speed controller. It may be closed quickly to 
stop the water flow i f  the generator loses iu  load. Determine the dynamic model for the level o f the 
surge tank. Consider the turbine-generator is an energy converter. Assign any requữed parameters. 

4-39. A  simplified o il well system is shown in Fig. 4P-39.
In this figure, the drive machinery is replaced by the input torque, Ti„{t). Assuming the pressure in 
the surrounding rock is fíxed at p  and the walking beam moves through small angles, determine a 
model for this system during the upstroke o f the pumping rod.

Walking Beam



4-40. A  hydraulic servomotor usually is used for the speed conưol o f engines. As shown in Fig. 
4P-40, the reference speed is conưolled by the throttle lever. The flyweight is moved by engine, so 
then ihe differential displacement o f the spring determines the input to the hydraulic servomotor. 
Determine the state space model o f the system.
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Figure 4P-40

4-41. Fig. 4P-41 shows a two-tank liquid-level system. Assume that Qi and Qỉ are the sieady-staie 
inflow rates, and H/ and FÌ2 are steady-state heads. I f  the other quantities shown in Fig. 4P-41 are 
supposed to be small, derive ihe siate-space model o f the system when hi and Aj are outputs o f ihe 
system and qn and q,2 are the inputs.

Ci+9,1 G:+í,2

Hị+Hị

▼ — ^----
T T

I|

1 1ị X  -------► i X  -
<2 . ^ ,

Figure 4P-41

► ổi+í:+9o

PROBLEMS FOR SECTION 4-6
4-42. An accelerometer is a transducer as shown in Fig. 4P-42.
(a) Find ihe dynamic equaiion o f motion.

(b) Determine Ihe transfer function.

(c) Use MATLAB U) plot its impulse response.



Problems •« 243

voltage

Figure 4P-42

4-43. Fig. 4P-43(a) shows the setup o f the temperature control o f an aứ-flow system. The hot-water 
reservoữ supplies the water that flows into the heat exchanger for heating the air. The temperature 
sensor senses the aứ temperature 2nd sends it to be compared with ứie reference temperature Tr-

Heal Temperature
exchanger sensor r,

Figure 4P-43



The temperature error Te is sent to the conưoller, which has the transfer fuDClion GA^)- Tbe output of 
the controller. «(r), which is an electric signal, is converted to apneumaiic signal by a ữansducer. The 
output o f the actuator conưols the water-flow rate through the three-way va]ve. Fig. 4P-43(b) shows 
the block diagram o f the system.

The following parameters and variables are defined: i/M». is the flow rate o f the heating fluid = 
Kmu\ Km  =  0.054 kg/sW; T^, the water temperature = K r =  65°c/kg/s: and the
output air temperature. Heat-ưansfer equation between water and air:

dJAO 
dt

Temperature sensor equation:
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- = T „ - T a o  Tc =  10 seconds

= 2  seconds

(a) Draw a functional block diagram that includes all th e  ưansfer functions o f  the system.

(b) Derive the transfer function 74o ( ỉ ) / 7’r ( j)  when Gc(5) =  1.

4-44. An open-loop motor conưol system is shown in Fig. 4P-44.

The potentiometer has a maximum range o f 10 turns (20;rrad). Find the transfer functions Eo(s)l 
Tmis)- The following parameters and variables are defined: ớ„,(í) is Ihe motor displacement: 
the load displacement; T„U), the motor torque; J,„, the motor inertia; the molor viscous-friction 
coefficient; Bp, the potentiometer viscous-friction coefficient; t'oiO, the output voltage: and K. the 
torsional spring constant.

4-45. The schematic diagram ofaconlro l syslem containing a motor coupled to a tachometer and an 
inertial load is shown in Fig. 4P-45. The following parameters and variables are defined: T„ is [he 
motor torque; J„. the motor inertia; the tachometer inertia; Jl, the load inertia; K\ and Kj. ihe 
spring constants o f the shafts: tìi, the tachometer displacement; 6,„s ihe molor velocity: ỠL. the load 
displacement; 0},, the tachometer velocity: 0)L. ihe load velocity: and B„„ the motor viscous-friction 
coefficient.
(a) Write the state equations o f the system using ới., 9,. Ù},, e„. andtOm as the state variables (in 
the listed order). The motor torque T,„ is the input.

(b) Draw a signal flow diagram with T,„ al ihe left and ending with 6 i on the far right- The stale 
diagram should have a total o f 10 nodes. Leave out the initial states.

(c) Find the following transfer functions:
0, (5)

■ T .[s ) T J s )
(d) Find the characteristic equation o f the sysiem.

T„{s)

Tachometer Motor

Figure 4P-45
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4-46. Phase-lockesd loops are conữol systems used for precision motor-speed control. The basic 
elemenis o f a phase-locked loop system incorporating a dc motor are shown in Fig. 4P-46(a). An 
input pulse ưain represents the reference frequency or desired output speed. The digital encoder 
produces digital pulses that represent motor speed. The phase detector compares the motor speed and 
the reference frequency and sends an eưor voltage to the filter (conưoller) that governs the dynamic 
response o f the system.
Phase detector gain = Kp, encoder gain =  Key counter gain =  \ỊN , and dc-motor torque constant = 
Kị. Assume zero inductance and zero friction for the motor.
(a) Derive the ưansíer function £ f( j) /£ '( j)  o f the filter shown in Fig. 4P-46(b). Assume that the filter 
sees infinite impedance at the output and zero impedance at the input.

(b) Draw a functional block diagram o f the system with gains or transfer functions in the blocks.

(c) Derive the forward-path ưansfer function dm{s)ỊE{s) when the feedback path is open.

(d) Find the closed-loop tfansfer function Ũ.m{s)/Fr{s).
(e) Repeat parts (a), (c). and (d) for the fille r shown in Fig. 4P-46(c).

(f) The digital encoder has an output o f 36 pulses per revolution. The reference frequency fr  is fixed at 
120 pulses/s. Find in pulses/rad. The idea o f using the counter N  is that. w ith / ,  fixed, various 
desired output speeds can be attained by changing the value o f N. Find N  i f  the desired output speed is 
200 rpm. Find N  i f  the desired output speed is 1800 rpm.

dc m otor

(b) (c)

Figu re  4P-46

4-47. Describe how an incremental encoder can be used as a frequency divider.

PROBLEMS FOR SECTION 4-7
4-48. The voltage equation o f a dc motor is written as

^a(f) =  fio io(i) + L n — KhU}„{t)

where eo(t) is the applied voltage; 4 (0 , the armature current; /?„. the armature resistance; La. the 
armature inductance; Kh, the back-emf constant; the motor velocity: and cu„(t). the reference 
input voltage. Taking the Laplace transform on both sides o f the voltage equation, with zero initial
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conditions and solving for we get

Egjs) -  [Rg + Los)Ig{s)
Kb

which shows that the velocity information can be generated by feeding back the armamre voltage and 
current. The block diagram in Fig. 4P-48 shows a d c -m o to r  sy s te m , with v o lta g e  a n d  cuTTCDt 

feedbacks, for speed control.
(a) Let Kị be a very high gain amplifier. Show that when Hi{s)/He{s) = —(Ra +  the motor 
velocity ù)„(r) is totally independent o f the load-disturbance torque Tt-
(b) Find the transfer function between (5) and Íìr(.s){7í. =  0) when í/,<í) and//^(5) are selected as 
in part (a).

Figure 4P-48

4-49. Fig. 4P-49 shows the schematic diagram o f a dc-motor control system for the COỈ1Ừ0 I of the 
printwheel o f a word processor. The load in this case is the priniwheel, which is dừectly coupled 
to the motor shaft. The following parameters and variables are defined: K, is ứie error-delector 
gain (V/rad); K„ the torque constant (oz-in./A); K, the amplifier gain (V /V ); Kf,. the back-emf 
constant (V/rad/sec): n, the gear-train ratio = 92/ỡm = T,n/T2 \ B„„ the motor viscous-friction 
coefficient (oz-in.-sec); y „„ the motor inertia (oz-in.-sec^); Kl, the torsional spring constant of 
the motor shaft (oz-in./rad); and JL the load inenia (oz-in.-sec^).
(a) Write the cause-and-effect equations o f the system. Rearrange these equations into die form of 
slate equations w ith  JTi =  Ớ0 , X2 — oja, X ỉ -  ớm, X4 =  ùJm, andjTs ' /„ .

(b) Draw the signal flow diagram using the nodes shown in Fig. 4P-49(b).

(c) Derive the fonvard-paưi tfansfer function (with the outer feedback path open); 
C(.ĩ) =  0 o (i)/0 < .( j) . Find Ihe closed-loop transfer function M{s) =  0 (,(.ĩ)/® r(í)-

(d) Repeat pan (c) when ihe motor shaft is rigid; i.e., Kl =  00. Show that you can obiain the 
solutions by taking the lim it as Kl approaches infinity in the results in part (c).

Figure 4P-49
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4 -5 0 . T h e  sc h em 1 of a voice-coil motor (VCM), used as a linear actuator in a disk
memoiy-storage system, is shown in Fig. 4P-50{a). The VC M  consists o f a cylindrical permanent 
magnet (PM) and a voice coil. When current is sent ứưough the coil, the magnetic field o f the PM 
interacts w ith the cunent-caiiying conductor, causing ửie coil to move linearly. The voice coil o f the 
VCM  in Fig. 4P-50(a) consists o f a primary coil and a shorted-tum coil. The latter is installed fo r the 
purpose o f effectively reducing the elecơic constant o f the device. Fig. 4P-50(b) shows the equivalent 
circuit o f  the coils. The following parameters and variables are defined; Cfli/) is the applied coil 
voltage; ia(0 . the primary-coil current: the shorted-tum coil cuưent; the primary-coil
resistance; La, ứie primary-coil inductance: La.,, the mutual inductance between the primary and 
shoned-tum coils; I<f). the velocity o f the voice coil; y(t), the displacemenl o f the voice coil; 
/ ( i )  =  ir ,v (/). the force o f the voice coil; Kị, the force constant; Kh. the back-emf constant; 
ety{t) =  Kbv{t). Ihe back emf; Mr. the total mass o f ứie voice coil and load; and Br, the total 
viscous-fticlion coefficient o f  the voice coil and load,
(a) Write the differentia] equations o f ứie system.

(b) Draw a block diagram o f the system with £ fl( j) . Ia{s), /í(s), V(5). and Y{s) as variables.
(c) Derive the Uansfer function y (j)/£ o (i).

Primary 
Magnet turns

Spindle CO CO
motor

M agnetic Shorted
flux turns

Figure 4P-50

4-51. A  dc-moior position-control system is shown in Fig. 4P-51(a). The following parameters and 
variables are defined: e is ihe error voltage; Cr, the reference input; 6i. the load position; K^. ihe 
amplifier gain; e^. the motor input voltage; e/,. ứỉe back emf; the motor current; T„, the motor 
torque; J„. ưie motor inertia = 0.03 oz-in.-s’ ; Bm. ihe motor viscous-friction coefficient =  10 oz-in.-s': 
Kt. the torsional spring constant = 50.000 oz-in./rad; Jl. ửie load inertia = 0.05 oz-in.-s’ ; K„ the motor 
torque constant = 21 or-in./A; ATft. ừie back-emf constant = 15.5 V/1000 rpm; K„ the eưor-dctector 
gain = E/2tt: E. the error-detector applied voltage = 2n  V; Ra. ứie motor resistance = 1.15 0 ;  and 
9e = B r -  6l .
(a) Write the state equations o f the system using the following state variables: XỊ = Oi,
X2 =  d O t/d t =  <I>L- JTj =  Ỡ3, andx4 -  dd m ld l -

(b) Draw a signal flow diagram using the nodes shown in Fig. 4P-51(b).



(c) Derive the forward-path ưansíer function G(5) =  0 i ( 5) /© i ( j )  when the outer feedback path 
from 6l  is opened. Find the poles o f G(i).

(d) Derive the closed-loop transfer function M{s) =  0 / . ( i) /0 e ( i) .  Find the poles o f Mis) when 
Ka = \ , 2738, and 5476. Locate these poles in the j-plane, and comment on the significance o f these 
values o f Ka.
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Figure 4P-51

- =  v(r)

l = - t ( v ) - g W  +  /(,)

4-52. The following differentia] equations describe ihe motion o f an elecừic ữain in a ữacõon syslem:

M t)  
dr 

dvjf) 
dt 

where
.v(f) =  linear displacement o f train 
v(f> =  linear velocity o f train
/c(v) =  re s is ta n c e  fo rc e  on  tra in  [odd  fu n c tio n  o f  V, w ilh  th e  p ro p e r tie s  

/c(0 ) =  0 and dk(\')Ịdv =  0 ]

^(.t) =  gravitational force for a nonlevel track or due to curvature o f track 
/ Ĩ / )  =  tractive force

The electric motor that provides the tractive force is described by the following equations:

e(l) =  Khộ{t)v{t) +  R a U t)  

m  = KMt)iÁt)
where e(/) is the applied voltage; the armature current; ;>(!). the field current; Rg. ửie armature 
resistance; ỷ (í). the magnetic flux from a separately excited field = KfifUy. and K„ the force consiant.
(a) Consider that the motor is a dc se rie s  motor with the armature and field windings connected in 
series, so that /o(f) =  i f{t). g(x) = 0. k[v) = Bvịi). and Ra = 0. Show that the system is described
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by the following nonlinear state equations:

^  =  v , „

e"(<)

(b) Consider that, for the conditions stated in part (a), ia(l) is the input o f the system [instead o f eU)]. 
Derive the state equations o f ứie system.

(c) Consider the same conditions as in pan (a) but w ith 0 ( i)  as the input. Derive the state equations. 

4-53. The linearized model o f a robot ann system driven by a dc motor is shown in Fig. 4P-53. The 
system parameters and variables are given as follows:

DC Motor Robot Arm

T„ — motor torque =  K,ia J i  -  inertia o f arm
K, =  torque constant Tl =  disturbance torque on arm
io =  armature cuưent o f motor Ql =  ann displacement

J„  =  motor inertia
=  motor viscous-friction coefficient 

B =  viscous-friction coefficient o f shaft between 
the motor and arm 

5 i . =  v isc o u S 'fr ic tio n  coefficient o f the robot arm shaft

K  =  to rs io n a l sp r in g  c o n s ta n t 

=  m o to r-sh a f t d isp lac em e n t

(a) Write the differential equations o f the system with «„(/) and TiU) as input and 9m{t) and 6t{t) as 
outputs.

(b) Draw an SFG using Tc{s), ©mW ' and0 £ {i) as node variables.

(c) Express the tfansfer-function relations as

Find G(5),

Q ds)
=  G(J) U s )

- T l {s)
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PROBLEM S FOR SECTION 4-8
4-54. The transfer function o f Ihe heat exchanger system is given by 

A(s) ( r i5 + I ) ( r 2i + 1)

where Tj is ihe time delay.
(a) Plot th e  roots a n d  zeros o f the system.

(b) Use M ATLAB to verify your answer in part (a).

4-55. Find the polar plot o f ứie fo llow ing functions by using the approximation o f  delay function 
described in Section 2.8.

(a) G {i) =

(b) G{s) =

g-sL

W \ T )

2 + 2se~' + 4e~-
+  3.Ĩ +  2

4-56. Use M ATLAB to solve Problem 4-55 and plot the step response o f the systems.

PROBLEMS FOR SECTION 4.9
4-57. Fig. 4P-57 shows (he schematic diagram o f a ball-suspension control system. The steel ball is 
suspended in the air by the electromagnetic force generated by the elecưomagnei. The objective of 
the control is to keep (he metal ball suspended at (he nominal equiiibnum position by controlling the 
currem in the magnet with the voltage eU). The practical application o f Ihis system is the mapetic 
levitation o f trains or magnetic bearings in high-precision control systems. The resistance o f ihe coil 
is R, and the inductance is Hy) = L/y(t). where Z- is a constant. The applied voltage eU) is a constant 
with amplitude E.
(a) Let Eeq be a nominal value o f E. Find ihe nominal values o f _y(0 and dy(t)jdi al equilibrium.

(b) Define the state variables at X\ (i)  =  /(/). X2 (i) =  y{t), andjT3 (/) =  dy{t)Ịdỉ. Find the nonlinear

stale equations n the form o f = dt f(x .e ).

(c) Linearize the state equations about the equilibrium point and express the linearized state 
equations as

dầx{t)
dt

The force generated by the elecưomagnet is KrU)ly(t), where a: is a proponionai constant, and [he 
gravitational force on the steel ball is Mg.



4-58. Fig. 4P-58(a) shows the schematic diagram o f a ball-suspension system. The steel ball is 
suspended in the air by the elecưomagnetic force generated by the electromagnel. The objective o f 
the control is to keep the metal ball suspended at the nommal position by controlling the cuưent in the 
electromagnet. When the system is at the stable equilibrium point, any small perturbation o f the ball 
position from its floating equilibrium position w ill cause the control to return the ball lo the 
equilibrium position. The free-body diagram o f the system is shown in Fig. 4P-58(b), where 

Mj =  mass o f electromagnet =  2.0 

AÍ2 =  mass o f steel ball — 1.0 

B = viscous-friction coefficient o f air =  0.1 

K  =  proportional constant o f electromagnet =  1.0 

g =  gravitational acceleration =  32.2 
Assume all units are consistent. Let the stabie equilibrium values o f the variables, i(/), y\{t), and 
^2(0  be /, y j, and ^2. respeclively. The state variables are defined as A:|(i) =  yi(O i ^̂ 2(0 =  dyx(t)ldt. 
x z { t )= y i( t ) ,  and X iit) = dyiW /di-
(a) Given y’l =  1, find /  and Y2-
(b) Write the nonlinear state equations o f the system in the form o f dx{t)ldt =  f(jT, 0-

(c) Find the state equations o f Ihe linearized system about the equilibrium state i .Y \, and >2 in the form

^  =  A 'ix ( / )  +  B -AiW
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Free-body
diagram

Figure 4P-58

PROBLEMS FOR SECTION 4-10 
4-59. Fig- 4P-59 shows a typical grain scale.
Assign any required parameters.
(a) Find the free-body diagram.

(b) Derive a model for the grain scale ứial determines the waiting time for the reading o f the weight 
o f grain after placing on the scale plalform.

(c) Develop an analogous electrical circuit for Ihis system.
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Figure 4P-59

4-60. Develop an analogous electrical circuit for the mechanical system shown in Figure 4P-60.

Figure 4P-60

4-61. Develop an analogous electrical circuit for the fluid hydraulic system shown in Fig. 4P-61.

Figure 4P-61

PROBLEMS FOR SECTION 4-11
4-62. The open-loop excitation model o f the car suspension system with 1 -DOF, illusưated in Fig. 
4-84(c), is given in Example 4-11-3. Use M ATLAB to find the impulse response o f the system. 

4-63. An active conưol designed for the car suspension system with 1-DOF is designed by using a 
dc motor and rack. Use M ATLAB and the transfer function o f the system given in Example 4-11 -3 to 
plot the impulse response o f the system. Compare your result w iih the result o f Problem 4-62.



Time-Domain Analysis of 
Control Systems

In  th is  chapter, we depend on the background m ateria l discussed in  Chapters 1 -4  to 
arrive  at the tim e  response o f  s im ple con tro l systems. In  order to  fin d  the tim e response o f  
a co n tro l system, we firs t need to  m odel the ove ra ll system dynam ics and find  its 
equation o f  m otion . The system cou ld  be composed o f  m echanical, e lectrica l, o r other 
sub-systems. Each sub-system may have sensors and actuators to  sense the environm ent 
and to  in te rac t w ith  it .  N ext, using Laplace transform s, we can fin d  the transfer function  
o f  a ll the sub-com ponents and use the b lo ck  diagram  approach o r signal flo w  diagram s to 
fin d  the in teractions among the system com ponents. Depending on our objectives, we 
can m anipulate the system fin a l response by adding feedback o r poles and zeros to  the 
system b lo c k  diagram . F ina lly , we can fin d  the ove ra ll transfer fu n c tio n  o f  the system 
and, using inverse Laplace transform s, ob ta in  the tim e  response o f  the system to  a test 
in p u t— no rm a lly  a step input.

A lso  in  this chapter, we lo o k  at more details o f  the tim e response analysis, discuss 
transient and steady state tim e response o f  a sim ple contro l system, and develop simple 
design crite ria  fo r  m anipulating the tim e response. In  the end, we look  at the effects o f 
adding a sim ple gain o r poles and zeros to  the system transfer function  and relate them to 
the concept o f  control. We f in a lly  look  at simple proportiona l, derivative, and integral 
c o n tro lle r design concepts in  tim e dom ain. Throughout the chapter, we u tilize  M A T L A B  in 
sim ple toolboxes to help w ith  our development.

► 5- 1  T I M E  R E S P O N S E  OF C Ũ N T I N U Ũ U S - D A T A  S Y S T E M S :  I N T R O D U C T I O N

Because tim e is used as an independent variable in  most contro l systems, i t  is usually o f 
interest to evaluate the state and output responses w ith  respect to tim e or. sim ply, the time 
response. In  the analysis prob lem , a reference input signal is applied to  a system, and 
the performance o f  the system is evaluated by studying the system response in the time 
dom ain. For instance, i f  the ob jective o f  the contro l system is to have the output variable 
track the input signal, starting at some in it ia l lim e and in itia l condition, i t  is necessary to 
compare the input and output responses as functions o f  lim e. Therefore, in most contro l- 
system problems, the fina l evaluation o f the performance o f  the system is based on the tim e 
responses.

The tim e response o f  a con tro l system is usually d iv ided  in to  tw o  parts: the transient 
response and the steady-state response. Let y (0  denote the tim e response o f  a continuous- 
data system; then, in  general, i t  can be w ritten  as

v ( 0 = > v ( 0 +>■„(?} (5 -1 )



where y,{t)  denotes the transient response and denotes the steady-slatô response. 
In  con tro l systems, transient response is defined as the part o f  the tim e response that goes tfl 
zero as tim e  becomes very  large. Thus, y ,  ( 0  has ứie property

j im > - , ( 0 = 0  (5-2)
/—'00

The steady-state response is sim ply the p a r i o f  the to ta l response that rem ains after 
the transient has d ied  out. Thus, the steady-state response can s till vary in  a fixed  pattern, 
such as a sine wave, o r a ram p func tion  that increases w ith  tim e.

A l l  real, stable con tro l systems e xh ib it transient phenomena to  some extent before the 
steady state is reached. Because inertia, mass, and inductance are unavoidable in  physical 
systems, the response o f  a typ ica l conưol system cannot fo llo w  sudden changes in  the input 
instantaneously, and transients are usually observed. Therefore, the conưol o f  the transient 
response is necessarily im portan t, because i t  is a s ign ifican t part o f  the dynam ic behavior of 
the system, and the devia tion between the ou tpu t response and the inpu t o r the desired 
response, before the steady state is reached, must be c losely contro lled.

The steady-state response o f  a con tro l system is  also very im p o rta n t because it 
indicates where the system output ends up when tim e becomes large. For a position-conưol 
system, the steady-state response when compared w ith  the desired reference position gives 
an ind ica tion  o f  the fina l accuracy o f  the system. In  general, i f  the steady-state response of 
the output does not agree w ith  the desired reference exactly, ứie system is said to  have a 
steady-state error.

The study o f  a con tro l system in  the tim e dom ain essentia lly invo lves the evaluation of 
the ưansient and the steady-state responses o f  the system. In  the design problem, 
specifications are usually given in  terms o f  the ưansient and the steady-state perfonnances. 
and contro llers are designed so that the specifications are a ll met by the designed system.

► 5 - 2  T Y P I C A L  T E S T  S I G N A L S  FOR T H E  T I M E  R E S P O N S E  OF C O N T R O L  S Y S T E M S

U n like  elecư ic networks and com m unication systems, the inputs to  m any practical conứol 
systems are not exactly known ahead o f  tim e. In  many cases, the actual inputs o f  a conữol 
system may vary in  random fashion w ith  respect to tim e. For instance, in  a radar-tracking 
system fo r antia ircraft missiles, the position and speed o f  the target to  be tracked may vary in 
an unpredictable manner, so that they cannot be predetermined. Th is  poses a problem  fo r the 
designer, because it  is d if f ic u lt to  design a contro l system so that i t  w i l l  perform  satisfactorily 
to a ll possible form s o f  input signals. For the purpose o f analysis and design, i t  is necessary to 
assume some basic types o f  test inputs so that the performance o f  a system can be evaluated. 
B y  selecting these basic test signals properly, not on ly  is the mathematical treatment o f  the 
problem  systematized, but the response due to  these inputs allows the p red iction o f  the 
system’s performance to  oứier more com plex inputs. In  ihe design prob lem , performance 
crite ria  may be specified w ith  respect to  these test signals so that the system may be designed 
to meet the criteria. Th is  approach is particu la rly  useful fo r  linear systems, since the response 
to com plex signals can be determined by superposing those due to simple test signals.

W hen the response o f  a linear tim e-invariant system is analyzed in  the frequency 
dom ain, a sinusoidal inpu t w ith  variable frequency is used. W hen the inpu t frequency is 
swept from  zero to beyond the sign ifican t range o f  the system characteristics, curves in 
terms o f  the am plitude ra tio  and phase between the input and the ou tpu t are drawn as 
functions o f  frequency. I t  is possible to pred ic i the tim e-dom ain behavior o f  ứìe system 
from  its frequency-dom ain characteristics.
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To fa c ilita te  the tim e-dom ain analysis, the fo llo w in g  de term in istic test signals are 

used.

Step-Function Input: The step-function inpu t represents an instantaneous change in  ứie 
reference input. For example, i f  the inpu t is an angular pos ition o f  a m echanical shaft, a step 
inpu t represents the sudden rotation o f  the shaft. The m athematical representation o f  a step 
fu nc tion  o r magnitude R  is
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r{t) =  R t > 0  

=  0  r < 0
(5-3)

where /? is a real constant. O r

r ịt)  =  Rus{t) (5-4)

where Us(t) is the unit-step function . The step function  as a func tion  o f  tim e is shown in 
F ig . 5 - l(a ) . The step func tion  is very useful as a test signal because its in il ia l instantaneous 
ju m p  in  am plitude reveals a great deal about a system ’s quickness in  responding to  inputs 
w ith  abrupt changes. A lso , because the step function  contains, in  p rinc ip le , a w ide band o f  
frequencies in  its spectrum, as a result o f  the ju m p  d iscontinu ity, i t  is equivalent to  the 
app lication o f  numerous sinusoidal signals w ith  a w ide range o f  frequencies.

Ramp-FunctioD Input: The ramp function  is a signal that changes constantly w ith  time. 
M athem atica lly, a ramp func tion  is represented by

r(l] =  R tu,{t) (5-5)

where i? is a real constant. The ram p function  is shown in  F ig. 5-1 (b). I f  the inpu t variable 
represents the angular displacement o f  a shaft, the ram p inpu t denotes the constant-speed

rjl)- R t'uM

Figure 5*1 Basic time-domain test signals for control systems, (a) Step function, (b) Ramp 
function, (c) Parabolic function.



ro ta tion o f  the shaft. The ram p func tion  has the a b ility  to  test how  the system would 
respond to  a signal that changes linea rly  w ith  time.

P a r a b o l i c -F u n c t io n  I nput:  The  parabolic funct ion represents a  s ignal  ứiat i s one  order 
faster than the ram p function . M athem atica lly , i t  is represented as

(5-6)

where /? is a real constant and the fac to r '/: is added fo r  m athem atical convenience because 
the Laplace transform  o f  r ịt) is s im p ly  R /s^ . The graphical representation o f  the parabolic 
function  is shown in  F ig. 5 - l(c ) .

These signals a ll have the com m on feature that they are sim ple to  describe mathe
m atica lly, From  the step func tion  to  the parabolic function , the signals become progres
sive ly  faster w ith  respect to  tim e. In  theory, we can define signals w ith  s t i l l  h igher rales, 
such as t^. w h ich  is called the je r k  function , and so fo rth . However, in  rea lity , we seldom 
find  i t  necessary o r feasible 10 use a test signal faster than a parabolic function . This is 
because, as we shall see later, in order to  track a h igh-order inpu t accurately, the system 
m ust have high-order integrations in  the loop, w hich usually leads to  serious stability 
problems.

► 5 - 3  T H E  U N I T - S T E P  R E S P O N S E  A N D  T I M E - O O M A I N  S P E C I F I C A T I O N S

As defined earlier, the transient portion  o f  the tim e response is the part that goes to  zero as 
tim e becomes large. Nevertheless, the transient response o f  a con tro l system is necessarily 
im portant, because both the am plitude and the tim e duration o f  the transient response must 
be kept w ith in  to lerable o r prescribed lim its . F o r example, in  the autom obile  idle-speed 
con tro l system described in  Chapter 1, in  addition to  striv ing  fo r  a desirable id le  speed in 
the steady state, the transient drop in  engine speed must not be excessive, and the recovery 
in  speed should be made as q u ick ly  as possible. For linear contro l systems, the characteri
zation o f  the transient response is often done by use o f  the unit-step func tion  M, ( 0  as the 
input. The response o f  a control system when the inpu t is a unit-step func tion  is called the 
unit-step response. F ig. 5-2 illustrates a typ ica l unit-step response o f  a linear control 
system. W ith  reference to  the unit-step response, performance crite ria  com m only  used for 
the characterization o f  linear con tro l systems in  the tim e dom ain are defined as follows:

1. M axim um  overshoot. Le t y d )  be the unit-step response. L e t >’max denote the 
m axim um  value o f  )»(?); y jj,  the steady-state value o f  y(t); and >'max >yss- The 
m axim um  overshoot o f  }»(?) is defined as

maximum overshoot =  Jmax -  yss (5-7)

The m axim um  overshoot is o ften represented as a percentage o f  the fina l value of 
the step response; that is,

m axim um  overshoot „
percent maximum overshoot = ------------ — ------------X 100% (5-8)

yss

The m axim um  overshoot is often used to measure the rela tive s tab ility  o f  a conưol 
system. A  system w ith  a large overshoot is usually undesirable. For design
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Figure 5-2 Typical unit-step response o f aconưol system illuslrating the time-domain specifications.

puqjoses. the m axim um  overshoot is often given as a tim e-dom ain specification. 
The unit-step illustra ted in  Fig. 5-2 shows that the m axim um  overshoot occurs at 
the firs t overshoot. For some systems, the m axim um  overshoot may occur at a 
later peak. and. i f  the system transfer function  has an odd num ber o f  zeros in  the 
rig h t-h a lf 5-plane, a negative undershoot may even occur [4, 5 ] (Problem  5-23).

2. Delay time. The delay tim e I,i is defined as the tim e required fo r the step response 
to reach 50% o f  its fina l value. T h is  is shown in Fig. 5-2.

3. Rise time. The rise tim e Ir is defined as the tim e required fo r  the step response to 
rise from  10 to 90% o f  its  fina l value, as shown in  Fig. 5-2. A n  alternative measure 
is to represent ihe rise tim e as the reciprocal o f  the slope o f  the step response at the 
instant that the response is equal to  50%  o f its fina l value.

4. Settling time. The settling tim e f,v is defined as the tim e required fo r the step 
response to decrease and stay w ith in  a specified percentage o f  its fina l value. A  
frequently used figure is 5%.

The fou r quantities jus t defined give a d irect measure o f  the transient 
characteristics o f  a contro l system in terms o f  the unit-step response. These 
tim e-dom ain specifications are re la tive ly  easy to measure when the step response 
is w e ll defined, as shown in Fig. 5-2. A na ly tica lly , these quantities are d if f ic u lt  to 
establish, except fo r simple systems low er than the th ird  order.

5. Steady-state error. The steady-state error o f  a system response is defined as the 
discrepancy between the output and the reference input when the steady stale 
(i —  oc) is reached.

It should be pointed ou l that Ihe steady-state eưor may be defined fo r  any test 
signal such as a step-function, ram p-function. parabolic-function, or even a 
sinusoidal input, although Fig. 5-2 on ly  shows the eư or fo r a step input.
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►  5 - 4  S T E A D Y - S T A T E  ER R O R

One o f the objectives o f most control systems is that the system output response follows a 
specific reference signal accurately in  the steady state. The d ifference between the ouqjut and 
the reference in  the steady state was defined earlie r as the steady-state eưor. In  the real world, 
because o f friction and other imperfections and the natural composition o f the system, the 
steady state o f the output response seldom agrees exactly with the reference. Therefore, 
steady-state eưors in  con tro l systems are alm ost unavoidable, in  a design problem , one o f  the 
objectives is to  keep the steady-stale e rro r to  a m in im um , o r be low  a certa in  to lerable value, 
and at the same time the transient response must satisfy a certain set o f specifications.

The accuracy requirement on conttol systems depends to a great extent on the conữol 
objectives o f the system. For instance, the final position accuracy o f an elevator would be 
far less stringent than the pointing accuracy on the conưol o f the Large space Telescope, 
which is a telescope mounted onboard a space shuttle. The accuracy o f position conưol of 
such a system is often measured in  m icroradians.

5-4-1 Steady-State Error of Linear Continuous-Data Control Systems

Linear control systems are subject to steady-state errors for somewhat different causes than 
nonlinear systems, although the reason is still that the system no longer “ sees”  the eưor, 
and no corrective effort is exerted. In general, the steady-state errors o f linear control 
systems depend on the type o f the reference signal and the type o f the system.

Definition o f the Steady-State Error with Respect to System  Configuration
Before embarking on the steady-state eưor analysis, we must first clarify what is meant by 
system error. In general, we can regard the error as a signal that should be quickly reduced 
to zero, i f  possible. Let us refer to the closed-loop system shown in Fig. 5-3, where r(0  is 
the inpu t; u(t), the actuating signal: ố (/), the feedback signal; and y (0 . the output. The error 
o f the system may be defined as

e{t) =  reference signal -  >>(/) (5-9)

where the reference signal is the signal that the oulput yU) is to track. When the system has 
un ity  feedback, that is. H {s) =  1. then the in p u t/-(0 is the reference signal, and the eưoris 
simply

g(/) =  r ( r ) - ;v ( r )  (5-10)

The steady-state eưor is defined as

e i í = l im ể ( í )  (5-11)

W hen H(s) is not unity, the actuating signal u (0  in Fig, 5-2 may o r may not be the eưor, 
depending on the fo rm  and the purpose o f  Hịs). Le t us assume that the ob jective  o f  the

Figure 5-3 Nonunity feedback control system.



system in  Fig. 5-3 is to  have the output >-(/) track the inpu t r ( 0  as c lose ly as possible, and the 

system transfer functions are
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1
H{s) =

5 { s + l )
~ sH s + \ 2)  ị s  +  5)

We can show that, i f  H { s )  =  1, the characteristic equation is 

s^ + l 2 s ^ + ị ^ 0

(5-12)

(5-13)

w h ich  has roots in  ± e  n g h t-h a lf 5-plane, and the closed-loop system is unstable. We can 
show that the H{s) g iven in  Eq. (5-12) stabilizes the system, and the characteristic equation 
becomes

-175^ +  605^ +  55 +  5 =  0 (5-14)

In  th is case, the system eư or may s t ill be defined as in Eq. (5-10).
However, consider a ve loc ity  con tro l system in  w hich a step inpu t is used to con tro l the 

system output that contains a ramp in  the steady state. The system transfer functions may 
be o f  the fo ra i

where H(s) is the transfer func tion  o f  an electrom echanical o r elecưonic tachometer, and K, 
is the tachometer constant. The system eư or should be defined as in  Eq. (5-9), where the 
reference signal is ih t  desired velocity and not r{t). In  this case, because r(t) a n d j i / )  are not 
o f  the same dimension, i t  w ou ld  be meaningless to  define the eưor as in  Eq. (5-10). To 
illus tra te  the system further, le t Ki =  10 volts/rad/sec. Th is  means that, fo r  a unit-step input 
o f  1 vo lt, the desired ve loc ity  in  the steady state is 1 / 1 0  or 0 .1  rad/sec, because when th is is 
achieved, the output voltage o f  the tachometer w ou ld  be 1 vo lt, and the steady-state eưor 
w ou ld  be zero. The closed-loop transfer func tion  o f  the system is

G M

R{s) \ +  G (s)H [s)

Toolbox 5-4-1
For the system in  Eq. 5-15;

° W  =  ? ( J T T 2 )

% use Kt=10 
%Step input 
Kt=10;
G z p k = z p k ( [ ] .[0 0 - 1 2 ]  ,1) 
G=tf(Gzpk)
H=zpk(0,[],Kt) 
cloop=feedback(G,H) 
step(cloop) 
xlabel(‘Time(sec)’) : 
y l a b e K  ‘Amplitude ’ ) ;
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G^s) GẶSÌ

Figure 5*4 System with disturbance input.

For a unit-step func tion  input, R{s) =  I / s .  The ou tput tim e response is

y (0  = 0 . 1 ( - 0 . 1 2 - 0 . 0 0 0 7 9 6 e - " ‘ '  +  0.1208<!-“ * " '  / > 0  (5-17)

Because the exponential terms o f  >’( / )  in  Eq. (5-17) a ll d im in ish  as Í - » oc, the steady-state 
part o f  y ịt)  is 0. l í  -  0.12. Thus, the steady-state e rro r o f  the system is

e ,, =  lim  [0 .1 /- y ( i ) ]  =  0.12 (5-18)

M ore  explanations on how  to  define the reference signal when H{s) ^  1 w il l  be given 
later when the general discussion on the steady-state eư or o f  nonun ity  feedback systems is 
given.

N o t a ll system errors are defined w ith  respect to the response due to  the input. Fig. 5-4 
shows a system w ith  a disturbance d{i), in  addition to  the inpu t r(t). The output due to d(t) 
acting alone may also be considered an eưor.

Because o f  these reasons, the de fin ition  o f  system e rro r has not been un ified  in ửie 
literature. To establish a systematic study o f  the steady-state e rro r fo r linea r systems, we 
shall c lassify three types o f  systems and treat these separately.

1. Systems w ith  un ity  feedback: H {s)=  1.

2. Systems w ith  nonun ity  feedback, but H(Q) =  K fi =  constant.

3. Systems w ith  nonunity feedback, and H{s) has zeros at Í  =  0  o f  order N.

The objective here is to  establish a de fin ition  o f  the eư or w ith  respect to  one basic system 
configuration so that some fundam ental re lationships can be determ ined between the 
steady-state e rro r and the system parameters.

Type o f Control System s: Unity Feedback System s
Consider that a contro l system w ith  un ity  feedback can t>e represented by o r s im p lified  to 
the b lock diagram w ith  H(s) =  I in  Fig. 5-3. The steady-state eư or o f  the system is written

ess =  lim  ^ (0  — l i m i f i i )

.1% ] +  G ( i)

C learly, depends on the characteristics o f  G ( i) . M ore specifically, we can show ữiat e,j 
depends on the number o f  poles G ( j)  has at Ỉ  =  0. Th is  num ber is known as the type o f ứie 
contro l system or. sim ply, system type.



We can show that the steady-state e rro r depends on the type o f  the con tro l system. L e t us 
fo rm a lize  the system type by re fen ing  to  the fo rm  o f  the forw ard-path transfer function  
G (5). In  general. G ( i)  can be expressed fo r convenience as

^  K(1 +  7 -,.) (l +  7-2») ■ ■. (1 +  JO,

í j ( i  +  7-„j)(i +  v )  - - ( i + r „ , í  +  r„2í 2 ) '

where K  and a ll the T ’s are real constants. The system type refers to the order o f  the pole o f  
G{s) at Í  =  0. Thus, the closed-loop system having the fo rw ard-path transfer function  o f  
Eq. (5-20) is type j ,  wherey =  0, 1, 2,. . . . The to ta l num ber o f  terms in  the num erator and 
the denom inator and the values o f  the coeffic ients are not im portant to  the system type, as 
system type refers o n ly  to the num ber o f  poles G(5 ) has at Í  =  0. The fo llo w in g  example 
illustrates the system type w ith  reference to  the fo rm  o f  G{s).
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> EXAMPLE 5-4-1
a:( 1 + 0 .5 5 )

° « = 7 0 T 7 ) ( n W T 7 T 7 )

N o w  le t us investigate the effects o f  the types o f  inputs on the steady-state eưor. We shall 
consider on ly  the step. ramp, and parabolic inputs.

Steady-State Error o f System  with a Step-Function Input
W hen the input r ( 0  to the contro l system w ith  H{s) =  1 o f  Fig. 5-3 is a step function  w ith  
m agnitude R, R{s) =  R!s, the steady-state eư or is w ritten  from  Eq. (5-19).

1 +  G(5) s™ 1 -)- G (5) 1 +  lim  G (i)

F or convenience, we define

ATp =  l im C ( i )  (5-24)

(5-25)

as the step-eưor constanl. Then Eq. (5-23) becomes

R
i +  K ,

A  typ ica l e,„ due to  a step input when Kp is fin ite  and nonzero is shown in  F ig. 5-5. We see 
from  Eq. (5-25) that, fo r  to  be zero, when the input is a slep function . Ấ’y,must be in fin ite . 
I f  G{s) is described by Eq. (5-20), we see that, fo r  Kp to  be in fin ite . / must be at least equal to 
u n ity ; that is, G (5) must have at least one pole at Í  =  0. Therefore, we can summarize the 
steady-state e rro r due to a step function inpu t as fo llow s:

Type 0 system:
\ + K p

Type I orh ighersystem ; =  0
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Reference input 
l i t )  =  R u /I)

Steady-State Error o f System  with a Ram p-Function Input
When the input to the control system [/ /(5) =  1] o f Fig. 5-3 is a ramp function wiừ 
magnitude R.

ril) = R lu ,(t)  (5-26

where R i% a real constant, the Laplace transform o f rU) is

R ( s ) ^ ị

The steady-state error is written using Eq. (5-19).

Css -  lim  -

We define the ramp-eưor constant as 

Then, Eq. Í5-26) becomes

(5-27,

Í5-28;

(5-29)

(5-30)

w hich is the steady-state eưor w h en  the input is a ramp function. A  typ ica l e,s due to a ramp 
input when K, is fin ite  and nonzero is illustra ted  in  F ig. 5-6.

Figure 5-6 Typical steady-siate eư o r due to a ramp-function input-
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Eq. (5-30) shows that, for to be zero when the input is a ramp function, K, must be 
infinite. Using Eqs. (5-20) and (5-29), we obtain

(5-31)

Thus, for ATv to be infinite ,7 must be at least equal to 2, or the system must be o f type 2 or 
higher. The follow ing conclusions may be stated with regard to the steady-state eưor o f a 
system with ramp input:

Type 0 system: €ss = 00

Type 1 system: ̂  ^  =  constant

Type 2 system: ess =  0

Steady-State Error o f System with a Parabolic-Function Input
When the input is described by the standard parabolic form

the Laplace transform of r(0  is

r { t ) = ^ U s ( t )

R { s ) = ị

(5-32)

(5-33)

The steady-state eưor o f the system in Fig. 5-3 with H(s)=  1 is

R
lim  s^G{s)

(5-34)

A  typical o f a system with a nonzero and finite Ka due to a parabolic-function input is 
shown in Fig. 5-7.

Defining the parabolic-eưor constant as

Ka =  lim
s—0

the steady-state error becomes

(5-35)

(5-36)

Figure 5-7 Typical steady-state eưor due to a parabolic-funclion input.



264 >■ Chapter 5. Time-Domain Analysis of Control Systems

TABLE 5-1 Summary of the Steady-State Errors Due to Step-, Ramp*, and Parabolic-Function 
Inputs for Unity-Feedback Systems

Type o f System Error Constants Step Input

Steady-State Error 

Ramp Input Parabol

J K, K,. 4 ; Ễ £
0 K 0 0 \+K oc 00

1 00 K 0 0 R
t 00

2 00 00 K 0 0 Ĩ
3 00 00 00 0 0 0

F o llo w in g  the pattern set w ith  the step and ram p inputs, the steady-state e rro r due to til 
parabolic inpu t is zero i f  the system is o f  type 3 o r greater. The fo llo w in g  conclusions ai 
made w ith  regard to  the steady-state e rro r o f  a system w ith  parabolic input:

Type 0  system: 6ss =  oo

Type 1 system: ^ss =  oo
R

Type 2 system: ~  I T  ~

T ype 3 o rh ig h e rsys te m : f j j  =  0

We cannot emphasize often enough that, fo r  these results to  be va lid . Uie closed-loo 
system must be stable.

B y using the method described, the steady-state e rro r o f  any linear closed-loop syster 
subject to an input w ith  order h igher than the parabolic func tion  can also be derived i 
necessary. As a summary o f  the eư or analysis. Table 5-1 shows the relations among th 
eư or constants, the types o f  systems w ith  reference to Eq. (5-20), and the input types.

As a summary, the fo llo w in g  points should be noted when app ly ing  the error-constai 
analysis ju s t presented.

1. The step-, ramp-, o r parabolic-error constants are s ign ifican t fo r the e rro r analysi 
o n ly  when the input signal is a step function , ramp function , o r parabolic funciior 
respectively.

2. Because the eư or constants are defined w ith  respect to the fo rw ard-path transfe 
function C ( i) ,  the method is applicable to o n ly  the system configura tion  shown i 
F ig. 5-3 w ith  H {s )  =  1. Because the e rro r analysis relies on the use o f  the final 
value theorem o f the Laplace transform , i t  is im portan t to  check firs t to  see i f  sE(i 
has any poles on the ýcư-axis o r in  the r ig h t-h a lf j-p lane .

3. The steady-state error properties sum marized in  Table 5-1 are fo r systems w ii 
un ity  feedback only.

4. The steady-state erro r o f  a system w ith  an inpu t that is a linear com bination o f th 
three basic types o f  inputs can be determ ined by superimposing the errors due t 
each input component.

5. W hen the system configuration d iffe rs  fro m  that o f  F ig. 5-3 w ith / / ( 5 ) =  l.w e c a  
either s im p lify  the system to  the fo rm  o f  Fig. 5-3 o r establish the eư or signal an 
apply the fina l-va lue theorem. The erro r constants defined here m ay o r may n< 
apply, depending on the ind iv idua l situation.



W hen the steady-state e rro r is in fin ite , that is. when the eư or increases continuously 
w ith  tim e , the eưor-constant m ethod does not ind icate how the eư or varies w ith  tim e. This 
is one o f  the disadvantages o f  the eưor-constant method. The error-constant method also 
does not apply to  systems w ith  inputs that are sinusoidal, since the fina l-va lue theorem 
cannot be applied. The fo llo w in g  examples illustra te the u t il i ty  o f  the eư or constants and 
the ir values in  the determ ination o f  the steady-state errors o f  linear con tro l systems w ith  
un ity  feedback.
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' EXAMPLE 5*4-2 Consider that the system shown in Fig. 5-3 with H{s) =  I has the follow ing transfer functions. The 
error constants and steady-state errors are calculated for the three basic types o f inputs using the error 
constants.

^<~> =  . ( . +  i .5 ) ( .  +  0.5) '  Type 1 system

Step input:

Ramp input: Ramp-eưor constant = 4.2K ess = —  = ——
Av 4.2K

Parabolic input; Parabolic-error constant a:,, =  0 Css = ~  = 00

These results are valid only i f  the value o f K  stays within the range that corresponds to a 
stable closed-loop system, which is 0 <  A’ <  1.304.

" W = ‘ Type 2 system

The closed-loop system is unstable for all values o f K, and error analysis is meaningless. 

=  ' T ype 2 sys,em

We can show thal the closed-loop system is stable. The steady-state errors are 
calculated for Ihe three basic types o f inpuls.

Toolbox 5-4-2
For the system in  Exam ple 5-4-2:

(a) G (j) =
5 ( j+  l-5 ) ( j +  0.5)

% Step input 
K=l; % U s e  K=1
Gzpk=zpk([-3.15],[0 -1.5 -0.5],1) 
G=tf(Gzpk);
H = l;
clooptf=feedback(G.H) 
step(clooptf) 
x l a b e K  ‘Time(sec) ’ ) ; 
ylabeic‘Amplitude’);
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Time(sec) (sec)

S im ila rly  you may obtain the ram p and parabolic responses

%Ramp input 
t=0:0.1:50; 
u = t :
[y,x]=lsim(clooptf,u,t); 
plot(t,y,t,u);
title( ‘Closed-loop response for Ramp Input ’ ) 
xlabeic‘TimeCsec) ’) 
ylabeic‘Amplitude’)
%Parabolic input 
t=0:0.1:50: 
u = 0 . 5 * t . * t :
[y,x]=lsim(clooptf,u,t); 
plot(t,y,t , u ) :
titleC ' Closed-loop response for Parabolic Input ’ )
xlabel(‘Time(sec’)
ylabel(‘Amplitude’)

Slep input: Step-error constant: Kp = oo

Ramp input: Rajnp-error constant: Kr =  oc

1 +Kp

Parabolic input: Parabolic-eưor constant: Ko = 1/12

Relationship between Steady-State Error and Closed-Loop Transfer Function
In  the last section, the steady-siate eưor o f  a c losed-loop system was related to  the fonvard- 
path transfer function  G(5 ) o f  the system, w h ich  is usually known. O ften, the closed-loop 
transfer function  is derived in  the analysis process, and it w ou ld  be o f  interest to  establish 
the relationships between the steady-state error and the coeffic ients o f  the closed-loop 
transfer function . As i t  turns out, the closed-loop transfer function  can be used to  find the 
steady-state eưor o f  systems w ith  un ity  as w e ll as nonunity feedback. F o r the present 
discussion, le t us impose the fo llo w in g  condition:

lim  H{s) =  H {0) =  K h  =  constant (5-37)



which means that His) cannot have poles at Í  =  0. Because the signal that is fed back to be 
com pared with the input in the steady Slate is K„ times the steady-state output, when this 
feedback signal equals the input, the steady-state error would be zero. Thus, we can define 
the reference signal as r{t)/Kfi and the eưor signal as
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<5-38)Kh

or. in the transform domain,

£ ( i )  =  ^  R ( s )  -  y ( i )  =  ^  [1 -  í h A Í( í )] í ỉ {j ) ( 5 - 3 9 )

where M{s) is the closed-loop transfer function, r ( j ) / ^ ( i ) .  Notice that the above develop
ment includes ứie unity-feedback case for which Kfi =  \- Let us assume that M{s) does not 
have any poles at 5 =  0 and is o f the form

r ( j )  + + ■■■ + h s  + bo

where n >  m. We further require that all the poles o f M{s) are in the left-half 5-plane, which 
means that the system is stable. The steady-state error o f the system is written

=  l i m i £ ( i )  =  l ì m - Ị - [ l  -  K hM {s )]sR{s ) (5-41)
s-^oKh

Substituting Eq. (5-40) into the last equation and simplifying, we get

K}i Í —0 i "  +  ữn-\S * + - • ■ +  ữ\S +  <70 

We consider the three basic types o f inputs for r(i).

1. Step-function input. R{s) = R/s.
For a step-function input, the steady-state eưor in Eq. (5-42) becomes

Thus, the steady-state error due to a step input can be zero only i f

ao -  boKn = 0 (5-44)

M{0) = -  = ~  (5-45)
<30

Th is  means th a t,/o r  a unity-feedback system  K h  =  / .  the constant term s o f  the 
num erator and  the denom inator o f  M(s) m ust be equal, that is, bo = ao, fo r  the 
s tead\-sta te error to be zero.
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2. R a m p 'fu n c tio n  input. R{s) = R js^ .
For a ramp-function input, the steady-state eưor in Eq. (5-42) becomes

 ̂ + ■■ + { a ^ ~ h K „ ) . +  { a ^ -b ,K ^ ^
Kns-̂ à +  ••• + ứ i í  +  ữo)

The following values o f €ss are possible:

Css =  0 i f  ao -  =  0 and O] -  bìKn ^ 0  (5-47)

oị — / ỉ  =  constant i f  a o - b o K H = 0  and ũ ] - b i K H ^ O  (5-48)
aoKn

ess= oo  i f  ao-boK H ỹ^Q  (5-49)

3. ParaboUc-function input. R{s) = R/s^.
For a parabolic input, the steady-state eưor in Eq. (5*42) becomes

1 ,, s" + ■■■ + ịa 2 - b 2 KHÌs'^+ {ai -  b iK H )s+ (a o -b o K H Ì „
------------------J ( y . + X V " - ' +  ■ ■ + « , .  +

The follow ing values o f e^s are possible;

= 0  i f  ứ, -  b iK n  = 0  fo r  i  -  0, 1. and 2 {5-51)

e^s = —— =  constant i f  a j -b iK H = 0  for / =  0 and 1 (5-52)

€ss = oo i f  Qi-biKHT^O  for i =  0 and 1 (5-53)

► EXAMPLE 5-4-3 T h e  fo rw a rd -p a th  a n d  c lo se d - lo o p  tra n s fe r  fu n c tio n s  o f  Ihe  system sh o w n  in  F ig . 5 -3  a re  g iven  next.
The system is assumed to have unity feedback, so H (s) =  1, and thus K h  =  H (0 )  =  I.

‘ "< "> = .2 ( .+  l i ) ( ? + 5 )  " W = . ^  +  n / i i i ’ + 5 ,  +  5 f ” -')

The poles o f  M is) are all in ihe le ft-h a lf ,y-plane. Thus, (he system is stable. The steady-slate 
errors due to the three basic  lyp es o f  in pu ls are evaluated  as fo llow s;

Step input; =  0 sinceao =  foo(= 5)

Ramp input: e.t,v =  0 sinceao =  /’o (=  5)andaj =  h]{= 5)

Parabolic inpul: c,, ^  ~  R = — R ^  12R
ooKh 5

Because this is a type 2 system with unity feedback. Ihe same resulis are obtained w ilh ihe cfTor- 
constant method. <



EXAMPLE 5-4-4 Consider the system shown in Fig. 5-3, which has the following ưansíer functions:

Then, Kfi = H{ữ) =  1. The closed-loop transfer funciion is

”  i ( 7 )  “  1 +  G(s)H(s) ”  y  +  17P +  60s' +  5 i +  5

Comparing the last equation with Eq. (5-40), we have Oo =  5, fl] =  5. tJ2 =  60. èo =  5, ố| =  1, and 
bi = 0. The steady-state errors o f the system are calculated for the three basic types o f inputs.

Unit-step input, r(r) =  Uf(r): é jj =  —— =  0
Ớ0

U n it- ra m p  in p u t. r { t )  -  fU j(f): ess =  —— 77^  =  =  0 .8
ao Kn 5

U n it-p a ra b o lic  in p u t. r ( r )  =  rw j( i ) /2 : €ịs — 'X, s ince o ị -  b \K f ỉ  ¥=0

It would be illuminating to calculate the steady-state errors o f the system from the difference between 
the input and the output and compare them with the results just obtained.

Applying the unit-step. unit-ramp. and unii-parabolic inputs to the system described by 
Eq. (5-56), and taking the inverse Laplace iransfonn o f K(j), the outputs are

Unit-step input:

>’(i) =  1 -  0 .0 0 0 5 6 f- '2  _  0.0001381^~^ ®®̂'

-  0 .9 9 9 3 e -^ ™ c o s 0 .2 8 9 8 i-0 .1 3 0 Ie “ '’ °^ °^ 's in 0 .2 8 9 8 ii> 0  '  *

Thus, the steady-state value o f v{/) is unity, and the steady-stale error is zero.

Unihramp input:

y{ t )  =  I  -  0.8 +  4,682 X +  2.826 X IQ - ’ f - ' * * * '

+  0.8«-“ “ “ ' cosO.28981 -  3.365f^“  sin 0.2898< f >  0

Thus. Ihe steady-stale portion o f v(i) is f -  0.8. and the steady-state error to a unit ramp is 0.8.

Unit-parabolic input:

i i l )  = 0 . 5 r - 0 . S ĩ -  1 1 .2 -3 .8 8 4 2  X 10‘ V ’ ® ' -  5.784 X

+  1 1 .2 e - " “ “ 'c o s 0 .2 8 9 8 (  +  3 .9 2 8 9 f - “ “ “ 's i n 0 ,2 8 9 8 /  ( > 0

The steady-state portion o f yiO is 0,5f^ -  0,8r -  11-2. Thus, the steady-stale eưor is 0.8? +11,2. 
which becomes infinite as time goes to infinity.
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EXAMPLE 5-4-5 Consider that the system shown in Fig. 5-3 has the following transfer functions:

Thus.

Kh  =  l im / / (5 )  =  2 (5-61)

The closed-loop transfer function is

____ i+±____
K(s) l+ G (s )H (s ) .!-• +  I 7 j j+ 6 0 j = +  IOj + 10



270 Chapter 5. Time-Oomain Analysis of Control Systems

The steady-state eưors o f the system due to the three basic types o f inputs are calculated as fo llm  

Unii-step inpu t r{t) =  Us{t):

1 f o ữ - b o K H \  ì f ì 0 - 5 x 2 \  ^

Solving for the output using the M(s) in Eq. (5-62), we get

_y(r} =  0.5u,(f) +  transient tenns (5-6

Thus, the steady-state value o f y(t) is 0.5, and because Kh =  2, the steady-state error due 10 a uni 
step input is zero.

Unit-ramp inpu t r(t) =  tUsự):

^  2 .  f e i ^ )  =  1 f <5-6:
"  Kh \  ao J  2 \  10 J

The unit-ramp response o f the system is written

>'(f) =  [0.5/ -  0 ,4 ]u j(i) +  transient terms (5-6<

Thus, using Eq. (5-38), the steady-state error is calculated as

e(t) =  -J -  rịt) -  y{t) = OAus{t) -  transient terms (5-6:
Kh

Because the ưansient terms w ill die out as ! approaches infinity, the steady-state eưor due to a uni 
ramp inpul is 0.4, as calculated in Eq. (5-66).

Unit-parabolic input r{t) = Puf(t)/2:

ess =  oo  since

The unit-parabolic input is

y ( l)  =  [0 .25 /^  -  0 .4 f  -  2 .6 ] Us(t) +  ư a n s ie n l le n n s  (5-61

The eưor due to the unit-parabolic input is

eii) =  — r( i)  — v(r) =  (0-4r — 2 .6)« j(i) — transient terms (S-ft
Kh

Thus, the steady-state error is OAt +  2-6, which increases with time.

Steady*State Error o f Nonunity Feedback: H(s)  Has M h-O rder Zero at s = 0
T h is  case coưesponds to desired output being p ropon iona l to  the M h -o rd e r derivative ( 
the input in  the steady state. In  the real w orld , th is corresponds to app ly ing  a tachometer ( 
rate feedback. Thus, fo r  the steady-state e rro r analysis, the reference signal can be define 
as R{s ) /K h s '̂ , and the e rro r signal in the transform  dom ain may be defined as

=  (5-7(

where

í r „  =  Ị i n j í ^  (5-7:

W esha llde riveon ly  th e re su lts fo r/v  =  1 h e re .In th isca se ,th e tra n s fe rfu n c tio n o fA /( i) in B
(5-40) w ill have a pole a t i  =  O ,orao =  0. The sleady-state e rro r is w ritten  from  Eq. (5-70)a

K h  .'-0
ess -■

• +  (fl2 -  b \K H )s+  jo] -  òqK h )
í "  +  ứ n - i í ” '

sRis)  (5-T



■■■ + { 0 2  - b ịK H ) s  +  {a\ - b o K n )
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For a step input o f  m agnitude R, the last equation is w ritten

e s s = - ^ \ i m
K h s -Q

(5-73)

Thus, the steady-state eưor is

ess =  Q i f  a 2 ~ b \K H  =  ^  and ứ ] - ò o ^ / /  =  0 (5-74)

Sss =  ~ — =  constant i f  a \ - b ũ K H  =  ữ but a 2 ~ b \ K f í ^ 0  (5-75)
0]K h

e,s =  oo i f  a i - b o K n ^ O  (5-76)

We shall use the fo llo w in g  example to  illus tra te  these results.

► EXAMPLE 5-4-6 Consider that the system shown in Fig. 5-3 has the follow ing transfer functions:

lO i

* :*  =  l i m ®  =  2 (5-78)
J—0 s

The closed-loop ưansíer function is

”  R(s) ”  ? T Ĩ W T 6 Õ ? T Ĩ Õ Ỉ

The velocity c o n tro l system is stable, although M(s) has a p o le  at J =  0. because the objective is to 
control velocity with a step input. The coefficients are identified to be ứo =  0 - f l i =  10- 
02 = 60. bo = 5. and bi = \ .

For a unit-step input, the steady-state eưor, from Eq. (5-75), is

To verify this result, we find the unit-step response using the closed-loop ưansfer funclion in 
Eq. (5-79). The result is

)’{ f) =  (0.5f -  2.9)wj(i) +  transient tenns (5-81)

From the discussion that leads to Eq. (5-70). the reference signal is considered to be tUs(t)/Kn =
0.5/«.,(f) in the steady state; thus, the steady-state error is 2.9. O f course. Ũ should be pointed out thal 
i f  H(s) were a constant for this type 2 system, the closed-loop system would be unstable. So, the 
derivative control in (he feedback path also has a stabilizing effect.

Toolbox 5-4-3
The corresponding responses fo r  Eq. 5-79 are obtained by the follow ing sequence o f  M ATLAB Junctions

t=0:0.1:50: 
num = [ 1 5 ] ;  
de n =  [1 17 60 10 0] ; 
sys = tfCniam.den) ; 
sys_cl=feedback(sys,1);
[y,t]=step(sys_cl):
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u=ones(size(t)) ;
plot(t,y,‘r ’,t,u ,‘g ’)
x l a b e K  'Time(secs) ’)
ylabel(‘Amplitude’)
titleC‘Input-green, Output-red’)

InpLt-grsen, Output-red

5-4-2 Steady-State Error Caused by Nonlinear System Elements

In  many instances, steady-state errors o f  contro l systems are attributed to  some nonlineaj 
system characteristics such as nonlinear fr ic tio n  o r dead zone. For instance, i f  an amplifiei 
used in  a contro l system has the inp u t-o u tp u t characteristics shown in  F ig. 5-8, then, when 
the am plitude o f  the am p lifie r input signal fa lls  w ith in  the dead zone, the output o f the 
a m p lifie r w ou ld  be zero, and the control w ou ld  not be able to  correct the eư or i f  any exists, 
Dead-zone non linearity characteristics shown in Fig. 5-8 are not lim ite d  to  am plifiers. The 
flux-to -cuư em  relation o f  the magnetic fie ld  o f  an e lectric  m otor m ay e xh ib it a similai 
characteristic. As the cuưent o f  the m otor fa lls  below  the dead zone D. no magnetic flux, 
and, thus, no torque w il l  be produced by the m o to r to  move the load.

The output signals o f  d ig ita l components used in  con tro l systems, such as a micro
processor. can take on o n ly  discrete o r quantized levels. Th is  property is illustra ted  by the 
quantization characteristics shown in  Fig. 5-9. W hen the inpu t to  the quantizer is within 
± ợ /2 , the output is zero, and the system may generate an e rro r in  the output whose

z ------>
Input

Figure 5-8 Typical input-output 
characteristics o f an amplifier with dead 
zone and saturation.
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Ouipui'

5?

- 4 ,  - ìq  - ĩq

Figure 5-9 Typical input-output characteristics o f a quantizer.

magnitude is related to  ± ạ /2 .  Th is  type o f  eư or is also know n as the quantization eư or in 
d ig ita l contro l systems.

W hen the con tro l o f  physical objects is invo lved, fr ic tio n  is almost always present. 
C ou lom b fr ic tio n  is a com m on cause o f  steady-state position errors in  contro l systems. 
F ig . 5-10 shows a restoring-torque-versus-position curve o f a contro l system. The torque 
curve typ ica lly  could be generated by a step m otor o r a switched-reluctance m otor o r from  
a closed-loop system w ith  a position encoder. Point 0 designates a stable e q u ilib rium  point 
on the torque curve, as w e ll as the other period ic  intersecting points along the axis where 
the slope on the torque curve is negative. The torque on either side o f  po in t 0 represents a 
restoring torque that tends to  return the output to  the e q u ilib rium  po in t when some angular- 
d isplacem ent disturbance takes place. W hen there is no fr ic tio n , the position eư or should 
be zero, because there is always a restoring torque so long  as the position is not at the stable
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equ ilib rium  point. I f  the ro to r o f  the m otor sees a C oulom b fr ic tio n  torque Tf- then the motffl 
torque must first overcome this fr ic tiona l torque before producing any m otion . Thus, as the 
m otor torque fa lls  below  Tp as the ro to r position approaches the stable e q u ilib n u m  point, ii 
m ay stop at any position inside the eư or band bounded by ± 6 e ,  as shown in  F ig. 5-10.

A lử iough it  is re la tive ly  sim ple to  comprehend the effects o f  nonlinearities on errors and 
to  establish m axim um  upper bounds on the error magnitudes, it  is d if f ic u lt  to  establish general 
and closed-form  solutions fo r  nonlinear systems. Usually, exact and detailed analysis ol 
errors in  nonlmear con tro l systems can be carried out o n ly  by com puter simulations.

Therefore, we must rea lize that there are no eưor-íree con tro l systems in  the real 
w orld , and, because a ll physical systems have nonlinear characteristics o f  one form  or 
another, steady-state errors can be reduced but never com ple te ly  elim inated.

► 5-5  T IM E  R E S P O N S E  OF A  PR O TO TY P E  F IR S T-O R D E R  S Y S T E M

Consider the p ro to ty p e  f ir s t-o rd e r  system o f  form

(5-82)

where r  is known as the tim e  cons tan t o f  the system, w h ich  is a measure o f  how fast 
the system responds to in itia l conditions o f  external excitations. Note that ửie input in 
Eq. (5-82) is scaled by \  fo r cosmetic reasons.

For a unit-step input

/0, r< 0 , 
\1 ,  f > 0

I f  y{0) =  K O } =  0, C{us{t)) =  -  and £(>■(?)) =  Y{s), then

(5-83)

(5-84)
■ 5 5 +  I / r

A p p ly in g  the inverse Laplace transform  to Eq. (5-84). we get the tim e response o f  Eq. (5-82):

y (r) =  1 -  e-'> ' (5-85)

where T is the tim e fo r v (0  to reach 63% o f  its fina l value o f  lim  >i{r) =  I.

Fig. 5-11 shows lyp ica! unii-step responses o f  y(?) fo r  a general value o f  T. As the value 
o f  tim e constant T decreases, the system response approaches faster to  the fina l value. 
The step response w il l  not have any overshoot fo r  any com bination o f  system parameters.
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Figure 5-12 Pole configuration o f the 
ưansíer function o f a prototype first- 
order system.

Fig. 5-12 shows the location o f  the pole at Í  =  -  -  in  the i-p lane  o f  the system ưansfer 
function. For positive T, the pole at 5 =  -  Ị  will always stay in the left-half 5-plane, and the 
system is always stable.

► 5-6 T R A N S I E N T  R E S P O N S E  OF A  PRO T OT YPE S E C O N D -O R D E R  S Y S T E M

Although  true second-order contro l systems are rare in  practice, the ir analysis generally 
helps to  fo rm  a basis fo r the understanding o f  analysis and design o f  higher-order systems, 
especially the ones that can be approxim ated by second-order systems.

Consider that a second-order con tro l system w ith  un ity  feedback is represented by the 
b lo ck  diagram  shown in  F ig. 5-13. The open-loop transfer function  o f  the system is

C ( i )  =
y (£ )^

(5-86)
j ( s  +  2fiu„)

where Ị  and co„ are real constants. The closed-loop transfer function  o f  the system is

I ' ( i )
R { s )

(5-87)

The system in  Fig. 5-13 w ith  the transfer functions given by Eqs. (5-86) and (5-87) is 
defined as the prototype second-order system.

The characteristic equation o f  the prototype second-order system is obtained by setting 
the denom inator o f  Eq. (5-87) to  zero:

A ( i )  =  +  2i;io„5 + ừjị = 0 (5-8;

For a unit-step function input, R{s) =  1 /s ,  the ou tput response o f  the system is obtained by 
taking the inverse Laplace transform  o f  the output transform;

Y{s) =
5(s- +  2^WnS +  (o ị)

(5-89)

e(t) >■{/)

m i
Figure 5-13 Prototype second-order conưo!
system.
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0)„I

Figure 5-14 Unit-step responses o f the proiotype second-order system with various damping rarios.

Th is  can be done by re ferring to the Laplace transform  table in  Append ix  c . The result is

v ( /)  =  1 -  s in fo in y / l  -  +  cos~‘ f > 0  (5-90)

Fig. 5-14 shows the unit-step responses o f  Eq. (5-90) p lo tted as functions o f  the normalized 
tim e W„I fo r  various values o f  c. As seen, the response becomes more osc illa to ry  w ith  largei 
overshoot as ^  decreases. W hen f  >  1, the step response does not exh ib it any overshoot: 
tha l is, v (/) never exceeds its fina l value during the transient. The responses also show thai 
co„ has a d irect e ffect on the rise tim e, delay tim e, and settling tim e but does not a ffecl thí 
overshoot. These w ill be .studied in more detail in the fo llo w in g  sections.
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5-6-1 Damping Ratio and Damping Factor

The effects o f  the system parameters ;  and iy „ on the step response yU) o f  the prototype 
second-order system can be studied by re fe rring  to  the roots o f  the characteristic equation 
in Eq. (5-88).

Toolbox 5-6-1
The corresponding tim e responses fo r  Fig. 5 -Ỉ4  are obtained by the follow ing sequence o f  MATLAB  
functions

clear all 
w=10;
f o r l = [ 0 . 2  0 . 4  0 .6  0 . 8  1 1 .2  1 . 4  1 .6  1 . 8  2 ]
t = 0 : 0 . 1 : 5 0 :
num = [w. ''2] ;
d e n =  [12*l*ww.^2]; Ciosed-LooD siec
t=0:0.01:2;
step(num,den,t) hold on; 
end
xlabeic‘Time(secs)’) 
ylabeic‘Amplitude’) 
titleC 'Closed-Loop S t e p’)

The tw o  roots can be expressed as

S |. J2 =  -Ctu.. ±  join V l  -  c’

=  —Ơ  ±  ju )
(5-91)

(5-92)

J =  co„ \ / l  -  ị"- (5-93)

The physical significance o f  c and a  is now investigated. As seen from  Eqs. (5-90) and 
(5-92). a  appears as the constant tha i is m u ltip lie d  to ! in the exponential term o f  v(r).
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T here fo re , a  con tro ls  the rate o f  rise o r decay o f  the un it-s tep  response y{t). In  otíia 
words, a  con tro ls  the “ dam ping”  o f  the system and is ca lled  the dam p ing  facto r, or th{ 
dam ping  constant. T he  inverse o f  or, 1 /a , is p ropo rtiona l to  the tim e  constant o f the 
system.

W hen the tw o  roots o f  the characteristic equation are real and equal, we called the 
system c r it ic a lly  damped. F rom  Eq. (5-91), we see that c r it ic a l dam ping  occurs when 
f  =  1. U nder tìiis  cond ition , the dam ping fac to r is s im p ly  a  =  (Un-Thus, we can regard f  as 
the dam ping ra tio ; that is.

a  actual dam ping facto r
c =  dam ping ra tio  =  —  =   ------- —̂  ----------  — — —--------:—

(t)„ dam ping facto r at c rit ic a l dam ping
(5-94)

5-6-2 Natural Undamped Frequency

The parameter Ci)„ is defined as the natural undamped frequency. A s seen from  Eq. (5-91), 
when < =  0, the dam ping is zero, the roots o f  the characteristic equation are imaginary, and 
Eq. (5-90) shows that the unit-step response is pure ly sinusoidal. Therefore, a>„ corresponds 
to the frequency o f  the undamped sinusoidal response. Eq. (5-91) shows that, when 0  <  c <  1, 
the im aginary part o f  the roots has the m agnitude o f  (O. W hen f  /  0, the response o f  y{l) is not 
a periodic function, and m  defined in  Eq. (5-93) is not a frequency. F o r the purpose of 
reference, (0 is sometimes defined as the conditional frequency, o r the damped frequency.

F ig . 5-15 illustrates the relationships among the location o f  the characteristic equation 
roots and a , w„, and <o. For the com plex-conjugate roots shown,

• a)„ is the rad ia l distance from  the roots to the o r ig in  o f  the i-p lane .

• a  is the real part o f  the roots.

• (O is the im aginary part o f  die roots.

• c is the cosine o f  the angle between the radial line  to  the roots and the negative axis 
when the roots are in  the le ft-h a lf i-p lane , or

f  =  cosớ (5-95)

X
Rooi

A
I \ \

(0=

1

Figure 5-15 Relationships among the 
characteristic-equation roots o f ihe 
prototype second-order system and a. f. 
and Ù}.
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Figure 5-16 (a) Consiant-natural-undamped-frequency loci, (b) Conslant-damping-ratio loci,
(c) Constant-damping-factor loci, (d) Constant-conditional-frequency loci.

F ig . 5-16 shows in  the i-p lane  (a) the constant-o)„ loc i, (b) the cons ian t-f lo c i, (c) the 
constant-a loc i, and (d ) the constani-o) loc i. Regions in  the .y-plane are iden tified  w ith  the 
system dam ping as fo llow s:

• The le ft-h a lf i-p lane  corresponds to positive dam ping: that is. the dam ping factor or 
dam ping ra tio  is positive. Positive dam ping causes the unit-step response to settle to 
a constant fina l value in  the steady state due to  the negative exponent o f 
exp (-fỂ ư „/). The system is stable.

• The r ig h t-h a lf i-p lane  corresponds to negative dam ping. Negative dam ping gives a 
response that grows in  magnitude w ithou t bound, and the system is unstable,

• The im aginary axis corresponds to zero dam ping (a  =  0 o r =  0), Zero damping 
results in a sustained osc illa tion  response, and the system is m arg ina lly  stable or 
m arg ina lly unstable.

Thus, we have demonstraled w ith  the help o f  the simple prototype second-order 
system that the location o f  the characteristic equation roots plays an im portant role in  the 
transienl response o f  the system.
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Figure 5-17 Locus o f roots o f the 
characteristic equation o f  ỨK 
prototype second-order system.

The effect o f  the characteristic equation roots on the dam ping o f  ứie second-order 
system is fu rthe r illustra ted by F ig. 5-17 and F ig. 5-18. In  Fig. 5-17, i0„ is held constant 
w h ile  the dam ping ra tio  Ị  is varied fro m  - o c  to  + 0 0 . The fo llo w in g  classification o f  die 
system dynam ics w ith  respect to  the value o f  f  is made:

0 < i < l 5| • 52 =  ±  jca„ \ / \ ( - i o . „ < 0 ) underdamped

J l,  Í2  = critically damped

? > l •Ĩ11 Í2  =  ±  -  1 overdamped

5), J2 = undamped

« 0 •Tl. ^2 =  ±  j<^n \ / l  - (-CO J„>0) negaiivefy damped

Fig. 5-18 illustrates typ ica l unit-step responses that correspond to  the various root locations 
already shown.

In  practical applications, on ly  stable systems that coưespond to  ^  >  0  are o f  interest. 
F ig. 5-14 gives the unit-step responses o f  Eq. (5-90) plo tted as functions o f  ứie normalized 
tim e 0)„1 fo r  various values o f  the dam ping ra tio  <■- As seen, the response becomes more 
osc illa to ry  as c decreases in  value. W hen f  >  1, the step response does not exh ib it any 
overshoot; that is, yU) never exceeds its fina l value during  the transient.

5-6'3 Maximum Overshoot

The exact relation between the dam ping ra tio  and the am ount o f  overshoot can be obtained 
by taking the derivative o f  Eq. (5-90) w ith  respect to  t and setting the result to  zero. Thus.

+  -  C^cos(6jf +  e )] f > 0 (5-96)

where CƯ and 6  are defined in Eqs. (5-93) and (5-95), respectively. We can show ửiat the 
quantity inside the square bracket in  Eq. (5-96) can be reduced to  sin lot. Thus. Eq. (5-96) is 
s im p lified  to

dyit)  ̂

dt - c -
= e  sm < o„ y/ i  I > 0
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Figure 5-18 Step-response comparison for various characieristic-equaiion-root locations 
in the 5-plane.
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Setting dy{t)Ịd t  to  zero, we have the solutions: t — 00 and

(5-91

fro m  w h ich  we get

« =  0 ,1 ,2 , . (5-99)

The solu tion at r =  00 is the m axim um  o fy i / )  o n ly  when f  >  1. F o r the un it-s lep responses 
shown in  Fig. 5-13, the firs t overshoot is the m axim um  overshoot. T h is  coưesponds to 
« =  1 in  Eq. (5-99). Thus, the tim e at w h ich  the m axim um  overshoot occurs is

(5-100)

W ith  reference to  Fig. 5-13, the overshoots occur at odd values o f  n, that is, n =  1,3,
5........... and the undershoots occur at even values o f  n. W hether the exttem um  is an
overshoot o r an undershoot, the tim e at w h ich  i t  occurs is given by Eq. (5-99). I t  should be 
noted that, although the unit-step response fo r  c #  0 ừ  no t periodic, the overshoots and the 
undershoots o f  the response do occur a t periodic intervals, as shown in Fig. 5-19.

The magnitudes o f  the overshoots and the undershoots can be determined by 
substituting Eq. (5-99) in to  Eq. (5-90). The result is

Sin(/ĨJT 4- Ớ) n =  1. 2 , . . . (5-IŨ1)

i ( ' ) U „ i „ =  1 + ( - ! ) " “ Í1 =  1, 2 , . , . (5-102)

Figure 5-19 Unit-step response illustrating that the maxima and minima occur at periodic intervals.
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The m axim um  overshoot is obtained by le tting  n =  1 in  Eq. (5-102). Therefore.

novershoot =  >’max -  1 =  (5-103)m axim um  o

percent m axim um  overshoot =  lOOe - n Ị / ự ĩ ^ (5-104)

Eq, (5-103) shows that the m axim um  overshoot o f  the step response o f  the prototype 
second-order system is a func tion  o f  o n ly  the dam ping ra tio  The re la tionship between 
the percent m axim um  overshoot and the dam ping ra tio  g iven in  Eq. (5-104) is plotted in 
Fig. 5-20. The tim e imax in  Eq. (5-100) is a function  o f both ^ and cư„.

5-6-4 Delay Time and Rise Time

I t  is more d iff ic u lt to determine the exact analytica l expressions o f  the delay tim e rise 
tim e and settling tim e / j,  even fo r ju s i the simple prototype second-order sysiem. For 
instance, fo r  the delay tim e, we w ould have to  set >>(r) =  0.5 in Eq. (5-90) and solve fo r  t. 
A n easier way w ould be to  p lo t co„l,i versus c, as shown in  Fig. 5-21, and then approximate 
the curve by a straighl line o r a curve over the range o f  0 <  Í  <  1. From Fig. 5-21, the delay 
tim e fo r  the prototype second-order system is approxim ated as

0 < c < 1 0 (5-105)

We can obtain a better approxim ation by using a second-order equation fo r  IJ. 

1.1 + 0 .1 2 5 c  +  0 .4 6 9 f-
Id = - 0 < c <  1.0

For the rise lim e tr. which is the tim e fo r the step response to reach from  10 to 90*7«: o f  its 
fina l value, the exact value can be determ ined d irec tly  from  the responses o f  Fig, 5 -14. The
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Figure 5-21 Normalized delay time versus f  fo r the prototype second-order system.

p lo t o f  ùj„tr versus c  is shown in  F ig. 5-22. In  th is  case, the re la tion  can again be 
approxim ated by a straight line  over a lim ite d  range o f

0 < , < ! (5-107)

A  better approxim ation can be obtained by using a second-order equation: 

I - 0 . 4 1 6 7 , +  2.917C^ 0 < « 1 (5-108)

0  0.2 0.4 0.6 0.8 I .o  1.2

Figure 5-22 Normalized rise time versus Ị  fo r the prototype second-order system.



5-6-5 Settling Time

From  th is discussion, the fo llo w in g  conclusions can be made on the rise tim e and delay 
tim e  o f  the prototype second-order system:

• Ir and t j  are  proportional to Ị  a n d  inversely p roportional to ửj„.

• Increasing (decreasing) the natural undamped frequency (o„ w i l l  reduce (increase) 

tr and tj.
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From  Fig. 5-14, we see that, when 0 < < < 0 - 6 9 ,  the unit-step response has a m axim um  
overshoot greater than 5%, and the response can enter the band between 0.95 and 1.05 fo r 
the last tim e fro m  either the top or the bottom . W hen Ự is greater than 0.69, the overshoot is 
less than 5%, and die response can enter the band between 0.95 and 1.05 o n ly  from  the 
bottom . Fig. 5-23(a) and (b) show the tw o d iffe ren t situations. Thus, the settling tim e has a

fb) i->0.69
Figure 5-23 S e ttl in g  tim e  o f  the  u n il-s te p  re sp o n se .
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Figure 5-23 [continued)

d iscon tinu ity  at c =  0.69. The exact analytica l descrip tion o f  the se ttling  lim e  Iị  is d ifficu lt 
to  obtain. We can obtain an approxim ation fo r  /.5 fo r  0 <  f  <  0.69 by using the envelope of 
the damped sinusoid o f  )»(r), as shown in  F ig . 5*23(a) fo r  a 5%  requirem ent. In  genera], 
when the settling tim e coưesponds to  an intersection w ith  the upper envelope o f  >'(0. the 
fo llo w in g  re la tion is obtained:

' =  upper bound o f  unit-step response (5-109)

W hen the settling tim e corresponds to an intersection w ith  the bottom  envelope o f  >»(/), /, 
must satisfy the fo llo w in g  condition;

‘ =  low er bound o f  unit-step response (5-110)

For the 5%  requirement on settling tim e, the righ t-hand side o f  Eq. (5-109) w ou ld  be 1.05. 
and that o f  Eq. (5-110) w ould be 0.95. I t  is easily verified  that the same result fo r i ,  is 
obtained using either Eq. (5-109) or Eq. (5-110).

S o lv ing  Eq. (5-109) fo r  we have

(5-111)

where is the percentage set fo r the settling tim e. For example, i f  the Uireshold 
is 5 percent, the c,s =  0.05. Thus, fo r  a 5-percent settling tim e, the right-hand side of



Eq. (5 -111) varies between 3.0 and 3.32 as f  varies fro m  0  to  0.69. We can approxim ate the 
settling tim e fo r the prototype second-order system as

0 < c < 0 . 6 9  (5-112)
ĨOin

The approxim ation w il l  be poor fo r sm all values o f  f ( <  0.3).
W hen the dam ping ra tio  t, is greater than 0.69, the unit-step response w il l  always enter 

the band between 0.95 and 1.05 from  below. We can show by observing the responses in 
F ig . 5-14 that the value o f  is alm ost d irec tly  p roportional to  The fo llo w in g  
approxim ation is used fo r  fo r  f  >  0.69.

f > 0 , 6 9  (5-113)
(Jin

F ig . 5 -23(c) shows the actual values o f  versus f  fo r  the p ro to type  second-order 
system described by Eq. (5 -87), along w ith  the approxim ations using Eqs. (5 -112) 
and (5 -113) fo r  th e ir respective e ffective  ranges. The num erica l values are shown in 
Table 5-2.

We can summarize the relationships between and the system parameters as 
fo llow s:

• For f  <  0.69, the settling tim e is inversely proportional to  Í  and Ití„. A  practica l way 
o f  reducing the settling tim e is to  increase (D„ w h ile  ho ld ing  <• constant. A lthough
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TABLE 5-2 Comparison of Settling Times of 
Prototype Second-Order System, w„fs

Actual 12
f 4.5f

0.10 28.7 30.2
0.20 13.7 16.0
0.30 10.0 10.7
0.40 7.5 8.0
0.50 5.2 6,4
0.60 5.2 5,3
0.62 5.16 5.16
0.64 5.00 5.00
0.65 5.03 4.92
0.68 4.71 4.71
0.69 4.35 4.64
0.70 2.86 3.15
0.80 3.33 3.60
0.90 4.00 4.05
1.00 4.73 4.50
1.10 5.50 4,95
1.20 6.21 5.40
1.50 8.20 6.75
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the response w il l  be more oscilla tory, the m axim um  overshoot depends o n ly  on f  
and can be contro lled  independently.

For f  >  0.69, the settling tim e  is p roportional to  c  and inverse ly p ropo rtiona l to  0)„. 
A ga in , ts can be reduced by increasing <o„.

Toolbox 5*6-2
To fin d  PO. rise time, a nd  settling lim e using MATLAB, poin t a t a  desired location on the graph a nd  right- 
click to display the X and  y  values. For exam ple

clear all
w=10;l=0.4:
t=0:0.01:5;
n u m =  [w."2];
d e n =  [1 2’l‘ww.^2] ;
step(num,den,t)
xlabeic'Time(secs)’)
ylabeic■Amplitude’)
title(‘Closed-Loop step ’ )

It should be commented that the settling tim e fo r  ^  >  0.69 is tru ly  a measure o f  how 
fast the step response rises to its fina l value. I t  seems that, fo r  this case, the rise and delay 
times should be adequate to describe the response behavior. A s  the name im plies, settling 
tim e should be used to measure how fast the step response settles to  its fina l value. I t  should 
also be pointed out that the 5% threshold is by no means a number cast in  stone. More 
stringent design problems may require the system response to  settle in  any number less 
than 5%.

Keep in m ind that, w h ile  the de fin itions on imax’ Ir, and Is apply to  a system of 
any order, the dam ping ratio  ^ and the natural undamped frequency co„ s tr ic tly  apply only to 
a second-order system whose closed-loop transfer function  is given in Eq. (5-87). 
N atura lly, the relationships among tjy Ir, and /.V and f  and 0)„ are va lid  o n ly  fo r  the 
same second-order system model. However, these relationships can be used to  measure the 
performance o f  higher-order systems that can be approxim ated by second-order ones, 
under the stipu lation that some o f  the higher-order poles can be neglected.
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Servomechanisms are probably the m ost frequently  encountered electrom echanical control 
systems. A pp lica tions include robots (each jo in t  in  a robot requires a position servo), 
num erica l contro l (N C ) machines, and laser printers, to  name but a few. The common 
characteristic o f  a ll such systems is that the variable to  be con tro lled  (usually position or 
ve lo c ity ) is fed back to  m o d ify  the command signal. The servomechanism that w il l  be used 
in  the experiments in  this chapter comprises a dc m o to r and am p lifie r that are fed back the 
m o to r speed and position values.

One o f  the key challenges in  the design and im plem entation o f  a successful con tro lle r 
is obta in ing  an accurate model o f  the system components, particu la rly  the actuator. In 
Chapter 4, we discussed various issues associated w ith  m odeling o f  dc motors. We w ill 
b r ie fly  rev is it the m odeling aspects in  th is section.

5-7-1 Speed Response and the Effects of Inductance and Disturbance-Open Loop Response

C onsider the arm ature-controlled dc m o to r shown in  Fig. 5-24, where the fie ld  cuưent is 
held constant in  this system. The system parameters include

Ra =  armature resistance, ohm 

La =  armature inductance, henry 

Vo =  applied armature voltage, vo lt 

Vh = back emf, volt

9  =  angular displacement o f  the m o to r shaft, radian

T  =  torque developed by the m otor, N-m

Jị_ =  m om ent o f  inertia  o f  the load, kg-m

Tl  =  any external load torque considered as a disturbance, N-m

Jm =  m om ent o f  inertia  o f  the m otor (m o to r shaft), kg-tn^

J  =  equivalent m oment o f  inertia  o f  the m o to r and load connected to  the m otor- 
shaft, J  =  Jl ! ^  +  ^m-, kg-np- (re fer to  Chapter 4 fo r more details) 

n  =  gear ratio

B =  equivalent v iscous-fric tion  coe ffic ien t o f  the m otor and load referred to the 
m otor shaft, N-m/rad/sec (in  the presence o f  gear ra tio . B  must be scaled by n; 
re fer to  Chapter 4 fo r  more details)

K, =  speed sensor (usually a tachometer) gain

5-7 Speed and Position Control of a DC Motor 289

Figu re  5-24 A n a rm a tu re -c o n tro l le d  d c  m o to r  w ith  a 
-Sensor g e a r  he ad  a n d  a lo a d  in e rt ia  J l-
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As shown in  F ig . 5-25, the am ia tu re-contro lled dc m otor is its e lf a feedback system, 
where back-em f voltage is p roportional to  the speed o f  the m otor. In  Fig. 5-25. we have 
included the effect o f  any possible external load (e.g.. the load applied to  a ju ice  machine 
by the operator pushing in  the fru it)  as a disturbance torque Tl - The system may be 
arranged in in p u t-o u tp u t fo rm  such that is the input and i i(5 )  is ứie output:

K„,

í
\R a )

(5-114)

K,„Kb +  Rgi 
RoJm

The ratio  L,JR„  is called the m otor eleciric-iim e constant, w hich makes the system speed- 
response transfer fu n c tio n  second order and is denoted by Tp A lso , i t  introduces a zero to 
the disturbance-output transfer function. However, as discussed in  Chapter 4. because Lu in 
th e  a rm a tu re  c irc u it is  ve ry  sm all. T,, is n e g lec ted , re su ltin g  in  the  s im p lified  transfer 
functions and the b lock  diagram o f  the system. TTius, the speed o f  the m otor shaft may be 
s im p lified  to

Km

n ( j ) = -

1

k J ki, +  R„B (5-115)

n (s )  =  - (5-116)

where Keff =  K,„/ịRaB + K„,Kh) is th e  m otor gain constant, a n d  T„, =  R a J m + 
KniKh) is the  m otor m echanical tim e constant. I f  the load inertia  and the gear ra tio  are 
incorporated into the system model, the inertia  J„, in Eqs. (5-114) through Í5 -116) is 
replaced w ith  J  ilo ta l inertia).
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Í l { í )  =  +

Using superposition, we get

(5-117)

To find  the response íoự), we use superposition and find  the response due to  the ind iv idua l 
inputs. For T i = 0  (no disturbance and 5  =  0) and an applied voltage Va(i) =  -4, such that 
v ‘ i s ) = A / s ,

Kb
(5-118)

In  th is case, note that the m o to r m echanical tim e constant x„  is re flective o f  how fast 
the m o to r is capable o f  overcom ing its ow n inertia  Jm to  reach a steady state o r constant 
speed d ictated by voltage Va. F rom  Eq. (5-118), the speed fina l value is w{t) =  A /K /,. As 

increases, the approach to  steady state takes longer.
I f  we apply a constant load torque o f  magnitude D  to the system (i.e., Ti_ =  D Ịs) , the 

speed response fro m  Eq. (5-118) w il l  change to

RaD^

w h ich  c learly  indicates that the disturbance affects the fina l speed o f  the motor. From 
Eq. (5-119), at steady stale, the speed o f  the m otor is ojfv =  ^ { A  -  ^ ) .  Here the final 
value o f  a>(t) is reduced by RaD/KmKh- A  practical note is that the value o i T i  = D  may 
never exceed the m otor stall torque, and hence fo r  the m otor to  turn, from  Eq. (5-119), 
AK m /Ra > Dy w hich sets a l im it  on the m agnitude o f  the torque Ti. For a given m otor, the 
value o f  the stall torque can be found in  the m anufacturer’s catalog.

I f  the load inertia  is incorporated in to  the system model, the fina l speed value becomes 
cofv = AỊK ị,. Does the stall torque o f  the m otor a ffect the response and the steady-state 
response? In  a rea listic scenario, you must measure m otor speed using a sensor. H ow  would 
the sensor a ffect the equations o f  the system (see F ig. 5-25)?

5-7-2 Speed Control of DC Motors; Closed-Loop Response

A s seen previously, Ihe output speed o f  the m otor is h igh ly  dependant on the value o f  torque 
Ti.. We can im prove the speed performance o f  the m otor by using a p roportional feedback 
contro ller. The con tro lle r is composed o f  a sensor (usually a tachometer fo r  speed 
applications) to  sense the speed and an am plifie r w ith  gain K  (proportional contro l) 
in  the configuration shown in  Fig. 5-26. The b lock diagram  o f  the system is also shown in 
F ig . 5-27,

Figure 5-26 F e e d b ac k  c o n tro l o f  an 
a rm a tu re -co n tro l led  d c  m o to r  w ith  
a lo a d  in e rtia .
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Note that the speed at the m o to r shaft is sensed by the tachometer w ith  a gain K,. For 
ease in  com parison o f  input and output, the input to  the con tro l system is converted from 
voltage Vj„ to  speed n , „  using the tachom eter gain K,. Hence, assuming =  0. we have

K,KmK

K<.J„
,Ki, +  R„B + K ,K ^K ' 

RaJ^
I

(5-120)

K ^K ị,  + R .B  +  K ,K „ K \

««■/» J
For a step input f l , „  =  A /s  and disturbance torque value T i  =  D /s , the output becomes

(5-121)

where Tc =  K fị K a  is the system m echanica l-tim e constant. The steady-state

response in  this case is

a>yv =
/  A K K ^K , R ^D  \
\K„,Kb +  R^B  +  K,K,„K K„,Kh +  R^B +  K ,K „ k )   ̂̂

where c o fi .^ A  ãs K —*oo. So. speed con tro l may reduce the effect o f  disturbance. As in 
Section 5-7-1. the reader should investigate what happens i f  the inen ia  J t  is included in 
this model. I f  the load inertia  J i is too large, w il l  the m otor be able to  lum ?  Again, as 
in  Section 5-7-1. you w il l  have to  read the speed-sensor voltage to  measure speed. How w ill 
that a ffect you r equations?

5-7-3 Position Control

The position response in  the open-Ioop case may be obtained by in tegrating the speed 
response. Then, considering Fig. 5-25. we have 0 ( j )  =  n ( i ) / i .  The open-loop transfer 
function is therefore

e ( ^ )  ___________________ ^ _________________
v„(s) 4L ,Js^  +  (L„B  +  +  R„B + K„Ki,) (5-123)
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Figure 5-28 B lo c k  d ia g ra m  o f  a  p o s it io n -c o n tro l, a rm a tu re -c o n tro l le d  d c  m otor.

where we have used the to ta l inertia  J. F o r sm all La, the tim e response in th is case is

(5-124)

w hich im p lies that the m otor shaft is tu rn ing  w ithou t stop at a constant steady-state speed. 
To contro l the position o f the m otor shaft, the sim plest strategy is to  use a proportional 
con tro lle r w ith  gain K. The b lock  diagram  o f the closed-loop system is shown in  F ig. 5-28. 
The system is composed o f  an angular pos ition sensor (usually an encoder o r a po ten ti
ometer fo r  position applications). Note that, fo r  s im p lic ity , the inpu t voltage can be scaled 
to  a position input 0 i„ ( 5 )  so that the inpu t and output have the same units and scale. 
A lte rna tive ly , the output can be converted in to  voltage using the sensor gain value. The 
c losed-loop ưansíer function  in  th is case becomes

KK,„K,

(5-125)

where is the sensor gain, and, as before, Te =  {La/Ru) may be neglected fo r  sm all La.

KK„Ks
RgJ^ j s )  _

, ( R .B  + K M   ̂ K K ^K ,
(5-126)

R J RaJ

Later, in  Chapter 6, we set up num erical and experim ental case studies to  test and ve rify  the 
preceding concepts and leam more about other practica l issues.

5-8 T I M E - D O M A I N  A N A L Y S I S  OF A  P O S I T I O N - C Ũ N T R Ũ L  S Y S T E M

In  th is section, we shall analyze the performance o f  a system using the tim e-dom ain criteria  
established in  the preceding section. The purpose o f  the system considered here is to 
contro l the positions o f  the fins o f  an airplane as discussed in Exam ple 4-11-1.

Recall from  Chapter 4 that

G ( ) =  _______________________________ K ,K^K,KN______________________________
© , ( i )  +  (R^J, +  L„B, + K ị K 2 J ,) s +  +  K i  K ịB , +  K ,K ị, +  KK ị K ,K i ]
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The system is o f  the th ird  order, since the highest-order term  in  G (s) is  s^. The electtical 
tim e constant o f  the am p lifie r-m o to r system is

The m echanical tim e  constant o f  the m otor-load system is

Because the e lectrical tim e constant is much sm aller than the m echanical tim e  constant, on 
account o f  the low  inductance o f  the m otor, we can perfo rm  an in it ia l approxim ation by 
neglecting the armature inductance La- The result is a second-order approxim ation o f the 
th ird -o rder system. La te r we w il l  show that th is is not the best way o f  approxim ating a high- 
order system by a low -order one. The fo rw ard-path transfer func tion  is now

.  ____________________________K.K^K^KN____________________________

s[{RoJ, +  K ịK 2 J,)s  +  R aB , +  K ìK ĩB , +  K ịK b +  K K ^K ịK ,]

K sK .K .K N  (5.130)

R g J , + K ^ K 2J,________________

R aB , + K x K iB , + K ,K b +  K K x K ịK ,\

r I j , + K ị K2J, )

Substituting the system parameters in  the last equation, we get

C om paring Eq. (5-131) and (5-132) w ith  the prototype second-order transfer function o f 

Eq. (5-86), we have

natural undamped frequency =  ± \  ^sK ]K iK N  _  ^ ^ / 4500^  rad/sec (5-132) 
V R a 't  +

R^B, + K \K 2 B ,+ K iK h  +  KKxKịK, 2.692
dam ping ra tio  ^  = -------- , _ —  =  — ^  (3 -1  i i )

2^KsK^KiKN{RJ, +  K̂ KjJ,) y/ĩi

Thus, we see that ihe natural undamped frequency (Un is p roportional to  the square root o f 
the am p lifie r gain K, whereas the dam ping ra tio  <■ is inversely proportiona l to y/K.

The closed-loop transfer function  o f  the un ity-feedback contro l system is

(5-134,
0 ^ { i )  s2 +  3 6 ì .2s +  4 5 0Q K

5-8-1 Unit-Step Transient Response

For tim e-dom ain analysis, i t  is in fo rm ative  to  analyze the system perform ance by applying 
Ihe unit-step input w ith  zero in itia l conditions. In  th is way. i t  is possible to characterize the



system performance in terms o f the maximum overshoot and some o f the other measures, 
such as rise time, delay time, and settling time, i f  necessary.

Let the reference input be a unit-step function dr{t) = Us{t) rad; then 0 ( ỉ )  =  i /s .  The 
output o f the system, with zero in itial conditions, is
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Oy{t)=C~
4500K  

i ( j2  + 3 6 1 .2 s +  4500ÍT)
(5-135)

The inverse Laplace ơansform o f the right-hand side o f Uie last equation is carried out using 
the Laplace transform table in Appendix D, or using Eq. (5-90) directly. The following 
results are obtained for the three values o f K  indicated.

K = 7.248U ^I.O ):

K = 14.5U = 0.707):

6 y ( t) =  (1 - í - ' * ® * 'c o s l8 0 . 6 / - 0 . 9 9 9 7 ể “ ' “ ^ 's in l8 0 .6 /)M ,( r )  

K = I8IJ7{Ị = 0.2):

ớ j,(f) =  (1 - í - ' ® “ * 'c o s 8 8 4 .7 / -0 .2 0 4 1 í* '® ® ^ 's in 8 8 4 .7 /)u ^ (0

(5-136)

(5-137)

(5-138)

The three responses are plotted as shown in Fig. 5-29. Table 5-3 gives the comparison o f the 
characteristics o f the three unit-step responses for the three values o f K  used. When

0,00 0.01 0.040,02 0.03

Time (sec)

Figure 5-29 Unit-step responses o f the attiiude-conưol system in Fig. 4-78; La = 0.
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TABLE 5-3 Comparison of the Performance of the Second-C 
the Gain K  Values

n-Control System with

Gain a: (rad/sec)
% M ax

overshoot (sec)
tr

(sec)
r,

(sec)

7.24808 1.000 180,62
14,50 0.707 255.44
181,17 0.200 903.00

(sec)

0 0.00929 0.0186 0.0259 —
4,3 0.00560 0,0084 0.0114 0.01735
52.2 0,00125 0.00136 0.0150 0.00369

K  =  181.17, f  =  0.2, the system is lig h tly  damped, and the m axim um  overshoot is 52.7%, 
w hich is excessive. W hen the value o f  K is set at 7.248, f  is very close to  1.0. and the system 
is almost c r it ic a lly  damped. The unit-step response does not have any overshoot or 
osc illa tion . W hen K  is set at 14.5, the dam ping ra tio  is 0.707, and the overshoot is 
4.3% . I t  should be pointed out that, in  practice, it w ou ld  be tim e consum ing, even w ith  the 
aid o f  a computer, to compute the tim e response fo r  each change o f  a system parameter for 
e ither analysis o r design purposes. Indeed, one o f  the m ain objectives o f  studying conưol 
systems theory, using e ither the conventional or modern approach, is to  establish methods 
so that the total reliance on com puter s im ulation can be reduced. The m otivation behind 
th is discussion is to show that the perform ance o f  some con tro l systems can  be predicted by 
investigating the roots o f  the characteristic equation o f  the system. For the characteristic 
equation o f  Eq. (5-135), the roots are

5, = - 1 8 0 .6 + V 3 2 6 1 6 - 4 5 0 0 Ả ' 

52 =  - 1 8 0 . 6 -  \ /3 2 6 1 6 -4 5 0 0 Ả '

(5-139)

(5-140)

Toolbox 5-8-1
The Fig. 5-29 responses m ay be obtained by the follow ing sequence o f  M ATLAB functions.

%Equation 5 .136 
% Unit-Step Transient Response

fork=[7.248 14.5 181.2]
num = [éSOO^k];
d e n =  [1 361.2 4500*k] ;
stepCnum,den)
hold on;
end
xlabeic‘Time(secs)’) 
ylabeic‘Amplitude') 
titleC ‘ Closed-Loop Step ' )

For Ằ" =  7.24808, 14.5. and 181.2. the roots o f  the characteristic equation are tabulated as 
fo llow s:

a: =  7.24808: Ji =  52 =  -180.6
K =  14.5: s\ =  -180.6 +  ý]80.6
a: =  181.2: JJ = - 1 8 0 ,6 +  J884.7

J2 = -1 8 0 .6 -7 Ỉ8 0 .6  
S2 =  - l8 0 ,6  +  }884.7



5-8 Time-Domain Analysis af a Position-Control System ^  297

These roots are marked as shown in Fig. 5-30. The trajectories o f  the tw o characteristic 
equation roots when K  varies continuously from  - o c  to  oc are also shown in  F ig. 5-30. 
These root ira jectories are called the roo l loc i (see Chapter 4) o f  Eq. (5-135) and are used 
extensively fo r the analysis and design o f  linear contro l systems.

From  Eqs. (5-140) and (5-141), we see that the tw o roots are real and negative fo r 
values o f  K  between 0 and 7.24808. Th is  means that the system is overdamped, and the step 
response w il l  have no overshoot fo r  th is range o f  K. For values o f  K  greater than 7.24808. 
the natural undamped frequency w il l  increase w ith  ' /K .  W hen K  is negative, one o f  the 
roots is positive, w h ich  corresponds to a tim e response that increases m onoton ica lly  w ith  
tim e, and the system is unstable. The dynam ic characteristics o f  the transient step response 
as determ ined from  the root loc i o f F ig. 5-30 are summarized as fo llow s:

Am plifier Gain Dynamics Characteristic Equation Roots System

0 < iC <  7.24808 Two negative distinct real roots Overdamped (c >  1)
K =  7.24808 Two negative equal real roots Critically damped =  1)
7.24808 <  A-< oc Two complex-conjugate roots 

with negative real parts
Underdamped ( f  < 1)

- o c < í : < 0 Two distinct real roots, one 
positive and one negative

Unstable system (C<Oj
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5-8-2 The Steady-State Response

Because the fo rw ard-path ừansfer func tion  in  Eq. (5 -132) has a s im ple pole at J = 0 , 
the system is o f  type 1. T h is  means that the steady-state e rro r o f  the system is zero for 
a ll pos itive values o f  K  when the inpu t is a step function . S ubstitu ting Eq. (5-132) into 
Eq. (5-24), the step-error constant is

d s n n jr
(5-141)

Thus, the steady-state e rro r o f  the system due to  a step input, as g iven by Eq. (5-25), is zero. 
The unit-step responses in  Fig. 5-29 v e rify  th is result. The zero-steady-state condition is 
achieved because o n ly  viscous fr ic tio n  is considered in  the s im p lified  system model. In  the 
p ractica l case, C ou lom b fr ic tio n  is almost always present, so the steady-state positioning 
accuracy o f  the system can never be perfect.

5-8-3 Time Response to a Unit-Ramp Input

The con tro l o f  position may be affected by the contro l o f  the p ro file  o f  the output, rather 
than ju s t by apply ing a step input. In  other words, the system may be designed to fo llow  a 
reference p ro file  that represents the desired trajectory. I t  may be necessary to  investigate 
the a b ility  o f  the pos ition-con tro l system to  fo llo w  a ram p-function  input.

For a un it-ram p input, 6 r { t )  =  tUs{t ) . The output response o f  the system in  Fig. 4-79 is

9y{t) =  £ -
4500/C 

52(52 + 3 6  1.2í +  450 0 í:)
(5-142)

w hich can be solved by using the Laplace transform  table in  Append ix  c .  The result is

where

9 =  c o s - ‘ { 2 f 2 - l )  { ;< 1 )

(5-143)

(5-144)

The values o f  ;  and (J}„ are given in  Eqs. (5 -134) and (5 -133). respectively. The ramp 
responses o f  the system fo r  the three values o f  K  are presented in  the fo llow ing  
equations.

K =  7.248;

9y.{t) =  { i ~  0.01107 -  0 .8 2 7 8 í- ‘ ®'-2' +  0 .8 3 8 9 e - '‘̂ ® ')« i(0 (5-145)

ớ ,(f) =  ( t -  0.005536 +  0 .005536^-

-  5.467 X \ ữ - \ - ‘ ’'sinl8O.60«r(0
(5-146)
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e „  = 0.00044 
(A:= 181.2)

Times (sec)
Figure 5-31 Unit-ramp responses o f ihe attitude-control system in Fig. 4-78; La = 0.

ỉy(r) =  ( í - 0 .0 0 0 4 4 3  +  0 .0 0 0 4 4 3 í- '* ° * 'c o s 8 8 4 .7 /

-0 .0 0 1 0 4 e “ s in 8 8 4 .7 f)u j(/)
(5-147)

These ram p responses are plotted as shown in  F ig . 5-31. N otice  tha l the steady-state erro r o f  
the ram p response is not zero. The last term  in  Eq. (5-144) is the transient response. The 
steady-state portion o f  the unit-ram p response is

lim  0v(/) =  l im  f i - —  
Í-.00 -

(5-148)

Thus, the steady-state eư or o f  the system due to  a un it-ram p input is

2c 0.0803 

o>n K
(5-149)

w h ich  is a constant.
A  more direct method o f  determ in ing the steady-state eư or due to a ram p input is to 

use the ram p-eưor constant Ky. From  Eq. (5-31).

Ky =  lim  5 C (i)  =  lim  =  12.46AT‘ I n '  '  .  A ^ 1 l< t l  1
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Thus, the steady-state e rro r is

,5.151,

w h ich  agrees w ith  the result in  Eq. (5-149).

Toolbox 5.8-2
The Fig. 5 -3Ỉ  responses are obiained by the fo llow ing  sequence o f  M ATLAB functions

for k=[7.248 14. 5 181.2] 
clniun = [4500*k] ; 
c lden= [1 361.2 4500*k] ; 
t=0:0.0001:0.3; 
u = t :
[y iX]=lsim(clnuin, clden.u, t) ; 
plot(t,y,t,u); 
hold on; 

end

title( 'Unit-ramp responses ’ ) 
xlabeic'Time(sec) ’) 
ylabeic‘Amplitude')

The result in  Eq. (5-151) shows that the steady-state e rro r is inverse ly proportional 10 
K. For K  =  1 4 .5 . w h ich  corresponds to a dam ping ra tio  o f  0.707, th e  steady-statô eưor is
0.0055 rad or. more appropriately. 0.55%  o f  the ram p-input m agnitude. Apparently, i f  we 
attem pt to im prove the steady-state accuracy o f  the system due to  ram p inputs by increasing 
the value o f  K, the transient step response w il l  become more osc illa to ry  and have a higher 
overshoot. Th is  phenomenon is rather typ ica l in  a ll conưol systems. For higher-order 
systems, i f  the loop gain o f  the system is too high, the system can become unsub le . Thus, 
by using the con tro lle r in  the system loop, the transient and the steady-state e rro r can be 
im proved simultaneously.

5-8-4 Time Response of a Third-Order System

In  the preceding section, we have shown that the prototype second-order system, obtained 
by neglecting the armature inductance, is always stable fo r a ll positive values o f  K. I t  is not 
d if f ic u lt to prove that, in  general, a ll second-order systems w ith  positive coeffic ients in  ứíe 
characteristic equations are stable.

Le t us investigate the performance o f  the pos ition-conư ol system w ith  ứie annature 
inductance La =  0.003 H. The forw ard-path transfer function  o f  Eq. (5-128) becomes

1.5 X W ^ K  1.5 X 1 0 ^ ^  ^

s(j2  + 3 4 0 8 .3 5 +  1.204.000) ~ 5 Í s +  4 0 0 .2 6 )( j +  3008J Í5-15 í

The closed-loop ưansfer function is

0 , ( s )  1 .5 x 1 0 ’ a:
0 ,( s )  “  +  3 4 0 8 .3 s2 ^  1,204,000s +  1,5 X 10’ / Í

(5-153)
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The system is now  o f  the th ird  order, and the characteristic equation is

+ 3 4 0 8 .3 5 ^ +  1 .204 .000J+  1,5 X =  0  (5-154)

Transient Response
The roots o f  the characteristic equation are tabulated fo r the three values o f  K  used earlier 
fo r  the second-order system:

AT =  7.248; J i = -1 5 6 .2 1  S2 = - 2 3 0 .3 3  Í3 = -3 0 2 1 .8

K =  14,5: s\ =  -186.53 +  ýl92 J2 =  -186.53 - ý I9 2  53 =  -3035.2

í :  =  181.2: J| - - 5 7 .4 9  +  ý906.6 Í2 - - 5 7 .4 9  -  ;906.6 - -3 2 9 3 .3

Com paring these results w ith  those o f  the approxim ating second-order system, we see that, 
when K  =  7.428. the second-order system is c r it ic a lly  damped, whereas the th ird -o rder 
system has three d is tinc t real roots, and the system is s lig h tly  overdamped. The root at 
- 3 0 2 Ỉ .8  coưesponds to a tim e constant o f  0.33 m illisecond, w h ich  is more than 13 times 
faster than the next fastest tim e constant because o f  the pole at -2 3 0 .3 3 . Thus, the transient 
response due to  the pole at -3 0 2 1 .8  decays rapidly, and the pole can be neglected from  the 
transient standpoint. The output transient response is dominated by the tw o  roots at — 156.21 
and -2 3 0 .3 3 . This analysis is verified by w ritin g  the transformed output response as

“  j ( i  +  156.21)(s +  230.33)(s +  3021.8)

Tak ing  the inverse Laplace transform  o f  the last equation, we get

« , ( 0  =  (1 -  3 .2 8 e ‘ ‘“ - ^ ' ' +  2 . 2 8 e - “ “ ” '  -  0 . 0 0 4 5 c - “ ^ ‘ * ' ) i / , ( 0  ( 5 - 1 5 6 )

The last term  in  Eq. (5-156), w h ich  is due to the root at -3 0 2 1 .8 , decays to zero very 
rap id ly. Furthermore, the m agnitude o f  the term at r =  0 is very sm all compared to  the other 
tw o  transient terms. Th is  s im ply demonstrates that, in  general, the con tribu tion  o f  roots that 
lie  re la tive ly  fa r to  the le ft in  the j-'p iane to the transient response w il l  be sm all. The roots 
that are closer to  the im aginary axis w il l  dom inate the transient response, and these are 
defined as the d o m in a n t ro o ts  o f  the characteristic equation or o f  the system.

W hen K  =  14.5, the second-order system has a dam ping ra tio  o f  0.707, because the 
real and im aginary parts o f  the tw o  characteristic equation roots are identica l. For the th ird - 
order system, recall that the dam ping ra tio  is s tr ic tly  not defined. However, because the 
effect on transient o f  the root at -3 0 2 1 .8  is neg lig ib le , the tw o  roots that dom inate the 
transient response correspond to a dam ping ratio  o f  0.697. Thus, fo r  K  =  14,5, the second- 
order approxim ation by setting La to zero is not a bad one. I t  should be noted, however, 
that the fact that the second-order approxim ation is ju s tifie d  fo r  K  =: 14,5 does not mean 
that the approxim ation is va lid  fo r  a ll values o f  K.

W hen K  =  181.2, the tw o com plex-conjugate roots o f the th ird -o rder system again 
dom inate the transient response, and the equivalent dam ping ra tio  due to the tw o  roots is 
on ly  0.0633. w hich is much sm aller than the value o f  0.2 fo r the second-order system. Thus, 
we see that the jus tifica tion  and accuracy o f  the second-order approxim ation d im in ish  as 
the value o f  K  is increased. F ig. 5-32 illustrates the root loc i o f  the ih ird -o rder characteristic 
equation o f  Eq. (5-154) as K  varies.
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W hen K  =  181.2. the real root at -3 2 9 3 .3  s till contributes lit t le  to  the transient 
response, but the tw o  com plex-conjugate roots at —57.49 ±  /9 0 6 .6  are m uch closer to the 
;ù>-axis than ứiose o f  the second-order system fo r  the same AT, w h ich  are at 
-1 8 0 .6  ±  ;884 .75 . Th is  explains w hy the thữd-order system is a great deal less stable 
than the second-order system when K  =  181.2.

B y  using the R ou th -H urw itz  crite rion , the m arginal value o f  AT fo r  s ta b ility  is found to 
be 273.57. W ith  th is c rit ica l value o f  K. the closed-loop transfer function  becomes

© v ( i)  1.0872 x  108

0 r (5 )  “  ( í  +  3 4 0 8 .3 )( í2 +  1.204 X 106)
(5-157)

The roots o f lh e  characteristic equation are at 5 =  -3 4 0 8 .3 , -  jl0 9 7 .3 ,a n d ỹ l0 9 7 .3 .T h e se  
points are shown on the root loc i in  F ig. 5-32.
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Time (sec)

Figure 5-33 Unit-step responses o f  the third-order anitude-control system.

The unit-step response o f  the system when K  =  273.57 is

9y{t) =  [1 -  0.094e-3 ‘*o^-3' -  0.952 sin( 1 0 9 7 .3 /+  72. 1 6 ° ) ]h ,(0 (5-158)

The steady-state response is an undamped sinusoid w ith  a frequency o f  1097.3 rad/sec, and 
the system is said to  be m arg ina lly  stable. W hen K  is  greater than 273.57, the tw o  com plex- 
conjugate roots w il l  have positive real parts, the sinusoidal com ponent o f  the tim e response 
w il l  increase w ith  tim e, and the system is unstable. Thus, we see that the th ird -o rder system 
is capable o f  being unstable, whereas the second-order system obtained w ith  =  0  is 
stable for all fin ite  positive values o f K.

Fig. 5-33 shows the unit-step responses o f  the th ird -o rder system fo r  the three values o f  
K  used. The responses fo r  K  =  7.248 and K  -  14.5 are very close to  those o f  the second- 
order system w ith  the same values o f  K  that are shown in  Fig. 5-29. However, the tw o 
responses fo r  a: =  181.2 are qu ite  different.

Toolbox 5-8-3
The root ỉocĩiS p lo t in Fig. 5-32 is obtained by the follow ing M ATLAB com mands 

f o r k = [ 7 . 2 4 8  1 4 .5  1 8 1 .2  2 7 3 .5 7 ]

t = 0 : 0 . 0 0 1 : 0 . 0 5 ;
n u m =  [ 1 . 5 * ( 1 0 ^ 7 ) * k ]  :
d e n =  [1  3 4 0 8 .3  1 2 0 4 0 0 0  1 .  5 * ( 1 0 ^ 7 ) * k ]  ;
r lo c u s ( n u in , d e n )

h o ld  o n : 
e nd
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Steady-State Response
From  Eq. (5-152), we see that, when the inductance is restored, the th ird -o rder system is 
s till o f type 1. The value o f  K, is s till the same as that given in  Eq. (5-150). Thus, the 
inductance o f  the m otor does not a ffect the steady-state perform ance o f  the system, 
provided that the system is stable. Th is  is expected, since La  affects o n ly  ứie rate o f  change 
and not the fina l value o f  the m otor cuưent. A  good engineer should always try  to  interpret 
Ihe analytical results w ith  the physical system.

► 5-9  B A S IC  C O N T R O L  S Y S T E M S  A N D  EFFECTS QF A D D IN G  POLES A N D  ZEROS 
TO T R A N S F E R  F U N C T I O N S

The pos ition-contro l system discussed in  the preceding section reveals im portan i proper
ties o f  the tim e responses o f typ ica l second- and th ird -o rder closed-lcx)p systems. 
Specifica lly, the effects on the transient response relative to  the location o f  the roots of 
the characteristic equation are demonstrated.

In  a ll previous examples o f  contro l systems we have discussed thus far. ứie conưoller 
has been typ ica lly  a simple am p lifie r w ith  a constant gain K. Th is  type o f  contro l action is 
fo rm a lly  known as p ro p o rt io n a l c o n tro l, because the contro l signal at the output o f  the 
con tro lle r is s im ply related to the inpu t o f  the con tro lle r by a p roportional constant.

In iu itive iy , one should also be able to use the derivative o r integral o f  the inpu t signal, 
in addition to  the proportional operation. Therefore, we can consider a more general 
continuous-data con tro lle r to  be one that contains such components as adders o r summers 
(addition o r subtraction), am plifiers, attenuators, differentia tors, and integrators —  see 
Section 4-3-3 and Chapter 9 fo r  more details. For example, one o f  the best-known 
contro llers used in practice is the P ID  contro ller, w h ich  stands fo r p ro p o rt io o a ỉ. integrai. 
and d e riva tive . The integral and derivative components o f  the P ID  conư o lle r have



ind iv idua l performance im plicauons, and the ir applications require an understanding o f  the 

basics o f  these elements.
A l l  in  a ll. what these contro llers do is a dd  additional poles a nd  zeros  to  the open- or 

c losed-loop transfer function  o f  the overa ll system. As a result, i t  is im portan t to  appreciate 
the effects o f  adding poles and zeros to  a transfer function  first. We show that— although 
the roots o f  the characteristic equation o f  the system, w h ich  are the poles o f  the closed-loop 
transfer function , a ffect the transient response o f  linear tim e-invariant contro l systems, 
particu la rly  the stab ility— the zeros o f  the transfer function are also im portant. Thus, the 
add ition  o f  poles and zeros and/or cancella tion o f  undesirable poles and zeros o f  the 
transfer func tion  often are necessary in  achieving satisfactory tim e-dom ain performance o f  
con tro l systems.

In  th is section, we show that the addition o f  poles and zeros to forw ard-path and 
closed-Ioop transfer functions has varying effects on the ưansient response o f  the closed- 
loop  system.

5-9-1 Addition of a Pole to the Forward-Path Transfer Function; Unity-Feedback Systems

F or the pos ition-con tro l system described in  Section 5-8, when the m otor inductance is 
neglected, the system is o f  the second order, and the forward-path transfer function  is o f  the 
prototype given in  Eq. (5-131). W hen the m otor inductance is restored, the system is o f  
the th ird  order, and the forw ard-path transfer function  is given in  Eq. (5-149). Com paring 
the tw o  transfer functions o f  Eqs. (5-131) and (5-149), we see that the effect o f  the m otor 
inductance is equivalent to  adding a pole at 5 =  -3 0 0 8  to  the forward-path transfer 
function  o f  Eq. (5-131) w h ile  sh ifting  the pole at -3 6 1 .2  to  -4 0 0 .2 6 , and the proportional 
constant is also increased. The apparent effect o f  adding a pole to  the forw ard-path transfer 
function  is that the th ird -o rder system can now  become unstable i f  the value o f  the am plifie r 
gain K  exceeds 273.57. As shown by the roo l- lo c i diagrams o f  Fig. 5-32 and F ig. 5-34, the 
new pole o f  G ( i)  at J =  -3 0 0 8  essentially “ pushes" and "bends”  the com plex-conjugate 
portion  o f  the roo t loc i o f  the second-order system toward the r ig h t-h a lf i-p lane . Actua lly , 
because o f  the specific value o f  the inductance chosen, the additional pole o f  the Ih ird-order 
system is  far to the le ft o f  the pole at —400.26, so its effect is small except when the value o f  
K  is re la tive ly  large.
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Figure 5-34 Unit-step responses o f the system with the closed-loop transfer function in 
Eq. (5-160): 1; co„ =  1: and Tp =  0. 1.2. and 5.
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To study the general e ffec t o f  the add ition  o f  a po le, and its  re la tive  loca tion , to 
a fo rw ard -pa th  transfe r fu n c tio n  o f  a un ity-feedback system, cons ider the ưansfer 
fu nc tion

The pole at Í  =  -1 / iT p  is considered to be added to the p rototype second-order transfer 
function . The closed-loop transfer fu n c tio n  is w ritten

C M  _________________ĩ ẩ _________________
“  R{s) -  1 +  G(s) -  +  ( 1  +  2 (w . T , ) s^ +  2Ị0>,S +  u ị

Fig. 5-34 illustrates the unit-step responses o f  the closed-loop system when iUn =  1; f  =  1; 
and T p = Q ,  1 ,2 , and 5. These responses again show tha t the addition o f  a  pole to the 
forward-path transfer function  generally has the effect o f  increasing the maximum  
overshoot o f  the closed-loop system.

As the value o f  Tp increases, the pole at —\/T p  moves closer to  ứie o rig in  in  the 
i-p lane , and the m axim um  overshoot increases. These responses also show that the added 
pole increases the rise tim e o f  the step response. Th is  is not surprising, because the 
additional pole has the effect o f  reducing the bandw idth (see Chapter 8) o f  the system, thus 
cutting  out the h igh-frequency components o f  the signal transm itted through the system.

Toolbox 5-9-1
The corresponding responses fo r  Fig. 5-34 are obtained by the follow ing sequence o f  M ATLAB functions

clear all 
w=l: 1=1; 
for Tp=[0 1 2  5];

t=0:0.001:20; 
num = [w];
den = [Tp l+2*l*w*Tp 2*l*w wA2] :

stepCnum,den,t);
hold on;
end
xlabeic‘Time(secs)’) 
ylabeic‘apos;y(t)’)
titleC ‘Unit-step responses of the system’ )

The corresponding responses fo r  Fig. 5-37 are obtained by the follow ing sequence o fM A T L A B  functions

clear all
w=l;l=0.25:
for Tp=[0 0.2 0.667 1] ;

t=0:0.001:20; 
num = [w]:
d e n =  [Tp l+2*l*w*Tp 2*l»wwA2] ;
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step(num,den,t);
hold o n ;
end
xlabeic‘Time(secs)') 
ylabeic *y(t)’)
titleC ‘Unit-step responses of the system' )

The same conclusion can be drawn fro m  the unit-step responses o f  Fig. 5-35, w h ich  are 
obtained w ith  a)„ =  1; f  =  0.25; and Tp =  0 ,0 .2 .0 .6 6 7 , and 1.0. In  th is case, when Tp is 
greater lhan 0.667, the am plitude o f  the unit-step response increases w ith  tim e, and the 
system is unstable.

5-9-2 Addition of a Pole to the Closed-Loop Transfer Function

Because the poles o f  the closed-loop transfer function  are roots o f  the characteristic 
equation, they con tro l the transient response o f  the system d irectly. Consider the closed- 
loop  transfer function

(í2  +  2 Ịc o „ s+ (o ị){ \ +  Tps)
(5-161)

where the tenn (1 +  Tps) is added to  a prototype second-order transfer function. Fig. 5-36 
illustrates the unit-step response o f  the system w ith  it)„ =  1.0: Í  =  0.5; and 
Tp =  0, 0.5, 1.0. 2.0. and 4.0. As the pole at Í  =  - ^ ị T p  is moved toward the o rig in

Time (sec)

Figure 5-35 Unit-step responses o f the syfvtem with the closed-loop transfer function i 
Eq. (5-160): ? =  0,25; 0J„ =  1; and Tp =  0.0.2.0.667. and 1.0,
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T une (sec)

Figure 5-36 Unit-step responses o f the system w ith the closed-Ioop ưansfer function in 
Eq. (5-161): f  =  0.5: w „ = \\z n à T p  =  0,0.5,1.0,2.0, and 4.0.

in  the i-p lane , the rise tim e increases and the m axim um  overshoot decreases. Thus, as far as 
the overshoot is concerned, adding a pole to  the c losed-loop transfer func tion  has just the 
opposite e ffect to  that o f  adding a pole to  the fonvard-path transfer function .

Toolbox 5-9-2
The corresponding responses fo r  Fig. 5-36 are obtained by the follow ing sequence o f  M A T IA B  Junctions

c l e a r  a l l  
w = l ; 1 = 0 .5 ;  
f o r T p = [ 0  0 . 5 1 2 ] :

t = 0 : 0 . 0 0 1 :1 5 ;  
n u m =  [ w " 2 ] ;
d e n =  conv([l 2*l*w w^2] , [Tp 1]) ;

stepCnum,den,t);
hold on;
end
xlabel(‘Time(secs)’) 
ylabeiry(t)*)
titleC ‘Unit-step responses of the system’ )

5-9-3 Addition of a Zero to the Closed-Loop Transfer Function

Fig. 5-37 shows the unit-step responses o f  the c losed-loop system w ith  the transfer function

M{s )  =
y (^ )  g ; ^ ( l+ r ; 5 )

R(s) (j2  +  2^a)„s + cớjị)
(5-162)
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Time (sec)

figure 5-37 Unit-siep responses o f the syslem with ihe closed-loop transfer function in 
Eq. (5-162): =  0 .1 .2 ,3 .6 . and 10.

where o)„ =  1; f  =  0.5; and =  0 ,1 ,2 ,3 .6 ,  and 10. In  this case, we see that adding a zero 
to  the closed-Ioop transfer function  decreases the rise lim e and increases the m axim um  
overshoot o f  the step response.

We can analyze the general case by w r itin g  Eq. (5-162) as

^ +  2 C w  +  a ị

For a unit-step input, let the output response that corresponds to  the firs t term  o f  the right 
side o f  Eq. (5-163) be Then, the total unit-step response is

y { t ) = y \ i i )  +  Tz
d y ij i)

(5-164)

Fig. 5-38 shows w hy the addition o f  the zero at Í  =  -  l/T ^ĩ reduces the rise tim e and 
increases the m axim um  overshoot, according to Eq. (5-164). In fact, as T: approaches 
in fin ity , the m axim um  overshoot also approaches in fin ity , and yet the system is s till stable 
as long as the overshoot is fin ite  and f  is positive,

5-9-4 Addition of a Zero to the Forward-Path Transfer Function: Unity-Feedback Systems

Let us consider that a zero at - 1 / r .  is added to  the forward-path transfer function  o f  a 
th ird -o rder system, so

G{s)  =
6(1 + T :S )  

i ( i + l ) ( j  +  2)
(5-165)
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Figure 5-38 Unit-step responses showing ihe effect o f adding a zero to the closed-loop 
transfer function.

The c losed-loop transfer function  is

. _M {s) =
6(1 +7 -,5 )

R{s) p  +  3^2 +  (2 +  6 T ,)s  +  6
(5-166)

The difference between this case and that o f  adding a zero to the closed-loop transfer 
function  is that, in  the present case, not on ly  the term  {1 +  T-s) appears in  the numera
to r o f  M(s), but the denom inator o f  M (s) also contains T .. The term  {1 +  T j i)  in the 
num erator o f M is) increases the m axim um  overshoot, but T: appears in  the coefficient 0Í 
the s  terni in the denominator, w hich has the effect o f  im prov ing  dam ping, or reducing the 
m axim um  overshoot. F ig, 5-39 illustrates the unit-step responses when T- =  0, 0.2, 0.5, 
2.0, 5.0, and 10.0. N otice that, when T- =  0. the c losed-loop system is on the verge of 
becom ing unstable. W hen T~ =  0.2 and 0.5, the m axim um  overshoots are reduced, mainly

Time (sec)

Figure 5-39 Unil-step responses o f the system with the closed-loop transfer function in 
Eq. (5-166): T, = 0. 0.2, 0.5. 2.0. 5.0. and 10.0.



because o f  the im proved damping. As T._ increases beyond 2.0, although the dam ping is s till 
fu rthe r im proved, the (1 +  T^s) term  in  the num erator becomes more dom inant, so the 
m axim um  overshoot actua lly becomes greater as 7"; is increased further.

A n  im portant find ing  fro m  these discussions is that, although the characteristic 
equation roots are generally used to  study the re la tive dam ping and re la tive  stab ility  o f  
linear con tro l systems, the zeros o f  the transfer function  should not be overlooked in  the ir 
e ffects on the transient performance o f  the system.
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Toolbox 5-9-3
The corresponding responses fo r  Fig. 5-39 are obtained by the follow ing sequence o f  M ATLAB functions

clear all 
w=l;l=0.5;
forXz=[0 0.2 0.5 3 5] ; 
t=0:0.001:15; 
num = [6*Tz 6] ; 
den = [1 3 2+6*Tz 6]:

step(num,den,t);
hold on;
end
xlabeic‘Time(secs)’) 
ylabel(‘y(t )’)
title( ‘Unit-step responses of the system’ )

► 5-10 D O M I N A N T  POLES A N D  ZEROS OF T R A N S F E R  F U N C T IO N S

From  the discussions given in  the preceding sections, i t  becomes apparent that the location 
o f  the poles and zeros o f  a transfer function  in  the i-p lane  greatly affects the transient 
response o f  the system. For analysis and design purposes, it is im portant to  sort out Ihe 
poles that have a dom inant e ffect on the transient response and ca ll these the dom inant 
poles.

Because most con tro l systems in  practice are o f  orders higher than tw o, it w ou ld  be 
useful to  establish guidelines on the approxim ation o f  h ig h 'O rd er  systems by lower-order 
ones insofar as the transient response is concerned. In design, we can use the dom inant 
poles to con tro l the dynam ic performance o f  the system, whereas the ins ign ifican t poles are 
used fo r the purpose o f  ensuring that the con tro lle r transfer function  can be realized by 
physica l components.

For a ll practical purposes, we can d iv ide  the .Ỹ-plane in to  regions in w hich the 
dom inant and ins ign ificant poles can lie , as shown in  F ig. 5-40. We in ten tiona lly  do 
not assign specific values to the coordinates, since these are a ll re la tive to a given system.

The poles that are d o se  to  the im aginary axis in  the le ft-h a lf .ĩ-plane give rise to 
transient responses that w ill decay re la tive ly  slow ly, whereas the poles that are fa r  a w a \ 
from  the axis (relative to the dom inant poles) correspond to fast-decaying tim e responses. 
The distance D  between the dom inant region and the least s ign ificant region shown in Fig. 
5-40 w il l  be subject to discussion. The question is: H ow  large a pole is considered to be 
rea lly  large? It  has been recognized in practice and in Ihe literature that i f  the magnitude o f  
the real part o f  a pole is at least 5 to 10 times that o f  a dom inant pole or a pa ir o f  com plex
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Region o f  
insignificant 

^ les

R egion o f  
dominant 

poles Unstable
region

U nstable
region

F ig u re  5-40 R e g io n s  o f  dom inant 
a n d  in sign iỉìcaD t p o le s  in  th e  ỉ-p laoe

dom inant poles, then the pole may be regarded as ins ign ifican t inso fa r as the ữansie 
response is concerned. The zeros that are close  to  the im ag ina iy  axis in  ứie le ft-h a lf j-piaj 
a ffect the transient responses more s ign ifican tly , whereas the zeros ứiat a i t  fa r  away fro 
the axis (re la tive to the dom inant poles) have a sm aller e ffect on the tim e  response. 

We must po in t out that the regions shown in  F ig . 5-40 are selected m erely fo r tl 
de fin itions o f dom inant and ins ign ifican t poles. For design purposes, such as in pol 
placement design, the dom inant poles and the ins ign ifican t poles should most like ly  1 
located in  the tin ted  regions in  F ig . 5-41. A gain, we do not show any absolute coordinate 
except that the desired region o f  the dom inant poles is centered around the line th 
coưesponds to  f  =  0.707. I t  should also be noted that, w h ile  designing, we cannot place d 
ins ign ifican t poles a rb itra rily  fa r  to the le ft in  the i-p la n e  o r these m ay require unrealist 
system parameter values when ứie pencil-and 'paper design is im plem ented by physic 
components.

F igu re  5-41 R e g io n s  o f  
d o m in a n t a n d  in sign ifican t 
p o le s  in  th e  s -p la n e  fo r  desi 
p u rp o ses .



5-10-1 Summary of Effects of Poles and Zeros

Based on previous observations, we can summarize the fo llo w in g :

1. C om plex-conjugate poles o f  the c losed-loop transfer function  lead to  a step 
response that is underdamped. I f  a ll system poles are real, the step response is 
overdamped. However, zeros o f  the c losed-loop transfer function  may cause 
overshoot even i f  the system is overdamped.

2. The response o f  a system is dom inated by those poles closest to  the o rig in  in  the 
5-plane. Transients due to  those poles, w h ich  are fa rther to  the le ft, decay faster.

3. The fa rther to  the le ft in  the i-p la n e  the system’s dom inant poles are, the faster the 
system w il l  respond and the greater its bandw idth w il l  be.

4. The fa rther to the le ft in  the i-p la n e  the system’s dom inant poles are, the more 
expensive i t  w i l l  be and the larger its  internal signals w il l  be. W h ile  th is can be 
ju s tif ie d  ana lytica lly, i t  is obvious that s trik ing  a na il harder w ith  a hammer drives 
the na il in  faster bu t requires more energy per strike. S im ila rly , a sports car can 
accelerate faster, but i t  uses more fue l than an average car.

5. W hen a pole and zero o f  a system ưansíer func tion  nearly cancel each other, the 
portion  o f  the system response associated w ith  the pole w il l  have a small 
magnitude.

5-10-2 The Relative Damping Ratio

W hen a system is h igher than the second order, we can no longe r s tr ic tly  use the dam ping 
ra tio  Ị  and the natural undamped frequency iOn, w h ich  are defined fo r  the p rototype 
second-order systems. H owever, i f  the system dynam ics can be accurate ly represented 
b y  a pa ir o f  com plex-conjugate dom inant poles, then we can s t i l l  use f  and 0J„ to  ind icate 
the dynam ics o f  the transient response, and the dam ping ra tio  in  th is case is re íeưed to  as 
the re la tive  dam ping ra tio  o f  the system. For exam ple, consider the c losed-loop  transfer 
func tion

(s +  10 )(j2  +  2j  +  2 ) ‘

The pole at Í  =  —10 is 10 times the real part o f  the com plex conjugate poles, w hich are at 
- 1  ±  j \ .  We can refer to  the rela tive dam ping ra tio  o f  the system as 0.707.

5-10-3 The Proper Way of Neglecting the Insignificant Poles 
with Consideration of the Steady-State Response

Thus far, we have provided guidelines fo r  neglecting ins ign ifican t poles o f  a transfer 
function  from  the standpoint o f  the transient response. However, going through w ith  the 
mechanics, the steady-state performance must also be considered. Le t us consider the 
transfer function  in Eq. (5-167); the pole at - 1 0  can be neglected fro m  the transient 
standpoint. To do this, we should first express Eq. (5-167) as
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M{ s )  =
20

I O ( j / IO +  l ) { j2  + 2 s  +  2)
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Then we reason that l i /1 0 | <  1 when the absolute value o f  s  is m uch sm alle r than 1( 
because o f  the dom inant nature o f  the com plex poles. The te rn i i / 10 can be neglected whe 
compared w ith  1. Then, Eq. (5-168) is approxim ated by

20
10(í 2 +  2í  +  2)

(5-165

Th is  way, the steady-state perform ance o f  the th ird -o rder system w il l  not be affected by th 
approxim ation. In  other words, the thừd-order system described by Eq. (5-167) and Ih 
second-order system approxim ated by Eq. (5-169) a ll have a fina l value o f  un ity  when 
unit-step input is applied. On the other hand, i f  we s im p ly  th row  away die tenn  {s +  10) ii 
Eq. (5-167), the approxim ating second-order system w il l  have a steady-state value o f : 
when a unit-step inpu t is applied.

► 5-11 B A S I C  C O N T R O L  S Y S T E M S  U T I L I Z I N G  A D D I T I O N  OF POLES A N D  ZEROS

In  practice we can con tro l the response o f  ã system by adding poles and zeros o r a simpli 
a m p lifie r w ith  a constant gain K  to  its transfer function . So fa r  in  th is chapter, we havi 
discussed the effect o f  adding a simple gain in  the tim e response— i.e., proportiona 
contro l. In  this section, we look at contro llers that include derivative o r integral o f  the inpu 
signal in addition to the proportional operation.

EXAMPLE 5-11-1 Fig. 5-42 shows the block diagram o f a feedback control system that arbitrarily has a second-orde 
prototype process with the ưansíer function

Gp{s) = - (5-170
s{s + 2Ịw„)

The series controller in this case is a proportional-derivative (PD) type with the transfer function 

G , ( s) = K p  +  K ds  (5-171

In this case, the fonvard-paih transfer funclion o f the compensated system is

(5-172

Figure 5-42 Control system with PD controller.



which shows that the PD control is equivalent to adding a simple zero at 5 =  -K p ỊK o  to the forward- 
palh transfer function. Consider the second-order model

(5-173,

Rewriting the ưansfer function o f the PD conơoller as

Gc(s) = (Kp + K d s ) (5-174)

the fonvard-path ưansíer function o f the system becomes

The closed-loop ưansíer function is
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Y{s) 2{Kp + Kps)
R(s) s^ + {2 +  2 K d ) s  +  2K p

(5-176)

Eq. (5-176) shows that the effects o f the PD controller are the following;

1 . A dd ing  a zero at i  =  - K p / K d  to  the  closed -loD p transfer function.

2. Increasing ửie damping lerm, which is the coefficient o f the Ĩ  term in the denominator, from 
2 i o 2 +  2Kd .

We should quickly point out that Eq. (5-175) no longer represents a prototype second-order system, 
s in c e  th e  tra n s ie n t r e sp o n se  is  a lso  a ffe c te d  by  th e  z e ro  o f  th e  t ra n s fe r  fu n c tio n  a t 5 =  - K p / K d -  I t 
turns out that for this second-order system, as the value of Kd increases, the zero will move very close 

to the origin and effectively cancel the pole o f G (i) at J =  0. Thus, as Kp increases, the transfer 
function in  Eq. (5-175) approaches that o f a first-order system with the pole at J =  -2 .  and the closed- 
loop system w ill not have any overshoot- In general, for higher-order systems, however, the zero at 
s =  —K p /K o  m a y  in c re ase  th e  o v e rsh o o t w h e n  K [)  b e c o m e s  v e ry  large .

The characteristic equation is written as

p  + (2 + lKo)s + lK p = ữ  (5-177)

Ignoring the zero o f the ơansfer function in equation (5-177) and comparing (5-177) to prototype 
second-order system characteristic equation

+ 2 Ịa ,s  + o ị  = 0 (5-178)

we get the damping ratio and natural frequency values o f 

, i+ K p

C0„ =  y/2fTp

(5-179)

which clearly show the positive effect o f Kd on damping. For Kp =  8, i f  we wish to have critical 
damping, f  =  1. Eq. (5-l79)gives íTo =  3. Fig. 5-43 shows the unit-step responses o f the closed-loop 
system with Kp = % and Ko = 3. W ith the PD control, the maximum overshoot is 2%. In the present 
case, although Kn is chosen for critical damping, the overshoot is due to the zero at J- =  -K p /K o  o f 
the closed-Ioop transfer function. Upon selecting a smaller Kp = 1. for c =  1. Eq. (5-179) gives 
Kd =  0.414. Fig. 5-43 shows a critically damped unit-step response in this case, which implies the 
zero at J =  —KpỊKo o f the closed-loop transfer function has a smaller impact on the response of the 
system, and the overall response is similar to that o f a prototype second-order system. However, in 
either case, upon increasing Kp. the genera! conclusion is that the PD controller decreases the 
maximum overshoot, the rise lime, and the settling lime.



316 ► Chapter 5. Time-Domain Analysis of Control Systems

Unit-step responses o f  the system

Time(secs) (sec)
Figure 5-43 Unil-step response o f Eq. (5-176) for Iwo sets o f Kd and Kp values.

Toolbox 5-11-1
The corresponding responses fo r  Fig. 5-43 are obtained by the follow ing sequence o f  M ATLAB functions

clear all 
t=0:0.001:5;

n u m =  [2*3 16] : %  KP=4 and KD=3 
d e n =  [1 2+2*3 16] ; 
step(num,den,t) ;

num = [2* .414 2] ; % K P =1 andKD=0.414 
d e n =  [1 2+2*. 414 2] ; 
step(num,den,t);

x l a b e K  ‘Time(secs) ’) 
ylabelC‘y(t)’)
titleC ‘Unit-step responses of the system’ )

► EXAMPLE 5-11-2 We saw in the previous example that the PD controller can improve ihe damping and rise lime ol 
a cornrol system. Because the PD controller does not change the system type, i t  may not fu lfill tht 
compensation objectives in many situations involving steady-state error. For this purpose, an Integra 
controller may be used. The integral part o f the PID controller produces a signal that is proportional u
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Figure 5-44 Control system with PI controller.

the time incegral o f ihe input o f the controller. Fig. 5-44 illustrates the block diagram o f the 
prototype second-order system w ith a series PI controller. The transfer function o f the PI 
controller is

GAs) = K p + '^  (5-180)

Using the circuit elements given in Table 4-4 in Chapter 4, the forward-path transfer function o f the 
compensated system is

(5-181)

Clearly, the immediate effects o f the PI controller are the following:

1. Adding a zero at Í  =  -K //K p  to the forward-path transfer function.

Adding a pole at 5 =  0 to the fonvard-pach transfer function. This means that the system 
type is increased by one. Thus, the steady-state eưor o f the original system is improved by 
one order: that is. i f  the steady-state error to a given input is constant, the PI control reduces 
ii to zero (provided that the compensated system remains stable).

2.

Consider Ihe second-order model

G p {s)= . :+ I)(.r +  2)

The system in Fig. 5-44, with the forward-path transfer function in Eq. (5-182). w ill now have a zero 
steady-state error when the reference inpul is a step function. However, because the system is now of 
th e  th ird  o rd er, i f  m ay be less stab le  th a n  (he  o rig in a l s e c o n d -o rd e r  sy s te m  o r  ev en  b e c o m e  unstable  if  
the parameters K p  and K, are not properly chosen. In the case o f a type 0 system with a PD control, the 
magnilude of the steady-state error is inversely proponional to Kp. When a type 0 system is converted 
to type 1 using a PI controller, the steady-state error due 10 a step inpul is always zero i f  the system is 
stable. The problem is then to choose the proper combination o f Kp and K, so that ihe transient 
response is satisfactory.

T h e  p o le -z e ro  c o n fig u ra tio n  o f  th e  PI c o n tro l le r  in E q . (5 -1 8 0 )  is  sh o w n  in F ig . 5 -45 . A t first 
glance, it may se em  that PI control w ill improve the steady-state error at the expense o f stability. 
However, we shall show that, i f  Ihe location o f the zero o f c , (.5) is selected properly, both the damping 
a n d  th e  s te ad y -s ta te  e rro r  c an  b e  im p ro v e d . B e ca u se  th e  PI c o n tro l le r  is e s se n t ia lly  a  lo w -p ass  filter, 
the compensated system usually w ill have a slower rise t im e  and longer settling time. A \iabk’ mellioJ 
o f designing the PĨ control is to select the zero ar s = -K i lK p  so lhai il is relaiively close to the 
origin an d  aw ay f ro m  the m ost s ign ifican t poles o f  the process: ibe  values o f  Kf. am i K , should he 
relalively small.
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jm

j-plane

0
Kf.

Figure 5-45 Pole-zero configuration o f a PI conưoller.

Applying the PI controller o f Eq. (5-180), the forward-path ttansfer funcuon o f the syste 
becomes

2K f(s + K ilKp) lK p{, + KilKp)
=  . ( T + 1 ) ( ;+ 2 )  =  i + 3 ^ + 2 ,

The steady-state error due to a step input u,(t) is zero. The closed-loop tfansfer function is

y (£ )  ^  lK p {s  +  K , /K p )

R{s) 5 3 + 3 ^ 2 + 2 (1 +/r/>)í +  2AT/

The characteristic equation o f ihe closed-loop system is

+  3i^ +  2{1 +  Kp)s + 2 K ,= 0 (5-18

Applying Routh’s test to Eq. (5 -185) yields the result that the system is stable for 0 <  AT/ ỊKp < 13. 
This means that the zero o f C (j) at i  =  - K ị Ị K p  cannot be placed loo far to the left in the left-hi 
s-plane, or the system w ill be unstable. Let us place the zero at -K ijK p  relatively close 10 the origi 
For the present case, the most significant pole o f Gpự) is at - 1 .  Thus, K,!Kp should be chosen so til 
the following condition is satisfied:

F « ‘Kp
(5-18

With the condition in Eq. (5-186) satisfied, Eq. (5-184) can be approximated by

(5-18

where the term K i/K p  in the numerator and Ki in the denominator are neglected. As a desigD criieric 
we assume a desired percent maximum overshoot value o f about 4.3 for a unit-step input, whi 
utilizing expression (5-104) results in a relative damping ratio o f 0,707. From the denominator of H 
(5-187) compared with a prototype second-order system, we get natural frequency value of <i)n 
2.1213 rad/s and the required proportional gain o f Kp = 1.25. This should also be uue for the thil 
order system with the PI coniroller i f  the value o f Ki/Kp satisfies Eq. (5- J 86). Thus, to achieve til 
we pick a small K/. I f  K/ is too small, however, the system time response is slow and the desii 
steady-state error requirement is not mel fast enough. Upon increasing K/ to 1.125. ứie desii 
response is met, as shown in Fig. 5-46.
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U nit-step responses o f  the system

Time(secs) (sec)
Figure 5-46 Unit-step response o f Eq. (5-185) for two sets o f Ki and Kp values.

5-11-2
sponding responses fo r  Fig. 5-46 are obtained by the follow ing sequence o fM A T L A B  functions

.11
101: 10 ;

* 1 .2 5  1 .1 2 S ]  : % K P = 1 .2 5  a n d  K I= 0 .6 2 5  
3 2 + 2 * 1 .2 5  1 . 1 2 5 ] ;  

m . d e n . t ) ;

* 1 .2 5  2 * 1 . 1 2 5 ]  ; % K P = 1 .2 S  a n d K I= 1 .1 2 5  
. 3 2 + 2 * 1 .2 5  2 * 1 . 1 2 5 ] :  
ưn, d e n , t ) ;

‘Time(secs)’)
■yCt)’)
U n i t - s t e p  r e s p o n s e s  o f  t h e  s y s te m ’ )

A T L A B  T OO LS

In  th is chapter we provided M A T L A B  toolboxes fo r  find ing  the tim e response o f  simple 
con tro l systems. We also introduced the concepts o f  root contours and roo t locus and 
included M A T L A B  codes to  draw  them fo r  sim ple con tro l examples. In  Chapters 6 and 9.
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where we address more com plex control-system  m ode ling  and analysis, we w il l  intro 
duce the A utom atic  C ontro l Systems software (A C S Y S ) that u tilizes  M A T L A B  an( 
S IM U L IN K  m -files  and G U Is (graphical user interface) fo r  the analysis o f  more complc) 
con tro l engineering problems.

The reader is especially encouraged to  explore the C ontro l Lab  software tooli 
presenied in  Chapter 6 that sim ulate dc m o to r speed and position conưol topics discussec 
earlier in  this chapter. These s im ulation tools provide the user w ith  v irtu a l experiments anc 
design projects using systems in vo lv in g  dc motors, sensors, e lectron ic components, anc 
mechanical components.

► 5-13 S U M M A R Y
This chapter was devoted to the time-domain analysis o f linear coniinuous-data conưol systems, Thi 
time response o f conưol systems is divided into the ưansient and the steady-state responses. The steady- 
state error is a measure o f the accuracy o f the system as time approaches infinity- When the system ha; 
unity feedback for the step, ramp, and parabolic inputs, the steady-state error is characterized by thí 
error constants Kp, Ky. and Ka. respectively, as well as the sysiem type. When applying ửie sieady-staK 
error analysis, the final-value theorem o f ưie Laplace ưansform is the basis: it should be ascertained thai 
the closed-ioop system is stable or the error analysis w ill be invalid. The error constants are not definec 
for sysiems with nonunity feedback. For nonunity-feedback systems, a method o f determining th{ 
steady-state error was introduced by using the closed-loop transfer function.

The transient response is characterized by such criteria as the maximum overshoot, rise time 
delay time, and settling time, and such parameters as damping ratio, natural undamped 
frequency, and time constant. The analytical expressions o f these parameters can al] be related 
to the system parameters simply i f  the transfer function is o f the second-order prototype. For second- 
order systems that are not o f the prototype and for higher-order systems, the analytical relationshipi 
between the transient parameters and the system constants are d ifficu lt to determine. Compute! 
simulations are recommended for these systems.

Time-domain analysis o f a position-control system was conducted. The ưansienl and steady- 
state analyses were carried out first by approximating the system as a second-order sysiem. The effeci 
o f varying the amplifier gain K on the transient and steady-state performance was demonstrated. The 
concept o f the root-locus technique was inưoduced. and the system was then analyzed as a third-ordei 
sy ste m . It w as  sh o w n  th a t th e  s e c o n d -o rd e r  a p p ro x im a tio n  w as  a cc u ra te  o n ly  f o r  low  values of K

The effects o f adding poles and zeros to the forward-path and closed-loop ưansfer functions 
were demonsưated. The dominant poles o f transfer functions were also discussed. This establishec 
th e  s ig n ific an c e  o f  th e  lo c a tio n  o f  th e  p o le s  o f  th e  tran s fe r  fu n c tio n  in th e  i- p la n e  a n d  u nder whai 
c o n d itio n s  th e  in sig n ifica n t p o le s  (an d  z e ro s)  co u ld  b e  n e g lec ted  w ith  reg a rd  to  th e  tra n s ie n t response

L a te r  in th e  c h ap te r, s im p le  c o n tro l le rs— n a m ely  th e  P D , P I. a n d  P ID — w ere  inưoduced 
Designs were carried out in the time-domain (and j-domain). The time-domain design may bi 
characterized by specifications such as the relative damping ratio, maximum overshoot, rise time 
delay lime, settling time, or simply the location o f the characteristic-equation roots, keeping in mine 
that (he zeros o f Ihe system transfer function also affeci the transient response. The performance Ì! 
generally measured by (he step response and the steady-stale error.

M ATLAB toolboxes and the Automatic Control System software tool are good tools to study tht 
lime response o f control systems. Through the GUI approach provided by ACSYS. these program: 
are intended to create a user-friendly environment to reduce the complexity o f control systems design 
See Chapters 6 and 9 for more detail.

R E V IE W  Q U E S T IO N S

1. Give the definitions o f the eưor constani;. Kp. Ky. and K„.

2. Specify the type o f input lo which the error constant Kp is dedicated.



3. Specify the type o f input to which the error constant K, is dedicated.

4. Specify ứie type o f input to which the eưor constant is dedicated.

5. Define an error constant i f  the input to a unity-feedback conữol system is 
described by r(i) =  t^U s{t)/6 .

6. Give the definition o f the system type o f a linear time-invariant system.

7. I f  a unity-feedback conưol system type is 2, then it is certain that the steady-state
error o f the system to a step input or a ramp input w ill be zero. (T) (F)

8. Linear and nonlinear frictions w ill generally degrade the steady-state eưor
o f a control system. (T) (F)

9. The maximum overshoot o f a unit-step response o f the second-order prototype
system w ill never exceed 100% when the damping ratio f  and the natural undamped 
frequency tư„ are all positive. (T) (F)

10. For the second-order prototype system, when Uie undamped natural frequency w„
increases, the maximum overshoot o f the output stays the same. (T) (F)

11. The maximum overshoot o f the following system w ill never exceed 100% when 
cư„, and r  are all positive.

y(£) ^  + (T) (F)
R{s) + 2Ịco„s + <ứị

12. Increasing the undamped natural frequency w ill generally reduce the rise time
o f the step res^nse. (T ) (F)

13. Increasing the undamped natural frequency w ill generally reduce the settling time
o f the step response. (T) (F)

14. Adding a zero to ứie forward-path ưansíer function w ill generally improve the 
system damping and thus w ill always reduce the maximum overshoot of
the system. (T) (F)

15. Given the following characteristic equation o f a linear control system, 
increasing the value o f K w in increase the frequency o f oscillation o f the system.

s’ +3s^ +  5s +  A- =  0 (T) (F)

16. For the characteristic equation given in question 15, increasing the coefficient
o f the term w ill generally improve the damping o f the system. (T) (F)

17. The location o f the roots o f the characteristic equation in the j-plane w ill give 
a definite indication on the maximum overshoot o f the transient response o f
the system. (T) (F)

1 8 . T h e  fo llo w in g  tra n s fe r  fu n c tio n  G (j )  c an  b e  a p p ro x im a te d  b y  Gl(s) b e ca u se  
the pole at —20 is much larger than the dominant pole at 5 =  — 1.

+  (T) (F)

19. What is a PD conưoller? Write its input-output transfer function.

2 0 . A  P D  c o n tro l le r  h as  th e  c o n s ta n ts  K q  a n d  Kp. G iv e  th e  e ffe c ts  o f  th e se  co n s tan ts  on 
the steady-state error o f the system. Does ihe PD control change ihe lype o f a 
system?

21. Give the effects o f the PD control on rise time and settling time o f a control system.

22. How does the PD controller affect the bandwidth o f a control system?

23 . O n c e  th e  va lue  o f  K o  o f  a  P D  c o n tro l le r  is f ixed , in c re as in g  th e  va lu e  o f  K p  w ill
increase the phase margin monotonically. (T) (F)

Review Questions 321
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24. I f  a PD controller is designed so thal the characteristic-equation roots have better 
damping than ứie original system, then the maximum overshoot o f the system
is always reduced. (T) {Í

25. What does it mean when a control system is described as being robust?

26. A  system compensated w ith a PD conưoller is usually more robust ứian the system 
compensated with a PI controller. (T) (F

27. What is a PI conưoUer? Write its input-output ữansfer function.

28. A  PI controller has the constants Kp and Kj. Give the effects o f the PI conưoller 
on the steady-state error o f the system. Does the PI conưol change the system type?

29. Give the effects o f the PI conưol on the rise time and settling time o f a conưol system.

Answers to these review questions can be found on this book’s companion Web site
www.wiley.com/conege/golnaraghi.
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► PROBLEMS
Ĩ M ATLA B  to solve the problems in thisỉn addition to using the conventional approaches, u 

chapter.

5-1. A  pair o f complex-conjugate poles in the 5-plane is required to meet the various specifications 
thai follow. For each specification, sketch the region in the 5-piane in which the poles should be 
located.

(a) f> 0 .7 0 7  cy„>2rad/sec (positive damping)
(b) 0 <  Í  <  0.707 <  2rad/sec (positive damping)

(c) < <  0-5 1 <  <  5 rad/sec (positive damping)

(d) 0.5 <  c <  0.707 0)n < 5 rad/sec (positive and negative damping)

5-2. Delermine the type o f the following unity-feedback systems for which the forward-paứj 
transfer functions are given.

(a) G{s) =
(1 + 5 ) ( I  +  10í ){1 +  20j )

(b) G(s) = lO i" '
(1 + i ) ( l  -t- 10j ){1 + 2 0 j )

(c )  G (s )  =
1 0 ( 5 +  1)

5 ( j  +  5 ) ( i  +  6)
(d) G{s) =

100(5 - 1) 

s2(s +  5)(s +  6)-

http://www.wiley.com/conege/golnaraghi
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®  “ "  “  (s2 +  i V ^ 3 ) ( j + l )

5-3. Detennine the step, ramp, and parabolic error constants o f the following unity-feedback 
control systems. The forward-path transfer functions are given.

'  (1 + 0 .1 s )( l +  lO i) *’’ * s ( j2 +  10s+ 100)

“  i ( i + 0 . i j ) ( i  +  0.5s) “  ĨV T T Õ 7 T T Õ Õ )

1000 ______ a: ( i + 2 s ) ( l+ 4 i)
(e) G(s) -  ^  (f)  G{i) -  ^  i’

5-4. For the unity-feedback control systems described in Problem 5-2, determine ihe steady-state 
eưor for a unit-step input, a unit-ramp input, and a parabolic input. [t^/l)us{t). Check the stability o f 
the system before applying the final-value theorem.

5-5. The following ưansíer functions are given for a single-loop nonunity-feedback control system. 
Find the steady-state errors due to a unit-step input, a unit-ramp input, and a parabolic input,

(>V2)»,(1).

H(s) =  5

Í + I

(d) G{s) =  m  =  5(1 +  2)

5-6. Find the sleady-state errors o f the following single-loop control systems for a unit-step input, a 
unit-ramp input, and a parabolic input. (r^ /2 )u j(f) . For systems that include a parameter K, find its 
value so that the answers are valid.

“  ,^ +  16í-’ + 4 8 í2 + 4 í  +  4’ "  ‘

"<*> =  .» +  3.^ +  y + 2 ) »  +  3 r  =  '

5-7. The output o f the system shown in Fig. 5P-8 has a transfer function Y/X. Find the poles and 
zeros o f the closed loop system and the system type.
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5-8. Find the position, velocity, and acceleration error constants for Ihe system given in Fig. 5P-

f + 1 5
1 + 3 s (i +  2)

Figure 5P-8

5-9. Find the steady-siate error for Problem 5*8 for (a) a unit-siep input, (b) a unit-ramp input, an
(c) a unit-parabolic inpul.

5-10. Repeat Problem 5-8 for the system given in Fig. 5P-10.

Í+ 1 , 4
'■ 7 7 i 1 — ~ s-

Figure 5P-10

5-11. Find the steady-state eưor o f the system given in Problem 5-10 when the input is

5-12. Find the rise úme o f ihe following first-order system:

G (i) =  wilh | i |  <  1

5*13. The block diagram o f a control system is shown in Fig, 5P-13. Find the step-, ramp-, am
parabolic-error constants. The error signal is defined to be e{i). Find the steady-state errors in terms 0 
K  and K, when the following inputs are applied. Assume that the system is stable.

( a ir ( f )  =  « ,(i)

(b) rịt) =  /Ms(0

(c) r(0  =  { r^ /2 )u A t)

Figure 5P-13

5-14. Repeal Problem 5-13 when ihe iransfer funciion o f the process is. instead.

G 'QQ
" ( I  + 0 .1 j) ( l+ 0 .5 i)

Whal constraints must be made, i f  any . on ih e  values o f K a n d  K, so  that the answers are valid' 
Determine the minimum steady-slate error that can be achieved with a unit-ramp input by varyin] 
the values o f K and K,.



5-15. For the position-control system shown in Fig. 3P-7. determine the following.
(a) Find the steady-state value o f the error signal e^il) in terms o f the system parameters when the 
input is a unit-siep function.
(b) Repeat pan (a) when the input is a unit-ramp function. Assume that the system is stable, 

5-16. The block diagram o f a feedback control system is shown in Fig. 5P-16. The error signal is 
defined to be e(t).
(a) Find the steady-state error o f the system in terms o f K  and K, when the input is a unit-ramp 
function. Give the constraints on the values o f K and K, so that the answer is valid. Let n(t) =  0 for 
this part.
(b) Find the steady-state value o f yU) when nự) is a unit-step function. Let r(r) =  0. Assume that the 
system is stable.

m
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Figure 5P-16

5-17. The block diagram o f a linear conưol system is shown in Fig. 5P-17, where r (0  is the 
reference input and n{/) is the disturbance.
(a) Find the steady-state value o f e{t) when n[t) = 0 and r(f) =  fK j(f). Find the conditions on the 
values o f a  and K so that the solution is valid.

(b) Find the steady-state value o f >(/) when r ( 0  =  0 and nịt) = Us{t).

N(S)

R(s) £-(.0

Figure SP-17

5-18. The unit-step response o f a linear control system is shown in Fig. 5P-18. Find the transfer 
function o f a second-order prototype system to model the system.
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5-19. For the control system shown in Fig. 5P-13, find the values o f AT and K, so tíiat tíie maximuit 
overshoot o f the output is approximately 4.3% and the rise time Ĩ, is approximately 0.2 sec. Use Eq 
(5-98) fo r the rise-time relationship. Simulate the system with any time-response simulation progran 
to check the accuracy o f  your solutions.

5-20. Repeat Problem 5-19 w ith a maximum overshoot o f 10% and a rise time o f  0.1 sec.

5-21. Repeat Problem 5-19 w ith a maximum overshoot o f 20% and a rise time o f  0.05 sec.

5-22. For the control system shown in Fig. 5P-13, find the values o f AT and AT, so that the maximum 
overshoot o f the output is approximately 4.3% and the delay time Id is approximately 0.1 sec. Use 
Eq. (5-96) for the delay-time relationship. Simulate the system with a computer program to check 
the accuracy o f your solutions.

5-23. Repeat Problem 5-22 with a maximum overshoot o f 10% and a delay time o f 0.05 sec.

5-24. Repeat Problem 5-22 w ith a maximum overshoot o f 20% and a delay time o f 0.01 sec.

5-25. For the control system shown in Fig. 5P-13. find the values o f K  and K, so that the damping 
ratio o f the system is 0.6 and the settling time o f the unit-step response is 0,1 sec. Use Eq. (5*102) for 
the settling time relationship. Simulate the system with a computer program to check the accuracy of 
your results.

5-26. (a) Repeat Problem 5-25 with a maximum overshoot o f 10% and a settling tim e of 0.05 sec.

(b) Repeal Problem 5-25 with a maximum overshoot o f 20%  and a settling tim e o f 0.01 sec.

5-27. Repeal Problem 5-25 with a damping ratio o f 0.707 and a settling time o f 0.1 sec. Use 
Eq. (5-103) for the settling time relationship.

5-28. The fonvard-path transfer function o f a conirol system with unity feedback is

j(í"+ứ)(j + 30)

where a and K are real constants.
(a) Find the values o f a and K  so that the relative damping ratio o f the complex roots of tìie 
characteristic equation is 0.5 and the rise time o f the unit-step response is approximately 1 sec. Use 
Eq. (5-98) as an approximation o f the rise time. W ith the values o f a and K  found, determine the actual 
rise time using computer simulation.

(b) W ith the values o f a and K found in pan (a), find the steady-state errors o f the system when the 
reference input is (i) a unil-step function and (ii)  a unit-ramp function.

5-29. The block diagram o f a linear control system is shown in Fig. 5P-29.
(a ) B y means o f  tr ia l and eưor, find  the value o f  K  so that the characteristic equation has tw o equal 
real roots and the system is stable. You may use any root-finding computer program to solve this 
problem .

(b) Find the unit'Step response of ihe system when K  has the value found in p an  (a). Use any 
computer simulation program for this. Set all Ihe in itia l conditions to zero.

(c) Repeat part (b) w h e n =  - 1 .  Whai ispeculiaraboutthe stepresponseforsmall f, and whatmay 
have caused it?

£ ( i) K ( s - ị ) K(J)

s ( s + l) ( i  +  2)

1
Figure 5P-29
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0^1 Ơ) _ 
dt 

dJCjjt) _

5-30. A  controlled process is represented by the follow ing dynamic equations;

i ^ = - ^ , w  +  5 « w
at

— ^  =  - 6 x ,{ / ) + « ( r )  
at
y{t) = (i)

The control is obtained through state feedback with

u ( i)  =  - A i J : i ( i}  -  k2X2{l) +  r ( f )  

where k] and k 2 are real constants, and r{t) is the reference input.

(a) Find ihe locus in the /ti-versus-A:2 plane (Ati = vertical axis) on which the overall system has a
natural undamped frequency o f 10  rad/sec.
(b) Find the locus in the A:|-versus-A:2 plane on which the overall system has a damping ratio o f 0.707.

(c) Find the values o f ẢTi and *2 such that Ị  =  0.707 and (U„ =  lOrad/sec.

(d) Let the eưor signal be defined as e{t) =  r{i) -  y{t). Find the steady-state error when r ( i)  =  u ,(i)
and k , and *2 are at the values found in part (c).

(e) Find ứie locus in the Ẩ:|-versus-Ẩr2 plane on which the steady-state error due lo a unit-step input is 
zero.

5-31. The block diagram o f a linear control system is shown in Fig. 5P-31. Construct a parameter 
plane o f  Kp versus K j (Kp is the vertical axis), and show the following trajectories or regions in the 
plane.

(a) Unstable and stable regions

(b) Trajectories on which the damping is critical {c =  1)
(c) Reg ion in  w h ich  the system is overdamped ( f  >  I )

(d) Region in which the system is underdamped (c <  1)

(e) Trajectory on which the parabolic-error constant Ka is lOOOsec"^
(f) Trajectory on which the natural undamped frequency tu„ is 50 rad/sec

(g) Trajectory on which the system is either uncontrollable or unobservable (hint: look for pole-zero 
cancellation)

^  E{s)
Kpi-Kps

100 ns)

2 '
1

Figure SP-31

5-32. The block diagram o f a linear control system is shown in Fig. 5P-32. The fixed parameters of 
the system are given as 7" =  0 .1 , J =  0 .0 1 , and Ki =  10 .
(a) When r ( i)  =  tUs(t) and Tdit) =  0, determine how ihe values o f K and K, affect the steady-state 
value o f e(l). Find the reslriciions on K and K, so that the system is stable.

(b) Let r{t) =  0. Determine how the values o f K and K, affect the sleady-state value o f >-(/) when the 
disturbance input Td{t) = u,{t).

(c) Let K, =  0-01 and r(f) =  0. Find the minimum steady-state value o f >'(/) that can be obtained by 
varying K, when TdU) is a unit-step function. Find the value o f this K. From the transienl standpoint, 
would you operate the system at this value o f Explain.

(d) Assume that it is desired to operate ihe system with ihe value o f Kas selected in part (c). Find the 
value o f K, so that the complex roots of the characteristic equation w ill have a real part o f -2 .5 . Find 
all three roots o f the characteristic equation.
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Figure 5P-32

5-33. Consider a second-order unity feedback system with f  =  0.6 and 0J„ = 5 rad/sec. Calculati 
the rise time, peak lime, maximum overshoot, and settling time when a unit-step input is applied I( 
the system.

5-34. Fig. 5P-34 shows the block diagram o f a servomotor. Assume J  =  1 kg-in“  and B = 1 N-m 
rad/sec. I f  the maximum overshool o f the unit-step input and the peak time are 0.2 and 0.1 sec. 
respectively,

(a) Find its damping ratio and natural frequency.

(b) Find the gain K  and velocity feedback Kf. Also, calculate ưie rise time and settling lime.

Figure 5P-34

5*35. Find the unit-siep response o f the following systems assuming zero in itia l conditions:

-1 -1 
6.5 0

1 0 

.0 1

0  1 

- 1  - I

X] ■
+ r  °1 [1'•T2 . Lo 0 ,

y, =  []  0 )

0 1 0

-1 -1 0
1 0 0

-»̂l

'x \ ' ‘0

X2 + I

. '3 . 0
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5-36. Use M ATLAB to solve Problem 5-35.

5-37. Find the impulse response o f the given systems in Problem 5-3: 

5-38. Use M ATLAB to solve Problem 5-37.

5-39. Fig. 5P-39 shows a mechanical system.

(a) Find the differential equation o f the system.
(b) Use MATLAB to find the unit-step input response o f the system.

5-40. The dc-motor conưol system for conirolling a printwheel described in Problem 4-49 has the 
forward-path transfer function

0 . ( i )  A (.)

where a(s) =  I  [z . A / t /  +  A

+  ( r Ĩ K d . j L  +  +  K iK iJ i +  R ,B „ J l )s~

+  ự R M L  + R M m  +  B ^K lQ s +  R.B^Ku +  K ịK^Kl ]

5 ii ,  / . .  = 1 mH. )r, = 1 v/rad, n =  I /10, y „  = =where Ki 
0.001

, = 9 o z - in ./A ,A :i =  0.636 v/rad/sec,«a =  5 a i . f l=  1 mH,A:,= 1 v /ra d ,n =  1 / 10 , 
>in.-sec\ and Bm — 0. The characteristic equalion o f the ciosed-loop system is

à{s) + nKsKịKiK =  0

(a) Let Kl = 10,000 oz-in./rad. Write the forward-path transfer function G (j) and find the poles of 
ơ (i). Find the critical value o f K for the closed-loop system to be stable. Find the roots o f the 
characteristic equalion o f the closed-loop system when K is al marginal stability.
(b) Repeat part (a) when Kl = 1000 oz-in./rad.

(c) Repeat part (a) when Kl =  oo; that is, Ihe motor shaft is rigid.

(d) Compare the results o f parts (a), (b), and (c), and conunent on the effects o f ihe values o f Kt on 
the poles o f  G(.s) and the roots o f  the characteristic equation.

5-41. The block diagram of the guided-missile attitude-conưol system described in Problem 4-20 is 
shown in Fig. 5P-41. The command input is r(/), and d{l) represents disturbance input. The objective 
o f this problem is to study the effect o f the controller Gc(s) on the steady-state and ưansient responses 
o f the system.
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(a) Let G f( i)  =  I. Find the steady-state error o f the system when r{t) is a unit-step funciion. 
Set dịr) = 0.
(b) Let G f( j)  =  (5 +  Qr)/i. Find the steady-state eưor when KO is a unit-step function.

(c) Obtain the unit-step response o f the system for 0 <  r <  0.5 sec w ith Cf(s) as given in  part (b) and 
a  = 5. 50, and 500. Assume zero in itia l conditions. Record the maximum overshoot of></) for each 
case. Use any available computer simulation program. Comment on the effect o f varying die value of 
a  o f the controller on the transient response.

(d) Set r(l) =  0 and Gc(s) = 1. Find the steady-state value o f y (/) when d(t) =  Mj(r).

(e) Let G c(i) =  ( j  +  a )/s . Find the steady-state value o f yd)  when dịl) = Us{t).
(f) Obtain the output response for 0 <  r <  0.5 sec, w ith G^(j) as given in part (e) when r(/) =  0 and
d{t) = 0  =  5. 50, and 500. Use zero in itia l conditions.
(g) Comment on the effect o f varying the value of a  o f the controller on the ưansieni response of yịl) 
and d(l).

D(s)

R{s) E{s)
GẶS) 10Q(J + 2) 

( / - 1 )

Figure 5P-41

5-42. The block diagram shown in Fig- 5P-42 represents a liquid-level control system. The liquid 
level is represented by /j(0 . and N  denotes the number o f inlets,
(a) Because one o f the poles o f the open-loop transfer function is relatively far to the left on the 
real axis o f the 5-plane at J =  -1 0 . it is suggested that this pole can be neglected. Approximate the 
syslem by a second-order system by neglecting the pole o f C (j) at J =  -1 0 . The approximation 
should be valid for both the transient and the sieady-staie responses. Apply the formulas for the 
maximum overshoot and the peak lime to the second-order model for /V = 1 and N  = 10.
(b) Obtain the unit'S tep response (with zero initial conditions) o f the original third-order system wiứi 
N = I and then with A/ = 10. Compare the responses o f the original system with those o f the second- 
order approximating system. Comment on the accuracy o f the approximation as a function o f N.

Figure 5P-42

S-43. The forward-path transfer function o f a unity-feedback control system is

i(,T+ i r

Compule and plot the unit-step responses o f the closed-loop system for T- =  0. 0.5. 1.0. 10.0, and
50.0. Assume zero in itia l conditions. Use any computer simulation program that is available 
Commenl on the effects o f the various values o f T. on the step response.
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5-44. The forward-path transfer function o f a unity-feedback conưol system is

G{s) =
s{s

1________

+ 1 ) ^ ( 1 +  v )

Compute and plot Ihe unil-step responses o f the closed-Ioop system for Tp =  0,0.5. and 0.707. Assume 
zero initial conditions. Use any computer simulation program. Find the critical value o f Tp so that the 
closed-loop system is marginally stable. Comment on the effects o f the pole at J =  - \ / T p  in G(s). 

5-45. Compare and ploi the unii-step responses o f the unily-feedback closed-loop systems with the 
forward-path ưansíer functions given. Assume zero in itia l conditions.

\+ T . j
(a) G{s) =

‘ ^ * * '” ( i= + 2s +  2 ) ( l+ 7 - ,s )  

(d) G (j) =  -

í (j  +  0 .55){5+  1.5)

1 + r.j

10

For r .  =  0 . 1.5. 20

For Ti = 0. 1. 5, 20

For T p = 0 ,  0.5. 1.0

For Tp = 0. 0.5, 1,0
■i{5 +  5 ) ( i  +  r ; , i )

^ i ( s +  1.25)(s2 +  2 . 5 i+  10)

(I) F o r/^ =  5

(ii) FotK=\0
( iii)  For AT =  30

m  ^ (^  +  2.5)
í ( ĩ + 1 .2 5 ) ( s2 +  2.5j + 1 0 )

(i) For a: =  5

(ii)  For A- =  10 

(iu ) F o r / :  =  30

S-46. Fig. 5P-46 shows ihe block diagram o f a servomotor with tachometer feedback.

(a) Find the eưor signal E{s) in the presence o f the reference inpu t X(5) and disturbance inpin D(s).
(b) Calculate the steady-state error o f the system when X(s) is a unit ram p and D(s) is a unil step.

(c) Use MATLAB to plot ihe response o f the system for part (b).

(d) Use M ATLAB to plot the response o f Ihe system when X (i) is a unit-step inpul and D{s) is a unit 
impulse inpu(.

Figure 5P-46
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5-47. The feedforward transfer function o f a stable unity feedback system is G(s). I f  the closed-loo| 
transfer function can be rewritten as

G(s) ( A ,s + I ) ( A 2S + 1 ) . . . ( A „ ^ + I )
X(s) I+ C ( s )  ( B is + 1 )(B 2S + 1 ) . . . ( B „ s +  1)

(a) Find the steady Slate eưor to a unit-step input.

5-48. I f  the maximum overshoot and 1% settling time o f the unit-step response o f ihe closed-loo| 
system shown in Fig. 5P-48 are no more than 25% and 0.1 sec, find the gain AT and pole location Pol 
the compensator. Also, use M ATLAB to plot the unit-step input response o f  ưie system and verifj 
your controller design.

10 
5 + 25

Figure 5P-48

5-49. I f  a given second-order system is required to have a peak time less than Í. find the region in ứie
5-ptane corresponding to (he poles that meet this specification.

5-50. A  unity feedback control system shown in Fig. 5P-50(a) is designed so that its closed-loop 
poles lie within the region shown in Fig. 5P-50(b).

• 2

-3

o  ■-2

Figure 5P-50
(b)



(a) Find the values for (i)„ and Ị.
(b) If K p=  2 and p  =  2, then find the values for K and K,.
(c) Show that regardless o f values Kp and p, the controller can be designed to place the poles 
anywhere in ửie left side o f the s-plane.

5-51. The equation o f a dc motor is given by

R )  R

Assuming =  0.02 kg-m^. B =  0.002 N-m-sec, iCi =  0.04 N-m/A, K2 =  0.04 V-sec, and R =  20 ĨÌ.
(a) Find the ưansíer function between the applied voltage and the motor speed.

(b) Calculate the steady-state speed o f the motor after applying a voltage o f 10 V.
(c) Determine the ữansíer function between the applied voltage and the shaft angle

(d) Including a closed-loop feedback to part (c) such that V ^  K [ d p -  9„), where AT is the feedback 
gain, obtain the transfer function between 9p and Q„.
(e) I f  the maximum overshoot is less than 25%, determine K.
(f) I f  the rise time is less than 3 sec, determine K.
(g) Use M ATLAB to plot the step response o f the position servo system for K  =  0.5,1.0, and 2.0. 
Find ihe rise time and overshoot.

5-52. In the unity feedback closed-loop system in a configuration similar to that in Fig. 5P-48. the 

plant ưansfer function is

and the conưoller transfer function is

Design ứie conưoller parameters so that the closed-loop system has a 10% overshoot for a unit step 
input and a \%  settling time o f l.S.sec.

5-53. An autopilot is designed to maintain the pitch attitude a  o f an airplane. The ưansfer function 
between pitch angle a  and elevator angle ậ  are given by

g ( j )  _  6 0 ( ^ + 1 ) ( 5  +  2)

Ms) ^  +  6s +  4 0 )(* i +  0.04s +  0.07)

The autopilot pitch controller uses the pitch eưor e to adjust Uie elevator as

m  + 3 )
E(s) S + IO

Use a unity feedback configuration, and utilize M ATLAB to find K with an overshoot o f less than 
10% and a rise time faster than 0.5 sec for a unii-step input. Explain controller design difficulties for 
complex systems.

5-54. The block diagram o f a conưol system with a series controller is shown in Fig. 5P-54. Find the 
transfer function o f the cornroller G ,(i) so thal the following specificalions are satisfied:

(a) The ramp-eưor constant Ky is 5.
(b) The closed-loop transfer function is o f the form

R(s) ”  +  20s +  200)(s +  o)

where K and a are real constants. Use M ATLAB to find the values o f K and a and confirm the resulls-

Problems <  3 3 3
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The design strategy is to place the closed-loop poles at - 1 0  +  ýio and - 1 0  -  ý io , and tbft 
adjust the values o f K  and a to satisfy the steady-state requirement. The value o f a is large so iha 
it w ill not affect the transient response appreciably. Find the maximum overshoot o f ihe designe 
system.

GẬS)

Figure 5P-54

5-55. Repeat Problem 5-54 i f  the ramp-error constant is 10 be 9. What is the maximum value of K 
that can be realized? Comment on the difficulties that may arise in attempting to realize a ver 
large k [..

5-56. A  control system with a PD controller is shown in Fig. 5P-56. Use MATLAB 10

(a) Find the values o f Kp and Kp so that the ramp-error constant K,. is 1000 and the damping rati( 
is 0.5.
(b) Find the values o f Kp and K d  so that the ramp-eưor constant Ky is 1000 and the damping raiic 
is 0.707.
(c) Find the values o f Kp and K d  so that the ramp-error constant K̂ . is 1000 and the damping rati( 
is 1 .0 .

U Q i í í q  ---------J  J a s L

Figure 5P-56

5-57. For the control system shown in Figure 5P-56, set the value o f Kp so that the ramp-erro 
constant is 1000. Use MATLAB to

(a) Vary the value o f Ả^DÍrom 0.2 to 1.0 in increments o f 0.2 and determine the values o f rise lime an< 
maximum overshoot o f the system.

(b) Vary the value o f Ko from 0.2 to 1.0 in increments o f 0.2 and find the value o f Kp so that thi 
maximum overshoot is minimum.

5-58. Consider Che second-order model o f the aircraft attitude control system shown in Fig. 5-29 

The transfer function o f the process is Cp{s) = Use M ATLAB lo design a series PI
controller with the transfer function G f( j)  = Kp + Kps so that the following performance specifi 
cations are satisfied;

Steady-state error due to a unit-ramp input <  0,001 

Maximum overshoot <  5Vc 

Rise time fr <  0.003 sec 

Settling tim er, <  0.005 sec

5-59. Fig. 5P-59 showb the block diagram o f the liquid-level control system described in Probler
5-42. The number o f inlets is denoled by N. Set N =  20. Use M ATLAB to design the PD conưoller s 
that with a unil-btep input the lank h  filled 10 w ithin 5% o f the reference level in less than 3 se 
without overshoot.



ÌONKp+ K[yS i ( j + l ) ( j + 10)

Figure 5P-59

5-60. For the liquid-level control system described in Problem 5-59. set Kp so that the ramp-error 
constant is I. Use M ATLAB to vary Kq from 0 to 0.5 and determine the values o f rise time and 
maximum overshoot o f the system.

5*61. A  control system with a type 0 process Gp{s) and a PI controller is shown in Fig. 5P-61. Use 
M ATLAB to

(a) Find the value o f K, so that the ramp-error constant Ky is 10.

(b) Find the value o f Kp so thai the magnitude o f the imaginary parts o f the complex roots o f the 
characteristic equation o f the system is 15 radysec. Find the roots o f the characteristic equation.

(c) Sketch the root contours o f the characteristic equation with the value o f K, as determined in pan
(a) and for 0  <  Af/> <  oc.

/?(i) “ N. Eịs)

J ' ~  s K  i õ r + 100

Figure 5P-61

5-62. For the control system described in Problem 5-61. set K/ so that the ramp-error constant is 10. 
Use M ATLAB to vary Kp and determine the values o f rise time and maximum overshoot o f the 
system.

5-63. For the control system shown in Fig. 5P-61, use M ATLAB to perform the following:
(a) Find the value o f K/ so that the ramp-error constant Ky is 100.

(b) W ith the value o f K/ found in part (a), find the critical value o f Kp so that the system is stable. 
Sketch the root contours o f the characteristic equation for 0 < Kp < rx..
(c) Show that the maximum overshoot is high for both large and small values o f Kp. Use the value of 
K/ found in pari (a). Find the value o f Kp when the m axim um  overshoot is a minimum. What is the 
value o f this maximum overshoot?

5-64. Repeal Problem 5-63 for K,. = 10.

5-65. A  controJ system with a type 0 process and a PID conưoller is shown in Fig. 5P-65. Use 
M ATLAB to design the coniroller parameters so that ihe following specifications are satisfied: 

Ramp-errorconstaniA^>. =  100 

Rise time i r <  0.01 sec.

Maximum overshoot < 2*5̂^

Plot the unit-slep response o f the designed system.

Figure 5P-65

Kp + KqS +
K(,5)

^ ’ ” ió r + 100
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5-66. Consider the quarter-car model o f vehicle suspension systems in Example 4-11-3.
The Laplace transform between the base acceleradon and displacement is given by

Z j s )  _  -1

+ 2Ịũ)„s +  a>„̂

(a) I i  is desired to design a proportional conưoller. Use M ATLAB to design ứie controllef 
parameters where the rise time is no more than 0.05 sec and the overshoot is no more than 3%. 
Plot the unit-step response o f the designed system.

(b) It is desired to design a PD controller. Use M ATLAB to design the conưoller parameters where 
the rise time is no more than 0.05 sec and the overshoot is no more ửian 3%. Plot the unil-step 
response o f the designed system.
(c) II is desired to design a PI controller. Use M ATLAB to design the controller parameiers where 
the rise time is no more than 0.05 sec and the overshoot is no more lhan 3%. Plot the unit-step 
response o f the designed system.
(d) It is desired to design a PID controller. Use M ATLAB to design the controller parameters where 
the rise time is no more than 0.05 sec and the overshoot is no more than 3%. Plot the unit-step 
response o f the designed system.

5-67. Consider the spring-mass system shown in Fig. 5P-67.

Its transfer function is given by ^  = IMs'+Bs-I-K ■

Repeal Problem 5-66 where A/ =  1 kg, B =  10 N.s/m, K = 20 N/m.

B
Figure 5P-67

5-68. Consider the vehicle suspension system hitting a bump described in Problem 4-3. Use 
M ATLAB to design a proponional controller where the I % settling time is less than 0 .1 sec and the 
overshoot is no more than 2%. Assume m =  25 kg. /  =  5 kg-m '.A: =  lOON/m, and r  =  0.35 m. Plot 
ihe impulse response o f the system.

5-69. Consider the train system described in Problem 4-6. Use MATLAB to design a proportional 
conưoller where the peak time is less than 0.05 sec and the overshoot is no more than 4%. Assume 
A/ =  1 kg. m = 0,5 kg. =  1 N/m, n  =  0.002 sec/m, and g =  9.8 m/s^.

5-70. Consider the inverted pendulum described in Problem 4-9. where M  =  0.5 kg. m = 0.2 kg. 
M =  0.1 N/m/sec (friction o f the can). I =  0.006 kg-m ^ g = 9.8 m/s^, and 1 =  0.3 m.
Use M ATLAB to design a PD controller where Ihe rise lime is less than 0.2 sec and the overshoot is 
no more than 10%.
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► 6-1 I N T R O D U C T I O N

T he m a jo rity  o f  undergraduate courses in  con tro l have labs dea ling  w ith  tim e response 
and con tro l o f  dc motors. The focus o f  th is  chapter is therefore on these lab problem s—  
nam ely, speed response, speed con tro l, pos ition  response, and pos ition  con tro l o f  dc 
m otors. In  th is  chapter, using M A T L A B  and S im u lin k , we have created a series o f  v irtu a l 
lab experim ents that are designed to  help students understand the concepts discussed 
in  Chapters 4 and 5. T h is  chapter also contains tw o  co n tro lle r design experim ents. 
There are three classes o f  s im u la tion  experim ents designed fo r  th is  chapter: S IM L a b , 
V ir tu a l  L a b , and Q u a r te r  C a r  S im . There experim ents are intended to  supple
m ent the experim enta l exposure o f  the students in  a trad itiona l undergraduate con tro l 
course.

I t  is a dem anding task to  develop software that provides the reader w ith  p ractica l 
appreciation and understanding o f  dc m otors in c lu d in g  m ode ling  uncertainties, non
linea r effects, system id e n tifica tio n , and co n tro lle r design am id these p rac tica l cha l
lenges. H owever, through the use o f  M A T L A B  and S im u lin k , we created a v irtu a l dc 
m o to r in  V irtu a l Lab, w h ich  exh ib its  many o f  the same non-idea lized  behaviors observed 
in  an actual system. A l l  the experim ents presented here were com pared w ith  real systems 
in  the lab environm ent, and th e ir accuracy has been verified . These v irtu a l labs include 
experiments on speed and position contro l o f dc motors followed by two contro lle r 
design  p ro je c ts , the firs t in vo lv in g  con tro l o f  a s im ple robo tic  system and the last one 
investiga ting  the response o f  an active suspension system. In  th is  chapter, the focus on dc 
m otors in  these experim ents is in ten tiona l, because o f  th e ir re la tive s im p lic ity  and w ide 
usage in  numerous indus tria l applications.

The m ain objectives o f  th is chapter are:

1. To provide an in-depth description o f  dc m otor speed response, speed contro l, and 
pos ition conưol concepts.

2. To provide p re lim inary  instruction on how to  iden tify  the parameters o f  a system.

3. To show how d iffe ren t parameters and nonlinear effects such as fr ic tion  and 
saturation affect the response o f  the motor.

4. To g ive a better feel fo r  con tro lle r design through rea listic examples.

5. To get started using the S IM Lab  and V irtua l Lab.

6 . To gain practical knowledge o f the Q uarter Car Sim  software.

Before starting the lab, you must have com pleted the relevant background preparation 
in  Chapters 4 and 5.
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The experiments that you w il l  perform  are intended to  g ive  you hands-on (v irtua lly! 
experience in  analyzing the system components and experim enting w ith  various feedbacl 
con tro l schemes. To study the speed and pos ition response o f  a dc m otor, a typica 
experim ental test bed is shown in  Fig. 6-1.

The setup components are as fo llow s :

• A  dc m otor w ith  a pos ition sensor (usually an encoder w ith  increm enia] roiatiol 
measurement) o r a speed sensor (no rm a lly  a tachom eter o r a d iffe renc ing  operaliot 
perform ed on encoder readings)

• A  power supply and a m p lifie r to  pow er the m otor

• Interface cards to m on ito r the sensor and p rovide a com m and voltage to the 
am p lifie r input and a PC running M A T L A B  and S im u lin k  to  contro l the system and 
to record the response (alternative ly, the co n tro lle r may be composed o f  an analog 
c ircu it system)

A  sim ple speed contro l system is composed o f  a sensor to  measure m otor shaft speed 
and an a m p lifie r w ith  gain K  (proportional con tro l) in the configuration shown in  Fig. 6-1. 
The b lock diagram o f the system is also shown in Fig. 6-2.

To contro l the pos ition  o f  the m o to r shaft, the s im plest strategy is to  use a 
p roportiona l co n tro lle r w ith  gain K. The b lo ck  diagram  o f  the c losed-loop  system is 
shown in  F ig . 6-3. The system is composed o f  an angular pos ition  sensor (usually an 
encoder o r a po tentiom eter fo r  pos ition  app lica tions). N ote that fo r  s im p lic ity  the input 
voltage can be scaled to  a position input Ti„(s) so that the inpu t and ou tpu t have the same 
un its  and scale.

The components are described in the next seclions.

33 8  ► Chapter 6. The Control Lab

Feedback ^  Sensor

Figure 6-1 Feedback conirol o f an armature-controlled dc motor with load inenia.
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6-2-1 Motor

ns) 1
Js + B

Figure 6-3 Block diagram o f a position-control, armature-conưolled dc motor.

Recall fro m  Chapter 5 that fo r  the arm ature-controlled dc m o to r shown in  Fig. 5-24. the 
system parameters include

=  armature resistance, ohm 

Lu =  armature inductance, henry 

Va =  applied armature voltage, vo lt 

V* =  back em f, vo lt

9 =  angular displacement o f  the m otor shaft, radian 

T  =  torque developed by the m otor, N -m  

=  m oment o f  inertia  o f  the load, kg-m ^

any external load torque considered as a disturbance, N -m  

J„  =  m oment o f  inertia  o f  the m o to r (m otor shaft), kg-m ^

J  =  equivalent moment o f  ine rtia  o f  the m o to r and load connected to  the m otor-shaft, 
J  = J i /n ^  +  Jm< kg-m ^ (refer to  Chapters 4 and 5 fo r  more details) 

n =  gear ratio

B =  equivalent v iscous-fric tion  coe ffic ient o f  the m otor and load reíeưed to the
m otor shaft, N-m/rad/sec (in  the presence o f  gear ra tio . B must be scaled by n;
refer to  Chapter 4  fo r  more details)

K, =  speed sensor (usually a tachometer) gain

The m otor used in  this experim ent is a permanent magnet dc m otor w ith  the fo llo w in g  
parameters (as given by the manufacturer):

K,„= M o to r (torque) constant 0.10 N m /A
Kf, =  Speed Constant 0.10 v/rad/sec
/?0 =  Arm ature resistance 1.35 ohm
La =  A rm ature inductance 0.56 mH
J„, =  A rm ature m om ent o f  inertia  0.0019 kg-m ‘
T„, =  M o to r mechanical tim e constant 2.3172 E-005 sec

A  reduction gear head may be attached to the output d isk o f the m otor shaft. I f  the m otor 
shaft’s angular rotation is considered the output, the gear head w ill scale the inertia  o f  the 
load by 1 /r t^  in the system model, where H is the gear ratio.

6-2-2 Position Sensor or speed Sensor
For pos ition-contro l applications, an incremental encoder or a potentiom eter may be 
attached d irectly  to the m otor shaft to measure the rotation o f  the armature. In speed
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contro l, i t  is custom ary to  connect a tachometer to  the m o to r shaft. Sensor-shaft inertia and 
dam ping are norm ally too sm all to  be included in the system  model. The ou tpu t from  each 
sensor is proportiona l to  the variable i t  is measuring. We w i l l  assume a p ropo rtiona lity  gain 
o f  1 ; that is, Kt =  1 (speed  control), and Ks =  1 (position control).

6-2-3 Power Amplifier

6-2-4 Interface

The purpose o f  the a m p lifie r is to  increase the cuưent capacity o f  the voltage signal from 
the analog output interface card. The output cuưent fro m  the interface should norm ally be 
lim ited , whereas the m o to r can draw  many tim es this cuưent. The details o f  the amplifier 
design are somewhat com plex and w il l  not be discussed here. B ut we should note iwo 
im portant points regarding the am plifie r:

1. The m axim um  voltage that can be output by the a m p lifie r is e ffec tive ly  lim ited to
2 0 V .

2. The m axim um  cuưent that the am p lifie r can prov ide  to  the m otor is lim ite d  to 8 A.
Therefore,
A m p gain 2 WfW
A m p lifie r  input saturation lim its  ± 1 0  V
Current saturation lim its  ± 4  A

In  a rea l-w orld  scenario, in te rfac ing  is an im ponant issue. You w ou ld  be required to attach 
a ll the experimental components and to connect the m o to r sensor and the am plifie r to a 
com puter equipped w ith  M A T L A B  and S im u lin k  (o r some other rea l-tim e interface 
software). S im u link  w ou ld  then p rovide a voltage output func tion  that w ou ld  be passed 
on to the am p lifie r v ia  a d ig ita l-to -ana log  (D /A ) interface card. The sensor output would 
also have to  go through an ana log-to-d ig ita l (A /D ) card to  reach the computer. Alterna
tive ly . you could avoid using a com puter and an A /D  o r D /A  card by using an analog circuit 
fo r  control.

6-3  D E S C R IP T IO N  OF S I M L A B  A N D  V I R T U A L  L A B  S O F T W A R E

As shown in Fig. 6-4, S IM Lab  and V irtua l Lab  are series o f  M A T L A B  and S im u link files 
w ith in  Ihe Autom atic  C ontro l Systems (A C S Y S ) applet that makes up an educational tool 
fo r students learning about dc m oiors and contro l systems. S IM L a b  was created to allow 
students to  understand the basic sim ulation model o f  a dc motor. The parameters o f  Ihe 
m otor can be adjusted to  see how they affect the system. The V irtua l Lab  was designed to 
exh ib it some o f  the key behaviors o f  real dc m otor systems. Real motors have issues such as 
gear backlash and saturation, w hich may cause the m otor response to  deviate from 
expected behavior. Users should be able to cope w ith  these problems. The motor 
parameters cannot be m odified in the V irtua l Lab because, in  a rea listic scenario, a motor 
may not be m odified but must be replaced by a new one!

In  both the S IM Lab  and the V irtua l Lab. there are five  experiments. In the firs t two 
experiments, feedback speed contro l and position con tro l are explored. O pen-loop step 
response o f  the m otor appears in the th ird  experiment. In  the fou rth  experim ent, the 
frequency response o f  the open-loop system can be examined by apply ing a sinusoidal 
input. A  con tro lle r design pro jeci is the last experiment.
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Controller Design ĨOOÍ

Sim Lab 

V irtual Lab

Quarter Car Sim

Close and Exit

Figure 6-4 The Automatic Control Systems (ACSYS) applet.

To launch the A C S Y S  applet, navigate to  the appropriate d irecto ry  in  the M A T L A B  
com m and w indow, and type A csys at the command prom pt. The S IM Lab  or V irtua l Lab 
experim ent w indows can be called from  the A C S Y S  applet by c lick in g  on the appropriate 
button. A lte rna tive ly , you may d irec tly  ca ll S IM Lab  or V irtua l Lab from  the M A T L A B  
com m and w indow  by navigating to the V irtua lLab  subdirectory and typ ing  iim /aó  or 
vỉríuaìỉab. respectively.

W hen S IM Lab  o r V iư ua l Lab is opened, the experim ent con tro l w indow  w ill be 
displayed. The Experim ent menu can be used to sw itch between d ifferent control experi
ments, as in Fig. 6-5. The grey contro l panel on the le ft contains the contro l buttons fo r  the 
experiment. Every experim enl has a button to enter mode! parameiers, a fie ld  to  enter 
sim ulation tim e, and additional experim ent-specific p lo t controls. The plots o r animations 
that the experiment supports appear in the display pane] on the right. Fig. 6-6  shows a 
typ ica l experim ent contro l w indow  in  S IM Lab. The time-response p lo t is displayed, and 
p lo t con tro l buttons appear below  the axes. Zoom  control buttons a llow  you to v iew  the 
response at greater detail, and the data cursor gives precise po in t values fo r graphed data. 
S IM Lab  allows you to  display the m otor transfer functions in various form ats and to  access 
other custom tools from  the S IM L a b  T oo ls  dropdown menu. For step-by-step instructions 
on using the experiment window, c lic k  on the H e lp  M e button in  the menu bar. The standard
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J  I

Figure 6-6 Typical SIM Lab experiment control window.
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M ic ro so ft W indow s ca lcu la to r and a u n it conversion too l can be accessed from  the lop 
menu.

The model parameters must be set firs t in  any experiment. B y selecting the Enter 
M ode l Parameters button, a S im u lin k  (.m d l) w indow  conta in ing the model fo r  the 
experim ent w il l  be launched. The m odel, shown in  F ig. 6-7, contains a sim ple closed- 
loop  system using P ID  speed con tro l, w ith  a reference step inpu t and m u ltip le  outputs.

A l l  the sim ulation parameters fo r  the S im u lin k  model are pre-set. Selecting S im ulation 
fro m  the S im u lin k  menu and next choosing C onfiguration Parameters allows access to  
these settings, shown in  F ig. 6 - 8 . The Start T im e and Stop T im e settings in the Solver
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Armatme Induclanee fl. (HỊ)

[Ĩ35
Moto. ard Load Inertia
|0  0013

VitMtB daơpns Mdion (b(k^m'2/s])

Back errf conityit [Kb
[010

Motoc caaraUnt (Km [N.m/AQ
|010

Figure 6-9 Adjustable parameters for the SIMLab motor blocks-

options are most im portant as fa r as S IM L a b  and V irtua l Lab examples are concerned, and 
they can be manipulated in C onfiguration Parameters, or on the le ft panel in the SIMLab/ 
V irtua l Lab interface. They a llow  you to m o d ify  the s im ulation runn ing  tim e. O ther options 
in C onfiguration Parameters should not be m odified, as they may cause errors in the 
S lM L a b  and V irtua l Lab software.

W hen the S im u link  model is opened, doub le -c lick  on the appropriate model block to 
m od ify  mode] parameters such as the P ID  values. For S lM L a b . doub le -c lick ing  on 
the m otor block brings up a w indow  conta in ing a lis t o f  adjustable m o to r parameters 
(see Fig. 6-9). A l l  m otor parameters, such as the resistance, back-em f constant, load inertia, 
and dam ping coe ffic ient, may be m odified. R ig h t-c lick in g  on a S IM L a b  m o to r blcK:k and 
selecting Lo o k  under M ask makes the dc m o to r model available. However, the V irtua l Lab 
m otor b locks are com plete ly opaque to  the user since they model actual dc motors. One 
other feature that S IM Lab  has. w h ich  V irtua l Lab  does not, is a torque-disturbance input 
in to  the motor. Th is  can be used to investigate the stall torque and the effect o f  an integral 
controller.

To run the sim ulation, close the S im u link  model and c lic k  the button labeled Run 
S im ulation. For more detail, c lic k  the zoom button and select the area o f  the time-response 
p lo t lo  v iew  it  closer. The data cursor button allows the graphed values to  be displayed as 
the cursor dot is moved around on the graph using the mouse or arrow keys. The Print to 
F igure button a llows the current response p lo t to be sent to  a separate M A T L A B  figure. 
Selecting the Reuse Axes checkbox prints a ll plots to the same set o f  axes in  an external 
figure, w h ich  is useful fo r com paring the system response after changing a parameter in  the 
S im u link  model. Th is  figure can also be saved as a -fig o r image file  fo r  future reference and 
analysis. A gain, in  the V irtua l Lab. you cannot change the system parameters, but p ro  
values are available fo r m odification.

Some o f the experiments have additional features, such as anim ation and calculation 
tools. These are discussed in  the fo llo w in g  sections. Selecting Close Experim ent in the 
contro l w indow  exits the program.
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I t  is desừed to design and test a conữoller o ffline  by evaluating the system performance in the 
safety o f  the sim ulation environment. The sim ulation model can be based on available system 
parameters, o r they may be identified experimentally. Because most o f  ứie system parameters 
are available (see m otor specifications in  Section 6-2-1), i t  w i l l  be useful to  bu ild  a model using 
these values and to  simulate the dynamic response fo r a step input. The response o f  the actual 
system (in  th is case, the vừtual system) to  the same test input w il l  then ve rify  the va lid ity  o f  the 
model. Should ứie actual response to the test input be s ign ificantly d iffe ren t from  the predicted 
response, certain model parameter values w ould have to be revised o r the model structure 
refined to  reflect more closely the observed system behavior. Once satisfactory model 
performance has been achieved, various conữol schemes can be implemented.

In  th is chapter, S IM Lab  represents the s im ulation model w ith  adjustable parameters, 
and V irtu a l Lab represents the actual (v irtu a l) system. Once the model o f  the V irtua l Lab 
system is iden tified  and confirm ed, the con tro lle r that was o r ig in a lly  designed using 
S IM Lab  should be tested on the V irtu a l Lab  model.

en-Loop Speed

The firs t step is to model the motor. Using the parameter values in  Section 6-2-1 fo r  the 
model o f  the m otor in  Fig. 5-24, sim ulate the open-loop ve loc ity  response o f  the m otor to  a 
step voltage applied to  the armature. Start up S IM Lab, select 3: open Loop Speed from  the 
Experim ent menu, and perform  the fo llo w in g  tests:

1. A p p ly  step inputs o f  + 5  V, + 1 5  V, and -1 0  V. Note that the steady-state speed 
should be approxim ate ly the applied armature voltage d iv ided  by Kf, as in  Eq. 
(5 -118 )' { try  dc m otor alone w ith  no gear head or load applied in  th is case).

2. Study the effect o f  viscous fr ic tio n  on the steady-state m otor speed. F irst set 5  =  0 
in  the S im u link  m otor parameter w indow. Then gradually increase its value and 
check the speed response.

3. Repeat Step 2 and connect the gear head w ith  a gear ra tio  o f  5.2:1, using additional 
load inertia  at the output shaft o f  the gear head o f  0.05 kg-m  (requires 
m od ifica tion  o f  J  in  the S im u link  m otor parameters). T ry  using the gear head 
calcu la tor in  the S IM Lab Tools dropdown menu.

4. Deierm ine the viscous fr ic tio n  required at output shaft to reduce the m otor speed 
by 50% from  the speed i t  w ou ld  rotate at i f  there were no viscous fr ic tio n .

5. Derive and calculate the disturbance torque steady-state gain. Introduce an 
appropriate step-disturbance input T i  and study its e ffect on the system in 
Step 3.

6 . Assum ing that you do not know the overall ine rtia  J  fo r the system in  Step 3, can 
you use the speed-response p lo t to  estimate its value? I f  so. con firm  the values o f 
m otor and load inertia. H ow  about the viscous-damping coeffic ient? Can you use 
the tim e response to find  other system parameters?

In  this experiment, we use the open-loop model represented in  Experim ent 3; Open Loop 
Speed. The S im u link  system model is shown in  Fig. 6-10. representing a sim ple open-loop 
model w ith  a m otor speed output.

6-4 Simulation and Virtual Experiments < 345
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Figure 6-11 DC motor model including voltage and currenl saturalion.

In  a rea listic scenario, the m otor is connected to an a m p lifie r that can output a voltage 
o n ly  in  a certain range. Outside o f  th is range, the voltage saturates. The current w ith in  the 
m otor may also be saturated. To create these effects in software, r ig h t-c lic k  the dc motor 
b lock and select Look under M ask to  obtain the m o lo r model shown in F ig. 6-11. Double
c lic k  both the voltage and current b locks and adjust the ir values (defau lt values o f  ± 1 0  
volts and ± 4  amps have already been set). I f  you do not w ish to include saturation, you can 
set the lim its  very large (o r delete these b locks altogether). Run the above experiments 
again and compare the results.

Assum ing a sm all e lectric -tim e constant, we may model the dc m o io r as a first-order 
system. As a result, the m otor inertia  and the viscous-dam ping fr ic tio n  cou ld  be calculated 
w ith  measurements o f  the m echanical-iim e constant using d iffe ren t input magnitudes. For 
a unit-step input, the open-loop speed response is shown in  Fig. 6-12. A fte r  measuring the 
mechanical-tim e constant o f  the system r „ „  you can find  the inertia  J , assuming a ll other 
parameters are known. Recall that, fo r a first-o rder system, the ũme constant is ứie lim e to 
reach d - e ' ' )  x lO O , o r 63.2% o f  the final value fo r a step inpu i [v e r ify  using Eq. (5-118) or 
(5 -119)]. A  typ ica l open-loop speed response is shown in Fig. 6-12. The sieady-state 
ve loc ity  and the tim e constant r „ ,  can be found from  the time-response p lo t by using the 
cursor.

In  S IM Lab. the disturbance torque default value is set to  zero. To change an input 
value, s im p ly  change its fina l value.
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Now  that you have gained ins igh t in to  the m otor speed response, i t  is tim e  to apply 
y o u r knowledge to  test the v irtu a l experim ent. Here you have no access to  the system 
parameter values. Use the V irtua l Lab  to  test the fo llo w in g ;

7. A p p ly  step inputs o f  + 5  V, + 1 5  V. and -1 0  V. H ow  d iffe ren t are the results from  
Step 1?

8 . From  the transient and steady-state responses, id e n tify  the system model as 
c losely as possible.

Recall that the m otor and am plifie r have b u ilt-in  nonlinear effects due to  noise, fr ic tio n , and 
saturation. So, in  Step 8 . your model may vary fo r d iffe ren t inpu t values. D istorted values may 
be obtained i f  the input to  the m otor is excessive and saturates. Caution must be taken to 
ensure that the m otor input is low  enough such that this does not happen. Use the mechanical 
tim e constant and final value o f  the response in  this case to  con firm  the system parameters 
defined in  Section 6-2-1. These parameters are needed to  conduct the speed- and position- 
contro l tasks. F ig. 6-13 shows the V irtua l Lab  m otor speed response to a small step input. The 
fr ic tio n  effect is observed when the m otor starts. The noise at steady state may also be 
observed. For higher inpu t magnitudes, the response w il l  saturate.

en-Loop S ine  Input

The objective o f  using open-loop sine input is to  investigate the frequency response o f  the 
m otor using both S IM Lab  and V irtua l Lab.

9. For both S IM Lab  and V irtua l Lab, apply a sine wave w ith  a frequency o f  1 rad/sec 
and am plitude o f  I V  to the am p lifie r input, and record both the m otor ve loc ity  and
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Figure 6-13 Speed response o f the open-loop system (Virtual Lab).

sine wave inpu t signals. Repeat th is experim ent fo r  frequencies o f  0.2, 0.5, 2.0,
5.0, 10.0, and 50.0 rad/sec (keeping the sine wave am plitude at 1 V ).

10. Change the input magnitude to 20 V  and repeat Step 9.

Open Experim ent 4: Open Loop Sine Inpu t from  the S IM Lab  or V irtu a l Lab  Experiment 
menu. The input and disturbance blocks and the m otor parameters are adjustable in the 
S IM Lab model. For the V inua l Lab version, the am plitude should be lo w  to avoid am plifier or 
armature current saruration. The S im u link model is shown in F ig. 6-14. D oub le -c lick  on the 
Sine Wave b lock to  m od ify  the properties o f  the inpu t wave. A m plitude  o f  1 is a low  enough 
value to avoid saturation in  this example. In  the S IM Lab version, the saturation values are 
adjustable to a llow  you practice w ith  the ir effect. The S IM Lab  response fo r  sine input with

Figure 6-14 Experiment 4: Simulink model.
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Figure 6-15 SIMLab time response and gain and phase calculation for input = sin(0-

m agnitude and frequency o f  1 is shown in  F ig. 6-15. You may also try  adding dead zone and 
backlash to your m otor b lock  to  test the ir effects (these functions are available in  the S im u link 
L ib ra ry  Browser, b rie fly  discussed at the end o f  Section 6-5). For a sine input o f  magnitude 
20 V, the V irtua l Lab system exhibits saturation as shown in  Fig. 6-16.

Figure 6-16 Vinual Lab time response and gain and phase calculation for input = 20 sin in .
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The frequency o f  the sine wave w il l  d ic ta te  the ga in  and phase o f  the respoQse curve. 
There is a G a in  and Phase C a lcu la to r in  the E xpe rim en t 4  co n tro l w indow . T o  measure 
the m agnitude and phase o f  the steady-state response, enter a frequency o f  1 rad/sec 
in  the e d it b lock . E n te ring  the in p u t frequency and c lic k in g  on C a lcu la te  disp lays the 
gain and phase o f  the system (see F ig . 6 -15). U s ing  the G a in  and Phase C a lcu la to r, you 
can record the gain and phase o f  the response. Repeat w ith  o ther in p u t frequencies, and 
discuss any trends.

6-4-3 Speed Control
H a v in g  s im ulated the open-loop  m o to r characte ristics in  prev ious sections, we can 
now  extend the m ode l to  inc lude  ve lo c ity  feedback fro m  the m o to r and use a pro
p o rtio n a l con tro lle r. Assum e tha t the m o to r v e lo c ity  is measured using a sensor 
tha t prov ides 1 v /rad /sec . The b lo c k  d iagram  tha t you  shou ld  be m o de ling  is shown 
in  F ig , 6-2. F o r p ropo rtiona l gains o f  1, 10, and 100, pe rfo rm  the fo llo w in g  tests using 
S IM Lab :

11. A p p ly  step inputs o f  + 5  V, -|-15 V, and -1 0  V  (try  dc m o to r alone; no gear head or 
load applied in  th is case).

12. Repeat Step 11 using add itiona l load inertia  at the ou tput shaft o f  the gear head 
(gear ra tio  5.2 :1) o f  0.05 kg-m ^ (requires adjustment o f  the J  vaJue in  SIMLab 
m otor parameter block).

13. A p p ly  the same viscous fr ic tio n  to  the output shaft as obtained in  Step 4  in  Section
6-4-1, and observe the effect o f  the closed-loop con tro l. B y  how  m uch does the 
speed change?

14. Repeat Step 5 in  Section 6-4-1, and compare the results.

Open Experim ent 1: Speed C ontro l fro m  the S IM L a b  menu w indow . A  screen sim ilar to 
Fig. 6-5 w il l  be displayed. Next, select the Enter M ode l Parameters button to  get the 
system S im u link  model, as shown in  F ig . 6-17. T h is  figure  is a s im ple P ID  sf>eed-conffol 
model. D oub ie -c lick ing  on the P ID  b lo ck  displays the editable P ID  values. The values of

- j . '  " a | iã H ' f e iS n

1 1-*j 1
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Figure 6-17 Experim ent 1; Simulink model.
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the step-input and the disturbance-torque b locks m ay also be adjusted. The disturbance- 
torque de fau lt value is set to  zero. To change an inpu t value, s im p ly  change the number in 
the fina l value field.

Increasing the p roportional gain in  the P ID  b lock  w il l  decrease the rise tim e. For an 
unsaturated model, the S IM Lab  version o f  th is experim ent could exh ib it extrem ely fast rise 
tim es at very h igh p roportional gains, because the dc m otor can u tilize  un lim ited  voltage 
and current levels. To create ứiis e ffect in  software, r ig h t-c lick  the dc m otor b lock, and 
select Lo o k  under M ask to  obtain the m otor model s im ila r to F ig. 6-11. D oub le -c lick  both 
the voltage and current blocks and adjust Ihe ir values to  very large (o r delete the ir b locks). 
Recall fro m  Section 6-4-1 that the de fault saturation lim its  are ± 1 0  V  and ± 4  A , 
respectively. F ig. 6-18 displays a typ ica l speed response from  the SIM Lab.

For a g iven input to  change the p roportional gain values, enter the fo llo w in g  sets o f  
P ID  values and prin t a ll three plots on the same figure (use the Print to  Figure button and the 
Reuse Axes checkbox in  the experim ent con tro l panel).

p =  1 
p =  10 
p =  100

I  =  0 
I = 0  
t =  0

D =  0 
D = 0  
D =  0

The inpu t units used in  these sim ulations are specified in volts, w h ile  the feedback units 
at the m otor are in  radians per second. Th is  was done in ten tiona lly  to  illustra te  the scaling 
(o r conversion) tha i is perform ed by the sensor. Had the ve loc ity  been specified in  volts 
per radians per second, a d iffe ren t response w ou ld  have been obtained. To check the effect 
o f  the ve loc ity  feedback, scaling, repeat the preceding experiments using a proportional 
gain o f  10 . but assume that the ve loc ity  feedback signal is a voltage generated by a sensor



w ith  a conversion fac to r o f  0.2 v /rad/sec. (N ote: in  com m only  used indusuy  standards, Ihe 
tachometer gain is in  vo lts  per R PM .)

Next, fo r the V irtu a l Lab, test the fo llo w in g :

15. A p p ly  step inputs o f  + 5  V, + 1 5  V, and -1 0  V. H ow  d iffe re n t are ưie results from 
the S IM Lab?

You may again con firm  the system parameters obtained in  Section 6-4-1.

6 '4 -4  Position Control

N ext, investigate the closed-loop pos ition response; choose Experim ent 2: Position Conữol 
fro m  the Experim ent menu. For proportiona l gains o f  1 ,10, and 100 (requires modification 
o f  P ID  b lock  parameters), perform  the fo llo w in g  tests using S IM Lab:

16. For the m o to r alone, apply a 160° step input. H ow  large is the e rro r when the 
system reaches steady state?

17. A p p ly  a step disturbance torque (-0 .1 ) and repeat Step 16. Estimate the distur- 
bance-torque gain based on you r observations.

18. E lim ina te  the disturbance torque and repeat Step 16, using add itiona l load inertia 
at the output shaft o f  0.05 kg -m ’  and the gear ra tio  5.2; 1 (requires m odification of 
J,„ and B  in  the m otor parameters). W hat can be said about the effect o f  the 
increased load on the system perfonnance?

19. Using the disturbance torqưe in  Step 17, examine the effect o f  integral control by 
m od ify ing  the S im u link  P ID  b lock. Choose several d iffe ren t integral gain values, 
and compare the tim e response fo r  a constant proportiona l gain. Select the Reuse 
Axes checkbox, and p lo t the d iffe ren t s im ulation results in  an external figure for 
comparison.

20. H ow  does an increase in J  a ffect the system w ith  a PI con tro lle r?  Compare the 
transient and steady-siate response.

21. Examine the effect o f  voltage and cuưent saturation b locks (requires modification 
o f  the saturation b locks in the m o to r m odel).

22. Design a PI con tro lle r that w il l  g ive a 30% overshoot and a rise tim e o f  0.1 
seconds. W hat is the m axim um  step inpu t am plitude that w il l  meet these 
calculated requirements (i.e., not cause the am p lifie r to  saturate), g iven the default 
current and voltage saturation lim its  o f  ± 4  A  and ± 1 0  V. respectively.

23. In a ll previous cases, com m ent on the va lid ity  o f  Eq. (5-126).^

Open Experim ent 2: Position C ontro l fro m  the S IM L a b  E xpe rim en t menu. A  screen 
s im ila r to  F ig. 6-5 w il l  be d isplayed. N ext, select E nter M o d e l Parameters to  get the 
system S im u lin k  m odel, as shown in  Fig. 6-19. T h is  m odel represents a sim ple PID 
pos idon -con tro l system. D o u b le -c lick in g  on the P ID  b lock  a llow s you lo  ed it the PID 
gain values. The Deg to  Rad and Rad to  Deg gain b locks convert the inpu t and the output

3 5 2  ► Chapter 6. The Control Lab
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Figure 6-19 Experiment 2: Position Conưol Simulink model.

such that the ưser enters inputs and receives outputs in  degrees on ly. The values o f  the 
s tep-inpu t and the disturbance-torque b locks are also adjustable. The disturbance-torque 
d e fau lt value is set to  zero. To change an in p u t value, d o u b le -c lick  on the re levant b lo ck  
and change the num ber in  the fina l value fie ld . F ig . 6 -20  disp lays a typ ica l position 
response fro m  the S IM Lab.

Figure 6-20 Position response in the Experiment 2 control window.
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The pos ition tim e response is also animated when the s im u la tion  is run. T h is  is a usefu 
too l that gives the user a physica l sense o f  how  a real m o to r turns. The lim e , input-angle 
and output-angle values are d isplayed on the anim ation fie ld , as shown in  F ig . 6-20.

The nonlinearities due to voltage and current lim its  cause the tim e response to saturate 
at a h igh enough proportional gain. The m axim um  speed and acceleration o f  the dc motoi 
are dicta ted by the voltage and current saturation lim its .

24. For p roportional gains o f  1, 10, and 100 (requires m od ifica tion  o f  P ID  block 
parameters), repeat Steps 16 and 19 using V irtu a l Lab.

► 6-5  D E S IG N  P R O J E C T  1— R O B O TIC  A R M

The prim ary goal o f  th is section is to  help you gain experience in  app ly ing  your conưol 
know ledge to a practical problem . You are encouraged to  apply the methods that you have 
learned throughout th is book, particu la rly  in  Chapter 5 and later on in  C hapter 9, to  design a 
con tro lle r fo r  you r syslem. The anim ation tools provided make th is experience more 
realistic. The pro ject may be more exc iting  i f  i t  is conducted by teams on a competitive 
basis. The S IM Lab  and V irtua l Lab software are designed to  p rovide enough f le x ib ility  to 
test various scenarios. The S IM Lab, in  particu lar, a llows in troduction  o f  a disturbance 
function  o r changes o f  the system parameters i f  necessary.

D e s c rip tio n  o f  the P ro je c t: Consider the system in  F ig . 6-21. The system is composed of 
the dc m otor used throughout th is chapter. We connect a r ig id  beam to the m otor shaft to 
create a sim ple robotic system conducting a p ick-and-place operation. A  so lid  disk is 
attached to the end o f  the beam through a magnetic device (e.g., a solenoid). I f  the magnet 
is on, the disk w il l  s tick to  the beam, and when the magnet is turned o ff. the d isk  is released. 
O b je c tive : The objective is to drop the d isk in to  a hole as fast as possible. The hole is 1 in. 
(25.4 m m ) below  the d isk (see F ig. 6-22).

Design C r ite r ia :  The arm is required to  move in  o n ly  one d irection  from  the initial 
position. The hole location may be anywhere w ith in  an angular range o f  20"' to  180° from 
the in it ia l position. The arm may not overshoot the desired position by more than 5®.
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Elecơomagnet 

I Meta] puck

Figure 6-22 Side view o f the robot arm.

A  tolerance o f  ± 2 ^  is acceptable (se ttling  tim e). These crite ria  may easily be altered to 
create a new scenario.

The objective may be met by look ing  at the settling tim e as a key design criterion. 
However, you may make the design challenge more interesting by in troduc ing  other design 
constraints such as the percent overshoot and rise tim e. In  S IM Lab . you can also introduce 
a disturbance torque to  alter the fina l value properties o f  ứie system. The V irtu a l Lab  system 
contains nonlinear effects ứiat make ứie conư o lle r design more challenging. You may ư y  to 
con firm  the system model parameters firs t, fro m  earlie r experiments. I t  is h ig h ly  recom 
mended Uiat you do ứie design pro ject o n ly  a fter fu lly  appreciating die earlie r experiments 
in  th is chapter and after understanding Chapter 5, Have fun!

Th is  experim ent is s im ila r to the pos ition-conư ol experim ent in  some respects. The 
idea o f  th is experim ent is to  get a metal object attached to  a robot arm by an elecưomagnet 
fro m  pos ition  0 '̂  to a specified angular position w ith  a specified overshoot and m in im um  
overa ll tíme.

Select Experim ent 5: C ontro l System Design from  the S IM Lab  Experim ent menu. A  
screen s im ila r to  F ig . 6-5 w il l  be displayed. N ext, select Enter M ode l Parameters to get the 
system S im u lin k  model, as shown in  Fig. 6-23. A s in Section 6-4-1. this figure represents a

Figure 6-23 Experiment 5: Simulink model.
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Figure 6-24 Parameter window for the electromagnei conưol.

s im ple P ID  pos ition-con tro l model w ith  the same functiona lities . The added feature in this 
model is the e lectrom agnetic con tro l. B y doub le -c lick ing  the Electrom agnet C ontro l block, 
a parameter w indow  pops up, as in  Fig. 6-24, w h ich  a llow s the user to  adjust the drop-off 
payload location and the tim e delay (in  seconds) to  turn the magnet o f f  after reaching the 
target. Th is  feature is particu la rly  useful i f  the response overshoots and passes through 
the target more than once. So, in  Fig. 6-24, the “ D rop  pos ition  angle”  is the angle where the 
electromagnet turns o ff, dropping the payload. “ S tan to  w a it fo r  drop pos ition at time”  
refers to  the tim e where the pos ition trigge r starts to  w a it fo r  the position specified by 
“ D rop  position angle.”

A n  im portant note to  remember is that in  the V irtu a l Lab  the electrom agnet w il l  never 
drop the ob ject exactly where i t  is specified. Because any e lectrom agnet has residua] 
magnetism even after the current stops flow ing , the magnet holds on fo r  a short tim e after 
the trigger is tripped. A  tim e response o f  the system fo r  proportiona l gain and derivative 
gain o f  3 and 0.05, respectively, is shown in  F ig. 6-25.

Figure 6-25 Position response for Experiment 5.



The model response is also animated. Th is  feature makes the problem  more realistic. 
The puck has overshot the hole in  th is case. The drop angle and drop tim e are d isplayed on 
the time-response p lo t. Note that, in  th is case, the magnet d ro p -o ff takes place prematurely. 
As a result the payload has been released earlie r and is not on target! In  S IM Lab , i t  is 
possible to  change the dimensions o f  the experim ent setup. Choose M o d ify  Puck D rop  
Setup fro m  the S IM Lab  Tools menu to adjust the he ight o f  the drop and the length o f  the 
arm, and change your con tro lle r design accordingly.
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6-6 D E S IG N  P R O J E C T  2— Q U A R T E R -C A R  M O D E L  

-1 introduction to the Q uarter-C ar M o d e l

A fte r  studying position and ve lo c ity  con tro l o f  the dc m otor in  the preceding sections o f  
th is chapter, you are now w e ll acquainted w ith  the use o f  the A C S Y S  tools and S im u link  
and the ir applications in  the study o f  controls.

In  this section a simple one degree o f  freedom quarter-car model, as shown in  Fig. 6-26
(c) is presented fo r  studying base excitation response (i.e., road transmitted effects). The 
objective here is to  contro l the resulting displacement or acceleration o f  the mass o f  
the system— which is reflective o f  the chassis o f  the car. Th is  study fo llow s  the m odeling 
exercise that was discussed in  Exam ple 4 '1 1-3.

A s  discussed in  C hapter 4, there are various representations o f  a quarter-car system, 
as illustra ted  in  F ig. 6-26, where a tw o  degree o f  freedom  (2-D oF) system in  F ig. 6-26(b) 
takes in to  account the dam ping and elastic properties o f  the tire, shown in  F ig. 6-26(a). 
However, fo r sim p lic ity , itis c u s to m a ry  to  ignore tire  dynam ics and assume a 1-DoF model 
as shown in  Fig. 6-26(c). Hence, fo r  the duration o f  th is design project, we w il l  assume a 
r ig id  wheel.

We fu rther assume hereafter the fo llo w in g  parameter values fo r  the system ìllusưated 
in  F ig . 6-26(c):

in Effective 1/4 car mass 10 kg
k  Effective stiffness 2J135 N/m
c Effective damping 0.9135 N-m/s''
x (/) Absolute displacement o f the mass m  m
>^(0 Absolute displacement o f the base m
z(t) Relative displacement (A'i/HyiO) m
a(t) Base acceleration y(f) m/s^

Recall from  Eq. (4-324) that the open loop response o f  the system to a base acceleration 
aU) has a transfer function:

z w  -1

where the base acceleration /4 (.9) is the input and rela tive displacement. Z{s), is the output.
Le t us next consider the active control suspension system and use the same dc m otor 

described in  Section 6-2 used in conjunction w ith  a rack as shown in Fig. 6-27. In  this case, 
T  is the torque produced by the m otor w ith  shaft position 0. and r is the radius o f  the m otor 
d rive gear.
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Figure 6-26 Quaner-car model 
t  realization, (aj Quarter car. (b) Two 

^  degrees o f freedom, (c) One degree of 
freedom.

Figure 6-27 Active control o f ihe 1 -DOF mode! via a dc moior and rack.

Recall from  Exam ple 4-11-3 that the b lock  diagram in  F ig. 6-28 represents ihe open 
loop  system w ith  no base excita tion, where J  = mr^ +  Jm, B  =  cr^  -!- B„. and K  =  kr .̂ 
Using superposition, this system is rearranged to the fo llo w in g  form ;

Z(s) =

l^in'

+ B s  + K ) +

(6 - 2 )

Figure 6-28 Block diagram of an arm alure-controlled dc motor.
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Figure 6-29 Block diagram o f a position-conưol. annature-controlled dc motor.

Again, as in previous sections, we assume the motor electric-time constant is insignificant 
relative to the mechanical-time constant. Eq. 6-2 and is reduced to

Z ( s ) = - RgJ
B R ^ +  K „ K t K  

^ RoJ *  /
BRa +  K „ K t K

A{s) (6-3)

For simplicity, Eq. (6-3) is written as Z{s) =  Geại(i)Ko(5) -  Ge^2Ìs)A{s). The position control 
block diagram in Fig. 6-29 illustrates the feedback o f relative position, Z(s), where ATj is the 
sensor gain, with units v /m . In this application, the sensor is a linear variable differential 
transformer (LVDT), which transforms the displacement z(f) between the base >>(/) and 
mass x (i) to voltage. The goal o f position control in this scenario is not to create offset as in 
the previous lab, where a robot arm is given the command signal to displace a metal puck, 
but rather to reject the so-called disturbance input. Hence the command voltage, or set 
point, Vị„(s) =  0 V.

Setting E(s) = 0 - K ,  Z(J), the block diagram represented in Fig. 6-29 can be reduced to 
an input-output relation o f y ( j)  and Z(s), where the simplified closed-loop system is 
represented in Fig, 6-30:

Z(5) 

- ^ ( 5 )  ^ B/?„ +  K„,Kb _ K  K,nKampk 

^ R a J  R aJ

(6-4)

- G c

6-6-2 Closed-Loop A c c e le ra tio n  Control

Relative position control is a fam iliar way to introduce the control o f the quarter-car model; 
however, the vehicle operator cannot really sense displacement except perhaps by 
comparing their height to fixed objects. I f  you have ever driven a car too quickly over

mr^

RJ J

mrRg

Figure 6-30 Simplified block diagram o f the quarter-car dc motor position control.
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Figure 6-31 Simpliíìed block 
diagram o f the quaner-car relative 
acceleration conưol.

a sharp rise and fa ll o f  the road, you can feel the effect o f  acceleration in  you r stomach 
Thus, it is more desirable to contro l the acceleration because the u ltim ate  goal 0 
the suspension system is to  im prove ride  and d r iv in g  perform ance. The b ltx :k  diagran 
in F ig. 6-30 can be m od ified  to con tro l the rela tive acceleration o f  the system.

The second derivative o f  the fonvard-path transfer func tion  y ie lds the acceleratioi 
con tro l system in F ig. 6-31. The in p u t-o u tp u t re la tion is as fo llow s:

Z(»)
-A ( s )

mr^

"  2 B R a + K „ K b  K  K^Kamp 
R J  RaJ

(6-5

As described above, the position con tro l system used an L V D T  to  provide the feedback 
Just as the L V D T  measures rela tive displacement, tw o  accelerometers can be used t( 
measure both x{t) and ỷ { /) ,  where < :{ /)=  Ẩ ( f ) - ^ ( O -  Thus, to contro l the relative 
acceleration o f  the mass, tw o  accelerometers w ith  gain Ks are fixed  to  the mass anc 
base to provide the relative acceleration feedback.

I t  is  also o f  interest to  contro l the absolute acceleration o f  the mass m . The closed-loof 
system is determ ined by reconfiguring Fig. 6-29 to  y ie ld  absolute acceleration from  thí 
re lation Ẩ { í )  =  z{s )  where Z{s) and X ( i )  are the Laplace transform s o f  z{t) arc
x{t), respectively.

The b lock  diagram in F ig. 6-32(a) is s im p lified  to  the c losed-loop fo rm  in  F ig. 6-32(b, 
to  obtain the in pu t-ou tpu t relation

m  I  ;  /  +  R.J ■ ' + ;

A (s) ;   ̂ BRa +  K„Ki,  ̂ K   ̂ ;

H.qJ  J  KaJ

(6-6

N ote that, in  the case o f  the systems represented by Eq. (6-5) and Eq. (6 -6 ), implementing i 
compensator w il l  lead to a h igher-order transfer function . In  th is case, designing in ihe tim< 
dom ain may require that the systems be approxim ated by low er-order systems, a; 
demonstrated in  Chapter 5. A lso  see Chapter 9, where the conư o lle r design topics ar» 
studied in more detail.

6-6-3  D escription of Q uarter Car M o d e lin g  Tool

The Quarter Car M ode ling  Tool a llows the students to  im plem ent the fa m ilia r  dc m otor an( 
a m p lifie r described in  Section 6-2-1 and conduct experiments to  observe its e ffect on a new 
s lig h tly  more com plex system. D esigning a con tro lle r fo r a vehicle suspension systen 
requires studying its perfom iance under the influence o f  d iffe ren t inputs, such as drivin]
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Figufe 6-32 Block diagram o f the absolute acceleration control system.

over a curb o r speed bump. Th is  too l also incorporates non linear effects, such as backlash 
and saturation in  the V irtua l Lab component. A l l  o f  these features are available in  one 
sim ple w indow , w h ich  autom atica lly controls the S im u lin k  model.

To start the program, c lic k  on Quarter Car Sim  on the A C S Y S  applet. Th is  launches 
both a S im u lin k  model file  (F ig . 6-33) and M A T L A B  graphical user interface, to  be used as

Figure 6-33 Quarter Car M odeling Tool lop-level Simulink model.
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Figure 6-34 Q uaner C ar M od e ling  Toot con tro l w indow,

the control panel (F ig . 6-34). There is very l it t le  need to  access the S im u lin k  model, othe 
than to  reference the model o r to m o d ify  the s im ulation parameters.

From  the con tro l w indow, c lick in g  on Model Parameters brings up a w indow  (Fig. 6-35 
from  w h ich  you can m od ify  the parameters o f  the dc motor, am plifier, sensor gains, and 0 
course the quarter-car model. Parameters from  the workspace or a .m at file  may be selected ii 
the le ft IM P O R T fram e and then assigned to the selected model parameters in the righ 
M O D E L  frame. M odel settings may be saved to, or loaded from , .mat files. C licking 01 
Defaults assigns the defau lt values to  the parameters. C lick  A p p ly  to im plem ent your change: 
o r Close to cancel.

Selecting C ontro l Parameters calls a w indow  (F ig. 6-36) used to  configure 
compensator command signal in the le ft fram e and the compensator in  the right pane 
There are a number o f  inputs to  select from : step, im pulse, sin, rounded pulse, rounded step 
and random. The compensator fram e a llow s the user to select the sensor output to  be usei

Figure 6-35 Model Parameters window.
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as feedback. A lso. P ID  gains are specified in  array form at, and any ex is ting  ưansíer 
function  object may be selected fro m  the workspace fo r use as a con tro lle r v ia  the 
d ropdown menu. The M A T L A B  SISO Design Tool may be activated, w ith  the appropriate 
system transfer functions autom atica lly loaded, using ừie SISOTooI button. C lic k  A p p ly  to 
im p lem ent you r changes o r Close to  cancel.

The closed-loop transfer functions o f  the system are displayed in  the top r ig h t comer. 
The various ưansíer functions o f  the fo rm  displayed in  F ig. 6-37 can be selected fro m  the 
popup menu.

Once the mode] and co n tro lle r parameters are specified, the system is ready fo r 
sim ulation. C lic k  on S imulate Response to  begin the sim ulation. Th is  w il l  start the 
an im ation and p lo t the data on the upper and low er graphs. A t the top r ig h t com er o f 
both the upper and low er axes, pressing the Setup Axes button w il l  d isplay a sm all contro l 
menu that is used to  select w hich data are to be displayed on the graph. Note that the contro l 
menus may be dragged o f f  the axes by c lick in g  and dragging the top bar o r closed by 
c lick in g  the X  in the top righ t comer. C lick  on Stop S im ulation to stop the anim ation and 
s im ulation. B e low  the progress bar is a popup menu, w h ich  a llows the user to  toggle to 
d iffe ren t experiniem  modes. The active suspension system is ihe dc m otor-conưolled 
system fro m  Fig. 6-27. The passive suspension system operates as a spring and damper, 
w ith o u t the added contro l o f  the dc motor.

To store the inpuưoutput plots on a new figure, c lic k  Print to  Figure. The zoom control 
and cursor buttons appear ai ihe bonom  righ t com er o f  the display panel, as seen in  Fig. 6-38.

Cc h— r ~ 5 7 > -

Figure 6-37 Closed-loop transfer functions.
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6-6-4 Passive Suspension

The fo llo w in g  experiments explore the response o f  the open-loop quarter-car mode 
Studying the response o f  ihe passive system is essential to  understanding ứie effect ( 
various inputs on the qua lity  o f  the veh ic le ’s ride and is necessary fo r  appreciating ư 
effect o f  adding compensators to  active ly contro l the suspension system. Run ứie fo llow ir 
tests in  order:

1. Set the s im ulation mode to  Passive Suspension and set up the top axes to displs
To accom plish th is, c lic k  on Setup Axes, choose Acceleration from  ử 

dropdown menu, and c lic k  the checkbox labeled “ y.”  U s ing  the same methcx 
configure the bottom  axes to  disp lay c (/). C lic k  on C ontro l Parameters, and sele 
a step input w ith  am plitude 0.01 m /s" and step tim e 0 seconds. There is no need 1 
configure the compensator since ii is not used in  a passive system. C lic k  Simula 
Response. W hen finished, the result w i l l  appear s im ila r to  the w indow  displayed i 
F ig. 6-39. Note the shape o f  the road pro file  y(i)  as w e ll a s z (/)  an d .x (f). This da 
can be accessed in  the Setup Axes menu fo r  either axis. Repeat th is procedure ft 
0 .1  and 1 m/s^ input.

2. Experim ent w ith  the stiffness and dam ping o f  the system by c lic k in g  Mod 
Parameters and changing the stiffness, Ắr, from  the default 2.17 N /m  to 10 N/r 
W ith  a step input o f  0.01 m/s , and the low er axes configured to  d isp lay r(?)- wh 
is the frequency o f  the osc illa to ry  response? Th is  is the damped frequency o f ứ 
system using defau lt parameters (o>ư). H ow  does the period o f  osc illa tion  compa 
to  the v a lu e  that w as o b se rv ed  in  Step 1 ? open the Setup Axes m e n u  fo r  the loW' 
axes and c lic k  the Prin t to  F igure button. Th is  w il l  p lo t the data on ứie axes to i



6-6 Design Project 2— Quarter-Car Model < 365

external fisure. Repeat the s im ulation several more times, gradually reducing the 
dam pina (variable c in  the M odel Parameters contro l w indow ). The frequency o f  
the osc illa tion  when c is reduced to  0  is the natural frequency o f  the system {co„). 
Select the checkbox labeled Reuse Axes, and c lic k  P rin t to  F igure to  p lo t data 
from  a new sim ulation in  the same externa] figure. Th is  is useful fo r  comparison. 

Set ứie system parameters to the default settinas (c lic k  M odel Paramecers. then 
E>efaults. then A p p ly ). Study the effect o f  a sinusoidal inpu t (washboard bumps) 
on the response o f  the system. Select an am plitude o f  0.01 m/s and vary the 
frequency from  5 rad/s to 0.1 rad/s. W hat happens to the am plitude o f  re lative 
displacement at the damped natural frequency. u>ii. measured in  Step 2?

N ow  u>' usina the rounded step input w ith  am plitude 0 .1 m  and duration 0.01 
seconds. This input func iion  simulates d riv ing  the quaner-car model over a curb. 
Calculate values o f  c such that the system is underdamf>ed ( f  =  0.1). c ritica lly  
damped =  1). and overdamped (C =  1.5). and obser\ e the response fo r  each case. 

Repeat Step 4 usins the un id irectiona l rounded pulse (URP) input (am plitude
0.1 m. duration 0.01 seconds). Th is  emulates d riv in s  over a poứiole i f  given 
am plitude less than zero, or a speed bump i f  the am plitude is positive.

6-6-5 Closed-Loop R elative  Position Control

N ow  set the sim ulation mode to active suspension by selecting A ctive  Suspension from  the 
contro l panel dropdown menu or from  the Experim ent menu. This activates the feedback 
contro l system as defined in the C ontro l Parameters w indow. R e]a ti\e  position control 
is the con tro l o f  r ( / )  =  x Ụ ì- y ụ ) :  thus, set the Feedback popup menu to  z. The set po in t is
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Figure 6-40 Relative Position Time Response piot.

v^in(0 =  0 V, where feedback gain is K , =  1 v /m . In  th is section, both a PD and phase-lỉ 
con tro lle r w il l  be im plemented.

6 . C lick  on Control Parameters and select a step disturbance 1 m/s^ and step time 0 sa 
onds; feedback z, PID  =  [1 0 0 ]. Simulate the response. W hat is the steady-state erroi

mr^
2{s) —

--------A pp ly  the final value theorem to
-A{s) s2 +

BRg +  K„Kị, K K„Kg„ 
R J  R J

Do ửie values correspond? Validate the observed overshoot and rise time using ứ 
time-domain analysis techniques introduced in  Chapter 5.

W hat value o f  Kp (P ID  =  [Kp 0 0 ])  w i l l  y ie ld  a steady-state e rro r less than 5 mữ 
Th is  w il l  require a gain much h igher than 1. To reduce the need fo r  tr ia l and eưo 
c lic k  S ISOTool in  the C ontro l Parameters w indow  and increase the gain whil 
observing the L T I V iew er step response. W hat happens to the system overshoot; 
this gain? Does th is match you r calculations?

Increase the derivative gain in steps from  0 to  22, keeping the proportional gai 
that was found in  Step 7, and observe the e ffect o f  adding deriva tive  gain. Agaii 
validate these results using tim e-dom ain analysis techniques. P lo t successive tria 
to  an external figure fo r com parison, as in F ig . 6-40.

Design fou r phase-lead compensators w ith  su ffic ien t gain Kp to  meet the stead' 
state erro r requirem eni as specified in  Step 7 and w ith  phase margins ộ „ . o f  10,31 
40, and 60°. Compare the op tim ized  response w ith  the PD response.

Test you r con tro lle r’s response to the inputs applied in  Steps 3, 4. and 5.

6-6-6 Closed-Loop A c ce le ra tio n  Control

As mentioned previously, i t  is preferable to  contro l the acceleration o f  the mass m , becaui 
i t  is the acceleration o f  the vehicle that affects the com fo rt o f  the ride. Set the s im ulatii 
mode to  A c tive  Suspension, and sel the feedback to z in  C ontro l Parameters. Th is  causi
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Figure 6-41 The Conưoller Parameters window.

the re la tive  acceleration, 2 (f), w ith  gain K , =  1 v /m /s^  to  be compared w ith  the set po int 

v ,n (i) =  OK

11. In  the C ontro l Parameters w indow , change the P ID  gains to P ID  =  [5 0  0 ], and 
c lic k  SISOTool 10  apply the changes and launch the SISO Design Tool. Use the 
L T I V iew er to  m on ito r the step response w h ile  tw eaking the gain. W hat gain 
achieves the smallest rise tim e? Test th is gain on ihe actual con tro lle r, c lic k in g  on 
Prin t to F igure in  the Setup Axes menu to save the results fo r comparison.

12. Design a phase-lag compensator, w ith  gain K  =  5 and iu ' =  0.1 rad/s. Once the 
compensator is designed, im plem ent i t  by using the fo llo w in g  M A T L A B  script:

K  -  5, a -0 .1 4 4 2 ,  T  =  231.1996 
PhaseLag =  t f( [a *T  1]. [T  1])

T h is  creates a transfer function  object in  the workspace. N ow  c lic k  on C ontro l Parameters 
and select PhaseLag as the compensator in  the Compensator T F  dropdown and enter K  as 
the p roportional gain (Fig. 6-41). A n y  transfer function  object created in  the M A T L A B  
workspace is accessible in  th is menu and can be used in place o f  the P ID  con tro lle r G(.(i). 
Compare the step response to the response in  Step 11. T ry  designing various phase-lag 
contro llers as per Section 9-6-2 and compare the results.

13. Repeat Steps 11 and 12 using absolute acceleration as the feedback (Feedback =  
X). F o r th e  p h ase -lag  c o m p en sa to r, try  Ấ” =  5 a n d  L o 'g = 0 .i  ra d /s .

14. Test the contro llers designed in the last few  steps w ith  various inputs such as 
sinusoidal, rounded step, and rounded pulse.

► 6-7 S U M M A R Y

In this chapter, we described the SIM Lab and Vinual Lab software lo improve your understanding of 
control and to provide a better practical appreciation o f the subject. We discussed that, in a realistic 
system including an actuator (e.g.. a dc motor) and mechanical (gears) and electrical components
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REFERENCE

(amplifiers), issues such as saturation o f the amplifier, friction in the motor, or backJash in gear? wi 
seriously affect the contfoller design. This chapter focused on problems involving dc motoi 
including modeling, system identification, and controller design. We presented expenments 0 
speed and position control o f dc motors, followed by two controller design projects involving conm 
o f a simple robotic system and conưol o f a single degree o f freedom quarter-car mcxiel. The focus 0 
dc motors in these experiments was intentional, because o f their simplicity and wide use in industrii 
applications. Note that, in the design projects, aside from the speed and position conơol topics. 0lh{ 
controllers such as PID and lead/lag were also discussed. You may wish lo visit Chapter 9 to becom 
more acquainted with these topics.

F. Golnaraghi, “ ENSC 383 Laboratory Experiment." Simon Fraser University. Mechatronic Systems 
Engineering Program. British Columbia. Canada. Lab Manual. 2008.

P R O B L E M S
6 -1 . Create a model o f the motor shown in Fig. 5-25. Use the follow ing parameter values: J„ --
0.0004 kg-m-; B = 0.001 Nm/rad/sec. /?„ =  2 n .  =  0.008 H. K,„ =  0.1 Nm/A. and Ar̂  =  0.1 v/rad 
sec. Assume that the load torque Tl is zero. Apply a 5-V step input to the motor, and record the moto 
speed and the current drawn by the motor (requừes modification o f SlMLab blocks by making currer 
the output) for 10  sec following the step input.
(a) What is the steady-state speed?

(b) How long does it take the motor to reach 63% o f its steady-state speed?

(c) How long does it take the motor to reach 75% o f its steady-state speed?

(d) What is the maximum current drawn by the motor?

6-2. Set the viscous friction B  to zero in Problem 6-1, Apply a 5-V step input to the motor, ani 
record the motor speed and current for 10 sec following the step input. What is the steady-state speed
(a) How long does it take the motor to reach 63% o f its steady-state speed?

(b) How long does it take the motor to reach 75% o f its steady-state speed?

(c) W hat is the m axim um  curren t drawn by the m otor?

(d) W hal is the steady-state speed when the applied voltage is 10 V?

6-3. Set Ihe armature inductance La to zero in Problem 6-2. Apply a 5-V step input to the motor, ani 
record the motor speed and current drawn by the motor for 10  sec following the step input.
(a) What is the steady-state speed?

(b) How long does it take the motor to reach 63% o f its steady-stale speed?

(c) How long does it take the motor to reach 75% o f its steady-state speed?

(d ) W hat is the m axim um  curren t drawn by the m otor?

(e) I f  J,„ is increased by a factor o f 2. how long does it take the motor to reach 63% o f its steady-siat 
speed following a 5-V step voltage input?

(f) I f  J,„ is increased by a factor o f 2, how long does it take the motor to reach 75% o f its steady-siat 
speed following a 5-V step voltage input?

6-4. Repeat Problems 6-1 through 6-3. and assume the load torque r,. =  -0.1 N-m (don't forget th 
minus sign) staning after 0.5 sec (requires change o f the disturbance block parameters in SIMLab
(a) How does the steady-state speed change once T/, is added?

(b) How long does it lake the motor to reach 63% o f its new steady-state speed?
(c) How long does it take ihe motor to reach 759( o f its new steady-state speed?

(d ) W ha l ib the m axim um  current drawn by the m otor?

(e) Increase Tl and funher discuss its effect on the speed response.



6-5. Repeat Problems 6-1 through 6-3, and assume ihe load torque Ti = -0 .2  N-m (don’ t forget the 
minus sign) starting after 1 sec (requires change o f the disturbance block parameters in SIMLab).
(a) How does the steady-state speed change once Ti is added?

(b) How long does it lake the motor to reach 63% o f its new steady-state speed?

(c) How long does it take the motor to reach 75% o f its new steady-state speed?

(d) What is the maximum cuưem drawn by the motor?

(e) Increase Tl and further discuss its effect on the speed response.

6 -6. For the system in Fig. 6-1. use the parameters fo r Problem 6-1 (but set La =  0) and an amplifier 
gain o f 2  to drive the motor (ignore the amplifier voltage and cuưent lim itations for the time being). 
What is the steady-state speed when the amplifier input voltage is 5 V?

6-7. M odify the model in Problem 6-6 by adding a proportional controller with a gain o f Kp = 0.1, 
apply a 10  rad/sec step input, and record the motor speed and cuưent for 2 sec following the step 
input.
(a) What is the steady-state speed?

(b) How long does it take ứie motor to reach 63% o f its steady-state speed?

(c) How long does it take the motor to reach 75% o f its steady-state speed?

(d) Whai is the maximum cuưem drawn by the motor?

6»8 . Change Kp to 1.0 in Problem 6-7, apply a 10 rad/sec step input, and record the motor speed and 
current for 2  sec following the step input.
(a) What is the steady-state speed?
(b) How long does it take for the motor to reach 63% o f its steady-state speed?

(c) How long does it take for the motor 10 reach 75% o f its steady-state speed?

(d) What is the maximum current drawn by the motor?
(e) How does increasing Kp affect the response (with and without saturation effect in ihe SIMLab 
model)?

6-9. Repeat Problem 6-7. and assume the load torque Ti = -Q. \ N-m starting after 0.5 sec (requires 
change o f the disturbance block parameters in SIMLab).
(a) How does the steady-state speed change once Tl is added?

ib ) How long does it take the motor to reach 63% o f its new steady-state speed?

(c) How long does it take the motor to reach 75% o f ils new steady-state speed?

6-10. Repeat Problem 6-7. and assume the load torque Tt =  -0-2 N-m starting after I sec (requires 
change o f the disturbance block parameters in SIMLab).
(a) How does the steady-state speed change once Ti is added?
(b ) H ow  long does i t take the m oto r to reach 63%  o f  its new steady-state speed?

(c) How long does it take the motor 10 reach 75% o f its new steady-state speed?

6-11. Insen a velocity sensor transfer function K, in the feedback loop, where K, =  0,2 v/rad/sec 
(requires adjustment o f the SIMLab model). Apply a 2 rad/sec step input, and record the motor speed 
and current for 0.5 sec following the step input. Find the value o f Kp that gives the same result as in 
Problem 6-7.

6-12. For the system in  F ig. 6-3. select Kp =  1.0. apply a 1 rad step input, and record the m otor 
position for 1 sec. Use the same moior parameterb as in Problem 6-1.
(a) W hat is the steady-state position?

(b) What is Ihe maximum rotation?
(c ) A t  what lim e  after the step does the m axim um  occur?

6-13. Change K,, to 2,0 in Problem 6-12, apply a 1 rad step inpul, and record the motor position for
1 sec.
(a) A t what time after the step does the maximum occur?
(b) What is the maximum rotation?

Problems < 3 6 9
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6-14. ưsing the SIMLab, investigate the closed-loop position response using a proponiol 
controller. For a position-control case, use proportional conưolier gains o f 0.1, 0.2. 0.5, 1.0, a 
2 .0 ; record the step response for a 1 rad change at Uie output shaft; and estimate what you consider 
be the best value for the proportional gain. Use the same motor parameters as in Problem 6-1,

6 -lS. Using the SIMLab, investigate the closed-loop position response using a PD control! 
M odify the controller used in Problem 6-14 by adding derivative action to the proportional controll 
Using the best value you obtained for Kp, Iry various values for Kiy. and record the step response 
each case.

6-16. Repeat Problem 6-15 and assume a disturbance torque Td =  -0 .1  N-m in addition 10 the St 
input o f 1 rad (requires change o f the disturbance block parameters in SIMLab).

6-17. Repeal Problem 6-Ỉ5  and assume a disturbance torque Td = -0 .2  N-m in addition to the sịi 
input o f t rad (requires change o f the disturbance block parameters in SIMLab).

6-18. Use the SIMLab and parameter values o f Problem 6-1 to design a PID conưoller th 
eliminates the effect o f the disturbance torque, with a percent overshool o f 4.3.

6-19. Use the SIMLab and parameter values o f Problem 6-1 to design a PID controller ih 
eliminates the effect o f the disturbance torque, with a percent overshoot o f  2 .8 .

6-20. Investigate the frequency response o f the motor using the Virtual Lab Tool. Apply a sine wa' 
with a frequency o f 0.1 Hz (don’ t forget; 1 Hz =  2iT rad/sec) and amplitude o f 1 V  the amplifier inpi 
and record both the motor velocity and sine wave input signals. Repeat this experiment f( 
frequencies o f 0.2, 0.5, 1.0. 2.0, 5.0, 10.0, and 50.0 Hz (keeping the sine wave amplitude a( 1 V

6-21. Using the Vinual Lab Tool, investigate the closed-loop motor speed response using 
propoưional controller. Record the closed-loop response o f the motor velocity lo a step input (
2 rad/sec for proportional gains o f 0 .1,0.2,0.4, and 0.8. Whai is the effect o f the gain on the stead; 
state velocity?

6-22. Using the Virtual Lab Tool, invesligate the closcd-loop position response using a proportion, 
conưollcr. For a position-control case, use proponional controller gains o f 0.1.0.2.0.5, 1.0. and 2.1 
record ihe step response fo r  a 1 rad change at the ou tput shafi; and estim ate w hat you consider to I 
the best value for the proportional gain.

6-23. Using the Virtual Lab Tool, investigate the closed-loop position response using a p. 
controller. Modify the controller used in Problem 6-15 by adding derivative action to the proportion; 
controller. Using the best value you oblained for Kp, try various values for Ko. and record the SK 
response in  each case.

6-24. In Design Project 2 in Section 6-7, use the CarSim lool to investigate the effects o f conưollir 
acceleration X  on relative moiion {or bounce) z  and vice versa.
(a) Use a PD controller in your investigation.
(b) Use a PI controller in your investigation.

(c) Use a PID controller in your investigation.

6-25. Using ihe Quarter Car Modeling Tool controlling.
(a) Set the simulation mode to “ Passive Suspension" and set up the top axes to display v(/). Seleel 
step input with amplitude 0.02 m/s^ and step time 0 seconds. Plot the response. Repeat this procedui 
for 0.2 and 0.5 m/s" inputs. Compare the results.

(b) Change the stiffness. A:, to 15 N/m. With a  step input o f 0.02 m/s" and the lower axes configured ( 
display f( i) . what is the frequency o f the oscillatory response? This is the damped frequency of tti 
system using default parameters {o}j). How does the period o f oscillation compare to Ihe value thi 
was observed in pan (a)? Repeat the simulation several more limes, gradually reducing the dampin 
(variable Í’ in ihe Model Parameters control window) to find the natural frequency o f the system {(1>„
(c) Obtain ihe effecl o f washboard bumps with an amplitude o f 0,02 m/s" on the response of ử 
system. Vary the frequency from 10 rad/s 10 0.1 rad/s. What happens lo the amplitude o f reiath 
displacement at the damped natural frequency. Wrf. measured in pan (b)?



(d) Simulate driving the quarter-car model over a curb by using the rounded step input with 
amplitude 0.2 m and duration 0,02 seconds. Calculate values o f c such that the system is under
damped ( f  =  0.25), critically damped ( f  =  1). and overdamped ( f  =  2.5) and observe the response for 
each case.
(e) Repeat part (d) using the unidirectional rounded pulse (URP) input (amplitude 0.2 m, duration
0.02 seconds).
(f) Adda step disturbance o f 2 m/s^ and step time o f 0 seconds: feedback 2. P ID =  [1 0 0 ]. Simulate 
the response. Find the steady-state error by simulation and by applying the final-value theorem. 
Compare the results. Validate the observed overshooi and rise time using the time domain analysis.
(g) What value oiKp (PID =  [A:pOOD w ill yield a steady-state error less than 4 mm? What happens to 
the system overshoot at this gain? Does this match your calculations?

(h) Increase the derivative gain in steps from 0 to 50, keeping the proponional gain that was found in 
part (g), and observe the effect o f adding derivative gain. Again, validate these results using time 
domain analysis techniques. Plot successive trials to an external figure fo r comparison.

(i)  Design four phase-lead compensators with sufficient gain Kp to meet the steady-state error 
requirement as specified in pan (g) and with phase margins, ộ,„. o f 15, 20. 25, and 50°. Compare the 
optimized response wiữi the PD response.
( j)  Test your controller's response to the inputs applied in pans (c). (d). and (e).

(k) Change the PID gains to PỈD = [5 1 0 ]  and click SISO Tool to apply Ihe changes and launch the 
SISO Design Tool. Explain what happens,
(1) What value o f K/ (PID =  [5 K[ 0]) w ill yield a steady-state error less than 4 mm? What happens to 
the system overshoot and rise time at this gain? Does this match your calculations?

(m) Test the controllers designed in the last few parts with sinusoidal, rounded-step, and rounded- 
pulse input.

Problems • 371



•►7-1 I N T R O D U C T IO N

In  the preceding chapters, we have dem onstrated the im portance  o f  the poles and zerc 
o f  the c losed -loop  transfe r fu n c tio n  o f  a lin e a r co n tro l system on the dynarai 
perform ance o f  the system. The roots o f  the characte ris tic  equation, w h ich  are th 
poles o f  the c losed -loop  transfer fu n c tio n , dete rm ine  the absolute and the relativ 
s ta b ility  o f  linea r SISO  systems. Keep in  m ind  tha t the trans ien t properties  o f  the systei 
a lso depend on the zeros o f  the c losed -loop  transfer fu n c tio n .

A n im portant study in  linear contro l systems is the investigation o f  the trajectories c 
the roots o f  the characteristic equation— or. sim ply, the ro o t lo c i— when a certain syster 
parameter varies. In  Chapter 5, several examples already illus tra ted  the usefulness o f th 
root loc i o f  the characteristic equation in the study o f  linear con tro l systems. The basi 
properties and the systematic construction o f  the root lo c i are first due to  w ,  R, Evans [1,3 
In  general, roo t loc i may be sketched by fo llo w in g  some sim ple rules and properties.

For p lo tting  the root loc i accurately, the M A T L A B  root-locus too l in  the Conưc 
Systems Toolbox component o f  A C S Y S  can be used. See Chapter 9 fo r  examples. As 
design engineer, i t  may be sufficient fo r  us to  leam how  to  use these com puter tools t 
generaie the root toci fo r design purposes. However, it is im portant to  leam  the basics o f th 
root loc i and the ir properties, as w e ll as how to  interpret the data provided by the root loci fc 
analysis and design purposes. The m aterial in  this text is prepared w ith  these objectives i 
m ind; details on the properties and construction o f  the root loc i are presented in  Appendix Í  

The root-locus technique is not confined o n ly  to  the study o f  contro l systems. I 
general, the method can be applied to study the behavior o f  roots o f  any algebraic equado 
w ith  one or more variable parameters. The general root-locus problem  can be formuiaie 
by re ferring to the fo llo w in g  algebraic equation o f  the com plex variable, say, s:

F{s) =  P{s) +  KQ{s) -  0  (7-1

where P(s) is an m h-order po lynom ia l o f  .V,

P{s) =  5"  +  fl„_  | i " " ‘ +  • - • 4- ÍJ |Í  +  ao (7-^

and Q(s) is an /?nh-order po lynom ia l o f  5 ; n  and m  are positive integers.

Q {s)  - s " '  +  +  ■■■ +  è|,Y +  í>0 0 -:

For the present, we do not place any lim ita iio n s  on the rela tive magnitudes bem ’een n ar 
m. A" is a real constant that can vary from  - o c  to + 0C.



The coeffic ients ứ) 0 2  . ■., On, b \. b i .........bm are considered to be real and fixed.
Root loc i o f  m u ltip le  variable parameters can be treated by varying one parameter 

at a tim e. The resultant loc i are called the ro o t con tou rs, and the subject is treated in  Section
7-5. B y  replacing s  w ith  z  in  Eq. (7-1) through (7-3), the root loci o f  the characteristic equa
tion  o f  a linear discrete-data system can be constructed in  a s im ila r fashion (Appendix E).

For the purpose o f  iden tifica tion  in  this text, we define the fo llo w in g  categories o f root 
lo c i based on the values o f  K\

1. R oo t lo c i (R L ). Refers to the entire  roo t loc i fo r - o c < K < C C .

2. R oo t co n to u rs  (R C ). C ontour o f  roots when more than one parameter varies.

In  general, fo r most conưol-system applications, the values o f  K  are positive. Under unusual 
conditions, when a system has positive feedback o r ửie loop gain is negative, then we have the 
situation that K  is negative. A lthough we should be aware o f  this possibility, we need to  place 
the emphasis only on positive values o f  K  in developing the root-locus techniques.
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► 7-2  B A S IC  P R O PER T IES  OF THE ROOT LOCI (RL)

Because our m ain interest is contro l systems, le t us consider the c losed 'loop  transfer 
function  o f  a single-loop contro l system;

(7-4)
R{s) \+ G (s )H { s )

keeping in  m ind that the transfer function  o f  m u ltip le -loop  SISO systems can also be 
expressed in  a s im ila r form . The characteristic equation o f  the closed-loop system is 
obtained by setting the denom inator po lynom ia l o f  Y ịs)/R ịs)  to  zero. Thus, the roots o f  the 
characteristic equation must satisfy

1 +  G {s)H {s) =  0 (7-5)

Suppose that G(s)H(s) contains a real variable parameter K  as a m u ltip ly in g  factor, such 
that the rational function can be w ritten  as

(7-6)

where P(s) and Q(s) are po lynom ia ls  as defined in  Eq. (7 -2 ) and (7 -3 ), respectively. 
Eq. (7 -5 ) is w ritten

P (s) P ịs)

The num erator po lynom ia l o f  Eq. (7-7) is identica l to Eq. (7-1). Thus, by considering thai 
the loop transfer function G(s)H(s) can be w ritten  in  the fo rm  o f Eq. (7-6). we have 
iden tified  the R L  o f  a contro l system w ith  the general root-locus problem.

W hen the variable parameter K does not appear as a m u ltip ly in g  factor o f  Gịs]H{s). we 
can always cond ition  the functions in the form  o f Eq. (7-1). As an illus tra tive  example, 
consider tha l the characteristic equation o f a con tro l system is

5 ( j+  1)(5 +  2) +  , r  +  (3 +  2A').i +  5 =  0 (7-8)
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To express the last equation in  the fo rm  o f  Eq. (7 -7 ), we d iv ide  both sides o f  ứie equation t 
the terms that do not conta in  K, and we get

2Ks
' * ' i ( í + l ) ( j  +  2 ) + í 2  +  3 í  +  5 “

(7-‘

C om paring the Iasi equation w ith  Eq. (7-7), we get

e w
F{s) í 3 + 4 ì 2  +  5s +  5

N ow  K  is isolated as a m u ltip ly in g  facto r to  the fu n c tio n  Q{s)/P(s).
We shall show that the R L  o f  Eq. (7 -5 ) can be constructed based on the properties c 

Q(.s)/P(s). In  the case where G{s)H{s) = KQ{s)/P{s), the root-locus prob lem  is anothe
exam ple in  w h ich  the characteristics o f  the c losed-loop system, in  th is case represented b;
the roots o f  the characteristic equation, are determ ined fro m  the know ledge o f  the loo] 
transfer function  G[s)His).

N ow  we are ready to investigate the conditions under w h ich  Eq. (7 -5 ) o r  Eq. (7-7) i 
satisfied.

Le t us express G(s)H{s) as

G (s)H (s) =  K G i{s)H i{s)  (7-11

where C ] {s)H] ( j )  does not contain the variable parameter K. Then. Eq. (7 -5 ) is wriltet

G , ( j ) H | ( i )  =  - i  (7-12:

To satisfy Eq. (7-12), the fo llo w in g  conditions must be satisfied s im ultaneously; 
C ond ition  on magnitude

[ G i ( j ) / / | ( j ) |  =  - o o < K < o o  {7-13;

C ond ition  on angles

lG i{s)H ị{s) =  {2i +  ì )tĩ K > 0

=  odd m u ltip les o f  ĨT radians o r 180°

/G i( ỉ ) H i ( i )  =  2 ì7t K  < 0

=  even m u ltip les o f  7T radians o r 180°

(7-14;

(7-15]

where f =  0 , ± 1 , ± 2 , . . .  (any integer).

In  practice, ihe conditions stated in  Eq. (7-13) through (7-15) p lay d iffe ren t roles in  ihe 
construction o f  the roo t loci.

• The conditions on angles in  Eq. (7-14) o r Eq. (7-15) are used to  determine the 
trajectories o f  the root loc i in ứie i-p lane.

• Once the root loc i are drawn, the values o f  K  on the loc i are determ ined by using the 
cond ition  on m agnitude in  Eq. (7-13).



The construction o f  the root loc i is basica lly a graphical prob lem , although some o f  the 
properties are derived ana lytica lly. The graphical construction o f  the R L  is based on the 
know ledge o f  the poles and zeros o f  the function  G{s)His). In  other words, G(s)H{s) must 
firs t be w ritten  as

™  =  (7 - , 6 ,

where ứie zeros and poles o f  G{s)H(s) are real o r in  com plex-conjugate pairs.
A p p ly in g  the conditions in  Eqs. (7-13), (7-14). and (7-15) to  Eq. (7-16), we have
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1
----------- “  ĩ i r  (7-17)

n i ' ' + w i  ' '  
k=\

For Q < K  <oo:

. G ĩ ( s ) H i { s ) ^ Ỳ , - { s  +  Z k ) - Ỳ . 4 ^ + P j )  = { 2 i+  1) X 180° (7-18)
k=\ j=\

¥ ot - o c < K  < 0 :

. G i { s ) H , { s ] ^ ' ^ i { s  +  Z k ) - ị ^ - ụ +  P j )  =  2' X 180° (7-19)
X-=I j= i

where Ỉ =  0 . ± 1 . ± 2 .............
The graphical interpretation o f  Eq. (7-18) is that any po int S] on the R L that 

corresponds to  a positive value o f  K  must satisfy the fo llo w in g  condition:
The difference between the sums of the angles o f the vectors drawn from  the zeros 
and those from  the poles o f G(s)H(s) to Si is an odd m ultip le o f 180 degrees. 

For negative values o f  K. any poin t 5 i on the R L  must satisfy the fo llo w in g  condition: 
The difference between the sums of the angles o f the vectors drawn from  the zeros 
and those fro m  the poles o f  G (s)H(s) to  S] is an even m u lt ip le  o f  180 degrees, 
including zero degrees.
Once the root loc i are constmcted. the values o f  K  along the loc i can be determ ined by 

w r it in g  Eq. (7-17) as

íík+___
f i l - c . !
1 = 1

\K\ -------------  (7-20)

The value o f  K  at any po iin  S\ on the R L is obtained from  Eq. (7-20) by substituting the value 
o f  S\ in to  the equation. Graphically, ihe numerator o f  Eq. (7-20) represents ihe product o f  the 
lengths o f  die vectors drawn from  the poles o f  G(s)H{s) to  J'l. and ihe denominator 
represents the product o f  lenaths o f  the vectors drawn from  the zeros o f  G{s)H{s) to .V|.
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Figure 7-1 Pole-zero configuration of
G (s)H {s) =  AT(s +  )/[i{5 +  P2 )x
( s +  Pi)].

To illus tra te  the use o f  Eqs. (7-18) to (7-20) fo r the construction o f  the root loci, let I 
consider the function

K { s  +  Z ị)  

s { s  +  P 2 ) is  +  P ỉ )
(7-21

The location o f  the poles and zero o f  G(s)H{s) are a rb itra rily  assigned, as shown in Fig. 7- 
Le t us select an arbitrary tr ia l po in t S] in  the j-p la n e  and draw  vectors d irecting  from th 
poles and zeros o f  G{s)H{s) to  the point. I f  Si is indeed a po in t on the R L  fo r  positive K, 
must satisfy Eq. (7-18); that is, the angles o f  the vectors shown in  F ig. 7-1 must satisf

z (5 i + Z | )  -  I s i  -  Z (J I + P 2 )  -  Z ( i i  +  P i )  

=  0-1 -  9 p i -  9p2 -  9 p ĩ  -  (2 / +  1) X 180"
(7-2Í

where / =  0, ± 1 ,  ± 2 ,  . . . .  As shown in  F ig. 7-1, the angles o f  the vectors are measure 
w ith  the positive real axis as reference. S im ila rly , i f  is a po in t on the R L  fo r negativ 
values o f  K, i t  must satisfy Eq. (7-19); that is,

4 ^ 1  + Z l )  -  ^ 1  -  / ( i l  +  p i )  -  Z(J1 +  P3) 

=  Ớ:1 -  Opx -  9j,2 -  B p i =  l i  X 180°
(7-23

where / =  0 . ± l , ± 2 ...........
I f  S\ is found to satisfy either Eq. (7-22) o r Eq. (7-23), Eq. (7-20) is used to find ih 

magnitude o f  K  at the point. As shown in  F ig. 7-1, the lengths o f  the vectors are representei 
by A. B, c, and D. The m agnitude o f  K  is

(7-24

The sign o f  K depends on whether Sị satisfies Eq. (7-22) {K > 0 }o r Eq. 0 -2 3 ){K  <  0). Thu- 
given the function G{s)H(s) w ith  A" as a m u ltip ly in g  factor and the poles and zeros are knowr 
the construction o f  the R L  o f  the zeros o f  I +  G(s)H(s) involves the fo llo w in g  two step!

1. A  search fo r a ll th e i'i points in the .ỹ-plane that satisfy Eq. (7-18) fo r positive /T.1 
the R L  fo r  negative values o f  K  are desired, then Eq. (7-19) m ust be satisfied.

2. Use Eq. (7-20) to  find the magnitude o f  K  on the RL.



We have established the basic cond itions  on the construction  o f  the roo t-locus 
d iagram . H ow ever, i f  we were to  use the tr ia l-a n d -e ư o r m ethod ju s t described, the 
search fo r  a ll the roo t-locus po in ts  in  the 5-p lane that sa tis fy  Eq. (7 -18 ) o r Eq. (7 -19 ) and 
Eq. (7 -20 ) w o u ld  be a very  tedious task. Years ago, when Evans [1 , 2 ] firs t inven ted  the 
roo t-locus  technique, d ig ita l com puter techno logy was s t i l l  at its  in fa n cy ; he had to  
devise a specia l to o l, ca lled  the s p in i le .  w h ich  can be used to  assist in  adding and 
sub tracting  angles o f  vectors q u ick ly , accord ing  to  Eq. (7 -18) o r Eq. (7 -19 ). Even w ith  
the S p iru le , fo r  the device to  be e ffec tive , the user s t i l l  has to  firs t kn o w  the general 
p ro x im ity  o f  the roots in  the i-p la n e .

W ith  the a va ila b ility  o f  d ig ita l com puters and e ffic ien t roo t-find ing  subroutines, the 
s p iru ie  and the tria l-and-erro r method have long become obsolete. Nevertheless, even w ith  
a high-speed com puter and an e ffective root-locus program , the analyst should s till have an 
understanding o f  the properties o f  the roo t loc i to be able to m anually sketch the roo t lo c i o f  
sim ple and m oderately com plex systems, i f  necessary, and in terpret the com puter results 
correctly, when app ly ing  the roo t loc i fo r  analysis and design o f  conưol systems.
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► 7-3 PRO PERT IES  OF T H E  ROOT LOCI

The fo llo w in g  properties o f  the root lo c i are useful fo r the purpose o f  constructing the roo t 
loc i m anually and fo r  the understanding o f  the roo t loc i. The properties are developed 
based on the relation between the poles and zeros o f  Gịs)H ịs) and the zeros o f 
1 +  G {s)H (s), w h ich  are the roots o f  the characteristic equation. We shall l im it  the 
discussion on ly  to  the properties but leave the details o f  the proofs and the applications o f 
the properties to  the construction o f  the root lo c i in  A ppendix E.

7-3-1 / r = 0  an d /r= = h o o  Points

The ilf = 0 points on the root loci are at the poles of G{s)His).
The K = ± o o  points on ihe root loci are at the zeros of G (s)H(s).

The poles and zeros reíeưed to here include those at in fin ity , i f  any. The reason fo r  these 
properties are seen from  the cond ition  o f  the root loc i g iven by Eq. (7-12), w h ich  is

G ,{ s ) i / , ( s )  =  - i  (7-25)

As the magnitude o f  K  approaches zero, G I(s)H I ( i)  approaches in fin ity , so s  must approach 
the poles o f  G ]is)H ịịs) o r o f  G{s)H{s). S im ila rly , as the m agnitude o f AT approaches in fin ity , 
s  must approach the zeros o f  G{s)H{s).

► EXAMPLE 7-3-1 Consider the equation
s{s + 2){s + 3) + K { s + \)  = 0 (7-26)

When A" = 0. ihe three roots o f the equation are at £ = 0 ,-2 . and -3 . When the magnitude o f K is 
infinite, the three roots o f the equation are at Í  =  — 1. oo, and oc. It is useful to consider (hat infinity in 
the j-plane is a point concept. We can visualize that the finite i-plane is only a small portion o f a 
sphere with an infinite radius. Then, infinity in the 5-plane is a point on the opposite side o f (he sphere 
that we face.

Dividing both sides o f Eq. (7-26) by the terms that do not contain K. we get
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ỉ-plane 

K = ũ K = ±«>

Figure 7-2 Points a( which A" =  0 and
K =  ±oc  on the RL o f ỉ ( í  2 ) ( j +  3)+ 
a:(5 +  ì ) =  0.

which gives

G{s)H{s)
K (s + \)

(7-2Ỉ
■ í (í  +  2)(5 +  3)

Thus, the three roois o f  Eq. (7-26) when A" =  0 are the same as the poles o f  the functiol 
C(s)H(s). The ihree roots o f Eq. (7-26) when K  =  ± o c  are at the three zeros o f C(s)H{s] 
including those ai infin ity. In this case, one finite zero is ai Í  =  - 1 .  but there are two zeros a 
in fin ity. The three points on the root loci at which ^  =  0 and those at which K  =  ±oc are showi 
in Fig, 7-2.

7-3-2  N um ber of Branches on the Root Loci

A  branch o f  the R L  is the locus o f  one root when K  varies between - o c  and oc. Th( 
fo llo w in g  property o f  the R L  results, since the number o f  branches o f  the R L  must equal th( 
number o f  rools o f  the equation.

The number of branches of the RL ofEq. (7-1) or Eq. (7-5) is equal to the order ol 
the  p o lyn o m ia l.
For example, the num ber o f  branches o f  the root loc i o f  Eq. (7-26) when K  varies from 

- o c  to  5C is three, since the equation has three roots.
K eeping track o f  the in d iv id u a l branches and the to ta l num ber o f  branches o f  the 

ro o t- lo cu s  d iagram  is im p o rta n t in  m ak ing  ce rta in  tha t the p lo t is done correc tly . This 
is p a rtic u la r ly  true  when the roo t- lo cu s  p lo t is done by a com puter, because unless 
each roo t locus branch is coded by a d iffe re n t co lo r, i t  is up to  the user to  make the 
d is tin c tio n s .

7-3-3  Sym m etrv of the RL

The R L  are  sym m e trica l w ith  respect to  the  rea l axis o f  th e ỉ-p la n e . In  general, the 
R L  are  s ym m e trica l w ith  respect to  the  axes o f  sym m e try  o f  the  pole-zero 
c o n fig u ra tio n  o f  G (s)H(s).

The reason behind th is propeny is because fo r  real coe ffic ient. K. in  Eq. (7-1). the roots 
m ust be real or in com plex-conjugate pairs.

7-3-4  A ngles of Asym ptotes of the RL: B ehavior of the RL at |sỊ =  oo

W hen n. the o rd e r o f  P is), is no i equal to  m . the o rde r o f  Q (s). some o f  ihe loc i w ill 
approach in f in ity  in  the j-p la n e . The properties  o f  ihe R L  near in f in ity  in  ihe  j-plane 
are described by the asym p to te s  o f  the lo c i when | i |  —’ DC. In  genera l when /I m. there 
w il l  be 2 |/ I -  /h| asym ptotes that describe the behav io r o f  the R L  at |.ĩ| =  X .  The angles 
o f  the asym ptotes and Ih e ir  in te rsect w ith  the real axis o f  the i-p la n e  are described as 
fo llo w s .
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For large values of s, the RL for AT > 0 are asymptotic to asymptotes with angles 
given by

(2 / + 1 )
X 180° n ^ m a -2 9 )

where / =  0 ,1, 2 , . . |n — m| -  1; n and m are the number offinite poles and zeros 
of Gừ)H(s), respectively.
The asymptotes of the root loci for AT>0 are simply the extensions of the 
asymptotes for Af > 0.

7-3-5 In tersect of the Asym ptotes (Centroid)

The intersect o f  the 2Ị/Ỉ -  m\ asymptotes o f  the R L  lies on the real axis o f  the i-p lane , at

^  fin ite  poles o f  G ( i ) / / ( i )  -  51 fin ite  ze roso f
(7 -3 0 )

where n  is the num ber o f  fin ite  poles and m  is the number o f  fin ite  zeros o f  G(s)H(s), 
respectively. The intersect o f  the asymptotes Ơ] represents the center o f  grav ity  o f  the root 
lo c i and is always a real number, or

V  real parts o f  poles o fG ( í ) / í ( í )  -  V  real parts o f  zeros o fơ ( 5) / / ( 5 )
ƠỊ = -------------------------------------------------------------------------------------------------------------------------- (7 -3 1 )

n  -  m

The root loc i and the ir asymptotes fo r Eq. (7-26) fo r  - o c  <  Ả' <  oc are shown in F ig. 7-3. 
M ore  examples on ro o t-loc i asymptotes and constructions are found in Append ix  E.

i l !
1 s-plane

Ị  1
j  1 Asymptote

I y
K < n  K = 0 . |a- = 0 ^ < 0  K = ±a K >0 a := 0  k < co .

- Ĩ 1-2 -1

1
1

\  1

0

Ì
Figure 7-3 Rool loci and asymptotes of 5(.9 +  2)(.5 +  3) -  +  1) =  0 f o r -o c  <  K  <  ya.
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7-3 -6  Root Loci on th e  R eal A xis

The entire  real axis o f  the 5-plane is occupied by the R L  fo r  a ll values AT. O n a g iven sectiol 
o f  the real axis. R L  fo r  AT >  0  are found in  the section o n ly  i f  the to ta l num ber o f  poles an( 
zeros o f  G(s)H{s) to  the r ig h t o f  the section is odd. Note that the rem ain ing  sections o f  thi 
real axis are occupied by the R L  fo r  ^  <  0. C om plex poles and zeros o f  G (s )H ( j)  do no 
affect the type o f  R L  found on the real axis.

7-3-7  A ngles of D eparture and A ngles of A rriva l of the RL

The angle o f  departure o r a ir iva l o f  a roo t locus at a pole o r zero, respectively, o f  G{5)H(s 
denotes the angle o f  the tangent to  the locus near the point.

7-3 -8  In tersection  of th e  RL w ith  the Im ag inary  A xis

The points where the R L  intersect the im ag inary  axis o f  the j-p la n e  and the corresponding 
values o f  K  may be determ ined by means o f  the R o u th -H urw itz  crite rion . For complw 
situations, when the R L  have m u ltip le  numbers o f  intersections on the im aginary axis, the 
intersects and tíie  c ritica l values o f  K  can be determ ined w ith  the help o f  the root-locui 
com puter program. The Bode diagram  m ethod in  Chapters 2 and 8 , associated w ith  thí 
frequency response, can also be used fo r  th is purpose.

7-3 -9  B re a k a w a y  Points (S add le  Points) on the RL

Breakaway points on the R L  o f  an equation coưespond to  m u ltip le -o rde r roots o f  the 
equation.

The breakaway points on the R L  o f  I +  K G \ { s ) H i { s )  =  0  m ust satisfy

(7-32)
ds

I t  is im portant to  po in t out that the cond ition  fo r  the breakaway po in t given ir 
Eq. (7-32) is necessary  but nol sufficient. In other words, a ll breakaway points on the rool 
loc i must satisfy Eq. (7-32), but not a ll solutions o f  Eq. (7-32) are breakaway points. To be a 
breakaway point, the solu tion o f  Eq. (7-32) must also satisfy Eq. (7-5), that is. must also be 
a po in t on the root loc i fo r  some real K.

Toolbox 7-3-1
M ATLAB sta tem ents fo r  Fig. 7-3 

num = [ 1 1 ] ;
d e n = c o n v ( [ l  0 ] .  [ 1  2 ] ) :  
d e n = c o n v (d e n ,  [ 1 3 ] ) ;  
m y s y s = t f ( n u m , d e n ) ; 
r l o c u s ( m y s y s ) :
title( ‘Root loci for equation 7.27’);
axis([-3 0 - 8  8]) ____
[ k , p o l e s ]  =  r l o c f i n d ( m y s y s )  % r l o c f i n d  com m and i n  MATLAB c a n  c h o o s e  th e  
d e s i r e d  p o le s  o n  th e  lo c u s
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I f  we take the derivatives on boưi sides o f  Eq. (7-12) w ith  respect to  5. we get

dK
ds

_ dGị is)H i {s)/d s
(7-33)

Thus, the cond ition  in  Eq. (7-32) is equivalent to

^  =  0 (7-34)
ds

In  sum m ary, except fo r  extrem ely  com plex cases, the properties on the roo t lo c i ju s t 
presented should be adequate fo r  m aking  a reasonably accurate sketch o f  the root-locus 
diagram  short o f  p lo ttin g  i t  p o in t by po in t. The com puter program  can be used to solve 
fo r  the exact root locations, the breakaway points, and some o f  the o ther specific details 
o f  the ro o t lo c i, in c lu d in g  the p lo ttin g  o f  the fina l lo c i. H owever, one cannot re ly  on Ihe 
com puter so lu tion  com plete ly, since the user s t ill has to  decide on the range and 
reso lu tion  o f  K  so that the roo l-locus  p lo t has a reasonable appearance. For qu ick  
reference, the im portan t properties described are sum m arized in  Table 7-1, and the 
deta ils are g iven in  A ppend ix  E.

TABLE 7-1 Properties of the Root Loci of 1 + KGi (s) Wi = 0

1. K =  0 points

2.K  = ±oo  points

3. Number o f separate root loci

4. Symmetry o f root loci

5. Asymptotes o f root loci as

The K = 0 points are at Ihe poles o f G(.y)W(i), including those
al J =  00 .

The K = oo points are at the zeros o f G(,s)H{s). including 
those at 5 =  oo.
The total number o f root loci is equal to the order o f ihe 
equation I + KGiis)H tis) = 0.
The root loci arc symmetrical about the axes o f symmetry ihe 
o f poie-zero configuralion o f G(j)W(s).
For large values o f 5. the RL (K > 0) are asymptotic to 
asymptotes with angles given by

e, =  |2 i± ijx  ISO”

For ^< 0 , the RL are asymptotic to

where i  =  0. 1 , 2 , . .
|n-m |

6 . Intersection o f the asymptotes

7. Root loci on the real axis.

n =  number o f finite poles o f C(.?)//(j). and 

m = number o f Hnite zeros o f G{s)H{s).
(a) The intersection o f  the asymptotes lies o n ly  on the real axis 

in the j-plane.

(b) The point o f inlcrsection o f the asymptotes is given by

_  ^ realpansofpolcsofG (.;)W (.> l-^  real pan^of zeroso(ais)HUi

R L  fo r  Al" >  0  are found in  a section o f the real axis o n ly  i f  (he 
total number o f real poles and zeros o f C(.V)W(.V) to the right 
o f the section is odd. I f  the tola] number o f real poles and 
zeros to the right o f a given section is even, RL for A" <  0 are 
found.

{Conliiiued)
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TABLE 7-1 (Continued)

8 . Angles o f departure The angle o f departure or arrival o f ứie RL from a pole ora
zero o f G(s)H(s) can be determined by assuming a point 
is very close to the pole, or zero, and appl>'ing the equation

'C (J, )H (J ,) =  ^ / ( s ,  -  a )  Pi)
i= I ]=\

=  2 ( / + 1)180^ K > 0
=  2 / x l8 0 °  A -< 0  

where; =  0 . ± l , ± 2 , ___
9. Intersection o f the root loci w ilh  The crossing points o f the root loci on the imaginary axis an( 

the corresponding values o f  K  may be found by use o f the 
Routh-Hurwitz criterion.
The breakaway points on the root loci are detennined by 
finding the roots o f (iKịds =  0. or dG{s)H(s)/ds =  0, These 
are necessary conditions only.
The absolute value o f K  at any point J| on the root loci is on 
the root loci determined from the equation 

1

the imaginary a

10. Breakaway points

11. Calculation o f the values o f  K

\K \-

7-3-10 The Root Sensitiv ity

The cond ition  on the breakaway points on ứie R L  in  Eq. (7-34) leads to  the ro o t sensitivil 
[17. 18. 19] o f  the characteristic equation. The sens itiv ity  o f  the roots o f  ứie characteristi 
equation when K  varies is defined as the ro o t se n s itiv ity  and is g iven by

d s /s  K  ds 
~ d K /K  ~  s dK

(7-3Í

Thus. Eq. (7-34) shows that ỉbe root sensitiviry a l the breakaway poin ts is infiniie. From th 
roo t-sens itiv iiy  standpoint, we should avoid selecting the value o f  K  to operate at th 
breakaway points, w hich correspond to m u ltip le -o rder roots o f  the characteristic equatiol 
In the design o f  conưol systems, not on ly  i t  is im portant to arrive at a system that has th 
desired characteristics, but. jus t as im ponant. the system should be insensitive to  parameti 
variations. For instance, a system may perform  satisfactorily  at a certain K. but i f  it is ver 
sensitive to the varia tion o f  K. i t  may get in to  the undesirable performance region or becom 
unstable i f  K  varies by on ly  a small amouni. In form al control-system  term inology, a systei 
that is insensitive to parameter variations is called a ro b u s t system. Thus, the root-loci 
study o f  contro l systems must invo lve not on ly  ứie shape o f  ihe root loc i w ith  respect to th 
variable parameier K  but also how the roots along the loc i vary w ith  the variation o f K

EXAMPLE 7-3-2 Fig. 7-4 shows the root locus diagram o f

í (j + 1 ) +  A: =  0 (7-3(
with K incremented uniformly over 100 values from -2 0  to 20. The RL are computed and plotu 
digitally. Each dot on the roof-locus plot represents one root for a distinct value o f A’. Thus, we see th.
the root sensitivity is low when the maanitude o f K  is large. As the masnitude o f K decreases, ứ
movemenis of the roots become larger for the same incremental change in K. A t the breakaway poir 
s -  -0 .5 . the root sensitivity is infinite.
Fig. 7-5 shows the R L of

n - + A r ( i  +  2 ) = 0  (7-3'
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-5.0 -4.0 -3.0 -2.0 -1-0 • 0.0

■ - 1.0

ị -2.0

-3.0

^. 0
Figure 7-4 RL of
i ( j + l )  +  #r =  0 showing 
the root sensitivity with 
respect 10 K.

K < 0  a : - -

1.0 2 0 3.0 4.0

Figure 7-5 R L o fs ^ i i+
i) -  +  / r ( i  +  2 ; =  0 ,
showing the root 
sensiiivity with respect 
10 K.

K>0

- K  =_±» A- < 0 ' =

-3.0 \  -2.0 -I.Ọ  AT = 0 0.0

'k >0 : - 1-0

. Ạ

./^ = 0 I.o  2,0 3.0



with K incremented uniformly over 200 values from -4 0  to 50. Again, the loci show that the roc 
sensitivity increases as the roots approach Oie breakaway points at J =  0. -0 .543 . -1 .0 . and -2.45") 
We can investigate the root sensitivity further by using the expression in Eq. (7-34). For ứie second 
order equation in Eq. (7-36),

(7-38
ds
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Toolbox 7-3-2
M ATLAB sia iem enis fo r  Eqs. 7-36 and  7-37 

n u m l = [ l ] ;
d e n l = c o n v ( [ l  0 ] , [ 1  1 ] ) ;  
m y s y s l = t f ( n u m l , d e n l ) ; 
s i j b p l o t ( 2 , l , l )  ; 
r lo c u s ( m y s y s l )  ;
t i t l e (  ‘ R o o t l o c i  f o r  e q u a t io n  7 . 3 6 ’ ) ;
[ k , p o l e s ]  = r l o c f i n d ( m y s y s l )  % r l o c f i n d  com m and in M A T L A B  c a n  c h o o s e  t h e  
d e s i r e d  p o le s  o n  t h e  lo c u s  .

num 2 = [ l  2 ] ;
d e n 2 = c o n v ( [ l  0 0 ] , [ 1  1 ] ) :  
d e n 2 = c o n v ( d e n 2 , [ 1  1 ] ) ;  
s u b p l o t ( 2 , l , 2 ) 
m y s y s 2 = t fC n u m 2 ,d e n 2 ) ; 
r lo c u s ( m y s y s 2 ) ;
t i t l e (  ‘ R o o t l o c i  f o r  e q u a t io n  7 - 3 7 ’ )  ; 
a x i s C i - 3  0 - 8  8 ] )
[ k , p o l e s ]  = r l o c f i n d ( m y s y s 2 )

From  Eq. (7-36), K  =  - j ( i +  1); the roo t sens itiv ity  becomes

(7-39)
dK s 2 i +  1

where Í  =  Ơ +  jco, and s  must take on the values o f  the roots o f  Eq. (7-39). For the roots on 
the real axis, oi =  0. Thus, Eq. (7-39) leads to

|S»rU.o =  (7^0)

W hen the tw o  roots are com plex, Í  =  - 0 .5  fo r a ll values o f  co\ Eq. (7-39) gives

From  Eq. (7 -4 ]) , it is apparent that the sensitiv ities o f  the pa ir o f  com plex-conjugate roots 
are the same, since O) appears o n ly  as (X?- in the equation. Eq. (7-40) indicates that the 
sensitivities o f  the tw o  real roots are d iffe ren t fo r a given value o f  K . Table 7-2 gives the 
m agnitudes o f  the sensitiv ities o f the tw o roots o f  Eq. (7-36) fo r  several values o f  K. where 
|S/^11 denotes the root sens itiv ity  o f  the first root, and |5 ^ 2 | denotes that o f  the second root. 
These values indicate that, a lthough the tw o real roots reach a =  —0.5 fo r  the same value ol
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TABLE 7-2 Root Sensitivity

K ROOT 1 l ^ i i l ROOT 2

0 0 1.000 - 1.000 0
0.04 -0.042 1.045 -0.958 0.454
0.16 - 0.200 1.333 -0 .800 0.333
0.24 -0.400 3.000 -0.600 2.000
0.25 -0.500 00 -0.500 oo
0.28 -0 .5  + /Ỉ.173 1.527 - 0 . 5 - / ) . 1 7 3 1.527
0.40 -0 .5  +y0,387 0.817 -0 .5 - }0 .3 8 7 0.817
1 .20 -0 .5  + ^ .9 7 5 0.562 -0 .5  -}o .975 0.562
4.00 -0 .5  + }l.937 0.516 - 0 . 5 - } l  .937 0.516
00 -0 .5  +  joo 0,500 - 0 . 5 -JOO 0.500

K  =  0 .2 5 ,andeach ro o t travels the same distance fro m  Ơ =  O a n d i =  - 1 ,  respectively, the 
sensitiv ities o f  the tw o  real roots are no t the same.

► 7 - 4  D E S I G N  A S P E C T S  OF  T H E  R O O T  LOCI

One o f  the im portant aspects o f  the root-locus technique is that, fo r  most contro l systems 
w ith  moderate com plexity, the analyst o r designer can obtain v ita l in fo rm ation  on the 
perform ance o f  the system by m aking a qu ick  sketch o f  the R L  using some o r a ll o f  the 
properties o f  the roo t loc i. I t  is o f  im portance to  understand a ll the properties o f  the R L  
even when the diagram  is to  be p lotted w ith  the help o f  a d ig ita l com puter program. 
F rom  ứie design standpoint, i t  is usefu! to  leam  the effects on the R L  when poles and zeros 
o f  G{s)H{s) are added o r moved around in  the j-p lane . Some o f  these properties are he lp fu l 
in  the consưuction o f  the root-locus diagram. The design o f  the PI, P ID , phase-lead, phase- 
lag, and the lead-lag contro llers discussed in  Chapter 9 a ll have im p lica tions o f  adding 
poles and zeros to  the loop transfer function  in  the i-p lane .

7-4-1 Effects of Adding Poles and Zeros to ữ (s ) H{s)

T he general problem  o f  con tro lle r design in  con tro l systems may be treated as an 
investigation o f  the effects to  the root loc i when poles and zeros are added to  the loop 
ừansíer function  Gis)H(s).

A d d it io n  o f  Poles to  G {s)H {s)
A d d in g  a po le  lo  G {s)H{s) has the e ffe c t o f  push ing  the ro o t lo c i tow ard  the r ig h t-  
h a lf  i-p la n e . The e ffec t o f  add ing  a zero to  G {s)H (s) can be illu s tra te d  w ith  several 
exam ples.

► EXAMPLE 7-4-1 Consider the function
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K ^o

Figure 7*s Rool-locus diagrams lhat show ihe effects o f adding poles 10 Gis)H(s).

The RL of 1 +  G(s)H(s) = 0 are shown in Fig. 7-6(a). These RL are constructed based on the poles of 
G {s)H {s\ which are at .Ỹ =  0 and-a. Now let us introduce a pole at .V =  - b .  w ith b >  a. The function
G{S)H{S) now becomes

G(s)H(s) =
j(s  +a)(s + h) (7-Í3)

Fig. 7-6{b) shows lhai [he pole at ,Ỹ =  —b causes the complex pan o f the root loci to bend toward the 
right-half-v-plane. The angles o f the asympiotes for the complex roots are changed from ±90° to 
±60^. The intersect o f the asymptotes is also moved from - a /2  10 - ( «  +  h)/2  on the real axis.
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Toolbox 7*4-1
M ATLAB sta tem ents fo r  Fig. 7-3

The results fo r Fig. 7-6 can be obtained by the fo llo w in g  M atlab statements:

a = 2  
b=3 
c= 5

n u m 4 = [ l ] ;
d e n 4 = c o n v (  [ 1  0 ]  , [ 1  a ]  ) ;
s u b p l o t ( 2 , 2 , l )
m y s y s 4 = t f ( n u m 4 ,d e n 4 ) ; 
r l o c u s ( m y s y s 4 ) ; 
a x i s ( [ - 3  0 - 8  8 ] )

n i im 3 = [ l ]  :
d e n 3 = c o n v ( [ l  0 ]  , c o n v ( [ l  a ]  , [ 1  a / 2 ] ) )  : 
s u b p lo t ( 2 . 2 , 2 ) 
m y s y s 3 = t f ( n u m 3 , d e n S ) ; 
r lo c u s ( m y s y s 3 ) ; 
a x i s ( [ - 3  0 - 8  8 ] )

n iim 2 = [ l ]  ;
d e n 2 = c o n v (  [ 1 0 ] ,  c o n v (  [ l a ] , [ l b ] ) ) :  
s u b p l o t ( 2 , 2 , 3 )  
m y s y s 2 = t f  (n u jn 2  , d e n 2 ) ; 
r lo c u s C m y s y s 2 ) ; 
a x i s ( [ - 3  0 - 8  8 ] )

n u m l = [ l ] ;
d e n l= c o n v (  [ 1  0 ]  , c o n v (  [ l a ] , [ l b ] ) ) :  
d e n l= c o n v ( d e n l , [ I c ] ) ;  
m y s y s l= t f ( n u in l , d e n l )  ; 
s u b p l o t ( 2 , 2 , 4 ) ;  
r lo c u s C m y s y s l ) ;

I f  G (s)H(.ĩ) represents the loo p transfer function  o f a con tro l system, the system w ith  the root lo c i in  
Fig. 7-6(b) may become unstable i f  the value o f K exceeds the critical value for stability, whereas the 
system represented by the root loci in Fig. 7-6(a) is always stable for a: >  0. Fig. 7-6(c) shows the root 
loci when anolher pole ib added to Gịs)H(s) at J =  - c .  o h .  The system is now o f the fourth order, 
and the two complex root loci are bem farther to the righl. The angles o f asymptotes o f these two 
complex loci are now ±45°. The stability condition o f the founh-order system is even more acute 
than that o f the Ihird-order system . Fig. 7-6(d) illustrates that !he addition o f a pair o f complex- 
conjugaie poles to the transfer function o f Eq. (7-42) w ill result in a  similar effect. Therefore, we may 
draw a general conclusion that the addilion o f poles to G{s)H(s) has the effect o f moving the dominant 
po r tio n  o f  th e  ro o t loci to w a rd  th e  rig h t-h a lf  5-plane.

Addition of Zeros to Gịs)H{s)
Adding left-half plane zeros to the function G{s)Hịs) generally has the effect of 
m oving an d  bending  the root loci tow ard  the left-half s-plane.
The fo llo w in g  example illustrates the effect o f  adding a zero and zeros to G{s)H(s) on 

the RL.
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► EXAMPLE 7-4-2 Fig. 7-7(a) shows the RL o f the G(s)Hịs) in Eq. (7-42) w ith a zero added at J =  - b ( b  > a). Tht 
complex-conjugate part o f  the RL o f the onginal system is bent toward the left and fonns a drcle, 
Thus, i f  G(s)H{s) is the loop transfer function o f a control system, the relative stability o f  ứie system ii 
improved by the addition o f  the zero. Fig. 7-7(b) shows that a sim ilar effect wiU result i f  a paứ ol 
complex-conjugate zeros is added to the function o f Eq. (7-42). Fig. 7-7(c) shows the RL when azCTo 
at J =  - c  is added to the transfer function o f Eq. (7-43).

jú)ẩ / ỉA
ỉ'p lane

1

K = «. K = 0 K = 0 
_________ ^ y_________ y  f

\

0 Ơ

ĨI

\

Figure 7-7 Root-locus diagrams thal show the effects o f adding zeros to Cis)H(s).
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T o o l b o x  7 - 4 - 2

M ATLAB sta tem en ts fo r  Fig. 7-7

a = 2 ;
b = 3 ;
d = 6 ;
c = 2 0 :

n u m 4 = [ l  d ]  ;
d e n 4 = c o n v ( [1  0 ]  , [ 1  a ] ) ;
s u b p l o t ( 2 , 2 , l )  
m y s y s 4 = t f ( n u m 4 ,d e n 4 ) ; 
r lo c u s ( m y s y s 4 ) ;

n u m 3 = [ l c ]  ;
d e n 3 = c o n v (  [ 1  0 ]  , [ 1  a ]  )  ; 
s u b p l o t ( 2 , 2 , 2 ) 
r a y s y s 3 = t f ( n u m 3 ,d e n 3 ) ; 
r l o c u s ( m y s y s 3 ) ; 
a x is C [ - 6  0 - 8  8 ] )

num 2 = [ l  d ]  ;
d e n 2 = c o n v (  [ 1 0 ]  , c o n v (  [ 1  a ]  , [ 1  b ]  ) )  ; 
s u b p l0 t ( 2 , 2 ,  3 ) 
m y s y s 2 = t f ( n u m 2 , d e n 2 ) ; 
r lo c u s ( m y s y s 2 ) ; 
a x i s ( [ - 6  0 - 8  8 ] )

► EXAMPLE 7-4-3 Consider the equation

s^(s +  a) +  X ( i  +  l;) =  0 (7-44)

Dividing both sides o f Eq. (7-44) by the terms that do not contain K. we have the loop transfer function

It can be shown that the nonzero breakaway points depend on the value o f a and are

s =  10O +  9 (7-46)
4 4

Fig. 7-8 shows the RL of Eq. (7-44) with Ồ =  I and several values o f a. The results are summarized as 
fo llow s:

Fig. 7-8(aj: a = 10. Breakaway points: s = -2 .5  and -  4.0.

Fig. 7-8(b): a = 9. The two breakaway points given by Eq. (7-46) converge to one point ai
s = -3 .  Note the change in the RL when the pole ai - a  is moved from - lO to  -  9.

For values o f a less than 9, the values o f s as given by Eq, (7-46) no longer satisfy Eq. (7-44).
w h ich  means that there are no fin ite , nonzero, breakaway points.

Fig. 7-8(c): a =  8. No breakaway point on RL.

A s the pole at Í  =  - a  is m oved fanher to  the r ig h l a long the real axis, the com plex pon ion  o f the 
R L  is pushed fanher toward the r ig h t-h a lf plane.

Fig, 7 -8(d): ứ =  3.

F ig. 7 -8(e); a =  h =  ] .  The pole at .5 =  - a  and the zero at - h  cancel each other out, and the R L 
degenerate in to  a second-order case and lie  en tire ly  on the ýío-axis.



3 9 0  Chapter 7. Root Locus Analysis

(b).» = 9 ( c )a » 8

Figure 7-8 Root-ltKus diagrams that show the effects o f moving a pole o f G (í)W (5 ).G (j)//( í)  =  AT(j +  1 )/ [ j2 ( j + đ)Ị 
(Continued).
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f-plane

(d )a « 3

Figure 7-8 {Continued)

Toolbox 7-4-3
MATLAB sta tem ents fo r  Fig. 7-8

a l= 1 0 ; a 2 = 9 ; a 3 = 8 ; a 4 = 3 ; b = l : 
n iu n l“ [ l b i :  

d e n l= c o n v (  [ 1  0  0 ]  , [ 1  a l ]  )  : 
s u b p l o t ( 2 , 2 , 1 ) 
m y s y s l = t f ( n u m l , d e n l ) ; 
r l o c u s ( m y s y s l ) ;

num2 = [ l  b ]  ;
d e n 2 = c o n v ( [ l  0  0 ]  , [ 1  a 2 ] ) ;  
s u b p lo t ( 2 . 2 . 2 ) 
m y s y s 2 = t f ( n u m 2 ,d e n 2 ) ; 
r lo c u s ( m y s y s 2 ) ;

n x im 3 = [l b ]  ;
d e n 3 = c o n v ( [ l  0 0 ]  . [ 1  a 3 ] ) :  
s u b p l o t ( 2 , 2 . 3 )  
m y s y s 3 = t f ( n u m 3 ,d e n 3 ) ; 
r l o c u s ( m y s y s 3 ) :

num 4= [ l b ] ;
d e n 4 = c o n v ( [ 1 0  0 ]  , [ 1  a 4 ]  ) ; 
s u b p lo t ( 2 , 2 . 4 )  
m y s y s 4 = t f ( n u m 4 ,d e n 4 ) : 
r l o c u s ( m y s y s 4 ) ;
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(747)

(748)

s{5^ + 2s + a )+ K { s  + 2 ) = 0  

which leads 10 the equivalent G(s)H(s) as

The objective is to study the RL for various values o f a{ > 0). The breakaway point equation o f the RL 
is determined as

s’  +  4 ,r +  4s +  a =  0 (749)

Fig. 7-9 shows the RL o f Eq. (7-47) under the following conditions.

Fig. 7-9(a): a =  1. Breakaway points: s = -0 .38 . — 1.0. and -  2-618, with the last point being 
on the RL for K>O .As Che value o f a  is increased from unity, the two double poles o f Gịs)Hịs) 
at J =  -1  w ill move vertically up and down with the real parts equal to— 1. The breakaway 
points at 5 =  -0 .3 8 and i =  -2 .618 w ill move to the left, whereas the breakaway point at 
J =  - 1  w ill move to the right.

Fig. 7-9(b): a -  1.12. Breakaway points: s = -0 .493. -0 .857. and-2-65. Because the real 
parts o f the poles and zeros o f G{s)H{s) are noi affected by the value o f a. the intersect of the 
asymptotes is always a l .Ĩ =  0 .

Fig. 7-9(c): a = 1-185. Breakaway points: s = -0 .667. -0 .667, and -  2.667. The two break
away points o f Ihe RL thal lie between 5 =  Oand -  1 converge to a point.

Fig. 7-9(d): ứ =  3. Breakaway point: 5 =  -3 -  When a is greater than 1.185. Eq. Í7-49) yields 
only one solution for the breakaway point.

The reader may investigate the difference between the RL in Figs. 7-9(c) and 7-9(d) and 
fill in the evolution o f the loci when Ihe value o f a is gradually changed from 1.185 to 3 and beyond.

Figure 7-9 Rooi-locus diagrams lhat show the effects o f moving a pole o f 
C (5 )//( i)  =  K[s +  2)/[.r(.T- +  2 i +  «)] {Continued).
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Figure 7-9 (Coniinued)

► 7-5  ROOT C O N T O U R S  (RC):  M U L T I P L E - P A R A M E T E R  V A R I A T IO N

The root-locus technique discussed thus fa r is lim ited  to  on ly  one variable parameter in  K. In 
many control-systems problems, the effects o f  varying several parameters should be 
investigated. For example, when designing a con tro lle r that is represented by a transfer 
function  w ith  poles and zeros, i t  w ould be useful to investigate the effects on the characteristic 
equation roots when these poles and zeros take on various values. In  Section 7-4, the root loci 
o f  equations w ith  tw o variable parameters are studied by fix in g  one parameter and assigning 
d iffe ren t values to the other. In  this section, the m ultiparam eter problem is investigated 
through a more systematic method o f  embedding. W hen more than one parameter varies 
continuously from  -o c  to 5C. the root loci are referred to as the ro o t con tou rs  ( RC). I t  w il l be 
shown that the root contours s till possess ihe same properties as the single-parameter rool 
loc i, so that the methods o f  construction discussed thus fa r are all applicable.

The princ ip le  o f  root contour can be described by considering the equation

Pis. (7-50))+ K iQ ị{ s )  + K 2 Q 2 Ìs )^ 0  

where Kị and Ki  are the variable parameters and P(s). 0|<S). and Q2ÌS) are polynom ia ls 
o f  s. The firs t step involves setting the vaiue o f  one o f  the parameters to  zero. Le i us set K 2 
to  zero. Then. Eq. (7-50) becomes

P{s) +  K ^ Q ^ { s ] = 0 (7 -5 1 )
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w h ich  now has o n ly  one variab le  parameter in ATi. The roo t lo c i o f  Eq. (7 -51 ) may be 
determ ined by d iv id in g  both sides o f  the equation by P(s). Thus.

Eq. (7-52) is o f  the fo rrn  o f  1 +  ATi G i (s )H i (s) =  0, so we can construct the R L  o f the 
equation based on the po le -ze ro  configuration o f  G i (s ) / / ]  (s ) . Next, we restore the value of 

w h ile  considering the value o f  AT] fixed, and d iv ide  both sides o f  Eq. (7 -5 0 ) by the 
terms that do not contain / Í 2 - We have

I ^ 2Q 2(^)___ ^  Q
P(s) + Ả ']Q ]( s )

w h ich  is o f  the fo rm  o f  1 +  fC2G 2 (s )N 2 (s) =  0. The root contours o f  Eq. (7-50) when ATj 
varies (w h ile  is fixed) are constructed based on the p o le -ze ro  con figura tion  o f

It  is im portant to note that the poles o f  G2 (s ) f f2 (s) are identica l to  the roots o f  Eq. (7-51). 
Thus, the root contours o f  Eq. (7-50) when K 2 varies must a ll start (A ’2 =  0) at the points 
that lie  on the root loc i o f  Eq.(7-51). T h is  is Ihe reason w hy one roo t-con tour problem is 
considered to  be embedded in  another. The same procedure may be extended to  more than 
tw o variable parameters. The fo llo w in g  examples illusưate the construction o f  RCs when 
m ultiparam eter-varia tion situations exist.

► EXAMPLE 7-5-1 Consider the equation

,r’ + a:2í 2 +  ả:i j  +  ả:i = 0  (7-55)
where and K2 are the variable parameters, which vary from 0 to 00.

As Ihe first step, we let Kj = 0, and Eq. (7-55) becomes

+ K ì S  + K ì= 0  (7-56)

Dividing both sides o f the last equation by which is the term that does not contain K \. we have

(7-57)

The root contours o f Eq. (7-56) are drawn based on the pole-zero configuration o f

C |(J)H |(S) (7-58)

as shown in Fig. 7-10(a). Next, we let K2 vary between 0 and 00 while holding K\ at a conslani 
nonzero value. Dividing both sides o f Eq. (7-55) by the terms that do not contain K2 . we have

s-'̂  +  a ' | j +  a:i

Thus, the root contours o f Eq. (7-55) when K-Í varies may be drawn from the pole-zero configuration 
of

G2{s)H2{s) = ,  ^  ^  (7-60)
s '  + K ị s +  Ki

The zeros o fG 2( i ) / / 2( i)  are at i  =  0.0. but ihe poles are aỉ the zeros o f I +  íT iG |(s ) // j(5 ). which are 
found on the RL o f Fig. 7-10(a). Thus, for fixed the RC when K2 varies must all emanate from the 
root contours o f Eq. 7-10(a). Figure 7-10(b) shows the root contours o f Eq. (7-55) when Ki varies 
from 0 to CO, for Kị = 0.0184, 0.25. and 2.56.
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Figure 7-10 Root contours o f +  ^ 1  =  0. (a) ỈC2 =  0. (b) / l2 varies and
is a constant. ^

► EXAMPLE 7-5-2 Consider the loop ưansíer function

<^W «W  =  ; 0 T 7 i ) ( ? T 2 i T 2 )
(7-61)

o f a closed'loop control system. It is desired to construct the root contours o f the characteristic
equation with K and T  as variable parameters. The characteristic equation o f the system is

i ( l+ r s ) ( s ^  +  2s +  2 )+ A :  =  0 (7-62)

Fừsl. we set the vaJue o f T  to zero. The characteristic equation becomes

+  2j +  2) +  a: =  0 (7-63)

Toolbox 7-5-1
MATLAB sia iem enis fo r  Fig. 7-10

f o r  k l = [ 0 . 0 1 8 4  0 .2 5  2 . S 6 ] ;
nuin= [ 1  0 0  ]  :
d e n = [ l  0  k l  k l ] ;
m y s y s = t f ( n u n i . d e n )  ;
r l o c u s ( m y s y s ) ;
h o ld  o n :
e n d ;
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configuration ol 

(7-64)

Figure 7-11 (a) RL for i(5^ +  2 i +  2) +  AT =  0. (b) Pole-zero configuration o f
G 2{s )H 2[s) =  Ts^[s^ +  2s +  2 ) / [ j ( j2  +  2 i  +  2) +  K ].

The root contours o f this equalion when K  vanes are drawn based on the pole-zero

as shown in Fig. 7 -Í 1(a). Next, we let K  be fixed and consider that T  is the variable parameter. 
Dividing both sides o f Eq. (7-62) by the terms that do not contain T, we get

I +  T G M H ,{s)  =  I +  =  0 (7-65)

The root contours when T  varies are constructed based on Ihe pole-zero configuration of 
G2 {s)H2 {s). When 7" =  0, the points on the root contours are at the poles o fC 2( j ) / / 2 ('5').'''hichare 
on the root contours o f Eq. (7-63). When T = 00, the roots o f Eq. (7-62) are at the zeros of 
G2(í)W2W . which are at i  =  0, 0. -1  + /, and —1 - j .  Figure 7 -11(b) shows the pole-zero 
configuration o f G2 {s)H2(s) fo r K  =  10, Notice that C2 Ìs)ỈÌ2 {s) has three finite poles and four 
fin ite zeros. The root contours fo r Eq. (7-62) when T varies are shown in Figs. 7-12. 7-13, and 
7-14 for three different values o f  K.
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Figure 7-t3 Root contours for
s{\ +Ts)[s^ + 2s + 2) + K = 0. 
AT =  0.5.

Figure 7-14 Root contours for 
j {  1 +  7 j)( j2  +  2 j +  2) +  ẳ" =  0. a: <0.5.

The root contours in Fig. 7-13 show that when K =  0.5 and T — 0.5. the characteristic equation in 
Eq. (7-62) has a quadruple root at J =  -1 .

Toolbox 7-5-2
MATLAB sta tem ents fo r  E xam ple 7-5-2 

% T= 0
n u m = [ l ] ; d e n = c o n v ( [ l  0 ] , c o n v ( [ 0  1 ] , [ 1  2  2 ] ) ) ;
r a y s y s = t f ( n u m ,d e n ) :
s u b p l o t ( 2 , 2 , 1 ) ; r i o c u s ( m y s y s ) ;

%k>4
f o r k = 4 : 1 0 :
n u in = c o n v ( [ l  0 0 ] , [ 1  2 2 ]  )  ; d e n = c o n v (  [ 1  0 ]  , [ 1  2  2 ] ) :
d e n = d e n + k :
m y s y s = t f ( n u m , d e n ) ;
s u b p lo t ( 2 , 2 , 2 ) ; r lo c u s ( m y s y s ) ;
e n d ;
k = 0 .5 ;
n u m = c o n v ( [ l  0  0 ] , [ 1  2 2 ] ) : d e n = c o n v C [ 1  0] ,[ 1  2  2 ] ) :  
d e n = d e n + k ; 
r a y s y s = t f ( n u m ,d e n ) :
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s u b p l o t ( 2 . 2 . 3 )  
r l o c u s ( m y s y s ) ;
9ék<0 .5
f o r  k * - 1 0 0 : 0 . 5 ;
n u m = c o n v ( [ l  0  0 ] , [ 1  2  2 ] ) ; d e n = c o n v C [ 1  0 ] . [ 1  2  2 ] ) ;
d e n = d e n + k ; 
m y s y s = t f ( n u m , d e n ) ; 
s u b p l o t ( 2 , 2 , 4 ) j r lo c u s C m y s y s ) : 
e n d ;

'  EXAMPLE 7-5-3 As an example to illustrate the effect o f the variation o f a zero o f G{s)H(s), consider the functior

í : ( i  +  7j )
G {s)H {s)= - (7-66]

i ( j + l ) ( i  +  2 )

The characteristic equation is

s{s +  l ) ( j  +  2) +  K (ị +  7-i) =  0 (7-67]

Let us first set T  to zero and consider the effect o f varying K. Eq. (7-67) becomes

j (í + 1 ) ( í  +  2) +  í :  =  0 (7-68)

This leads to
G i {s)Hi ( i)  =  , (7-69)

■ i( i  +  l)(5 +  2)

The root contours o f Eq. (7-68) are drawn based on the pole-zero configuration o f Eq. (7-69), and are 
shown in Fig. 7-15.

When the K  is fixed and nonzero, we divide both sides o f Eq. (7-67) by the lernis that do noi 
contain T, and we get

'  +  (7-70)

The points that correspond to r  =  0 on the root contours are at the poles o f Ơ2 {s)H2 (s) or the zeros 
o f f ( i  +  l ) ( f  + 2) + K, whose root contours are sketched as shown in Fig. 7-15 when K varies. 
I f  we choose K =  20 just as an illustration, the pole-zero configuration o f G2( i ) / / 2( i)  is shown in 
Fig. 7 -16 .Therootcontou rso fEq.(7-67)forO  < T  < oo are shown in  Fig. 7-17 fo r three different 
values o f  K.

Figure 7-15 Root loci for
i ( i + i ) ( j  +  2 )  +  / :  =  0.
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0f C 2 ( j ) / / 2{ í)  =  A : í / [ í ( í + l )  
( í  +  2)+K\. K = 20.
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Toolbox 7-5-3
M ATLAB sta tem ents fo r  Fig. 7-77

Same results as F ig . 7*17 can be obtained by using the fo llo w in g  M A T L A B  statements:

f o r k = [ 3  6 2 0 ] ;  
n u m = [k  0 ] ;
d e n = c o n v ( [ l  O ] , c o n v ( [ l  1 ] , [ 1  2 ] ) ) :
d e n = d e n + k ;
m y s y s = t f ( n u m , d e n ) :
r l o c u s ( m y s y s ) :
a x i s ( [ - 4  4 - 1 0  1 0 ] ) ;
h o ld  on
e n d ;

Because G2{s)H2 [s) has three poles and one zero, the angles o f the asymptotes o f  the root contours 
when T varies are at 90' and -90 ’ . We can show that the intersection o f the asymptotes is always at 
J =  1.5. This is because the sum o f the poles o f G2{s)H2 {s). which is given by Uie negative o f the 
coefficient o f the term in the denominator polynomial o f Eq. (7-70), is 3: the sum o f the zeros of 
G2 (s)H2 {s) is 0; and n - m  in Eq. (7-30) is 2.

The root contours in Fig. 7-17 show that adding a zero to ihe loop ffansfer function generally 
improves the relative stability o f the closed-loop system by moving the characteristic equation roots 
toward the left in  the s-plane. As shown in Fig. 7-17. for K =  20, the system is stabilized for all values 
o f T greater than 0.2333. However, the largest relative damping ratio that the system can have by 
increasing T  is only approximately 30 percent.

► 7 - 6  M A T L A B  T O O L S  A N D  C A S E  S T U D I E S

► 7 - 7  S U M M A R Y

A p a rt fro m  the M A T L A B  too lboxes appearing in  th is chapter, th is  chapter does noi 
conta in  any softw are because o f  its  focus on Iheore tica l developm ent. In  C hapier 9, 
when we address more com p lex con tro l system m ode ling  and analysis, we w ill 
in troduce  the A u to m a tic  C o n tro l Systems M A T L A B  too ls. The A u to m a tic  Control 
Systems softw are (A C S Y S ) consists o f  a num ber o f  m -file s  and G U Is  (g raph ica l user 
in te rface) fo r the analysis o f  s im ple con tro l eng ineering  transfe r functions. I t  can be 
invoked fro m  the M A T L A B  com m and line  by s im p ly  ty p in g  Acid'S and then by c lick ing 
on the appropria te  pushbutton. A  spec ific  M A T L A B  to o l has been developed fo r  most 
chapters o f  th is  textbook. Throughou t th is  chapter, we have id e n tifie d  subjects that 
m ay be solved using A C S Y S , w ith  a box in  the le f t  m arg in  o f  the le x t titled 
•M A T L A B  T O O L ."

In this chapters, we introduced the rooi-locus technique for linear continuous data control systems. 
The technique represents a graphical method o f investigating the roots o f the characteristic 
equation o f a linear time-invariant system when one or more parameters vary. In Chapter 9 ihe 
root-locus method w ill be used heavily for the design o f control systems. However, keep in mind 
that, although ihe characteristic equation roots give exact indications on the absolute stability of 
linear SISO systems, they give only qualitalive information on the relative stability, since the zeros



o f the closed-loop transfer function, i f  any, play an important role in the dynamic performance o f 
the system.

The root-locus technique can also be applied to discrete-data systems with the characteristic 
equation expressed in the r-transform. As w ill be shown in Appendix H. the propenies and 
consừuction o f the root loci in the z-plane are essentially the same as those o f the continuous- 
data systems in the s-plane, except that ứie interpretation o f the root location to system per
formance must be made w ilh respect to the unit circle 1̂ 1 =  1 and the significance o f the regions in 
the 2-plane.

The majority o f the maierial in this chapter is designed to provide the basics o f constfucting 
the root loci. Computer programs, such as the M ATLAB Toolboxes used throughout this chapter, 
can be used to plot the root loci and provide details o f the plot. The final section o f Chapter 9 deals 
w ith the root-locus tools o f M ATLAB. However, the authors believe that a computer program can be 
used only as a tool, and the intelligent investigator should have a thorough understanding o f  the 
fundamentals o f the subject.

The root-locus technique can also be applied to linear systems vviưi pure time delay in the system 
loop. The subject is not ưeated here, since systems with pure time delays are more easily ưeated with 
the frequency-domain methods discussed in Chapter 8 .

Review Questions < 401

► R E V I E W  Q U E S T I O N S

The following questions and tme-and-false problems all refer to the equation P{s) +  KQ(s) = 0, 
where P (j) and Q(s] are polynomials o f s with constant coefficients.

1. G ive the cond ition  fro m  w hich  the roo t lo c i are constructed,

2. Determine the points on the complete root loci al which K = 0, with reference to the poles and 
zeros o f Q{s)/P(s).

3. Determ ine the po ints on the roo t lo c i at w h ich  K  =  ± o o , w ith  reference to  the poles and zeros o f

Q(s)/P{s).
4. G ive  the s ignificance o f  the breakaway po ints w ith  respect to  the roots o f  P {s ) +  KQ (s) =  0.

5. Give the equation o f intersect o f the asymptotes.

6. The asymptotes o f the root loci refer to the angles o f the root loci 
when K -  ± 00.

7. There is only one iniersect o f the asymptotes o f the complete root loci.

8. The intersect o f the asymptotes must always be on the real axis.

9. The breakaway points o f the root loci must always be on the real axis.

10. G iven ứie equation 1 +  K G [ (s )H [ (s) =  0. where G ] {s )H ] ( i )  is a rational function  
o f s and does not contain K. the roots o f dG\{s)H[{s)/d5 are all breakaway points
on the r o o tlo c i ( - 0C <  A” <  oo). (T )  (F )

11. A t the breakaway points on the root loci, the root sensitivity is infinite. (T) (F)

12. Without modification. al] the rules and properties for the construction of root loci in the i-plane
can be applied to the construction o f root loci o f discrete-dala systems in the r-plane. (T) (F)

13. The determination o f the intersections o f the root loci in the i-plane with the joHaxis can be
made by solving the auxiliary equation o f Routh's tabulation o f the equation. (T) (F)

14. Adding a pole to Q(s]/P(s) has the general effect o f pushing the root loci to the right, whereas
adding a zero pushes the loci to the left. (T) (F)

Answers to these tnie-and-false questions can be found on this book’s companion Web site;
www.wiley.com/college/golnaraghi.

(T) (F)

(T) (F)

(T) (F)

(T) (F)

http://www.wiley.com/college/golnaraghi
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► P R O B L E M S

7-1. F ind the angles o f  the asymptotes and the intersect o f  the asymptotes o f  the root loc i o f the 
fo llo w in g  equations when K  varies fro m  - o c  to DC.

(a) /  +  4j-’  +  4s- +  (A- +  8 ) 1  +  í :  =  0 (b ) +  5 i^  +  (S’ +  1 ) I  +  í :  =  0

(c) +  K ự  +  3 j2  +  2 i  +  8 ) =  0 (d ) +  2 i=  +  3s +  K{s^ -  l ) ( s  .  3) =  0

<e) s’  +  O '  +  3s-’ +  K{s-  +  3s +  5) =  0 (0  s* +  2i= +  10 +  K(s  +  5) =  0
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7-2. Use M ATLAB to solve Problem 7-1- 

7-3. Show that the asymptotes angles are

(2 / + 1 ) 
1« -  m| 

(2 i)  ^
180" K < ũ

:1 8 0 °  a: > 0

\ n - m \

7-4. Prove that the asymptotes center is

^ f in ite p o le s o fG ( j) / / ( j)  -  fin itezerosofG (jjW (j)
' ' ' = ----------------------------------- --------------------------------------------

7-5. Plot the asymptotes for / l >  0 and <  0 for

j ( í  +  2) ( j2 +  2s +  2)

7-6. For the loop transfer functions that follow, find the angle o f departure or arrival o f the root loci 
at the designated pole cat the designated pole or zero.

Angle o f arrival {K < 0) and angle o f departure (Ằ’ >  0) at Í  =  j.

Angle o f anivai (K < 0) and angle o f departure (AT >  0) at Í  =  j.

Angle o f departure (/^ >  0) at s =  -1  +  y.

Angle o f departure ( /r  >  0) at =  -1  +  j.

Angle o f arrival ( / f  >  0) at J =  - 1 + 7 .

7-7. Prove that:
(a) the departure angle o f the root locus from a complex pole is ỚD =  180" -  ẵigCH' where argGW' 
is the phase angle o f CH at the complex pole, ignoring the effect o f thal pole.
(b) the arrival angle o f ihe root locus at the complex zero is 0D = 180‘  -ărgG H ”. where
argGH” is the phase angle o f CH  at the complex zero, ignoring the contribution o f that
particular zero.
7-8. Find the angles o f departure and arrival for all complex poles and zeros o f the open-loop 
transfer function o f

7-9. Mark the A" =  0 and K = ±cc  points and the RL and complementory root loci (CRL) on the 
real axis for the pole-rero configurations shown in Fig. 7P-9. Add arrows on the root loci on the real 
axis in the direction o f increasing K.
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Figure 7P-9

7-10. Prove that a breakaway a  satisfies ứie following:

7-11. Find all ửie breakaway polnls o f ứie root loci o f ứìe systems described by the pole-zcrc 
configurations shown in Fig. 7P-9.

7-12. Consưuct the root'locus diagram for each o f ử)e fo llowing contro] systems for which ư>e polcỉ 
and zeros o f G ( i) / / ( ỉ)  aregiven. The characteristic equation is obtained by equating the numeraiorol 
1 +  G(s)H(s) to zero.
(a) Poles al 0. -5 , - 6 : zero at -8

(b) Poles at 0. -1 . -3 . -4 ; no finite zeros

(c) Poles a( 0. 0. -2 , -2 ; zero at -4

(d) Poles at 0. -1  + J. -1  -  j:  zero at -2  
(€) Poles at 0. - t  + j .  -1  -  f .  zero at -5

(D Poles at 0. -1  +  j . -1 -  j \ no finite zeros

(g) Poles at 0. 0. - 8 . S :  zeros at -4 . -4
(h) Poles at 0. 0. - 8 . - 8 ; no finite zeros

(i) Poles at 0. 0. - 8. - 8 ; zeros at -4  +y2. -4  -  J2 
(j)  Poles at -2 . 2; zeros at 0. 0
(k) Poles a( j .  -j. j l .  - j l \  zeros at -2 . 2

(1) Poles at j . - j . f l .  -j2: zeros at -1 . 1
(m) Poles ai 0. 0. 0. 1: zeros at -1 . -2 . -3
(d ) Poles ac 0. 0. 0. -1 0 0 . -2 0 0 ; zeros a( -5 .  - 4 0

(o) Poles at 0. -1 . -2 ; zero ai 1

7-13. Use M ATLAB to solve Problem 7-12.

7-14. Tlie characteristic equations o f linear conưol systems are given as follows, Consơucỉ lh€ root 
loci for K > 0.
(a) r ’  +  ĩ r  +  ( K  +  2)s +  5 K = 0

(b) r +  r +  (K * 2 )s  +  Ĩ K  =  0



(c) r> +5 *:s^  +  10 =  0

(d )  S* +  {K  +  3 ) s ’  +  (*: +  l ) j 2  +  (2A: +  5 )  +  10 =  0

(e) s>+ 2s^ + 2 s + K { ! Ĩ - ì ){s  + 2) = 0

( f ) i ^ - 2 j  +  Ar(s +  4 ) ( j + l )  =  0

(g) s'‘ +  6 r ’ +9s2 +  ir ( j2 + 4 s  +  5 ) = 0

(h) +  Zs2 +  2s +  ir ( i2  -  2 ) (s +  4) =  0

(i) i ( í 2 - l ) + í f ( s  +  2)(s +  0 .5 )= 0  

®  s* + 2s’ + 2s^ + 2Ks + 5li = 0 
(k) s ^+ 2 s‘’ + 3s‘ + 2 s^+ s  + K = 0

7-15. Use M ATLAB to solve Problem 7-14.

7-16. The forward-padi transfer functions o f a unity-feedback control system are given in the following: 

=  s(s2+4s +  4 K i +  5)(s +  6 ) “  5 (j +  2 ) ( i +  4 )(s + 1 0 )
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» » = Í S « Í S  » » = Ì 7 Ĩ 1 ? I ^

“  i 2(j  +  2 ) { j2 '+ 2 s +  2) ®  “  ( s + l ) { / + 4 i  +  5)

. , + K ( j  +  2)(s +  3)
®  “  ( j  +  l ) ( j 2 +  6 1 + 10 ) * ’  ‘ ’  s(s +  1 )

(i) G(s) = i( j2  + 4 5  +  5)

Construct the root loci for A! >  0. Find ihe value o f K that makes the relative damping ratio o f the 
closed-loop system (measured by ihe dominant complex characteristic equation roots) equal to
0.707, i f  such a solution exists.

7-17. Use M ATLAB to verify your answer to Problem 7-16.

7-18. A  unity-feedback conưol system has the íonvard-paứi transfer functions given in the 
following. Construct the root locus diagram for K > 0. Find the values o f K at all the breakaway 
points.

=  . ( . +  10K, +  20) =  » ( .+  ! ) ( .  + 3 )(. +  5 j

( s - l ) 2  ' '  (s +  0 .5 ) ( i- 1 .5 )

h
(e) G{s) =  - 5(52 +  65 +  25 )

7-19. Use M ATLAB to verify your answer to Problem 7-18.

7-20. The fonvard-path transfer function o f a unity-feedback conưol system is

Constnict the root loci o f the characteristic equation o f the closed-loop system for K > o z, with
(a) /I =  1. (b) n =  2, (c) n =  3, (d) n =  4, and (e) n = 5.

7-21. Use M ATLAB to solve Problem 7-20.

7-22. The characterislic equation o f the conưol system shown in Fig. 5P-16 when K = 100 is 

s’  +  25s^ +  (IOOÍÍ, +  2)s +  100 =  0 

Construct the root loci o f the equation for Kr > 0.
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7-24. The block diagram o f a conưol system with tachometer feedback is shown in Fig. 7P-24. 
<a) Construct the root loci o f the characteristic equation for A: >  0 when K, =  0.
(b) Set K = 10. Construct the root loci o f ihe characteristic equation for Ki >  0.

7-23. Use MATLAB to verify your answer to Problem 7-22.

Figure 7P-24

7-25. Use MATLAB 10 solve Problem 7-24.

7-26. The characterisiic equation o f the dc-motor conưol system described in Problems 4-49 and
5-40 can be approximaied as

2.05Jls^ +  {1 +  10.25Jl )s-  +  116.84,9 +  1843  =  0

when K t = oc and the load inertia J i  is considered as a variable parameier. Construct ư»e rool loci
o f  the characterisU c equation ÍOT J l > 0 .

7*27. Use MATLAB to verify your answer to Problem 7-26.

7-28. The forward-palh transfer function o f the conưol system shown in Fig. 7P-24 is

K(s + a)(s + ĩ )

(a) Construct the rool loci for > 0  with a  =  5.

(b) Consưuct the root loci for a  > 0 with K =  10.
7-29. Use MATLAB 10 solve Problem 7-28.

7-30. The fonvard-path transfer function o f a control system is 

. K{s + 0.4)

(a) Construct the rool loci for A’ >0.
(b) Use MATLAB 10 verify your answer to part (a).

7-31. The characteristic equation o f the liquid-level control system described in F^oblem 5-42 is 
writlen

0.06s(5 +  12.5)(-45 +  Ko) + 250A/ =  0

(a) For A = Ko = 50. construct the root loci o f the characteristic equation as N  varies from 0 10 X .

(b) For =  10 and Ko =  50. construct the rool loci o f Ihe characteristic equation for .4 >0.

(c) For =  50 and /V =  20, construct the rool loci for K„ > 0.

7-32. Use MATLAB to solve Problem 7-31.

7-33. Repeat Problem 7-31 for the following cases.
(a) A = K„=  100 (b) N = 20 and Kn = 50 (c) =  100 and A/ =

7-34. Use MATLAB to verify your answer to Problem 7-33.

20
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K(s + l f  
(5 = U ) (s  +  5)^

(a) Construct the root loci for K =  25.
(b) Find the range o f K value for which the system is stable.

(c) Use MATLAB to verify your answer to part (a),
7-36. The transfer functions o f a single-feedback-loop control system are

7-35. The fonvard-path tfansfer function o f a unity-feedback system is

G{s) =

(a) Construct the loci o f the zeros o f 1 +  G(s) for K > 0.
(b) Repeal part (a) when H(s) =  1 +  5i.

7-37. Use M ATLAB to solve Problem 7-36.

7-38. The forward-path tfansfer function o f a unity-feedback system i:

C(s} =
Í +  1

(a) Consuuct the root loci for r  =  1 sec and >  0.

(b) Find the values o f K where the system is stable.
(c) Use MATLAB to verify your answer to part (a).

7-39. The transfer functions o f a single-feedback-loop control system are

(a) Construct the root loci o f the characteristic equation for Tj> 0 .
(b) Use M ATLAB to verify your answer to part (a).

7-40. For die dc-motor control system described in Problems 4-49 and 5-40, it is o f interest to study 
the effects o f the motor-shaft compliance Kl on the system performance.

(a) Let K = \. w ith the other system parameters as given in Problems 4-49 and 5-40. Find an 
equivalent G{s)H{s) with Ki as the gain factor. Construct the root loci o f the characteristic equation 
for Kl > 0. The system can be approximated as a founh-order system by canceling the large negative 
pole and zero o f G{s)H{s) that are very close to each other.

(b) Repeat part (a) with K =  1000.

7-41. Use MATLAB to verify your answer to Problem 7-40.

7-42. The characteristic equation o f the dc-motor control system described in Problems 4-49 and 
5-40 is given in the following when the molor shaft is considered to be rigid (Ki  =  oc). Let / í  =  1. 
J „  =  ŨXlOl La =  0 .0 0 \.H  =  0 . 1 R „ =  5. K ị =  9, K i , =  0 .06 36 .B ,„ =  0. ăod K s =  1 .

LaỤm + +  {RaJm + i r R J i  + B,„La)s- +  (RaB,„ +  K,Kh)s +  nKsKịK = 0

(a) Construe! the root loci for >  0 10 show the effects o f variation o f the load inertia on system 
performance.
(b) Use MATLAB to verify your answer to pan (a).

7-43. Given the equation .V-' + as~ + Ks + K = 0. i l  is desired to investigate the root loci o f this 
equalion for —X. < K  < oc and for various values o f a.

(a) Construct the root loci for -o c  < K  <oc  when » =  12.
(b) Repeat pan (a) when a =  4.

(c) Detennine the value o f a  so that there is only one nonzero breakaway point on the entire root loci 
fo r  - o c  < K  < ‘X .  Construct the roo t loc i.
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, ^< “ > = 5 ( 7 T 3 ) ...................
Detennine the values o f a so that tìie root loci ( -o o < A T < c o )  w ill have zero, one, and tw 
breakaway points, respectively, not including the one at s = 0. Construct the root loci ft 
- 0 0  <  AT <  00 for all three cases.

7-46. Fig. 7P-46 shows the block diagram o f a unity-feedback control system.
Design a proper controller H(s) for the system.

7-44. Use MATLAB to  solve Problem 7-43.

7-45. The fonvard-path transfer function o f a unity-feedback conưol system  is

«(J)

Figure 7P-46

7-47. The pole-zero configuration o f  G{s)H{s) o f a single-feedback-loop conưol system is showi 
in Fig. 7P-47(a). Without actually plotting, apply the angle-of-departure (and -arrival) property of ứi( 
root loci to determine which root-locus diagram shown is the correct one.

,-pl.ne
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i-plane
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K = 0 ) > K = Q

K = 0 oo- a: K = 0
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Frequency-Domain Analysis

► 8- 1  I N T R O D U C T I O N

The basic concepts and background material fo r this subject appear in  Chapter 2. In  practice, the 
perfonnance o f  a control system is more realistically measored by its time-domain character
istics. The reason is that the f)erfonnance o f  most control systems is judged based on the time 
responses due to  certam test signals. This is in  conừast to the analysis and design o f 
communication systems fo r which the frequency response is o f  more importance, smce 
most o f  the signals to  be processed are either sinusoida] or composed o f  sinusoidal components. 
We learned in  Chapter 5 that tìie time response o f  a control system is usually more d iff icu lt to 
detennme analytically, especially fo r  high-order systems. In design problems, there are no 
unified meứiods o f  arriving at a designed system that meets the time-domain performance 
specifications, such as maximum overshoot, rise time, delay time, settling time, and so on. On 
the other hand, in  ứie frequency domain, ứiere is a wealth o f  graphical methods available that are 
not lim ited  to low-order systems. I t  is important to realize that there are correlating relations 
between the frequency-domain and the time-domain performances in  a linear system, so the 
time-domain properties o f  the system can be predicted based on ứie frequency-domain 
characteristics. The frequency domain is also more convenient fo r measurements o f  system 
sensitivity to noise and parameter variations. W itfi these concepts in mind, we consider the 
prim ary motívatíon fo r conducting control systems analysis and design in ứie frequency domain 
to  be convenience and the availability o f  the existing analytical tools. Anoửier reason is that it 
presents an alternative point o f view to control-system problems, which often provides valuable 
o r crucial information in  the complex analysis and design o f  control systems. Therefore, to 
conduct a frequency-domain analysis o f  a linear conữol system does not im p ly  that the system 
w ill on ly be subject to a sinusoidal input. I t  may never be. Ratíier, from  the frequency-response 
studies, we w ill be able to project ửie time-domain performance o f  the system.

The starting poin t fo r frequency-dom ain analysis o f  a linear system is its transfer 
function . I t  is w e ll known from  linear system theory that when the input to  a linear tim e- 
invarian t system is sinusoidal w ith  am plitude R  and frequency iOQ.

r { t )  =  RsintDQt ( 8 -1 )

the steady-state output o f  the system. y{l), w i l l  be a sinusoid w ith  the same frequency o>0 
but possibly w ith  d iffe ren t am plitude and phase; that is,

y ( i)  -  Fsin(oJ0/  - f  Ộ) (8-2 )

where Y  is the am plitude o f  the output sine wave and <p is the phase sh ift in degrees or
radians. Le t the transfer function  o f  a linear SISO system be M (s)\ then the Laplace
transforms o f  the input and the output are related through

Y{s) =  M{s)R{s) (8-3)



Y{j(o) =  M U (o)R{j(o) (8-

B y w ritin g  the func tion  Y{jco) as

Y{jw)^\Y {jo>) \ lY {j< o)  ( 8-

w ith  s im ila r de fin itions fo r  M{jù)) and /?(ỹíí>), Eq. (8 -4 ) leads to  the m agnitude relatii 
between the input and the output:

\Y(jo,)\ =  \Mijco)\\R{ja>)\ (8-

and the phase re la tion;

lY( joj)  = Ỉ M { M )  +  (8-

Thus, fo r  the input and ou tpu t signals described by Eqs. (8 -1 ) and (8-2), respectively, 
am plitude o f  the ou tpu t sinusoid is

Y  =  R\M {jojo)\ (8-1

and the phase o f  the output is

ệ  -  lM{j(Oũ) (8-‘

Thus, by know ing the transfer function  A /( i)  o f  a linear system, the m agnitude characte 
is tic , |A/(jo>)|, and the phase characteristic, lM {j(o), com plete ly describe the sieady-sta 
performance when the input is a sinusoid. The crux o f  frequency-dom ain analysis is that ư 
am plitude and phase characteristics o f  a c losed-loop system can be used to  predict boi 
tim e-dom ain transient and steady-state system performances.

8-1-1 Frequency Response of Closed-Loop Systems

For the s ing le-loop control-system  configuration studied in  the preceding chapters, ử 
closed-loop transfer function  is

Under the sinusoidal steady state, s  =  joj, Eq. (8-10) becomes

'  R{j(o) ì+ G {ja> )H {jcư )

The sinusoidal steady-state transfer function Ai( Jco) may be expressed in  terms o f i 
m agnitude and phase; that is,
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For sinusoidal steady-state analysis, we replace s  by j(u, and the last equation beconii

M ịjơ)) =  \M {ja))\lM {j(ư) (8-i:
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<I>mUũì) 
(deg) ị

Figure 8-1 Gain-phase characteristics of 
an ideal low-pass filter.

O r AÍ(ỹo>) can be expressed in  terms o f  its  real and im aginary parts;

=  Rs[M{ja>)] +  jlm [M (jo))]

The m agnitude o f  M{jcờ) is

| G ( » |

and the phase o f  M ( jm ) is

/MUco) = ỘmÌ M  = ^G{joj) -  Z[1 +  G{joj)H{joj)]

(8-13)

(8-14)

(8-15)

I f  M {s) represents the in p u t-o u tp u l transfe r fu n c tio n  o f  an e lectric  filte r, then the 
m agn itude  and phase o f  M ( j(ứ) ind ica te  the f ilte r in g  characteristics on the in p u t signal. 
F ig . 8-1 shows the gain and phase characteristics o f  an ideal low-pass f i lte r  that has a 
sharp c u to ff frequency at Cúc- l í  is w e ll know n that an ideal f i l te r  characte ris tic  is 
p h ys ica lly  unrealizable. In  m any ways, the design o f  con tro l systems is qu ite  s im ila r to 
f i lte r  design, and the con tro l system is regarded as a signal processor. In  fact, i f  the ideal 
lo w -p a ss-filte r characteristics shown in  F ig . 8-1 were p h y s ica lly  rea lizab le , they w ou ld  
be h ig h ly  desirab le  fo r  a con tro l system, since a ll s ignals w ou ld  be passed w ith o u t 
d is to rtio n  be low  the frequency and com ple te ly  e lim ina ted  at frequencies above 
where noise may lie.

I f  cyf is increased indefin ite ly, the output Y(Joj) w ould be identica! to the input R{ joj) 
fo r  a ll frequencies. Such a system w ould fo llo w  a step-funciion input in  the tim e domain 
exactly. From Eq. (8-14), we see that, fo r  \M (juj)\ to  be un ity  at all frequencies, the 
m agnitude o f  G(ja>) must be in fin ite . A n  in fin ite  magnitude o f  G (joj) is, o f  course, 
im possible lo  achieve in  practice, nor w ou ld  it  be desirable, since most con tro l systems may 
become unstable when the ir loop gains become very high. Furthermore, a ll contro l systems 
are subject to noise during  operation. Thus, in  addition to  responding to  the inpu t signal, the 
system should be able to  reject and suppress noise and unwanted signals. For control 
systems w ith  h igh-frequency noise, such as air-fram e v ib ra tion  o f  an a ircraft, the frequency 
response should have a fin ite  c u to ff frequency 0>,-

The phase characteristics o f the frequency response o f  a contro l system are also o f  
im portance, as we shall see that they affect the s tab ility  o f  the system.
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Figure 8-2 Typical gain-phase 
characteristics o f a feedback 
control system.

F ig . 8-2 illus tra tes  typ ic a l gain and phase characte ristics o f  a co n tro l system. A 
shown b y  Eqs. (8 -14 ) and (8 -15 ), the ga in  and phase o f  a c losed -loop  system can b 
de term ined fro m  the fo rw ard -pa th  and lo o p  transfe r func tions . In  p ractice , the frequenc 
responses o f  G ( i)  and H{s) can o fte n  be de term ined b y  a p p ly in g  sine-w ave inputs to th 
system and sweeping the frequency fro m  0  to  a va lue beyond the frequency range o f th 
system.

8-1 -2  Frequency-Dom ain S pecifications

In  the design o f  linear contro l systems using the frequency-dom ain methods, i t  is necessar 
to define a set o f  specifications so that the perform ance o f  the system can be identified 
Specifications such as the m axim um  overshoot, dam ping ratio , and the like  used in the tiiDi 
dom ain can no longer be used d irec tly  in  the frequency dom ain. The fo llo w in g  frequency 
dom ain specifications are often used in  practice.

• Mr indicates Ihe relative 
stability o f a stable closed- 
loop syscem.

Resonant Peak Mr
The resonant p ea k  M r is th e  m ax im um  va lue  o f  \M{j<a)\.
In  general, the m agnitude o f  M r  gives ind ica tion  on the re la tive  s ta b ility  o f  a stabli 

closed-loop system. N orm ally , a large Mr coưesponds to a large m axim um  overshoot o f thi 
step response. F o r most con tro l systems, i t  is genera lly accepted in practice that ih( 
desirable value o f  Mr should be between 1.1 and 1.5.

• BW  gives an indication o f R esonant F requency  <úr
the transient response resonant frequency a>r is the frequency at which the peak resonance M r occun
propenies o f a control .f ^ r

Bandwidth BW
• BW gives an indication o f bandwidth B \y  is the freq u en cy  a t which \M { jà )  \ drops to 70.7%  of, or 3 dl
the noise-filtering down fro m , its zero-frequency value.
characteristics and In  general, the bandw idth o f  a con tro l system gives ind ica tion  on the transient
robustness o f the system. response properties in  the tim e dom ain, A  large bandw idth coưesponđs to  a faster rise time



since h igher-frequency signals are more easily passed through the system. Conversely, i f  
the bandw idth is sm all, on ly  signals o f  re la tive ly  low  frequencies are passed, and the tim e 
response w il l  be slow and sluggish. Bandw idth also indicates the no ise-filte ring  character
is tics  and the robustness o f  the system. The robustness represents a measure o f  the 
sens itiv ity  o f  a system to parameter variations. A  robust system is one that is insensitive to 
parameter variations.

C uto ff Rate
O ften , bandw idth alone is inadequate to  indicate the a b ility  o f  a system in  distinguish ing 
signals from  noise. Sometimes it  may be necessary to  lo o k  at the slope o f  \M{j(o)\, w hich is 
ca lled the c u to ff rate o f  the frequency response, at h igh  frequencies. Apparently, tw o 
systems can have the same bandw idth, but the c u to ff rates may be d ifferent.

The perform ance crite ria  fo r  the frequency-dom ain defined above are illustra ted in 
Fig. 8-2. O ther im portant crite ria  fo r  the frequency dom ain w il l  be defined in later sections 
o f  th is chapter.

► 8 - 2  M „  (Or. A N D  B A N D W I D T H  OF  T H E  P R O T O T Y P E  S E C O N D - O R D E R  S Y S T E M

8-2-1 Resonant Peak and R esonant Frequency

For the prototype second-order system defined in  Section 5-6. the resonant peak Mr, the 
resonant frequency (J)„ and the bandw idth B W  are a ll un iquely related to the dam ping ratio  
f  and the natural undamped frequency co„ o f  the system.

C onsider the closed-loop transfer func tion  o f  the prototype second-order system

M ( i ) = 4 4  =  T -------- --------------7 <8-16)
R {s )  +  2^a>nS +  0)^

A t sinusoidal steady state, 5 =  Ja>, Eq. (8-16) becomes

8-2 M r ù>r and Bandwidth of the Prototype Second-Order System ' 413

(8-17)

! +j2(a>/cí>„)ỉ-(a>/a)„)

We can s im p lify  Eq. (8-17) by le tting  u = (Jj/ojn- Then. Eq. (8-17) becomes

The magnitude and phase o f  M  ju )  are

\M {ju )\ =
(1  - u 2 ) ^ + ( 2 ir ii)^ ]
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respectively. The resonant frequency is determ ined by setting the deriva tive  o f  \M (ju  
w ith  respect to  u  to  zero. Thus,

[ ( 1  -  “^ Ý H 2 ĩ u ỹ ]  -  4 ^  +  =  0  (8-2 :

fro m  w h ich  we get

4 m^ -  4 u +  =  4 h (u^ -  1 +  =  0  (8-2:

In  norm alized frequency, the roots o f  Eq. (8-22) are Mr =  0 and

Ur =  V i  -  2 f2  (8-23

The so lution o f  Ur =  0 mere ly indicates that the slope o f  the \M {ju )  |-versus-C(j curve is zer 
at C£> =  0: i t  is not a true m axim um  i f  c is less than 0.707. Eq. (8-23) gives the resonar 
frequency

0 J r = o ) „ ự ị  - 2 f 2  (8-24

Because frequency is a real quantity, Eq. (8-24) is m ean ing fu l o n ly  fo r  <  1, 0 
;  <  0.707. Th is  means s im p ly  that, fo r  a ll values o f  greater than 0.707, the resonan 
frequency is =  0 and M r = I.

Substitu ting Eq. (8-23) in to  Eq. (8-20) fo r u and s im p lify in g , we get

M , =  /  . ,  Ỉ  <  0.707 (8-25

• For the pro totype second-
order system. M/ị is a I t  is im portant to note that, fo r  the prototype second-order system, M r  is a function o f  th<
function o f c only. dam ping ratio  Í  only, and tủr is a func tion  o f  both ^  and o)„. Furtherm ore, altììough takini

the derivative o f \M[ ju) I with respect to u is a valid method o f determining Mr and (Of. fo
• For the prototype second- higher-order systems, th is analytica l method is qu ite  tedious and is not recommended
order system. M, =  1 ando),. G raphical methods to  be discussed and com puter methods are m uch more efficient fo 
= 0 when c >  0.707. h igh-order systems.

Toolbox 8-2-1
M ATLAB sta tem ents fo r  Fig. 8-3 

i = l :
z e t a =  [ 0 0 . 1 0 . 2 0 . 4 0 . 6 0 . 7 0 7 1 1 . 5 2 . 0 ]  
f o r  u = 0 : 0 . 0 0 1 : 3  

z = l ;
M ( z , i ) =  a b s ( l / ( l + ( j * 2 * z e t a ( z ) * u ) - ( u ^ 2 ) ) )  ; z = z + l :  
M (z  , x ) =  a b s ( l / ( l + ( j * 2 * z e t a ( z ) * u ) - ( u ^ 2 ) ) ) ; z = z + l : 
M ( z , i ) =  a b s ( l / ( l + ( j * 2 * z e t a C z ) * u ) - ( u ^ 2 ) ) ) : z = z + l : 
M (z  , i ) =  a b s ( l / ( l + ( j * 2 * z e t a ( z ) * u ) - ( u ^ 2 ) ) ) ; 2 = z + l : 
M ( z , i ) =  a b s ( l / a + ( j * 2 * z e t a ( z ) * u ) - ( u ^ 2 ) ) )  ; z = z + l :  
M Ù . i ) = a b s C l / a + ( r 2 * ' z e t a ( z ) * u ) - ( u ^ 2 ) ) ) ; z = z + l ;  
M ( z , i ) =  a b s ( l / ( l + ( j * 2 ‘ z e t a ( z ) * u ) - ( u ^ 2 ) i ) )  ; z = z + l :
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M U . i ) = a b s C l / ( l + ( j * 2 * z e t a C z ) * u ) - ( u ^ 2 ) ) ) ; z » z + l :
M ( z , i ) = a b s ( l / a + ( j * 2 * z e t a ( z ) * u ) - C u ^ 2 ) ) ) ; z = z + l :
i = i + l ;

u » 0 : 0 . 0 0 1 : 3 ;

f o r  i  =  I : l e n g t h ( z e t a )  
p l o t C u . M C i , : ) ) ;  
h o ld  o n :

end
x l a b e i c ‘ \m u  = \o m e g a / \o m e g a _ n ' ) ;  
y l a b e i c * | M ( j \ o m e g a ) r ) ;  
a x i s ( [ 0  3 0 6 ] ) :  
g r i d

F ig . 8-3 illusơates the plots o f  \M {ju ) \ o f  Eq. (8-19) versus u  fo r  various values o f  
N otice  that, i f  the frequency scale were unnorm alized, the value o f  ojr =  Ur(o„ w ould 
increase when f  decreases, as indicated by Eq. (8-24). W hen f  =  0, it>;- =  íú„. Figs. 8-4 and 
8-5 illustra te  the relationship between Mr and and M r(=  0Jr/ừ}„) and f ,  respectively.

Figure 8-3 M agnification versus normalized frequency o f the prototype second-order control
system.
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8-2-2 B andw id th

0 0.5 0.707 1.0 1.5 2.0

Damping ratio f

Figure 8-4 Mr versus damping ratio for the prototype second-order system.

In  accordance w ith  the de fin ition  o f  bandw idth, we set the value o f  \M {ju)\ I 
ì /V 2 = ể 0.707.

Thus,

[(1

[ ( l - » 2) ' + ( 2 C « f ] '^ " = v /2 (8-27

Damping ratio Ị

Figure 8-5 N ormalized resonant frequency versus
damping raiio for the prototype second-order
system. Ur =  v/1 - 2c^.
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• BW/w„ decreases 
monotonically as the 
damping ratio f  decreases.

which leads to

^ = ( l - 2 í 2 ) ± \ / 4 r ‘ - 4 í 2  +  2 (8-28)

Toolbox 8-2-2
MATLAB sta tem ents fo r  Fig. 8-6

c l e a r  a l l  
i = l :
for zetai=0:sqrtCl/2)/100:1.2

M ( i )  =  s q r t ( ( l - 2 * z e t a i . ^ 2 ) + s q r t ( 4 * z e t a i . ' ' 4 - 4 * z e t a i . ' ' 2 + 2 ) )  ;
z e t a ( i ) = z e t a i
i = i + l ;

end

TMP_COLOR = 1 ;  
p l o t ( z e t a . M ) : 
x l a b e l ( ‘ \ z e t a ’ ) ;  
y l a b e l ( ■ B W /\o m e g a _ n ’ ) ;  
ax isC C O  1 .2  0 2 ] ) :  
g r i d

T he plus sign should be chosen in  the last equation, since u must be a positive real quantity 
fo r  any Therefore, the bandw idth o f  the prototype second-order system is determined 
from  Eq. (8-28) as

i  =  a , „ [ ( l - 2 c^) +  V 4 r ' - 4 f 2  +  2 ]
1/2

(8-29)

• BW is directly 
proportional to w„.

• When a system is 
unstable. M, no longer has 
any meaning.

F ig. 8-6 shows a p lo t o f  B W /o j„  as a function  o f c. N otice that, as c increases. B W /w „ 
decreases m onotonica lly. Even more im portant. Eq. (8-29) shows that B W  is d irectly 
p roportional to

We have established some sim ple relationships between the tim e-dom ain response and 
the frequency-dom ain characteristics o f  the prototype second-order system. The summary 
o f  these relationships is as fo llow s.

The resonant peak M,. o f  the closed-loop frequency response depends on only 
[Eq. (8 -25)]. W hen c is zero, M,- is in fin ite . When c is negative, the system is 
unstable, and the value o f  Mr ceases to have any meaning. As f  increases, M,. 
decreases.

For ^ >  0.707. Mr =  1 (see Fig. 8-4), and Wr =  0 (see Fig. 8-5), In comparison 
w ith  the unit-step tim e response, the m axim um  overshoot in Eq. (5-103) also 
depends on ly  on C- However, the m axim um  overshoot is zero when f  >  1. 

Bandw idth is d irectly  proportional to ư>„ ỊEq. (8 -29)]; that is, B W  increases and 
decreases linearly w ith  co„. B W  also decreases w ith  an increase in <■ fo r a fixed  <JJ„

1.

3.
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Damping ratio f

Figure 8-6 Bandwidth/o)„ versus damping ratio for the prototype second-order system.

• Bandwidth and rise time 
are inversely proportional to 
each other.

(see F ig. 8 -6 ). For the unit-step response, rise tim e increases as decreases, Ỉ 
demonstrated in  Eq. (5-108) and Fig. 5-21. Therefore, B W  and rise time ai 
inversely p roportional to  each other,

4. Bandw idth and Mr are p roportional to  each other fo r  0 <  ^ <  0.707.

The correlations among pole locations, unit-step response, and the magnitude o f ih 
frequency response fo r  the prototype second-order system are sum m arized in  Fig. 8-7.

► 8 - 3  E F F E C T S  OF A D D I N G  A  Z E R O  TO T H E  F O R W A R D - P A T H  T R A N S F E R  F U N C T I O N

The relationships between the tim e-dom ain and the frequency-dom ain responses arrived Í 
in  the preceding section apply o n ly  to  the prototype second-order system described by Ec 
(8-16). W hen other second-order o r higher-order systems are invo lved, the relationship 
are d iffe ren t and may be more com plex. I t  is o f  interest to  consider the effects on th 
frequency-dom ain response when poles and zeros are added to the prototype second-ordi 
transfer function , n  is s im pler to study the effects o f  adding poles and zeros to the closed 
loop transfer function : however, i t  is more rea listic fro m  a design standpoint to m odify th 
forw ard-path transfer function.

The c losed-loop transfer function  o f  Eq. (8-16) may be considered as that o f  a unit) 
feedback con tro l system w ith  the prototype second-order fo rw ard-path transfer functio

G (i)  =
s{s +

;8-3C
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Prototype
second-order system

A

As ú)„gets larger. Insets smallo- and (be system 
lespoods fasier.

As ^  gets larger, tfgfiiB larger and the s y ^ m  
responds slower.

As íỉỊ,gets larger. BW  gete lager.

A« la ieer, B W  g e ^  w a l le r .

Bandwidth and rise time are inversely proportional.

Therefore, Ihe larger the bandwidth is, the faster the system w ill respond. 

Increasing ũ}„ increases BW  and decreases 

Increasing ^ decreases BW  and increases

Figure 8*7 Coirelation among pole locations, unit-step response, and the magnitude 
o f frequency response o f the prototype second-order system.

Le t us add a zero at 5 =  -  l / r  to  the transfer function  so that Eq. (8-30) becomes 

o i ịạ  + Ts)
G(s) =

i(s  +  2fai„)

The closed-loop transfer function  is

M ( s ) ^
01^(1 +  Ts)

+  (2C0)„ +  Ta>;,)s +

(8-31)

(8 -3 2 )



• The general effect o f In  p rinc ip le , Mr, iOr, and B W  o f  the system can a ll be derived using the same steps usi
adding a zero to the forward- in  the previous section. However, because there are now  three parameters in  Ị ,  (o„, and! 
path transfer function is to the exact expression fo r  Mr, (Or, and B W  are d if f ic u lt  to  obta in  a n a ly tica lly  even though til 
increase the BW o f the system is s till second order. A fte r  a lengứi deriva tion , the bandw idth o f  the system is foun
closed-loop system. Jjg

4 2 0  ► Chapter 8. Frequency-Domain Analysis

(8-3-

'7 =  +  AỊío ịT  -  2 ù ị  -  ù}ịT^ (8-34

W h ile  it is d if f ic u lt  to  see how each o f  the parameters in  Eq. (8-33) affects th 
bandw idth, Fig. 8-8 shows the re la tionship between B W  and r  fo r  c =  0.707 and (0„ = ] 
N otice  that the general effect o f  adding a zero to the forward-path transfer function ừ t 
increase the bandw idth o f  the closed-loop system .

H ow ever, as shown in  F ig . 8 - 8 . ove r a range o f  sm a ll values o f  T. the bandwidt 
is a c tu a lly  decreased. F igs. 8-9 (a ) and 8 -9 (b ) g ive  the p lo ts  o f  \M(j<o)\ o f  the closed 
loop  system th a t has the G{s) o f  Eq, (8 -3 1 ) as its  fo rw a rd -p a th  trans fe r function 
i0„ =  1; ^  =  0.707 and 0.2. re spec tive ly : and T  takes on various values. These curve 
v e r ify  tha t the bandw id th  gene ra lly  increases w ith  the increase o f  r b y  the add ition  of 
zero to  G ( j) .  except fo r  a range o f  sm a ll values o f  T, fo r  w h ic h  B W  is actuall; 
decreased.

Figure 8-8 Baniiwidth o f a second-order system with open-loop transfer function
G(s) =  (1 + Ts)/\s[s+  1.414)],
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0) {rad/sec) 

(a)

Figure 8-9 Magnification curves for the second-order system with the forward-palh transfer 
function G(s) in Eq. (8-32). (a) co„ -  1, f  =  0.707 (b) co„ =  1. c =  0.2.
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Toolbox 8-3-1
M ATLAB sta tem ents fo r  Fig. 8-9{a) 

c l e a r  a l l
i = l ; T = [ 5  1 .4 1 4  1 0 . 1  0 ]  ; z e ta = 0 .  7 0 7 ; 
f o r  w = 0 : 0 .0 1 :  4 

t = l ;  s = j* w ;
M ( t , i ) = a b s ( C l + C T ( t ) * s ) ) / ( s ^ 2 + ( 2 * 2 e t a + T C t ) ) * s + l ) )  
M ( t , i )  = a b s ( ( l + ( T Ũ ) * s ) ) / ( s ' ' 2 + ( 2 * z e t a + T ( t ) ) * s + l ) )  
M Ù . i )  = a b s ( ã + ờ ã ) * s ) ) / ( s ' ' 2 + ( 2 * z e t a + T ( t ) ) * s + D )  
M ( t  , i )  = a b s ( ã + C T à ) * s ) ) / ũ ^ 2 + ( 2 * z e t a + T ( t ) ) * s + l ) )  
M Ù  . i )  = a b s ( ã + ã ( t ) * s ) ) / ( s ^ 2 + ã * z e t a + T C t ) ) * s + l ) )  
i = i + l ;

e nd
w = 0 ;0 . 0 1 : 4 ;  
f o r i  = l : l e n g t h ( T )  

p l o t ( w , M ( i , : ) ) ;  
h o ld  o n ;

e n d
x l a b e K  ‘ \o m e g a  ( r a d / s e c )  ' )  ; y l a b e l (  ‘ |M ( j \ o m e g a )  r  )  ;
a x i s ( [ 0  4 0 1 . 2 ] )  ;
g r i d

M ATLAB sta tem ents fo r  Fig. 8-9{b)

c l e a r  a l l  
i = l :
T = [0  0 . 2  5 2 1 0 . 5 ] ;  
z e ta = 0 . 2 ; 
f o r  w = 0 ;0 .0 0 1 :4  

t = l :  
s = j * w ;
M ( t , i ) =  a b s ( ( l + ( T ( t ) * s ) ) / ( s ^ 2 + ( 2 ^  
M Ù . i )  =  a b s c à + à à ) * s ) ) / ù ^ 2 + ù ^  
M à . i )  = a b s ( Ù + ( T Ù ) * s ) ) / ( s ^ 2 + Ũ ^  
M ( t . i )  = a b s c à + ờ à ) * s ) ) / Ù ^ 2 + Ù ^  

= a b s ( à + ( T C t ) * s ) ) / ũ ^ 2 + ( 2 ^  
M C t . i )  = a b s ( à + à ũ ) * s ) ) / ù ^ 2 + ù ^  
i = i + l :

e n d
w = 0 : 0 . 0 0 1 : 4 :  TMP COLOR = 1 :  
f o r  i  =  1 :  le n g t h ( T )  

p l o t ( w , M ( i , : ) ) ;  
h o ld  o n ;

e nd
x l a b e K  ‘ \o m e g a  ( r a d / s e c )  ’ )  I 
y l a b e i c  |M ( j \ o m e g a )  I 
a x i s ( [ 0  4 0 2 . 8 ] ) ;  
g r i d

t = t + l
t = t + l
t = t + l
t = t + l
t = t + l

z e t a + T ( t ) ) * s + l
z e t a + T ( t ) ) * s + l
z e t a + T ( t ) ) * s + l
z e t a + T ( t ) ) * s + l
z e t a + T ( t ) ) * s + l
z e t a + T ( t ) ) * s + l

Figs. 8-10 and 8-11 show the corresponding unit-step responses o f  the closet 
loop  system. These curves show that a h igh bandw idth corresponds to  a faster ris 
tim e. However, as T  become very large, the zero o f  the closed-loop transfer funcuol 
w h ich  is at Í  =  -1 /7 " .  moves very close to the o rig in , causing the system to  have a larị 
tim e constant. Thus, Fig. 8-10 illustrates the situation that the rise tim e is fast, bu t ứie lar| 
tim e constant o f  the zero near the o rig in  o f  the j-p lane  causes the tim e response to  drag 01 
in reaching the fina l steady state (i.e., the settling tim e w il l  be longer).
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Figure 8-10 Unit-step responses o f a second-order system with a forward-path transfer 
function C(i')-

Figure 8-11 Unit-step responses o f a second-order system with a forward-paih transfer 
function G(.s).
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Toolbox 8-3-2
M ATLAB sta tem enis fo r  Fig. 8-10 -  use clear ait. d o se  all, and  clc i f  necessary

T = [5  1 .4 1 4  0 . 1  0 .0 1  0 ]  ; 
t = 0 : 0 . 0 1 : 9 ;  
z e t a  = 0 .7 0 7 ;  
f o r i = l : l e n g t h ( T )  

n u m = [T ( i )  1 ]  ; 
d e n  = [ 1 2 * z e t a + T ( i )  1 ]  ;
M ( i , : ) = s t e p ( n u m , d e n , t ) ;

e nd

TMP_C0L0R = 1 ; 
f o r  i  =  1 :  le n g t h ( T )  

p l o t ( t , M C i , : ) ) ;  
h o ld  o n ;

e n d
x l a b e i c ‘ T im e ' ) ;  
y l a b e i c ' y ( t ) ’ )  ; 
g r i d

Toolbox 8-3-3
M ATLAB sta tem ents fo r  Fig. 8 - Ỉ Ị  -  use clear all, close all. a nd  clc i f  necessary

T = [ l  5 0 . 2 ] ;  
t = 0 : 0 . 0 1 : 9 ;  
z e t a  =  0 . 2 ; 
f o r  i = l : l e n g t h ( T )  

n iu n = [ T ( i )  1 ]  ; 
d e n =  [1  2 * z e t a + T ( i )  1 ]  ;
M ( i , : ) = s t e p ( n u m , d e n , t ) :

end

f o r  i  =  1 ;  le n g t h ( T )  
p l o t c t  , M ( i ,  O )  ; 
h o ld  o n :

end
x la b e lC 'T im e ’ ) :
y l a b e i r y ( t ) ’ ) :
g r i d

8 - 4  E F F E C T S  OF A D D I N G  A  P OL E  T O T H E  F O R W A R D - P A T H  T R A N S F E R  F U N C T I O N

Add ing  a pole at 5 =  - 1 / r  to ihe forw ard-path transfer function o f  Eq. (8-30) leads I

• A J J iiig  II pc.lc [O [he =  J ls  +  Ifa ) ,,”) ! !  +  7 i )
rorwaid-path transfer
ruiiciinn makes ilie closciJ- The derivation o f  the bandw idth o f the closed-loop system w ith  G(.ĩ) g iven in B  
liH'p s\sicm less siahic anti (8-35) is quite iedious. We can obtain a qua lita tive ind ica tion  on the bandw idth propertii 
(.lci.RMM.-s the bandwidih. by re ferring to Fig. 8-12. w hich shows the plots o f \M{jco)\ versus fo r  Wn =  1 . f  =  0.70'
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Figure 8-12 Magnification 
curves for a thứd-order 
system wiứi a forward-path 
transfer function G(j). tu(rad/sec)

and various values o f  T. Because the system is now  o f  the th ird  order, i t  can be unstable fo r a 
certa in  set o f  system parameters. I t  can be shown that, fo r ù)„ =  1 and Ị  =  0.707, the 
system is stable fo r  a ll positive values o f  r .  The |A/(ytu)|-versus-(W curves o f  Fig. 8-12 show 
that, fo r  small values o f  T, the bandw idth o f  the system is s lig h tly  increased by the addition 
o f  the pole, but Mr is also increased. W hen 7" becomes large, the pole added to  G(5 ) has the 
e ffect o f  decreasing the bandw idth but increasing Mr- Thus, we can conclude that, in 
general, the effect o f  adding a pole to the forward-path transfer function is to make the 
closed-loop system less stable while decreasing the bandwidtk.

T h e u n it-s te p re s p o n s e s o fF ig .8 -1 3 s h o w th a t,fo r la rg e rv a lu e s o fr ,r  =  1 and r  =  5, 
the fo llo w in g  relations are observed:

1. The rise tim e increases w ith  the decrease o f  the bandwidth.

2. The larger values o f  M r  also correspond to  a larger m axim um  overshoot in  the 
unit-step responses.

Figure 8-13 Unit-step 
responses o f  a th ird -o rder 
system w ith  a fo rw ard-path 
transfer fu nctio n  C(5).
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• When M, =  oc, the The c o rre la tio n  betw een Mr and the m a x im u m  overshoot o f  the step response i
closed-loop system is m e a n in g fu l o n ly  w hen the system  is stable. W hen G(ýíu) =  - 1 ,  \M {joi)\ is  in fin ite , an
marginally stable. When the the c lo se d -lo o p  system  is m a rg in a lly  stab le . O n the o th e r hand, w hen the syster
system IS unstable. no jg u n sta b le , th e va lu e  o f  \M{i(o)\ i s  a n a ly t ic a lly  fin ite , but it n o  lo n g e r  has an
longer has any meaning.

Toolbox 8-4-1
M ATLAB s ta te m e n ts  f o r  Fig. 8 -Ỉ2  -  use c le a r  a l l  c lo se  a l l ,  a n d  CỈC i f  ne cessa ry  

w n = l;
z e t a = 0 .7 0 7 ;  
f o r  T = [0  0 . 5 1 5 ] ;  
n u m = [w n A 2 ];
den=conv([1 0] , [1 2*zeta*wn]); 
den=conv(den,[T 1]) ;
[n c , d c ] = f e e d b a c k ( n u m , d e n , 1 , 1 . - 1 ) ;
t = l i n s p a c e ( 0  , 4 ,1 0 0 1 )  ; % tim e  v e c t o r
y = s t e p ( n c  ,d c  , t )  ; % s te p  re s p o n s e  f o r  b a s i c  s y s te m
p l o t C t . y ) ;
h o ld  on
en d
x l a b e l (  ‘ w ( r a d / s )  ’ )  : 
y l a b e i c ‘ A m p l i t u d e ’ ) ;  
t i t l e C  ‘ S te p  R e s p o n s e  ’ )  ;

The objective o f  these last tw o  sections is to  demonstrate the sim ple relationshipỉ 
between BW , Mr, and the tim e-dom ain response. T yp ica l e ffects on B W  o f  adding a pole 
and a zero to  the forw ard-path transfer function  are investigated. N o  attem pt is made tc 
include a ll general cases.

► 8 - 5  N Y Q U I S T  S T A B I L I T Y  C R I T E R I O N :  F U N D A M E N T A L S

• The Nyquist ploi o f Lfjco) Thus fa r we have presented tw o  methods o f  de te rn iin ing  the stab ility  o f  linear SISO
is done in polar coordinates systems: the R ou th -H urw itz  c rite rion  and the root-locus m ethod o f  de term in ing stability b)
as CO v a n e s  from  0  to  DC. lo c a t in g  ih e  r o o ts  o f  th e  c h a r a c te r is t ic  e q u a t io n  in  th e  i - p la n e .  O f  c o u r s e , i f  ứ ie  c o effic ie n ts

o f the characteristic equation are a ll known, we can solve fo r the roots o f  the equation b> 
use o f  M A T L A B .

• The Nyquist criterion also Nyquist criterion is a semigraphical method that determines the stab ility  o f  a closed-
gives indication on relative Jjy investigating the properties o f  the frequency-domain ploL the N yqu is t plot,o l

^ the loop ưansfer function G(s)His). or U s). Specifically, the Nyquist p lo t o f  U s)  is a plot o f L
ij(0) in the polar coordinates o f  Im [L ( j(o)] versus Re[Z.( j(i})] as it) varies from  0 to oc. This is 
another example o f  using the properties o f  the loop transfer function to find the performance ol 
the closed-loop system. The Nyquist criterion has the fo llow ing  features that make it ar 
alternative method that is atưactive fo r the analysis and design o f  control systems.

1. In addition to p rov id ing  the absolute s tab ility , like  the R ou th -H urw itz  criterion, 
the N yqu is t crite rion  also gives in fo rm ation  on the rela tive s tab ility  o f  a stabli 
system and the degree o f  ins tab ility  o f  an unstable system. It  a lso gives ar 
ind ica tion  o f  how the system stab ility  may be im proved, i f  needed.



2. The N yqu is t p lo t o f  G(s)H(s) o r o f  U s)  is very  easy to  obta in , especially w ith  the 
aid o f  a computer.

3. The N yqu is t p lo t o f  G(s)H(s) gives in fo rm ation  on the frequency-dom ain char
acteristics such as Mr, cơr, B W . and others w ith  ease.

4. The N yqu is t p lo t is useful fo r  systems w ith  pure tim e delay that cannot be treated 
w ith  the R outh-H urw itz  c rite rion  and are d if f ic u lt  to analyze w ith  the root-locus 
method.

Th is  subject is also treated in Append ix  F  fo r the general case where the loop  transfer 
function  is o f  nonm inim um -phase type.

8*5 Nyquist Stability Criterion: Fundamentals 427

8-5-1 S tab ility  Problem

The N yqu is t crite rion  represents a method o f  de term in ing the location o f  the characteristic 
equation roots w ith  respect to  the le ft h a lf and the r ig h t h a lf o f  the j-p lane . U n like  the root-
locus method, the N yqu is t c rite rion  does not give the exact location o f  the characteristic
equation roots.

Le t us consider that the closed-loop transfer function  o f  a SISO system is 

where G(s)Hịs) can assume the fo llo w in g  form :

where the T 's  are real o r com plex-conjugate coefficients, and T j  is a real tim e delay.
Because the characteristic equation is obtained by setting the denom inator po lynom ia l 

o f  M ( j)  to zero, the roots o f  the characteristic equation are also the zeros o f  1 +  G {s)H{s). 
Or. the characteristic equation roots must satisfy

ầ ịs )  =  1 + G {s)H {s) = 0  (8-38)

In  general, fo r  a system w ith  m u ltip le  num ber o f loops, the denom inator o f M ịs) can be 
w ritten  as

A(5) -  1 + i . ( 5 )  - 0  (8-39)

where L(s) is the loop transfer function and is o f  the fo rm  o f  Eq. (8-37).
Before em barking on the details o f  the N yqu is l c rite rion , i t  is useful to  sammarize the 

po le -zero  relationships o f  the various system transfer functions.

Id e n tif ic a tio n  o f  Poles and  Zeros

Loop transfer function zeros: zeros o f  U s)

Loop transfer function poles: poles o f  U s)

Closed-loop transfer function poles: zeros o f  1 +  Z-(5 ) =  roots o f  the characteristic 
equation poles o f  1 +  L{s) =  poles o f  U s).

S tab ility  Conditions
W e define tw o lypes o f  s tab ility  w ith  respect to the system configuration.

• O p e n -Loop  S ta b il ity : A  system is said to  be o p e n -lo o p  s ta b le  i f  the poles o f 
the loop  transfer fu n c tio n  U s )  are a ll in the le f t -h a lf  .T-pIane. For a s in g le -lo o p
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system, this is equivalent to the system being stable when the loop is opened 
any point.

Closed-Loop Stability: A  system is said to be closed-loop stable, or simp 
stable, i f  the poles o f the closed-loop tfansfer function or the zeros o f 1 +  t ( j )  a 
all in the le ft-half j-plane. Exceptions to the above definitions are systems wi 
poles or zeros intentionally placed at Í  =  0.

8-5 -2  D efin ition of E ncircled  and Enclosed

Because the Nyquist criterion is a graphical method, we need to establish the concepts ( 
encircled and enclosed, which are used for the interpretation o f the Nyquist plots f( 
stability.

Encircled
A point or region in a complex function plane is said to be encircled by a closed pm 
i f  it is found inside the path.
F or example, po in t A  in  F ig. 8-14 is encirc led by ứie closed path r ,  because/4 is insU 

the closed path. Point B  is not encirc led by the closed path r ,  because i t  is outside  the patl 
Furtherm ore, when the closed path r  has a d irection  assigned to  it ,  the encirclement, 
made, can be in the clockwise (CW) or the counterclockwise (CCW) direction. As shott 
in Fig. 8-14, point A  is encircled by r  in the c c w  direction. We can say that the regie 
inside the path is encừcled in  the prescribed d irection , and the reg ion outside  the path is n< 
encircled.

Enclosed
A point or region is said to be enclosed by a closed path i f  ừ  is encircled in ihe cc\ 
direction or the point or region lies to the left o f  the path when the path is traverse 
in the prescribed direction.
The concept o f  enclosure is particu la rly  useful i f  on ly  a portion  o f  the closed path 

shown. For example, the shaded regions in  Figs. 8 - I5 (a ) and (b ) are considered to t 
enclosed hy  the closed path r. In  other words, p o in t/1 in  F ig . 8 -15(a) is enclosed by r, bi 
po in t A  in  F ig. 8 -15(b) is not. However, po in t B  and a ll the points in  the shaded regie 
outside r  in  F ig. 8 -15(b) are enclosed.

Figure 8-14 Definition o f  encirclement.
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Figure 8*15 Definition o f 
enclosed points and regions, (a) 
Point A is enclosed by r. (b) Point 
A is not enclosed, but B is 
enclosed by the locus r.

8-5-3 N um ber of E n circlem ents and Enclosures

W hen a po in t is encircled by a closed path r, a num ber N  can be assigned to  the num ber o f  
times i t  is encircled. The m agnitude o f  N  can be determ ined by d raw ing an arrow from  the 
po in t to any a rb itrary po in t i |  on the closed path r  and then Id lin g  Í I fo llo w  the path in the 
prescribed d irection  un til i t  returns to the starting po in l. The total nei number o f  revolutions 
traversed by th is arrow is N, o r the net angle is 2tĩN  radians. For example, po in t A  in F ig.
8-16(a) is encircled once  o r I n  radians by r, and po in t B  is encircled twice  o r 47T radians, all 
in  the c w  d irection. In F ig. 8-16(b), p o in t/4 is enclosed once, and po int B is enclosed twice 
by r. B y  de fin ition , N  is positive fo r  c c w e n c irc le m e n t and negative fo r  cw e n c irc le m e n t.

8-5-4 P rincip les of th e  Argum ent

The N yqu is t c rite rion  was orig inated as an engineering application o f  the w e ll-know n 
“ p rinc ip le  o f  the argument”  concept in  com plex-variab le  theory. The princ ip le  is stated in 
the fo llo w in g  in  a heuristic manner.

Le t A(.9) be a s ingle-valued function  o f  the fo rm  o f  the right-hand side o f  Eq. (8-37), 
w h ich  has a fin ite  number o f  poles in  the 5-plane. S ingle valued means that, fo r  each point 
in the j-p lane , there is one and on ly  one coưesponding po int, inc lud ing  in fin ity , in the 
com plex A (i)-p lane . As defined in  Chapter 7, in fin ity  in the com plex plane is interpreted as 
a point.

Suppose that a continuous closed path Ts is a rb itra rily  chosen in the .9-plane, as shown 
in F ig. 8-17(a). I f  T j does not go through any poles o f  A ( i) ,  then the tra jectory r ^  mapped 
by A ( i)  in to  the A (i)-p lane  is also a closed one. as shown in Fig. 8-17(b). S tarting from  a 
point the r.v locus is traversed in the a rb itra rily  chosen d irection  (C W  in  the illustrated

Figure 8-16 Definition o f the num ber of encirclements and enclosures.
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Figure 8-17 (a) Arbitrarily chosen closed path in the j-plane. (b) Coưesponding locus T j in the 
A(5)-plane.

• Do not attempt to relate 
ủ (í) with Us). They are nr 
the same.

case), through the points S2 and Í 3, and then return ing to  a fter go ing through a ll the point! 
on the locus, as shown in  Fig. 8 -17(a). The corresponding locus w il l  start from  thí 
po in t A ( i i )  and go through points A ( i2 ) and A ( i3 ), corresponding to  J i, Í 2' and Sĩ 
respectively, and fin a lly  return to the starting po int. A (5 i ) .  The d irection  o f  ưaverse o f r ^  
can be either c w  o r c c w .  that is, in  the same d irection  o r the opposite d irection  as that ol 
r ^ ,  depending on the func tion  A ( i) .  In  F ig . 8-17(b), the d irection  o f  is arbiữaril> 
assigned, fo r  illus tra tion  purposes, to be c c w .

A lthough the m apping from  the s-plane to  the A (i)-p la n e  is single-valued, the reverSỄ 
process is not a single-valued mapping. For example, consider the function

A ( i)  =
5 (5 + 1 ) (5  +  2 )

(8-40;

w h ich  has poles 5 =  0. - 1 ,  and - 2  in  the i-p lane . For each po in t in  the 5-plane, there is 
o n ly  one corresponding po in t in the A (5)-plane. However, fo r each po in t in  ứie A(j)-plane. 
the function  maps in to  three coưesponding points in  the 5-plane. The simplest way to 
illustra te  th is is to  w rite  Eq, (8-40) as

(8-41)

I f  A ( i)  is a real constant, w hich represents a po in t on the real axis in  the A (i)-p lane , the 
th ird -o rder equation in  Eq. (8-41) gives three roots in  the i-p lane . The reader should 
recognize the para lle l o f  th is situation to  the root-locus diagram  that essentially represents 
the m apping o f  A ( i )  =  - 1  +  7’Oonto the loc i o f  ro o ts o f thecharacteristic equation in  thej- 
plane, fo r a given value o f  K. Thus, the root loc i o f  Eq. (8-40) have three individual 
branches in the 5 -plane.

The princ ip le  o f  the argument can b e  Slated:

U t  A (i) be a single-valued function that has a finite number o f poles in the s-plane. 
Suppose that an arbitrary closed path Fj is chosen in the s-plane so thaỉ the path does 
not go through any one o f  the poles or zeros o f  A ( i) ;  the corresponding  r  i  locus mappeù 
in the Ms)‘plane will encircle the origin as many times as the difference between the 
num ber o f  zeros and  poles o f  A ( i)  that are encircled by the s-pUine locus
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In  equation fo rm , the p rinc ip le  o f  the argument is stated as 

N = z - P (8-42)

N  =  num ber o f  encirclements o f  the o rig in  made by the A (j) -p la n e  locus r ^ .

z  =  num ber o f  zeros o f M s )  encirc led b y  the i-p lane  locus r ,  in  the 5-plane.

p  =  num ber o f  poles o f A ( i )  encirc led by the 5-plane locus in  the 5-plane.

In  general, N  can be positive (Z  >  P ), zero ( z  =  P ), o r negative (Z  <  P). These three
situations are described in  more de ta il as fo llow s.

1. N  >  0(z >  P). I f  the 5-plane locus encircles more zeros than poles o f  A ( j)  in  a 
certain prescribed d irection (C W o r C C W ), A/ is a positive integer. In  th is case, the 
A (i)-p la n e  locus Fạ w il l  encirc le  the o rig in  o f  the A (i)-p la n e  N  tim es in  the same 
d irection  as that o f  F j.

2. N  =  0(z =  P). I f  the 5-plane locus encircles as many poles as zeros, o r no poles and 
zeros, o f  A ( i) ,  the A (i)-p lane locus r Ạ w il l  not encircle the o rig in  o f  the A(i)-p lane.

3. N <  0 (Z  <  P ). I f  the i-p lane  locus encircles more poles than zeros o f  A ( i)  in  a 
certain d irection , N  is a negative integer. In  th is case, the A(^)-plane locus w il l  
encirc le  the o rig in  N  times in  the opposite  d irection  as that o f  r^ .

A  convenient way o f  determ ining N  w ith  respect to the o rig in  (o r any point) o f  the A ( j) -  
plane is to draw a line from  the point in any direction to  a point as far as necessary; the number 
o f  net intersections o f  this line w ith  the M s)  locus gives the magnitude o f  N. Fig. 8-18 gives



4 3 2  Chapter 8. FrequencY-Domain Analysis

several examples o f  this method o f  determ ining N. In  ứiese illustrated cases, i t  is assumed thi 
the r .,  locus has a ccw sense.

Cri t i cal  Poi nt
For convenience, we shall designate the o rig in  o f  the A ( i)-p la n e  as the c r i t ic a l p o in t froT 
w h ich  the value o f  N  is determ ined. Later, we shall designate o ther po in ts in  the complex 
func tion  plane as c ritica l points, dependent on the w ay the N yqu is t c r ite r io n  is appliữỉ 

A  rigorous p ro o f o f  the p rinc ip le  o f  the argument is not given here. The followin, 
illus tra tive  example may be considered a heuristic explanation o f  the p rinc ip le .

Le t us consider the function  A ( j)  is o f  the fo rm

A ( i)  =
K js  +  Zi) 

{ s +  P i){ s + P 2 )
(8-43

where AT is a positive real number. The poles and zeros o f  A ( i)  are assumed to  be as show] 
in  Fig. 8-19(a). The function  M s)  can be w ritten  as

4 (s ) =  |A W |/A (s )

| s +  P i l | i +  P 2 I
[ / ( s  +  Z l )  -  / ( i  +  P I  )  -  +  P 2 ) |

(8-44

F ig. 8 -19(a) shows an a rb itra rily  chosen tra jectory r, in the j-p lane , w ith  the arbiưar 
po in t .9, on the path, and Fs does not pass through any o f  the poles and the zeros o f  A(i) 
The function  A{s) evaluated at i  =  5] is

• z  and p  refer to only 
ihe zeros and poles, 
rcspcciivcly. o f A(.v) lhai 
are encircled by r,.

g ( ^  +  Z |)
( i |  +  P | ) { s +  P i)

(8-45

The term  ( i i  +  Zi) can be represented g ra p h ica lly  by the vecto r draw n from  -Z \  to Si 
S im ila r vectors can be drawn fo r  ( i |  +  P \) and (5 +  P2 ). Thus, A ( i | )  is represented b'

Figure 8-19 (a) Pole-zero configuration o f A(.i) in Eq, (8-44) and the ^-plane trajecton r,- 
(h) A(.v)-plane locus I'i. which corresponds to the r, locus o f (a) through the mapping o f Eq. (8-W
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TABLE 8-1 Summary of A ll Possible Outcomes of the Principle of the Argument

Direction o f 
N  = z - P  
Encirclement

A(j)-Plane Locus

Sense o f the 
j-plane Locus

Number o f Encirclemenls 
o f the Origin

Direction 
o f Encirclement

cw N cw
ccw N ccw
cw N ccw

ccw N cw
cw 0 No encirclement

ccw 0 No encứclement

the vectors drawn from the finite poles and zeros o f A ( j)  to the point S ị ,  as shown in 
F ig . 8-19(a). N ow , i f  the p o in t Í 1 is moved along the locus r ,  in  the prescribed c c w  
d ire c tio n  u n til i t  returns to  the s tarting p o in t, the angles generated by the vectors drawn 
fro m  the tw o  poles tha t are no t enc irc led  by F i w hen J| com pletes one ro und trip  are zero, 
whereas the vecto r (s i + Z i )  draw n fro m  the zero at - Z i ,  w h ich  is enc irc led  b y  F j, 
generates a pos itive  angle (C C W ) o f  27T radians, w h ich  means that the corresponding A (5) 
p lo t m ust go around the o rig in  2 j t  radians, o r one revo lu tion , in  the ccw d irec tion , as 
shown in  F ig . 8 -19(b). T h is  is w h y  o n ly  the poles and zeros o f  A ( i )  tha t are inside the F j 
tra jec to ry  in  th e i-p la n e  w i l l  con tribu te  to  the value o f  Af o f  Eq. (8 -42). Because the poles 
o f  A ( j )  con tribu te  to  a negative phase, and zeros con tribu te  to  a pos itive  phase, the value 
o f  N  depends o n ly  on the d iffe rence  between Z a n d  p. For the case illus tra ted  in  F ig . 8-19 
(a), z = 1 and p = 0.

Thus,

N ^ Z - P = \ (8-46)

w h ich  means that the A (j)-p lane  locus should encirc le  the o rig in  once in  the same 
d irection  as that o f  the j-p lane  locus F f. I t  should be kept in  m ind  that z and p  re fe r o n ly  to 
the zeros and poles, respectively, o f  A ( j)  that are encircled by F i and not the total number o f  
zeros and poles o f  ầ{s).

In  general, the net angle traversed by the A(.s)-plane locus, as the 5-plane locus is 
traversed once in  any d irection, is equal to

ln [ Z  -  P) =  2 n N  radians (8-47)

Th is  equation im plies that i f  there are N  more zeros than poles o f  A ( i) ,  w h ich  are encircled 
by the i-p lane  locus r„ in  a prescribed d irection, the A (5)-plane locus w il l  encircle the 
o r ig in  N  tim es in  the sam e direction  as that o f  r , .  Conversely, i f  N  more poles than zeros are 
encirc led by Fs in  a g iven d irection , N  in  Eq. (8-47) w il l  be negative, and the A (5 )-plane 
locus must encirc le  the o rig in  N  times in  the opposite direction  to that o f  r^ .

A  summary o f  a ll the possible outcomes o f  the p rinc ip le  o f  the argument is given in 
Table 8.1.

uist Path

Years ago w hen N yqu is t was faced w ith  s o lv in g  the s ta b ility  prob lem , w h ich  invo lves 
d e te rm in ing  i f  the fu n c tio n  A ( i )  =  1 + L ( i )  has zeros in  the r ig h t-h a lf 5-p lane, he
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Figure 8*20 Nyquist path.

apparently discovered that the p rin c ip le  o f  the argum ent cou ld  be applied to solve th' 
s ta b ility  prob lem  i f  the j-p la n e  locus F i is taken to  be one tha t enc irc les the entire righ 
h a lf o f  the 5 -plane, O f course, as an a lte rna tive , F j can be chosen to  enc irc le  the emir 
le f t -h a lf  5-p lane, as the so lu tion  is a re la tive  one. F ig . 8-20 illus tra tes  a F i locus w ith, 
ccw sense that encirc les the en tire  r ig h t h a lf o f  the j-p la n e . T h is  path is chosen to be thi 
5-p lane tra jec to ry  r,t fo r  the N yq u is t c r ite rio n , since in  m athem atics, ccw is tradition 
a lly  defined to  be the pos itive  sense. The path Ys shown in  F ig . 8-20 is defined to be thi

• The Nyquist path is N y q u is t pa th - Because the N yqu is t path m ust not pass th rough any poles and zeros 0 
defined to encircle the entire A(.5). Ihe sm all sem icirc les shown a long  theỹcư-axis in  F ig . 8-20 are used to  indicate tha 
right-half ,?-plane. the path should go around these poles and zeros i f  they fa ll on the j(j}-axis. I t  is apparen

that, i f  any pole o r zero o f  A (5 ) lies inside the r ig h t-h a lf 5 -p lane, i t  w i l l  be encircled b; 
the N yq u is t path F j.

8-5-6 Nyquist Criterion and the L{s) or the G{s)H{$) Plot

The N yqu is t c rite rion  is a d irect application o f  the p rinc ip le  o f  the argument when ih' 
i-p lane locus is the N yquist path o f  Fig. 8-20. In  principle, once the Nyquist path is specifiec 
the stab ility  o f a closed-loop system can be determined by p lo tting  the A ( i )  =  1 - r  L{s) locu 
when s takes on values along the N yqaist paửi and investigating the behavior o f  the A ( i)  pic 
w ith  respect to the c r it ic a l p o in t, w hich in ứiis case is the o rig in  o f  ihe A (5 )-pIane. 

Because the function  L{s) is generally known.

u would be simpler to construct the L(s) plot that corresponds to the Nyquừtpath, and th 
same concluswn on the stability o f the dosed-loop system can be obtained by obserútii 
the belmvior o f the L(s) plot with respect to the ( - /,y O ) point in the Lịshplane.

This isbecause the o rig in  o f  ih e A ( i)  =  1 +  L ( ỉ )  plane coưesponds to the ( - 1 ,  ;0 )p o in t i  
the L(i')-p lane. Thus ihe ( - 1 .  jO) po in t in  the i, (5 )-plane becomes the c ritica l po in t for ih 
determ ination o f  closed-loop stability.

For single-loop systems. L{s] =  G (s)H (s). the previous development leads to th 
determ ination o f the closed-loop s tab ility  by investigating the behavior o f  the G{s)H(s) pic 
w ith  respect to  the ( - 1 .  y‘0) po int o f  the C (,y)/í(í)-p lane. Thus, the N yq u is t siabilit



crite rion  is another example o f  using the loop  transfer func tion  properties to  find  the 
behavior o f  closed-loop systems.

Thus, g iven  a c o n tro l system tha t has the cha rac te ris tic  equation  g ive n  by equating  
the num era tor p o ly n o m ia l o f  1  +  L ( i )  to  zero, where L ( i )  is the loop  trans fe r fu n c tio n , 
the a p p lic a tio n  o f  the N y q u is t c r ite r io n  to  the s ta b ility  p rob lem  in vo lve s  the fo llo w in g  
steps.

1. The Nyquist path F i is defined in the i-plane, as shown in Fig. 8-20.

2. The L{s) p lo t corresponding to  the N yqu is t path is constructed in the L (5)-plane.

3. The value o f  N, the number o f  encirc lem ent o f  the ( — 1, jO) po in t made by the L(s) 
p lo t, is observed.

4. The N yqu is t crite rion  fo llo w s  from  Eq. (8-42),

N  =  z - P  (8-48)

where

N  =■ num ber o f  encirclem ents o f  the ( —1. jO) po in t made by the L(s) p lot, 

z = num ber o f  zeros o f  1 + L{s) that are inside the N yqu is t path, that is, the righ t- 
h a lf i-p lane.

p  =  number o f  poles o f  1 +  L{s) that are inside the N yqu is t path, that is, the
rig h t-h a lf j-p lane . N otice that the poles o f  1 +  L{s) are the same as that o f
L(s).

The s ta b ility  requirements fo r  the tw o  types o f  stab ility  defined earlier are interpreted 
in terms o f z  and p.

For closed-loop stability, z  must equal zero.
For open-loop stability, p  must equal zero.

Thus, the cond ition  o f  s tab ility  according to  the N yqu is t c r ite rion  is stated as

N  =  ~ p  (8-49)

That is,

fo r  a closed-loop system to be stable, the L{s)plot must encircle the ( - l ,jO )  point as 
many times as the number o f  poles o f  L{s) that are in the right-half s-piane, and the 
encirclement, i f  any, must be made in the clockwise direction (if F j is defined in the 
c c w  sense).

8-6 Nyquist Criterion for System s with Minimum-Phase Transfer Functions 4 3 5

' Q U I S T  C R I T E RI ON FOR S Y S T E M S  W I T H  M I N t M U M - P H A S E  T R A N S F E R  F U N C T I O N S

We shall firs t apply the N yqu is t c rite rion  to systems w ith  L(s) that are m in im um -phase  
tra n s fe r  fu nc tions . The properties o f  the m inim um -phase transfer functions are described 
in  Chapter 2 and are summarized as fo llow s:

1. A  m inim um -phase transfer function  does not have poles or zeros in the rig h t-h a lf 
5-plane or on the jc o -a \is , excluding the origin.

2. For a m inim um -phase transfer function  U s)  w ith  m  zeros and n poles, excluding 
the poles at Í  =  0 . when s =  j(o  and as 0) varies from  oc to 0 , the total phase 
varia tion o f  Lijco) is (« -  m ) n /2  radians.
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• A minimum-phas.c 
Iransfer function does noi 
have poles or zeroil in the 
righl-half j-plane or on Ihe 
_/w-axis. except at X = 0.

3. The value o f  a m inim um -phase ttansfer func tion  cannot become zero o r in fin ity  Ỉ 
any fin ite  nonzero frequency.

4. A  nonm inim um -phase transfer function  w il l  always have a more positive phas 
sh ift as Ù) varies from  cc  to 0. Or, equa lly true, i t  w i l l  a lways have a more negativi 
phase sh ift as <o varies fro m  0  to  oo.

Because a m a jo riiy  o f  the loop  transfer ftinc tions encountered in  ứie reaJ w o rld  satisfj 
cond ition  1 and are o f  the m inim um -phase type, i t  w ou ld  be prudent to  investigate ứu 
app lication o f  Che N yq u is t c rite rion  to  th is class o f  systems. A s  i f  turas out, this is quiu 
simple.

Because a m inim um -phase Us) does not have any poles o r zeros in  the righ t-ha lf s- 
plane o r  on theỹci)-axis (except a ts  =  0 ) P  =  0, and the poles o f  A ( j )  =  1 +  L{s) also have 
the same properties. Thus, the N yqu is t c rite rion  fo r  a system w ith  Z-(j) being a minimum- 
phase ưansfer function  is s im p lified  to

N  = 0 (8-50)

Thus, the N yqu is t c rite rion  can be stated:
For a closed'loop system wUh loop transfer function L{s) that ứ o f  minimum-phase 
type, the system is closed-loop stable i f  the plot o f  L{s) that corresponds to the 
Nyquist path does not encircle the critical point ( —I, jO) in the LisYplane. 
Furtherm ore , i f  the system  is  unstab le, z ̂  0 ; N  in  E q. (8 -5 0 ) w o u ld  be a positive 

in teger, w h ich  means tha t the c r it ic a l p o in t ( - 1, ;0 )  is enc losed N  tim es (correspond
ing  to  the d ire c tio n  o f  the N y q u is t path de fined  here). Thus, the N y q u is t c r ite rion  of 
s ta b il ity  fo r  systems w ith  m in im um -phase lo o p  tra n s fe r fu n c tio n s  can be further 
s im p lifie d :

For a closed-loop system wUh loop transfer function L(s) that is o f  minimum-phase 
type, the system is closed'loop stable i f  the L(s) plot that corresponds to the Syquist 
path does not enclose the ( -1 ,  jO) point. I f  the ( -1 ,  jO) point is enclosed by the 
Nyquist plot, the system is unstable.

For L{s) that is minimum- Because the region that is enclosed by a tra jectory is defined as the region that lies to the left 
when the tra jectory is traversed in  the prescribed d irection , the Nvquist criterion can be 
checked simply by plotting the segment o f L{j(o) from  O) =  00  /0 Ớ, or, points on the

phase type. Nyquisi 
criterion can be checked

by plouing thejegment o f positive jio-axis. Th is  s im p lifies  the procedure considerably, since the p lo t can he made
Hju}) from OJ -  oc lo 0- easily on a computer. The on ly  drawback to  th is method is that the N yqu is t p lo t lhai

corresponds to theỳíư-axis te lls  on ly  whether the c ritica l po in t is enclosed o r not and, i f  it is. 
not how  many times. Thus, i f  the system is found to  be unstable, the enclosure property 
does not give in fo rm ation  on how many roots o f  the characteristic equation are in  the right- 
h a lf .v-plane. However, in  practice, this in fo rm ation  is not v ita l. From  th is po in t on. we shall 
define the L(ja>) p lo t that corresponds to  the pos itiveỹíư-axis o f  the j-p lane  as the Nyquisỉ 
p lot o f  L(s).

8-6-1 A pp lication  of the Nyquist Criterion to I 
That A re  N ot S tric tly  Proper

I-P hase T ran fer Functions

Jusl as in  the case o f  the ro o t locus, i t  is o fte n  necessary in  design to  create an 
e qu iva len t loop  trans fe r fu n c tio n  L ^Ậ s) so tha t a va ria b le  param eter K  w i l l  appear as a 
m u lt ip ly in g  fa c to r in  tha t is, L{s) = KLeq(s). Because the eq u iva le n t loop
transfe r fu n c tio n  does not correspond to  any phys ica l e n lity , i t  m ay not have more



poles than zeros, and the trans fe r fu n c tio n  is  n o t s tr ic t ly  p roper, as de fined  in  
C hapter 2. In  p rin c ip le , there is no d if f ic u lty  in  co n s tru c tin g  the N y q u is t p lo t o f  a 
tra n s fe r fu n c tio n  tha t is no t s tr ic t ly  proper, and the N y q u is t c r ite r io n  can be app lied  fo r  
s ta b il ity  stud ies w ith o u t any co m p lica tio n s . H ow ever, some com pu te r program s may 
no t be prepared fo r  h a n d lin g  im p ro p e r tra n s fe r fu n c tio n s , and i t  m ay be necessary to 
re fo rm u la te  the equation fo r  c o m p a tib il ity  w ith  the com pu te r p rogram . To exam ine 
th is  case, cons ide r that the ch a rac te ris tic  equation  o f  a system w ith  a variab le  
param eter K  is c o n d itio n e d  to

\- r K L e Ậ s )  =  ữ (8-51)

I f  LgẬs) does not have more poles than zeros, we can rew rite  Eq. (8-51) as

by d iv id in g  both sides o f  the equation by KLgẬs). N ow  we can p lo t the N yqu is t p lo t o f
\ỊLeq{s), and the c rit ica l po in t is s till ( —1. jữ )  fo r  A’ > 0 .  The variable parameter on 
the N yqu is t p lo t is now  \ /K .  Thus, w ith  th is m ino r adjustment, the N yqu is t crite rion  can 
s till be applied,

The N yqu is t crite rion  presented here is  cumbersome when the loop  transfer func tion  is 
o f  the nonm inim um -phase type, fo r  example, when L{s) has poles or/and zeros in  the righ t- 
h a lf 5-plane. A  generalized N yqu is t crite rion  that w il l  take care o f  transfer functions o f  a ll 
types is presented in  Append ix  F.

8-7 Relation between the Root Loci and the Nyquist Plot 4 3 7

. A T I O N  B E T W E E N  T H E  R O O T  LOCI  A N D  T H E  N Y Q U I S T  P L OT

Because both the roo t locus analysis and the N yqu is t crite rion  deal w ith  the location o f  the 
roots o f  the characteristic equation o f  a linear SISO system, the tw o  analyses are closely 
related. E xp lo ring  the re la tionship between the tw o  methods w il l  enhance the under
standing o f  both methods. G iven the characteristic equation

1 +  L ( i )  = \ + K G x  {s)H\ is) =  0 (8-53)

the N yqu is t p lo t o f  L(s) in  the L (j)-p la n e  is the m apping o f  the N yqu is t path in  the j-p lane. 
Because the root lo c i o f  Eq. (8-53) must satisfy the conditions

lKG ^{s)H ^{s) =  {2} ^  \ ) n  K > a  (8-54)

IK G \ (5 )// | (5 ) =  2 jĩ ĩ  K < ữ  (8-55)

fo r  j  =  0. ± 1 , ± 2 ,  . . . , the root loc i s im p ly  represent a m apping o f  the real axis o f  the 
L (i)-p la n e  or the G (i)//(5 )-p lane  onto the 5-pIane. In  fact, fo r  the R L  a : >  0, the mapping 
points are on the negative real axis o f  the L (j)-p lane , and, fo r the R L  A" <  0. the mapping 
points are on the positive real axis o f the L(5)-plane. I t  was pointed out earlier that the 
m apping from  the j-p lane  to the function  plane fo r  a rational function is single valued, but 
the reverse process is m ultivalued. As a sim ple illus tra tion , the N yquist p lo t o f  a type-1
th ird -o rder transfer function G(s)H{s) that coưesponds to  points on the ỹcư-axis o f  the
i-p lane  is shown in  Fig. 8-21. The root loc i fo r the same system are shown in  F ig. 8-22 as a



4 3 8  Chapter 8. Frequency-Domain Analysis

Figure 8-21 Polar p lo t o f  G {s)H {s) =  A’ / fs is  +  o )(5  +  b)] in te rpreted as a m apping o f  the 

ýco-axis o f  the 5-plane onto the G (i)W (j)-p lan e.

Figure 8-22 Root-locus diagram o f C{s)H{s) =  ^^/[5(5 +  o)(s +  è)| interpreted as a mapping 
o f the real axis o f  the C (.? )//(j)-p lane onto the i-p lane.

mapping o f  the real axis o f  the G (.Ỹ)//(i)-p lane onto the i-p lane . N ote that, in  th is case, eacl 
point o f  the G(s)His)-p\ane corresponds to  three points in  the .9-plane. The ( - 1 .  ỳO) point 0 
the G (i) / /( i) -p la n e  corresponds to  the tw o points where the root loci intersect the jco-a\i 
and a po in t on the real axis.

The N yqu is t p lo t and the root loc i each represent the mapping o f  on ly  a very limite( 
portion o f  one dom ain to the other. In general, i t  w ou ld  be useful to  consider the mapping 0 

points other than those on the /cư-axis o f  the i-p lane  and on the real axis o f  the G{s)H(s) 
plane. For instance, we may use Ihe m apping o f  the constant-dam ping-ratio lines in thi 
.y-plane onto Ihe G(.v)//(.v)-plane fo r  the purpose o f  determ in ing rela tive stab ility  o f ứii 
closed-loop system. F ig. 8-23 illustrates the G(s)H(s) p lots that correspond to  differen 
constant-dam ping-ratio lines in  the .9-plane. As shown by curve (3 ) in Fig. 8-23. when th 
G(s)H{s) curve passes through the ( - 1. jO) po in t, it means that Eq. (8-52) is satisfied, ani 
ihe corresponding tra jectory in the i-p lane  passes through the root o f  the characterise 
equation. S im ila rly , we can construct the root loc i that correspond to  the sưaight line
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Figure 8-23 G(s)His) plots that correspond to constant-damping-ratio lines in the j-plane.

rotated at various angles fro m  the real axis in  the G (i)H (j)-p la n e , as shown in  F ig . 8-24. 
N otice  that these roo t loc i now  satisfy the cond ition  o f

lK G ị{s)H ị{s) =  {2 j +  l)7ĩ ~  0 K > 0  

O r the root lo c i o f  F ig. 8-24 must satisfy the equation 

1 +  G (s )H (i)e - '“  =  0 

fo r  the various values o f  9  indicated.

(8-56)

(8-57)

Figure 8-24 Root loci lhat correspond to different phase-angle loci in ihe G(5)W(j)-plai



►  8 - 8  I L L U S T R A T I V E  E X A M P L E S :  N Y Q U I S T  C R I T E R I O N  F OR  M I N I M U M - P H A S E  

T R A N S F E R  F U N C T I O N S

The fo llo w in g  examples serve to  illus tra te  the application o f  the N yq u is t criterion ị 
systems w ith  m inim um -phase loop  ttansfer functions. A l l  examples in  th is chapter ma 
also be solved using the A C S Y S  (see Chapter 9) or M A T L A B  Toolboxes incorporated i 
this chapter.

4 4 0  ► Chapter 8. Frequency-Domain Analysis

► EXAMPLE 8-8-1 Consider that a single-loop feedback control system has the loop tfansfer function

U s) = C{s]H(s) = ^ (8-5Í
i ( i  +  2 ) ( j + 10 )

which is o f minimum-phase type. The stability o f the closed-loop system can be conducted b 
investigating whether the Nyquisi plot o f L[jù))/K  for 0) =  00 to 0 encloses the ( — 1. jO) point, Th 
Nyquist plot oỉL{jcư)/K  may be plotted using freqtool. Fig. 8-25 shows the Nyquist plot ofL{jai}/i 
for O) =  DC to 0. However, because we are interested only in whether the critical point is enclosed, i  
general, it is not necessary to produce an accurace Nyquist plot. Because the area that is enclosed b 
the Nyquistploi is to the left o f the curve, traversed in the direction that corresponds to íư =  DC toOo: 
the Nyquist path, all that is necessary to determine stability is lo find the point or points at which th 
Nyquist plot crosses the real axis in the Lịjct})/K-plans. In many cases, information on th' 
intersection on the real axis and the properties o f L(jco)/K  ai oi =  oo and HI =  0 would allov 
the sketching o f the Nyquist plot without actual plotting. We can use the following steps to obtain. 
sketch o f the Nyquisi plot o f L{j(o)/K.

1. Substitute J =  in L(s).
Setting i  =  jùj in Eq, (8-58). we get

L{jco)/K =
jto{ jùj + 2){ ja> + 10 )

2. Substituting w =  0 in the last equation, we get the zero-frequency property o f Ujai), 

L {j0 )/K  = x : - 9 0 °  (8-60

Figure 8-25 Nyquist plot of

L (s)/K  -------------- ?---------- - foi
'  s{s +  2) ( s + \0)

t o =  X  Ì.O ừ) =  0.
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Toolbox 8-8-1
M A T L A B  s ta te m e n ts  f o r  F ig . 8 -2 5  

w = 0 .1 : 0 . 1 : 1000;
num = [ 1 ] ;
d e n =  c o n v ( c o n v ( [ l  1 0 ] , [ 1 , 2 ] ) , [ 1 0 ] ) ;  
[ r e , im ,w ]  = n y q u is tC n u m .d e n .w ) ; 
p l o t C r e , i m ) ;
a x i s ( [ - 0 . 1  0 .0 1  - 0 . 6  0 . 0 1 ] )  
g r i d

3 . S u b s titu t in g  OJ =  o c  in  E q . (8 -5 9 ) , th e  p ro p e r ty  o f  th e  N y q u is t p lo t a t in fin ite  f re q u e n c y  is 
established.

Z .( jo c ) /A -  =  0 / - 2 7 0 "  (8 -6 1 )

Apparently , these results are ve rified  by the p lo t shown in  F ig. 8-25.

4 . T o  fin d  th e  in ie rsec t(s )  o f  th e  N y q u is t p lo t w ith  th e  rea l a x is , i f  any, w e ra tio n a liz e  L { ) 0j ) / K  
by  m u lt ip ly in g  th e  n u m e ra to r  a n d  th e  d e n o m in a to r  o f  th e  e q u a tio n  by th e  c o m p lex  
conjugate o f  the denom inator. Thus, Eq. (8-59) becomes

r / r  , / r .  [ - 1 -  ýcy (20  -  cy-) ]

+  > ( 2 0  -  -  M 2 0  -  0,2)]
(8-62)

[ - ] 2 o j - j ( 2 0 - o j ^ ) ]
“ w (1 4 4 w 2 - i- (2 0 -w 2 ) ]

5 . T o  find  th e  p o ss ib le  in te rse c ts  on  th e  rea l a x is , w e  se t th e  im a g in a ry  p a rt o f  L { jù j ) /K  to  zero . 
The result is

T h e  so lu t io n s  o f  th e  Last e q u a t io n  a re  Cti =  o c , w h ic h  is  k n o w n  to  b e  a  s o lu t io n  a t L { j to } /K  =  0 . 
and

0 J = ± V 1 0  rad/sec (8 -64 )

B e ca u se  ỪJ is p o s itiv e , th e  c o rre c t a n sw e r  is  i f  =  y /w  rad /s ec . S u b s titu t in g  th is  fre q u en c y  in io  
Eq. (8-62), we have the intersect on the real axis o f  the i,(_/tu)-plane at

í . ( jV 2 Õ ) / * -  = ------' ^  =  -0 .0 0 4 1 6 7  (8-65)
V / 2880

T h e  la s t  five s te p s  s h o u ld  le a d  to  an  a d e q u a te  sk e tc h  o f  th e  N y q u is t p lo t o f  L ( jo j } /K  sh o r t o f  
p lo ttin g  it. Thus, we sec that, i f  K  is less than 240. the intersect o f the L( joj) locus on the real axis 
w o u ld  b e  to  th e  r ig h t o f  th e  c rit ic a l p o in t [ - 1 .  jOy. th e  la lte r  is n o t e n c lo s e d , a n d  ih c  sy s te m  is 
s ta b le . I f  =  2 4 0 . th e  N y q u is t p lo t  o f  u  jo j)  w o u ld  in te rsec t th e  re a l a x is  a t th e  - 1 p o in t,  a n d  th e  
sy s te m  w o u ld  b e  m a rg in a lly  sta b le . In i h i ^ a s e ,  th e  c h a ra c te r is t ic  e q u a tio n  w o u ld  h a v e  tw o  ro o ts  
on the ýai-axis in the i-p lan e  at 5 =  ± ý \/2 Õ - I f  the ga in is increased to  a value beyond 240, the
in le rsecl w ou ld  be to  the le ft o f the - 1  po in t on the real axis, and the system w ou ld  be unstable.
W hen a: is negative, we can use the ( +  1, ;0 )  po in t in th eZ .! > j) -p la n e  as the c r it ic a l po in t. F ig. 8-25 
sh o w s th a t, u n d e r  th is  c o n d itio n , th e  +1 p o in t  o n  ih e  rea l a x is  w o u ld  b e  e n c lo s e d  fo r  a ll n e g a tiv e
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Figure 8-26 R L o f L ( j )  =
j ( j  +  2 ) ( i +  10)'

values o f  K. and the system w o u ld  a lw ays be unstable. Thus, the  N y q u is t c r ite r io n  leads to the 
con c lus ion  tha t the system  is  stable in  the range o f  0  <  AT <  240. N ote  tha t a p p lica tio n  o f  Ihe Routh- 
H u rw itz  s ta b ility  c n te r io n  leads to  th is  same result.

F ig. 8-26 shows the roo t loc i o f  the characteristic equation o f  the system described by the loop 
ưansíer fu nc tio n  in  Eq. (8-58). The corre la tion  between the N yqu is t c r ite r io n  and ứte root ioci is 
easily observed.

Toolbox 8-8-2
M A T LA B  statem ents fo r  Fig. 8-26

d e n = c o n v ( [ l 2 0 ]  , [ 1 1 0 ] ) ;  
m y s y s = t f ( . 0 0 0 1 , d e n ) ; 
r lo c u s ( m y s y s ) ;
t i t l e C  'R o o t  l o c i  o f  t h e  s y s t e m ’ )  :

EX AM PLE 8-8 -2  Consider the characteristic equation

+  (2 í : + 1  )s -  +  (2 a : +  5 ) j  + 1  =  0 

D iv id in g  both sides o f  the last equation by the terms that do no t conta in K. we have 

Ks(s^ + 2 s  + 2)
=  ' + - ? T 1 7 T T

, ! ự  +  ỉ s  +  2)

i  =  0
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w h ic h  is  a n  im p ro p e r  fu n c tio n . W e  c an  o b ta in  th e  in fo rm a tio n  to  m a n u a lly  sk e tch  th e  N y q u is t p lo t  o f  
LeẬs)  to  d e te rm in e  th e  s ta b ili ly  o f  th e  sy s te m . S e ttin g  s =  j i o  in  E q. (8 -6 8 ) , w e  g e t

K  { ' \ - a ? ) + 5 ja >

F ro m  th e  Iasi e q u a tio n , w e  o b ta in  th e  tw o  e n d  p o in ts  o f  th e  N y q u is t p lo t:

= 0 Z 9 0 °  a n d  L ^ , ( j o o )  =  ooZ90® (8 -7 0 )

R a iio n a liz in g  E q . ( 8 '6 9 )  by  m u lt ip ly in g  its  n u m e ra to r  a n d  d e n o m in a to r  b y  th e  c o m p le x  c o n ju g a te  o f  
th e  d e n o m in a to r, w e get

I !  í l - a f ỹ + 2 5 a p -

T o  find  th e  p o s s ib le  in te rse c ts  o f  th e  L g q { jc o ) /K  p lo t on  th e  rea l a x is , w e  se t ữ ie  im a g in a ry  p a rt o f  
E q . (8 -7 1 )  to  ze ro . W e g e l cu =  0  a n d

0.“ +  7 o)2 +  2  =  0  (8 -7 2 )

(8 -6 9 )

[8-71)

Toolbox 8-8-3
M A T L A B  s ta te m e n ts  f o r  F ig . 8 -2 7

w = 0 .1 : 0 . 1 : 1 0 0 0 ;  
n u m = [ l  2 2 0 ] ;  
d e n =  [ 1 5  1 ] ;
[ r e , im , w ]  = n y q u is t ( n u m , d e n , w ) ; 
p l o t ( r e , i m ) I  
a x i s a - 2  1 - 1 5 ] ) ;  
g r i d

W e  c a n  s h o w  th a t  a l l  th e  f o u r  r o o t s  o f  E q .  ( 8 - 7 2 )  a r e  im a g in a r y ,  w h ic h  i n d ic a t e s  th a t  th e  

L e q { jo j ) lK  lo c u s  in t e r s e c t s  th e  r e a l  a x is  o n ly  a t  ứ) =  0 . U s in g  th e  i n f o r m a t i o n  g iv e n  b y  E q .  

( 8 - 7 0 )  a n d  th e  f a c t  t h a t  th e r e  a r e  n o  o th e r  in te r s e c t io n s  o n  th e  r e a l  a x is  th a n  a t  it) =  0 ,  th e  

N y q u i s t  p lo t  o f  L e q { jo j) ỊK  is  s k e t c h e d  a s  s h o w n  in  F ig .  8 - 2 7 .  N o t ic e  th a t  th i s  p lo t  is  

s k e t c h e d  w i th o u t  a n y  d e t a i l e d  d a t a  c o m p u te d  o n  L e q {} (ừ )ỊK  a n d ,  in  f a c t ,  c o u ld  b e  g r o s s ly  

in a c c u r a t e .  H o w e v e r ,  t h e  s k e t c h  i s  a d e q u a te  t o  d e t e r m in e  th e  s t a b i l i t y  o f  t h e  s y s te m .

Figure 8-27 N y q u is t p lo t o f  

5 ( >  +  25 +  2 )

5- +  5 j  +  1

K

10 O) =  0.
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Figure 8-28 Nyquist plot o f K /L e tiijw )

/  L , , { s )  s ( ^  +  2 j  +  2 )  '
fo r  fo r  w  =  00 to

K  +  Ị

w  =  0.

Figure 8-29 RL o f
, , ,  K s { s ^ + 2s +  2 ) 

j 2 + 5 5 + I  ■

B e c a u s e  th e  N y q u i s t p l o t  in  F ig .  8 - 2 7  d o e s  n o t  e n c lo s e  t h e  ( - 1 ,  jO )  p o in t  a s  CƯ v a r ie s  from

o o  to  0 ,  th e  system i s  s t a b l e  f o r  a l l  f in i te  p o s i t i v e  v a lu e s  o f  K .

F ig .  8 - 2 8  s h o w s  th e  N y q u i s t  p lo t  o f  E q .  ( 8 - 6 6 ) ,  b a s e d  o n  th e  p o l e s  a n d  z e r o s  o f  Le Ặ s)/ 

K  in  E q .  ( 8 - 6 8 ) .  N o t i c e  that th e  R L  s ta y s  in  t h e  l e f t - h a l f  5 - p Ia n e  f o r  a l l  p o s i t i v e  v a lu e s  o f  K, 

a n d  th e  r e s u l t s  c o n f i r m  th e  N y q u i s t  c r i t e r io n  r e s u l t s  o n  s y s t e m  s ta b i l i ty .

K  (1  -  +  5 j i u
(8 -7 3 )

f o r  íư  =  o o  to  0 . T h e  p lo t  a g a in  d o e s  n o t  e n c lo s e  t h e  ( - 1 ,  ; 0 )  p o in t ,  a n d  th e  s y s t e m  is  ag ain  

s ta b l e  f o r  a l l  p o s i t iv e  v a lu e s  o f  K  b y  i n t e r p r e t i n g  th e  N y q u i s t  p lo t  o f  K / L f q [ j ( o ) .

F ig . 8 - 2 9  s h o w s  th e  R L  o f  E q .  ( 8 - 6 7 )  f o r  a :  >  0 ,  u s in g  th e  p o l e - z e r o  c o n f ig u r a t io n  o f  

Leq(s) o f  E q .  (8 -6 8 ). B e c a u s e  th e  R L  s ta y s  in  th e  l e f t - h a l f  j - p l a n e  fo r  a l l  p o s i t i v e  values o f  

K ,  t h e  s y s te m  is  s ta b le  f o r  0  <  Ẫ!’ <  0 0 , w h ic h  a g r e e s  w i th  th e  c o n c lu s i o n  o b ta in e d  w ith  the 

N y q u i s t  c r i t e r io n .

8-9  EFFECTS OF A D D IN G  POLES A N D  ZER O S TO L(s) ON T H E  S H A P E  
OF THE N Y Q U IS T  PLOT

B e c a u s e  th e  p e r f o r m a n c e  o f  a  c o n t r o l  s y s te m  is  o f t e n  a f f e c te d  b y  a d d in g  a n d  m o v in g  p o le s  

a n d  z e r o s  o f  th e  l o o p  t r a n s f e r  f u n c t i o n ,  i t  is  im p o r t a n t  t o  i n v e s t i g a t e  h o w  th e  N y q u i s t  p lo t  is 

a f f e c t e d  w h e n  p o le s  a n d  z e r o s  a r e  a d d e d  t o  U s ) .
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Lf;iO)-ptaiie
P ^=  0. Z’ = 0, <i>, I *  0" for stability. 

{Refer to Appendix F.)

Critical point
« > a: > 0

(not enclosed) 

Closed-loop stable

R e t

Critical point 
0 > A - > - l  

(not enclosed) 
Closed-loop stable

F ig u re  8-30 N y q u is t p lo t o f

L e t  u s  b e g in  w i th  a  f i r s t - o r d e r  t r a n s f e r  f u n c t i o n  

K
L{s) =

1 + T i 5
(8-74)

w h e r e  r, i s  a  p o s i t i v e  r e a l  c o n s t a n t .  T h e  N y q u i s t  p lo t  o f  U J (0 )  f o r  0  <  O) <  o c  i s  a  

s e m ic i r c l e ,  a s  s h o w n  in  F ig .  8 - 3 0 .  T h e  f ig u r e  a l s o  s h o w s  th e  in t e r p r e t a t i o n  o f  th e  c lo s e d -  

lo o p  s t a b i l i t y  w i th  r e s p e c t  t o  t h e  c r i t i c a l  p o in t  f o r  a l l  v a lu e s  o f  K  b e tw e e n  - 0 0  a n d  0 0 .

Addition o f Poles at s =  0
C o n s i d e r  th a t  a  p o le  a t  Í  =  0  i s  a d d e d  t o  th e  t r a n s f e r  f u n c t i o n  o f  E q .  ( 8 - 7 4 ) ;  th e n

L{s) =
K

(8-75)

B e cau se  a d d in g  a pole at 5 =  0 is e q u iv a le n t to  d iv id in g  U s )  b y  ỹcư, the phase o f  U j(o )  is  

r e d u c e d  b y  9 0 °  a t  b o th  z e r o  a n d  in f in i t e  f r e q u e n c ie s .  I n  a d d i t i o n ,  th e  m a g n i tu d e  o f  H j o i )  a t  

tư =  0  be com e s in f in ite .  F ig . 8 -31  i l lu s tra te s  the N y q u is tp lo t  o ĩU j( o )  in  E q , (8 -7 5 )  a n d  the 

c lo s e d - lo o p  s ta b i l i ty  i n t e r p r e t a t i o n s  w i th  r e s p e c t  t o  th e  c r i t i c a l  p o in ts  f o r  —o c  <  <  oo. In

j l m L

z.(y<u)-plane

1, /> = 0. <i>i 1 = -9 0 °  for stability 
{Refer 10 Appendix F.)

1 < » = -  1 ,
0  1 R c L

Critical point / Critical point
~  > AT > 0 / / : < 0

(not enclosed) / (enclosed)
Closed-loop stable Closed-loop unstable

Enclosed
3 area

Ó

Figu re  8-31 N y q u is t p lo t o f  

“  J(1 +  r , 5 ) '
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g e n e r a l ,  a d d in g  a  p o l e  o f  m u l t i p l i c i t y  /> a t  J  =  0  t o  t h e  t f a n s f e r  f u n c t i o n  o f  E q .  ( 8 - 7 4 )  w iu  

g iv e  th e  f o l l o w in g  p r o p e r t i e s  t o  t h e  N y q u i s t  p io t  o f  L { j ( o ) :

l im  lL { jc o )  =  - ( p +  1 ) 9 0 ° (8 -7 6 )

l im  i L i j c o )  =  -  p  X 9 0 °
cu—0

(8 -7 7 )

l i m  |L ( ;it> ) | =  0
(0-^00

(8 -7 8 )

l im  \L ( jc o )  1 — o o
w—0

(8 -7 9 )

T h e  f o l lo w in g  e x a m p le  i l l u s t r a t e s  th e  e f f e c t s  o f  a d d in g  m u l t i p l e - o r d e r  p o l e s  t o  U s ) .

E X A M PL E  8 -9 -1  F ig . 8 -3 2  sh o w s th e  N y q u is t p lo t  o f

a n d  th e  c rit ic a l p o in ts , w ith  s ta b ili ty  in te rp re ta t io n s . F ig . 8 -3 3  i llu sừ a te s  th e  sa m e  fo r

K

53(1+ r,i)

(8-80)

(8-81)

• A d d in o  p o le s  a t V =  0  to  a c o n c lu s io n  f ro m  th e s e  i l l u s t r a t i o n s  is  th a t  th e  a d d it io n  o f  p o le s  a t J  =  0  to  a  lo o p  tran sfe r 
lo o p  u-ansfcr fu n c tio n  w ill fu n c t io n  w in  a f f e c t  th e  s ta b i l i ty  o f  th e  c lo s e d - lo o p  s y s te m  a d v e rs e ly . A  s y s te m  th a t  h a s  a loop
red u c e  s ta b ili ty  o f  th e  t r a n s fe r  fu n c t io n  w ith  m o re  th a n  o n e  p o le  a t Í  =  0  ( ty p e  2  o r  h ig h e r )  is  l ik e ly  to  b e  u n s ta b le  or

c lo se d - lo o p  sy stem . d if f ic u l t  to  s ta b i l iz e .

j l m L

z,(ji«>-planc

P ^ = 2 ,P = 0  
# 1 , =  - J 8 0 “ for stability 
(Refer to AppendUF.)

® = “  I ,

o - m ---------------
------------------ \

-1 0 1 ReZ,

Enclosed Critical point Critical point
« > K > 0 a: < 0

^  ( en c lo se ) (enclosed)
Closed-loop unstable Closed-lnop unsuble

F ig u re  8-32 N y q u is t p lo t o f  L{s)

Addition of Finite Nonzero Poles
W h e n  a  p o le  a t  J  =  - 1 / T 2 ( 7 '2  > 0 )  is  a d d e d  to  th e  f u n c t i o n  Z -(i) o f  E q . { 8 -7 4 ) ,  w e  h av e

L{s)  = (8-82)
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j l m L

Critical point
~ > a: > 0
(enclosed) 

Closed-loop unstable

L(ỳíU)-plane 

P^ = 3 , P = Q
> , =  -270° for sub ility
\  (Refer to Appendừ F.)

Critical point
a:< 0

(enclosed) 
Closed-loop unstable

Figure 8-33 Nyquist plot o f

T h e  N y q u is t  p lo t  o f  LỤù)) a t O) =  0  is  n o t a f fe c te d  b y  th e  a d d it io n  o f  t í ie  p o le , s ince

l im  L ( j(v )  =  K  (8 -8 3 )

T h e  v a lu e  o f  L (  jci}) a t O) =  00 is

_
l im  L ( jù ))  — l im  ^  ‘  - 

J--O C T] T ic ir
=  0 ^ - 1 8 0 ° (8 -8 4 )

T h u s , th e  e f fe c t o f  a d d in g  a p o le  a t J  =  - 1  /7 2  to  th e  tra n s fe r  fu n c t io n  o f  E q . (8 -7 5 )  is 

to  s h if t  th e  phase o f  th e  N y q u is t  p lo t  b y  —9 0 °  a t (U =  oo, as sh o w n  in  F ig . 8 -3 4 . T h e  f ig u re  

a lso  sho w s th e  N y q u is t  p lo t  o f

"  ( i  +  r , j ) ( i + V ) ( i  +  r 3. )

• Adding nonzero poles to  w h e re  tw o  n o n ze ro  p o le s  have been ad de d  to  th e  tra n s fe r  fu n c t io n  o f  E q . (8 -7 4 )

the loop transfer function  {T \ ,  T i,  Tz, >  0 ) .  In  th is  case, th e  N y q u is t  p lo t  a t CƯ =  oo  is  ro ta te d  c lo c k w is e  b y  a n o th e r

also reduces s tu b ilily  o f  the 9 0 °  f r o m  th a t o f  E q . (8 -8 2 ). These examples show the adverse effects on closed-loop
closed-loop system. s ta b ility  when poles are  added to  ihe loop transfe r fu n c tio n .  T h e  c lo s e d - lo o p  s ys te m s w ith

th e  lo o p  tra n s fe r  fu n c tio n s  o f  E qs. (8 -7 4 )  an d  (8 -8 2 )  are a l l  s ta b le  as lo n g  as K  is  p o s it iv e . 

T h e  sys te m  rep re sen ted  b y  E q . (8 -8 5 )  is  u n s ta b le  i f  th e  in te rs e c t o f  th e  N y q u is t  p lo t  o n  the  

n e g a tiv e  rea l a x is  is  to  th e  le f t  o f  th e  ( - 1 ,  ýO) p o in t w h e n  K  is  p o s it iv e .

Figure 8-34 Nyquist plots. Curve (1):

' (1 +7 -2 j)(H -7 -3 i). 
(1 +  T i i )



448 Chapter 8. Frequency-Domain Analysis

Toolbox 8-9-1
M A TLA B  statem ents f o r  F ig. 8-34

w « 0 :0 .0 1 : 1 0 0 ;  
num = [ 1 ] ;

d e n  = c o n v ( [ l  1 ]  , [ 1 1 ] )
[ r e , i m , w ] = n y q u is t ( n u m , d e n , w ) ; 
p l o t ( r e , i m , ‘ b ' ) ;

d e n  = c o n v ( c o n v ( [ l  1 ]  . [1  1 ] )  . [ 1  1 ] )  
[ r e , i m , w ] = n y q u is tC n u m .d e n ,w ) : 
p l o t ( r e , i m , ‘ r ' ) ;

a x i s ( [ - l  2 - 1 1 ] )  
g r i d

Addition of Zeros
I t  w as dem onstra ted  in  C ha p te r 5 tha t a d d in g  zeros to  the lo o p  tran s fe r fu n c tio n  has the e ffeci o f 

red uc ing  the ove rshoot and ử ie general e f fe c t o f  s ta b iliza tio n . In  te rm s  o f  the  N y q u is t criterion, 

th is  s ta b iliza tio n  e ffe c t is  ea s ily  dem onstra ted, s ince Ihe m u lt ip lic a t io n  o f  the te rm  (1 +  Tjs)  to 

ứ ie lo o p  tran sfe r fu n c tio n  increases the  phase o f  U s)  b y  9 0 °  a t w  =  oo . T h e  fo llow ing  example 

illusư a tes the  e ffe c t on  s ta b il ity  o f  ad d in g  a ze ro  at - l / T d  to  a lo o p  ta n s fe r  fu nc tio n .

• EXAMPLE 8-9-2 Consider thai the loop transfer function o f  a closed-loop conưol system is

^ 5 )  =  -j{i + r,i)(i + r2j) 
It can be shown that the closed-loop system is stable for 

, 7 1 + 7 2
0 < í : <  - (8-87)

Suppose that a zero at J =  - 1/T d Ợ đ  > 0) is added Ỉ0 the transfer function o f Eq. (8-86); then.

• Adding zeros to the loop L.(s) =  ^
s { ì + T ị s ) { ì  +  T2s)

(8-88)
transrer function has the
effect 01' stabilizing the The Nyquist plots o f the two transfer functions o f Eqs. (8-86) and (8-88) are shown in Fig. 8-35. The
closed-loop system. effect o f the zero in Eq. (8-88) is to add 90° to the phase of the LO'tw) in Eq.(8-86)at£t; =  DC while not

j i m L

Figure 8-35 Nyquist plots. Curve (1);

L{s) =
J(I + T ị s ) ị l  +  T2s)' 

K ị l + T d s )  
í ( l  +  Tịs ){ ì  +  T2s ỹ

C urv 'c  (2):



a ffe c tin g  th e  v a lu e  a t CO =  0 . T h e  in te rs e c t o n  th e  n e g a tiv e  rea l a x is  o f  th e  ZXỹw)-plane is  m o v e d  fro m  
- K T ịT 2 l Ợ \  + T 2 ) l o - K { T ị T 2 - T d T \  - T đ T z ) / { T ị  +  T i) .  T h u s , th e  sy s te m  w ith  th e  io o p ư a n s f e r  

f u n c tio n  in  E q . (8 -8 8 )  is  s ta b le  fo r

0 < K <  (8 -8 9 )
T ,T i - T j {T ị + T 2 Ì

w h ic h , f o r  p o s it iv e  Td a n d  K, h a s  a  h ig h e r  u p p e r  b o u n d  th a n  th a t o f  E q . (8 -8 7 ).

► 8-10 R E L A T IV E  S T A B IL I T Y :  G A I N  M A R G I N  A N D  P H A S E  M A R G I N

W e  ha ve  d e m o n s tra te d  in  S e c tio n s  8 -2  ứ ư o u g h  8 -4  th e  g e n e ra l re la t io n s h ip  b e tw e e n  th e  

re so na nce  p e a k  Mp  o f  th e  fre q u e n c y  resp on se  an d  th e  m a x im u m  o v e rs h o o t o f  th e  t im e  

resp on se . C o m p a r is o n s  and c o r re la tio n s  b e tw e e n  fre q u e n c y -d o m a in  an d  t im e -d o m a in  

p a ra m e te rs  such as these are u s e fu l in  th e  p re d ic t io n  o f  th e  p e r fo rm a n c e  o f  c o n tro l 

sys te m s. In  g e n e ra l, w e  are in te re s te d  n o t o n ly  in  th e  a b so lu te  s ta b i l i ty  o f  a sys te m  b u t a lso  
.  R e la tive  s ta b ili ty  is used h o w  s t a b l e  i t  is .  T h e  l a t t e r  i s  o f t e n  c a l l e d  relative stability. I n  th e  t im e  d o m a in ,  r e l a t i v e  

to in d ic a te  how  s ta b le  a  s t a b i l i t y  i s  m e a s u r e d  b y  p a r a m e t e r s  s u c h  a s  t h e  m a x im u m  o v e r s h o o t  a n d  th e  d a m p in g  r a t io ,

system IS. f re q u e n c y  d o m a in , th e  reso na nce  p e a k  Mp  can  be  used to  in d ic a te  re la t iv e  s ta b ility .

A n o th e r  w a y  o f  m e a su r in g  re la t iv e  s tab ility  in  th e  fre q u e n c y  dom ain is  b y  h o w  close the 

N y q u is t  p lo t  o f  L {j(tí)  is  to  th e  ( — 1, jQ ) p o in t.

8-10 Relative Stability: Gain Margin and Phase Margin 4 449

Toolbox 8-10-1
M ATLAB statem ents f o r  F ig . 8-35

w = 0 : 0 . 0 1 : 1 0 0 ;  
num = [ 1 ] ;
d e n  =  c o n v ( c o n v ( [ l  1 ]  , [  1 1 ]  )  . [ 1  0 ]  ) 
[ r e , i m , w ] = n y q u is t ( n u m . d e n , w ) ; 
p l o t ( r e , i m , ' b ' ) ;  
h o ld  on

num = [ 1 1 ] ;
d e n  =  co n v C c o n v C  [1  1 3 . [ 1 1 ] ) . [ 1 0 ] )  
[ r e  , i n , w ] =  n y q u is tC n u m .d e n ,w ) ; 
p l o t ( r e , i m , ' r ’ ) ;

a x is C C -2  2 - 1 1 ] )
g r i d
h o ld  on

d e n  = co n vC co n vC  [ 1 1 ] , [ 1 1 ] ) , [ 1 1 ] )  
[ r e , i m , w ] = n y q u is t ( n u m . d e n , w ) : 
p l o t ( r e , i m , ‘ r ’ ) :

a x i s C [ - l  2 - 1 1 ] )
g r i d

T o  d e m o n s tra te  th e  co n c e p t o f  r e la t iv e  s ta b i l i ty  in  th e  fre q u e n c y  d o m a in , th e  N y q u is i 

p lo ts  a n d  the c o ư e s p o n d in g  step responses and fre q u e n c y  responses o f  a ty p ic a l th ird -o rd e r  

sys te m  are sh o w n  in  F ig . 8 -3 6  f o r  fo u r  d if fe re n t va lu e s  o f  lo o p  g a in  K. I t  is  a ssum ed th a t the 

fu n c t io n  U jw )  is  o f  m in im u m -p h a s e  typ e , so th a t (he e n c lo su re  o f  th e  ( - 1 .  jữ )  p o in t  is 

s u f f ic ie n t fo r  s ta b i l i ty  an a lys is . T h e  fo u r  cases are  e va lu a te d  as fo llo w s .
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;  Im I

L{jcữ)-p\ane m -

1 X-— ^ íứ -o o

/
0  R eL

0

ệ(}(ứ)
-2 7 0 ”

(b) Stable but oscillatory system

Figure 8-36 C o rre la tio n  

a m o n g  N y q u is t p lo ts , s tep  
re sp o n se s , a n d  fre q u en c y  
resp o n se s .

1. F ig . 8-36(a); the h o p  g a in  K  is lo w :  T h e  N y q u is t  p lo i  o f  L { j(o )  in te rs e c ts  the 

n e g a t iv e  re a l a x is  a t a p o in t  th a t is  q u ite  fa r  to  th e  r ig h t  o f  th e  ( - 1 .  ; 0 )  po in t. 

T h e  c o ư e s p o n d in g  s te p  re s p o n s e  is  q u ite  w e l l  d a m p e d , a n d  th e  v a lu e  o f  M r o f 

th e  fre q u e n c y  re sp o n se  is  lo w .



2 . F ig . 8 -36 (b ); K ừ  increased: T h e  in te rs e c t is  m o v e d  c lo s e r  to  th e  ( - 1 .  ; 0 )  p o in t ;  

th e  sys te m  is  s t i l l  s ta b le , because th e  c r it ic a l  p o in t  is  n o t e n c lo se d , b u t th e  step 

resp on se  has a la rg e r  m a x im u m  o ve rsh o o t, and M r  is  a lso  la rge r.

3 . F ig . 8-36(c); K  is increased fu r th e r :  T h e  N y q u is l p lo t  n o w  passes th ro u g h  the 

( - 1 ,  y o )  p o in t ,  and th e  sys te m  is  m a rg in a l ly  s ta b le . T h e  s te p  resp on se  becom e s 

o s c i l la to r y  w i th  co n s ta n t a m p litu d e , an d  M r  becom e s in f in ite .

• Mr c e a se s  to  h a v e  a n y  4 .  F ig . 8-36(d); K  is  r e la t iv e ly  very la r g e :  T h e  N y q u is t  p lo t  n o w  e n c lo s e s  th e

m eaning when the closed- ( — 1, y o )  p o in t, and th e  system  is unstable. T h e  step response becom es unbounded,

loop system is unstable. T h e  m ag n itu d e  c u rve  o f  \M {j(i>) |-versus-cư ceases to  have a ny s ign ifican ce . In  fa c t, fo r

th e  unstab le  system , the va lue  o f  M r  is  s t i l l  f in ite !  In  a l l  the above ana lys is , the phase 

c u rve  ệ {  jo j)  o f  the c lo se d - lo o p  f req ue ncy  response a lso g ive s q u a lita tiv e  in fo rm a tio n  

ab ou t s ta b ility . N o tic e  ử ia t ử ie ne ga tive  s lope o f  the phase cu rve  becom es steeper as 

the  re la tive  s ta b il ity  decreases. W h e n  the system  is  unstab le , ứ ie s lope be yo n d  the 

resonant freq ue ncy  becom es p o s itive . In  p ra c tice , th e  phase cha rac te ris tics  o f  the 

c lo se d - lo o p  system  are se ld om  used fo r  ana lys is  and de s ign  purposes.
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8-10-1 Gain Margin (GM)

• T he defin itio n  o f  ga in  
m argin g iven  h e re  is  fo r 
m in im um -phase  loop  
tran sfe r functions.

G a i n  M a r g i n  ( G M )  i s  o n e  o f  th e  m o s t  f r e q u e n t ly  u s e d  c r i t e r i a  f o r  m e a s u r in g  r e la t iv e  

s ta b i l i ty  o f  c o n tro l system s. In  th e  fre q u e n c y  d o m a in , g a in  m a rg in  is  used to  in d ic a te  th e  

c lose ne ss  o f  th e  in te rs e c tio n  o f  th e  n e g a tiv e  re a l a x is  m ade b y  th e  N y q u is t  p lo t  o f  u  jo j)  to  

th e  ( - 1 ,  ýO) p o in t.  B e fo re  g iv in g  th e  d e f in it io n  o f  g a in  m a rg in , le t  us f ir s t  d e fin e  th e  p h a se  

c r o s s o v e r  o n  th e  N y q u i s t  p lo t  a n d  th e  p h a s e - c r o s s o v e r  f r e q u e n c y .

P h a s e  C r o s s o v e r :  A  p h a s e - c r o s s o v e r  o n  th e  L { j( o )  p l o t  i s  a  p o in t  a t  w h ic h  th e  p lo t  

in te rse c ts  the  n e g a tiv e  re a l a x is .

P h a s e - C r o s s o v e r  F r e q u e n c y :  T h e  p h a s e - c r o s s o v e r  f r e q u e n c y  o jp  i s  t h e  f r e q u e n c y  

a t  t h e  p h a s e  c r o s s o v e r ,  o r  w h e r e

lL {jo .p ) =  180^ (8 -9 0 )

'  measured N y q u is t  p lo t  o f  ã lo o p  tra n s fe r  fu n c t io n  L { jo j)  th a t is  o f  m in im u rr i 'p h a s e  typ e  is

sh o w n  in  F ig . 8 -3 7 . T h e  ph ase -c ro sso ve r fre q u e n c y  is  de n o te d  as ojp, and th e  m a g n itu d e  o f

Figure 8-37 Definition o f the gain margin in
the polar coordinates.



U jio )  a\ <0 =  (0 p is  d e s ig n a te d  as \L { jo )p ) \.  T h e n , ứ ie  g a in  m a rg in  o f  th e  c lo se d - lo c  

sys te m  th a t has U s )  as i ts  lo o p  tra n s fe r  fu n c t io n  is  d e fin e d  as

g a in m a r g i„  =  G M  =  2 0 1 o g , „ ^ ^ ^  ,8-91

=  - 2 0 1 o g | | , | / , ( y a .p ) |< iB

O n  th e  ba s is  o f  ử iis  d e f in it io n ,  w e  ca n  d ra w  th e  fo l lo w in g  c o n c lu s io n s  ^ x > u t th e  gai: 

m a rg in  o f  th e  s ys te m  s h o w n  in  F ig . 8 -3 7 , d e p e n d in g  o n  th e  p ro p e rtie s  o f  th e  N y q u is t  plo(

1. T h e  IX jco) p lo t  does n o t in te rs e c t th e  n e g a tiv e  re a l a x is  ( n o  f in i te  n o n z e ro  phas 

c ro sso ve r).

| t ( j i U p )  I =  0  G M  =  oo  d B  (8-92

2 . T h e  L {j(ứ )  p lo t  in te rs e c ts  th e  n e g a tiv e  re a l a x is  b e tw e e n  (ph ase  c ro sso ve r lie; 

b e tw e e n ) 0  an d  th e  - 1  p o in t.

0 < | L ( ) < U p ) | < I  G M > O d B  (8 -93

3 . T h e  L(jcứ) p lo t  passes th ro u g h  {p h a se  c ro s s o v e r is  a t) th e  ( - 1 ,  ýO) p o in t.

\L ( ja ip ) \  =  \  G M  =  O d B  (8-94;

4 . T h e  z,(ỹíư) p lo t  en c lo se s  (ph ase c ro s s o v e r is  to  th e  le f t  o O  th e  ( - 1 ,  jO )  po in l.

\ L { j í O p ) ị> ĩ  G M < O d B  (8-95]

• Gain m argin is the amount B a sed  o n  th e  fo re g o in g  d is c u s s io n s , th e  p h y s ic a l s ig n if ic a n c e  o f  g a in  m a rg in  can be 
o f  g a in  in dB  (hat can  h e  s u m m a r i z e d  a s :

added 10 the loop before Ihe Q a i„  m a r g in  is  th e  a m o u n t  o f  g a in  in  d e c ib e ls  (d B )  th a t  c a n  h e  (u U e d  to  th e  h o p
cicised-loop system becomes c h s e d - lo o p  sy s te m  b e c o m e s  u n s ta b le .
u n sia b le .

• W h e n  th e  N y q u is t  p lo t  d o e s  n o t  in te rs e c t th e  n e g a t iv e  re a l a x is  a t a n y  fin ite  

n o n z e ro  fre q u e n c y , th e  g a in  m a r g in  is  in f in i t e  in  d B ;  th is  m e a n s  th a t ,  th e o re ti

c a l ly ,  th e  v a lu e  o f  th e  lo o p  g a in  c a n  be  in c re a s e d  to  in f i n i t y  b e fo re  in s ta b i l i ty  

o c c u rs .

• W h e n  th e  N y q u is t  p lo i o f  U jd ) )  passes th ro u g h  th e  ( - 1 ,  jũ )  p o in t ,  th e  g a in  m argin 

is  0  d B , w h ic h  im p lie s  th a t th e  lo o p  g a in  c a n  n o  lo n g e r  be inc re a se d , as th e  system  is 

a t th e  m a rg in  o f  in s ta b il ity .

•  W h e n  th e  p h a se -c ro sso ve r is  to  th e  le f t  o f  th e  ( - 1 ,  ; 0 )  p o in t ,  th e  phase m a rg in  is 

n e g a tiv e  in  d B , and th e  lo o p  g a in  m u s t be red uce d  b y  th e  g a in  m a rg in  to  achieve 

s ta b il ity .

G a in  M a r g in  o f  N o iu n in im u m -P h a s e  S ys te m s

C a re  m u s i be  ta k e n  w h e n  a t te m p t in g  to  e x te n d  g a in  m a r g in  as a m e a s u re  o f  re la t iv e  

s ta b i l i t y  to  s y s te m s  w i th  n o n m in im u m -p h a s e  lo o p  tr a n s fe r  fu n c t io n s .  F o r  such 

s y s te m s , a s y s te m  m a y  be  s ta b le  e ve n  w h e n  th e  p h a s e -c ro s s o v e r  p o in t  is  to  th e  le ft 

o f  ( - 1 ,  _/'0), an d  th u s  a n e g a t iv e  g a in  m a r g in  m a y  s t i l l  c o r re s p o n d  to  a s ta b le  sys te m .
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N e v e rth e le s s , th e  c lo s e n e s s  o f  th e  p h a s e -c ro s s o v e r  to  th e  ( - 1 ,  ýO) p o in t  s t i l l  g iv e s  an 

in d ic a t io n  o f  r e la t iv e  s ta b i l i ty .
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ase M a rg in  (P M )

T h e  g a in  m a r g i n  i s  o n ly  a  o n e - d im e n s io n a l  r e p r e s e n ta t i o n  o f  t h e  r e l a t i v e  s t a b i l i t y  o f  a  

c lo s e d - lo o p  s ys te m . A s  th e  na m e im p lie s , g a in  m a rg in  in d ic a te s  sys te m  s ta b i l i ty  w i th  

resp e c t to  ứ ie  v a r ia t io n  in  lo o p  g a in  o n ly . In  p r in c ip le ,  on e  w o u ld  b e lie v e  a  sys te m  w i th  a 

la rg e  g a in  m a rg in  s h o u ld  a lw a y s  be  re la t iv e ly  m o re  s ta b le  th a n  on e  w i th  a s m a lle r  g a in  

m a r g i n .  U n f o r tu n a t e ly ,  g a in  m a r g i n  a lo n e  is  in a d e q u a t e  t o  i n d i c a t e  r e l a t i v e  s t a b i l i t y  w h e n  

sys te m  p a ra m e te rs  o th e r  th a n  th e  lo o p  g a in  are su b je c t to  v a r ia t io n . F o r  in s ta n ce , th e  tw o  

sys te m s  rep re se n te d  b y  th e  IX jo ))  p lo ts  in  F ig . 8 -3 8  a p p a re n tly  h a ve  th e  sam e g a in  m a rg in . 

H o w e v e r ,  l o c u s  A  a c tu a l ly  c o r r e s p o n d s  t o  a  m o r e  s ta b l e  s y s t e m  th a n  lo c u s  B ,  b e c a u s e  w i th  

a n y  c h a n g e  in  t h e  s y s t e m  p a r a m e t e r s  th a t  a f f e c t  t h e  p h a s e  o f  l ị j ( ò ) ,  lo c u s  B  m a y  e a s i l y  b e  

a l t e r e d  to  e n c lo s e  th e  ( — I , jO )  p o in t .  F u r th e r m o r e ,  w e  c a n  s h o w  t h a t  th e  s y s te m  B  a c tu a l ly  

h a s  a  la r g e r  M r  t h a n  s y s te m  A.
T o  in c lu d e  th e  e f f e c t  o f  p h a s e  s h i f t  o n  s t a b i l i t y ,  w e  in ư o đ u c e  t h e  p h a s e  m a r g i n ,  w h ic h  

re q u ire s  th a t w e  f ir s t  m ake  th e  fo llo w in g  d e f in it io n s :

G a in  C ro s s o v e r :  T h e  g a in  c ro s s o v e r is  a  p o in t  on  ứ ie  L {jù })  p lo t  a t w h ic h  th e  

m a g n i tu d e  o f  U j o j )  i s  e q u a l  t o  1.

G a i n - C r o s s o v e r  F r e q u e n c y :  T h e  g a in - c r o s s o v e r  f r e q u e n c y ,  (Og, i s  t h e  f r e q u e n c y  o f  

L {j(ú )  a i  th e  g a in  c rosso ve r. O r  w h e re

(8 -9 6 )

T h e  d e f in it io n  o f  phase m a rg in  is  s ta ted  as:

P h a s e  m a rg in  (P M ) is  d e f in e d  a s  th e  a n g le  in  d e g re e s  th r o u g h  w h ic h  th e  L (j(o ) p lo t  
m u s t  b e  r o ta te d  a b o u t  th e  o r ig in  so  th a t  th e  g a in  c r o s s o v e r  p a s se s  t h r o u g h  th e  ( - I ,  

jO )  p o in t.
F ig . 8 -3 9  s ho w s th e  N y q u is t  p lo t  o f  a ty p ic a l m in im u m -p h a s e  IX jio )  p lo t ,  an d  th e  phase 

a m in im u m - m a rg in  is  sh o w n  as th e  a n g le  b e tw e e n  th e  l in e  th a t passes th ro u g h  th e  g a in  c ro sso ve r and

jnsfe r function  th e  o r ig in .  In  c o n tra s t to  th e  g a in  m a rg in , w h ic h  is  d e te rm in e d  b y  lo o p  g a in , phase m a rg in

in d ic a te s  th e  e f fe c t o n  sys te m  s ta b i l i ty  du e  to  cha ng es  in  sys te m  pa ra m e te r, w h ic h

ion o f phase 
I here is fo r a

Figure 8-38 N yqu is t plo ts show ing systems w ith  
the same gain m argin but d iffe ren t degrees o f 
re lative s tability .
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Figure 8-39 P h a se  m arg in  
d e fin e d  in  th e  U j(u )-p \a iK .

•  P hase  m a rg in  is m easu red  
a t th e  g a in  cro ssove r.

th e o r e t i c a l l y  a l t e r  th e  p h a s e  o f  L (  jco ) b y  a n  e q u a l  a m o u n t  a t  a l l  f r e q u e n c ie s .  P h a s e  m a rg in  is 

th e  a m o u n t  o f  p u r e  p h a s e  d e l a y  th a t  c a n  b e  a d d e d  to  th e  l o o p  b e f o r e  th e  c lo s e d - lo o p  sy s te m  

b e c o m e s  u n s ta b le .

W h e n  th e  s y s te m  i s  o f  ứ ie  m in i m u m - p h a s e  t y p e ,  th e  a n a ly t i c a l  e x p r e s s io n  o f  th e  p hase  

m a r g i n ,  a s  s e e n  f r o m  F ig .  8 - 3 9 ,  c a n  b e  e x p r e s s e d  a s

p h a s e  m a r g i n  ( P M )  =  l L { j w g )  -  1 8 0 ° Í8 -9 7 )

w h e r e  (i)g is  th e  g a in - c r o s s o v e r  f r e q u e n c y .

C a r e  s h o u ld  b e  ta k e n  w h e n  i n t e r p r e t i n g  th e  p h a s e  m a r g i n  f r o m  th e  N y q u i s t  p lo t  o f  a 

n o n m in i m u m - p h a s e  t r a n s f e r  f u n c t i o n .  W h e n  th e  l o o p  t r a n s f e r  f u n c t i o n  is  o f  th e  non - 

th a t c an  b e  a d d e d  b e fo r^ ih e  n ú n im u m - p h a s e  t y p e ,  th e  g a in  c r o s s o v e r  c a n  o c c u r  in  a n y  q u a d r a n t  o f  th e  L ( 7 a > )-p la n e . and 

sy s te m  b e co m e s  u n sta b le , th e  d e f in i t io n  o f  p h a s e  m a r g i n  g iv e n  in  E q .  ( 8 - 9 7 )  i s  n o  lo n g e r  v a l id .

• P h a se  m a rg in  is the  
a m o u n t o f  p u re  p h a se  de lay

EXAMPLE 8-10-1 A s an  illu s tra tiv e  e x am p le  on  g a in  a n d  p h a se  m a rg in s , c o n s id e r  th a i th e  lo o p  ư a n s íe r  fu n c tio n  o f  a 
c o n ư o l sy s te m  is

» - >  —  5 ^ + 3 0 )

T h e  N y q u is t p lo t o f  U jo j)  is  sh o w n  in  F ig . 8 -4 0 . T h e  fo llo w in g  re su l ts  a re  o b ta in e d  f ro m  th e  N yquist 
p lo t;

G a in  c ro sso v e r  aig = 6 .2 2 r a d / s e c  

P h a s e c ro s s o v e ro ip  =  1 5 ,88  rad /s ec

T h e  g a in  m a rg in  is  m e asu re d  a t th e  p h a se  cro ssove r- T h e  m a g n itu d e  o f  LỤcửpì is  0 .1 8 2 . T h u s , ứ ie  gain 
m a rg in  is  o b ta in e d  fro m  E q. (8 -91 ):

182
(8-99)

T h e  p h ase  m a rg in  is  m e asu re d  a t th e  g a in  c ro sso v e r. T h e  p h a se  o f  L(Ju)g) is  2 1 1 .7 2 '.  T h u s , th e  phase 
m a rg in  is  o b ta in ed  fro m  E q. (8 -97 ):

P M  =  .L ( ja jg )  -  1 8 0 ' = 2 1 1 . 7 2 " -  180= =  3 1 .7 2 °  (8-100)
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B e fo re  e m b a rk in g  on  ử ie  B o d e  p lo t  te c h n iq u e  o f  s ta b ili ty  study , it  w o u ld  b e  b e n e f ic ia l to  su m m arize  
a d v a n ta g e s  a n d  d isa d v an tag e s  o f  th e  N y q u is t p lo t.

Advantages of the Nyquist Plot
1. T h e  N y q u is t p lo t c an  b e  u se d  f o r  th e  s tu d y  o f  sta b ili ty  o f  sy s te m s  w ith  n o iu n in im u m -p h ase  

t r a n s fe r  fu n ctio n s.

2 . T h e  s ta b ili ty  a n a ly s is  o f  a c lo se d - lo o p  sy s te m  c an  b e  e a s ily  in v e s tig a te d  b y  e x a m in in g  the  
N y q u is t p lo t  o f  th e  lo o p  tra n s fe r  fu n c tio n  w ith  re fe re n c e  to  th e  ( - 1 ,  ; 0 )  p o in t o n c e  th e  p lo t 
is  m ade.

Disadvantage of the Nyquist Plot
1. I t’s  no t so easy  to  carry  ou t ửie design  o f  ứie conữoU er by  referring  to  the  N yqu ist p lot.

T A B IL IT Y  A N A L Y S I S  W I T H  THE BO D E PLOT

T h e  B o d e  p lo t  o f  a  ư a n s fe r  fu n c t io n  d e s c r ib e d  in  C h a p te r  2 is  a v e ry  u s e fu l g ra p h ic a l to o l 

fo r  th e  a n a lys is  and d e s ig n  o f  l in e a r  c o n tro l sys te m s in  th e  fre q u e n c y  d o m a in . B e fo re  the  

in c e p t io n  o f  c o m p u te rs , B o d e  p lo ts  w e re  o f te n  c a lle d  th e  “ a s y m p to t ic  p lo ts ,”  because the  

m a g n itu d e  an d  phase cu rve s  can  be ske tch e d  f r o m  th e ir  a s y m p to t ic  p ro p e rtie s  w ith o u t 

d e ta ile d  p lo t t in g . M o d e m  a p p lic a tio n s  o f  th e  B o d e  p lo t  fo r  c o n tro l sys te m s s h o u ld  be 

id e n t i f ie d  w ith  th e  fo llo w in g  ad van tages and d isa dva n ta ge s :

Advantages of the Bode Plot
1. In  the  absence o f  a  c o m p u te r, a B o d e  d ia g ra m  can be ske tche d  b y  a p p ro x im a tin g  

th e  m a g n itu d e  and phase w i th  s tra ig h t lin e  segm en ts.

2 . G a in  c rosso ve r, phase c rosso ve r, g a in  m a rg in , and phase m a rg in  are m o re  e a s ily  

d e te rm in e d  o n  th e  B o d e  p lo t  th a n  fro m  the  N y q u is t  p lo t.

3 . F o r  d e s ig n  pu rposes, th e  e ffe c ts  o f  a d d in g  c o n tro lle rs  and th e ir  pa ram ete rs  are 

m o re  e a s ily  v is u a liz e d  o n  the B o d e  p lo t  th a n  on  the N y q u is t  p lo t.
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Figu re  8-41 D e te rm in a tio n  o f  g a in  m a rg in  a n d  p h a se  m a rg in  on  th e  B o d e  p lo t.

Disadvantage of the Bode Plot
1. A b s o lu te  and re la t iv e  s ta b i l i ty  o f  o n ly  m in im u m -p h a s e  sys te m s c an be de te rm ined 

fro m  th e  B o d e  p lo t .  F o r  ins ta n ce , th e re  is  n o  w a y  o f  te ll in g  w h a t th e  s ta b ility  

c r ite r io n  is  o n  th e  B o d e  p lo t.

W ith  re fe re n ce  to  th e  d e f in it io n s  o f  g a in  m a rg in  and phase m a rg in  g iv e n  in  F igs . 8-37 

and 8 -3 9 , re s p e c tiv e ly , th e  in te rp re ta tio n  o f  these pa ram ete rs  f r o m  th e  B o d e  d ia g ram  is 

i l lu s ư a te d  in  F ig . 8 -41  fo r  a ty p ic a l m in im u m -p h a s e  lo o p  tra n s fe r  fu n c t io n . T h e  fo llo w 

in g  o b se rva tio n s  c a n  be m ad e  o n  sys te m  s ta b i l i ty  w i th  resp ec t to  th e  p ro p e rtie s  o f  the 
B o d e  p lo t:

T h e  g a in  m a rg in  is  p o s it iv e  an d  th e  sys te m  is  s ta b le  i f  th e  m a g n itu d e  o f  Uja>) al 

ứ ie phase c ro s s o v e r is  n e g a tiv e  in  d B . T h a t is , th e  g a in  m a rg in  is  m ea sured  below 

the  0 -d B -a x is .  I f  th e  g a in  m a rg in  is  m e a su red  a b ove  th e  0 -d B -a x is .  th e  g a in  m argin 

is  n e g a tive , and th e  sys te m  is  un s ta b le .

T h e  phase m a rg in  is  p o s it iv e  an d  th e  sys te m  is  s ta b le  i f  th e  phase o f  Uja>) is 

g re a te r  th a n  - 1 8 0 °  a t th e  g a in  c rosso ve r. T h a t is, th e  phase m a rg in  is  measured 

a b ove  th e  - 1 8 0 ° -a x is . I f  th e  phase m a rg in  is  m ea sured  b e lo w  th e  — 18 0 ° -a x is . the 

phase m a rg in  is  n e g a tive , an d  th e  sys te m  is  un s ta b le .

EXAMPLE 8-11-1 C o n s id e r  th e  lo o p  tra n s fe r  fu n c tio n  g iv e n  in  E q . (8 -9 8 ) : th e  B o d e  p lo t o f  th e  fu n c tio n  is d raw n as 
sh o w n  in  F ig . 8 -4 2 . T h e  fo llo w in g  re su l ts  a re  o b se rv e d  e a s ily  f ro m  ih e  m a g n itu d e  a n d  p hase  plois- 

T h e  g a in  c ro s so v e r  is  th e  p o in t w h e re  th e  m a g n itu d e  c u rv e  in te rse c ts  th e  0 -d B  a x is . T h e  gain- 
c ro sso v e r  fre q u en c y  Uig is  6 .2 2  rad /s ec . T h e  p h a se  m a rg in  is  m e asu re d  a t th e  g a in  cro sso v e r- T h e  phase

• B ode  p lo ts  ;ưe u se fu l on lv  
Cor s ta b ili ly  s tu d ies  o f 
sy s te m s  vvnh n iin im iim - 
p h a se  loop  tran s fe r 
functions.
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-240

-270

ase marginj 
31.72° I ị

Figure 8-42 B o d e  p lo t o f  L (s )  =

6.22 10 15.88

m (rad/sec)

2 5 0 0

5(í  +  5 ) ( j  +  5 0 ) '

m a rg in  is  m e asu re d  f ro m  th e  - 1 8 0 ° -a x is  a n d  is  3 1 .7 2 ° . B e c a u se  th e  p h a se  m a rg in  is  m e asu re d  above  
th e  - 1 8 0 ° -ax is , th e  p h a se  m a rg in  is  p o s itiv e , a n d  th e  sy s te m  is  stab le .

T h e  p h a se  c ro s so v e r  is  tìie  p o in t  w h ere  th e  p h a se  c u rv e  in te rse c ts  th e  -1 8 0 ® -ax is . T h e  p h a se -  
c ro s so v e r  f re q u e n c y  is  Wp =  15 .88  rad /s ec . T h e  g a in  m a rg in  is  m e asu re d  a t th e  p h a se  c ro s so v e r  a n d  is 
14.8 d B . B e c a u se  th e  g a in  m a rg in  is  m e asu re d  b e lo w  th e  O -dB -ax is, th e  g a in  m a rg in  is  p o s itiv e , and  

th e  sy s te m  is  s tab le .

x S - l M

9 s ta te m e n ts  f o r  F ig . 8 -4 2  

( [ ] , [ 0  - 1  - 1 ] , 2 5 0 0 )  
( G )

T h e  re a d e r  sh o u ld  c o m p a re  th e  N y q u is t p lo t o f  F ig . 8 -4 0  w ith  th e  B o d e  p lo t  o f  
F ig . 8 -4 2 , a n d  ih e  in te rp re ta t io n  o f  (I)g, Wp, G M , a n d  P M  o n  th e se  p lo ts .
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T h e  s ta b i l i ty  a n a ly s is  o f  a c lo s e d - lo o p  s ys te m  w i th  a p u re  t im e  d e la y  in  th e  lo o p  can be 

co n d u c te d  e a s ily  w i th  th e  B o d e  p lo t .  E x a m p le  8 -1 1 -2  iU usơ a te s  ứ ie  s ta n d a rd  procedure.

► EXAMPLE 8-11-2 C o n s id e r  th a t ih e  lo o p  tf a n s fe r  fu n c tio n  o f  a  c lo se d - lo o p  sy s te m  i;
Vp-TiS

L is )  = (8- 101)
s ( s + l ) { s  +  2)

F ig . 8 -4 3  sh o w s th e  B o d e  p lo t o f  U jo ) )  w ith  AT =  1 a n d  7 ^  =  0 . T h e  fo llo w in g  re su l ts  a re  obtained: 

G a in -c ro s s o v e r  f re q u e n c y  =  0 .4 4 6  rad /sec  

P h a se  m a rg in  =  5 3 .4 °

P h a se -c ro s so v e r  f re q u e n c y  =  1 .416  rad /s ec  

G a in  m a rg in  =  15 .57  dB

T h u s , th e  sy s te m  w ith  th e  p re se n t p a ra m e te rs  is  s ta b le .

0.446 1.0

ii»(rad/sec)

Figure 8-43 Bode plot o f z , ( i ) = -
?+ l ) ( i  +  2 ) '



T h e  e ffec t o f  th e  p u re  tim e  d e la y  is  to  a d d  a  p h a se  o f - I r f W  ra d ia n s  to  th e  p h a se  c u rv e  w h ile  n o t 
a ffe c tin g  th e  m a g n itu d e  c u rv e . T h e  a d v e rse  e ffe c t o f  th e  tim e  d e la y  o n  s ta b ili ty  is  a p p a re n t, be ca u se  
th e  n e g a tiv e  p h a se  sh if t c au se d  by  th e  tim e  d e la y  in c re a s e s  r a p id ly  w ith  th e  in c re ase  in  Í0. T o  fin d  the  

c rit ic a l va lu e  o f  th e  tím e  d e la y  f o r  s ta b ility , w e  se t

= 5 3 . 4 “ - J ^  =  0 .9 3 2  ra d ia n s  (8 -1 0 2 )

S o lv in g  fo r  Td f ro m  th e  la s t e q u a tio n , w e  g e t  th e  c rit ic a l v a lu e  o f  Td to  b e  2 .0 9  se co n d s.
C o n tin u in g  w ith  th e  e x a m p le , w e  se t T j  a rb iư a r i ly  a t 1 se co n d  a n d  find  th e  c rit ic a l v a lu e  o f  K  fo r 

s ta b ility . F ig . 8 -43  sh o w s th e  B o d e  p lo t o f  L(Jo)) w ith  th is  n e w  tim e  de lay . W ith  K s till e q u a l to  1, th e  
m a g n itu d e  c u rv e  is  u n c h an g e d . T h e  p h a se  c u rv e  d ro o p s  w ith  th e  in c re ase  in  O). a n d  th e  fo llo w in g  
r e su l ts  a re  o b ta in ed :

P h a se -c ro s so v e r  fre q u en c y  =  0 -6 6  rad /s ec

G a in  m a rg in  =  4 .5  dB

T h u s , u s in g  th e  d e fin itio n  o f  g a in  m a rg in  o f  E q . (8 -9 1 ) , th e  c rit ica l v a lu e  o f  K  fo r  s ta b ili ty  is 
10‘ >/20 =  1 ,68 , M

I L A T IV E  S T A B IL I T Y  RE L A TE D  TO T H E  SLOPE OF THE M A G N I T U D E  CURVE 
ODE PLOT

I n  a d d itío n  to  G M , P M , a nd Mp  as re la t iv e  s ta b il ity  m easures, the  s lop e  o f  the m a g n itu d e  cu rve  

o f  th e  B o d e  p lo t  o f  th e  lo o p  ffa n s fe r  fu n c tio n  a t th e  g a in  crosso ve r a lso  g ives a q u a lita tiv e  

i n d ic a t io n  o n  th e  r e la t iv e  s ta b i l i ty  o f  a  c lo s e d - lo o p  s y s te m . F o r  e x a m p le ,  in  F ig . 8 - 4 2 ,  i f  th e  

lo o p  g a in  o f  th e  s y s te m  is  d e c r e a s e d  f ro m  th e  n o m in a l  v a lu e ,  th e  m a g n i tu d e  c u r v e  is  s h if te d  

d o w n w a rd , w h ile  the phase c u rve  is  unchanged . T h is  causes th e  ga in -c ro sso ve r fre q u e n cy  to  

b e  lo w e r ,  a n d  th e  s lo p e  o f  ử ie  m a g n i tu d e  c u r v e  a t  th is  f r e q u e n c y  is  le s s  n e g a t iv e ;  ử ie  

co rre sp o n d in g  phase m a rg in  is  increased . O n  the o th e r h and , i f  th e  lo o p  g a in  is  increased , the 

g a in -c ro sso ve r fre q u e n cy  is  increased , and th e  s lope o f  th e  m a g n itu d e  c u rv e  is  m o re  nega tive. 

T h is  corresp on ds  to  a s m a lle r  phase m a rg in , and th e  system  is  less s table. T h e  reason be h in d  

these s ta b il ity  e va lua tion s  is  q u ite  s im p le . F o r  a m in im u m -p h a s e  ư an s íe r fu n c tio n , the r e la t io n  

b e tw e e n  i t s  m a g n i tu d e  a n d  p h a s e  is  u n iq u e . B e c a u s e  th e  n e g a t iv e  s lo p e  o f  th e  m a g n i tu d e  c u rv e  

i s  a  r e s u l t  o f  h a v in g  m o r e  p o le s  th a n  z e r o s  in  th e  t r a n s f e r  f u n c t io n ,  ử ie  c o ư e s p o n d in g  p h a s e  is  

a lso  ne ga tive . In  gene ra l, th e  s teeper th e  s lop e o f  ứ ie  m a g n itu d e  c u rve , the m o re  ne ga tive  the 

phase. T hu s , i f  d ie  g a in  c rosso ve r is  a t a  p o in t w h e re  the  s lope o f  th e  m a g n itu d e  c u rv e  is  s teep, 

i t  is  l ik e ly  th a t the phase m a rg in  w i l l  be s m a ll o r  nega tive .

iditionally Stable System

T h e  il lu s t r a t iv e  e xa m p le s  g iv e n  th us  fa r  are u n c o m p lic a te d  in  th e  sense th a t th e  s lop es  o f  

th e  m a g n itu d e  and phase c u rve s  are m o n o to n ic a lly  de c re a s in g  as it) increases. T he  

fo l lo w in g  e x a m p le  i l lu s tra te s  a c o n d i t io n a l ly  s ta b le  s y s te m  th a t is  ca p a b le  o f  g o in g  

th ro u g h  s ta b le /u n s ta b le  c o n d it io n s  as th e  lo o p  g a in  va ries .

M PLE 8-12-1 Consider that the loo p transfer fu nction  o f  a closed-loop system is
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L{s ) =
I0QAr(^ +  5 )(5  +  40 ) 

j 3 ( s + 1 0 0 ) { 5 + 2 0 0 )

T h e  B o d e  p lo t o f  U jo j)  is  sh o w n  in  Fig . 8 -4 4  fo r  K  =  1. T h e  fo llo w in g  re su l ts  on  th e  sy s te m  stab ility  
a re  o b ta in ed :

G a in -c ro ss o v e r  fre q u en c y  =  1 rad /s ec  

P h a se  m a rg in  — —78°
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Gain crossover Ị  j  I I
dB/decade -

- iO  dB/decade

- 2 0  dB/decade

^  dB/decade

5 10 25.8 40 100 200

ÚỈ (rad/sec)

I -1 8 0  

- . 0

Figure 8-44 B o d e  p lo t o f  z,(5) =

10 25.8 40

<» (rad/sec) 

1 0 0 g ( .  +  5 ) (^  +  40 ) 

í 3( í + I 0 0 ) ( j  +  2 0 0 ) ’

T h e re  a re  tw o  p h a se  c ro sso v e rs : o n e  a t 25 .8  r ad /s ec  a n d  th e  o th e r  a t 7 7 .7  rad /s ec . T he phasi 
c h a ra c te r is t ic s  b e tw ee n  th e se  tw o  fre q u e n c ie s  in d ic a te  th a t, i f  th e  g a in  c ro s so v e r  lie s  in  th is  range, tìi( 
sy s te m  w o u ld  b e  s ta b le . F ro m  th e  m a g n itu d e  c u rv e , th e  ra n g e  o f  AT fo r  s ta b le  o p e ra tio n  is  found  to b  
b e tw ee n  6 9  a n d  85 .5  d B . F o r  v a lu es  o f  K  a b o v e  a n d  b e lo w  th is  ran g e , th e  p h a se  o f  IX jt f )  is  less iha  
- 1 8 0 ° ,  a n d  th e  sy s te m  is  u n s ta b le . T h is  e x a m p le  se rv e s  a s  a  g o o d  e x a m p le  o f  th e  re la tio n  betweei 
re la tiv e  s ta b ili ty  a n d  ih e  s lo p e  o f  the m a g n itu d e  c u rv e  a t th e  g a in  c ro sso v e r. A s  o b se rv e d  from  Fig 
8 -4 4 . a t b o th  v e ry  lo w  a n d  v e ry  h ig h  f re q u e n c ie s , th e  s lo p e  o f  th e  m a g n itu d e  c u rv e  is  - 6 0  dB/decade 
i f  th e  g a in  c ro s so v e r  fa lls  in  e i th e r  o n e  o f  th e se  tw o  reg io n s , th e  p h a se  m a rg in  is  ne g a tiv e , and thi 
sy s te m  is u n s ta b le . In  th e  tw o  se c tio n s  o f  th e  m a g n itu d e  c u rv e  th a t ha v e  a  s lo p e  o f  - 4 0  d B /decade , thi 
sy s te m  is  s ta b le  o n ly  i f  th e  g a in  c ro s so v e r  fa lls  in  a b o u t h a lf  o f  th e se  reg io n s , bu t e v e n  th e n  th e  phaa 
m a rg in  is  sm a ll. I f  th e  g a in  c ro s so v e r  fa ll s  in  th e  reg io n  in  w h ic h  th e  m a g n itu d e  c u rv e  h a s  a  slope 0 
- 2 0  d B /d ec ad e , th e  sy s te m  is  stab le .

F ig . 8 -4 5  sh o w s th e  N y q u is t p lo t o f  L { jio ) .  I t is  o f  in te re s t to  c o m p a re  th e  r e su l ts  on  siabilit; 
d e riv e d  f ro m  th e  B o d e  p lo t a n d  th e  N y q u is t p lo t. T h e  ro o i- lo c u s  d ia g ra m  o f  th e  sy s te m  is  shown ii 
F ig . 8 -46 , T h e  ro o t lo c i g iv e  a c le a r  p ic tu re  on  th e  s ta b ili ty  c o n d itio n  o f  ỉh e  sy s te m  w ith  re sp e c t to A 
T h e  n u m b e r  o f  c ro ss in g s  o f  th e  ro o t loc i on  t h e y ^ a x i s  o f  th e  5 -p lan e  e q u a ls  th e  n u m b e r  o f  crossing
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F ig u re  8-45 N y q u is t p lo t o f  
, 100A:(5 +  5 ) (5  +  4 0 )  

s ’ ( s + 1 0 0 ) ( s  +  2 0 0 ) ’

Figure 8-46 Root loci o f G (i)  =
1 0 0 /:(5  +  5 ) ( i  +  40 ) 

s-’ ( s +  l0 0 ) ( s  +  2 0 0 ) '



o f  th e  p h a se  c u rv e  o f  L { j( j} )  o f  th e  - 1 8 0 °  a x is  o f  ih e  B o d e  p lo t  a n d  th e  n u m b e r  o f  c ro s s in g s  o f  u 
N y q u is t p lo t  0 ĨU jc ừ )  w ith  th e  n e g a tiv e  r e a l ax is . T h e  r e a d e r  sh o u ld  c h e c k  th e  g a in  m a rg in s  obtain* 
f ro m  th e  B o d e  p lo t a n d  th e  c o o rd in a te s  o f  th e  c ro s so v e r  p o in ts  o n  ih e  n e g a tiv e  re a l a x is  o f  th e  N yqui 
p lo t  w ith  th e  v a lu es  o f  K  a t th e  yo j-ax is c ro ss in g s  o n  th e  ro o t loc i.

8-1 3  S T A B IL IT Y  A N A L Y S I S  W I T H  THE M A G N I T U D E - P H A S E  PLOT

T h e  m a g n itu d e -p h a s e  p lo t  d e s c r ib e d  in  C h a p te r  2 is  a n o th e r  f o r m  o f  th e  fre q u e n c ) 

d o m a in  p lo t  th a t  has c e r ta in  a d v a n ta g e s  f o r  a n a ly s is  a n d  d e s ig n  in  th e  freq ue nc  

d o m a in .  T h e  m a g n itu d e -p h a s e  p lo t  o f  a  t r a n s fe r  fu n c t io n  U jo j )  is  d o n e  in  |L ( ;íư ) |(d B  

ve rsu s  L L {io ))  (d e g re e s ). T h e  m a g n itu d e -p h a s e  p lo t  o f  th e  t r a n s fe r  fu n c t io n  i

E q . ( 8 -9 8 )  is  c o n s tru c te d  in  F ig .  8 -4 7  b y  use  o f  th e  d a ta  f r o m  th e  B o d e  p lo t  0
F ig .  8 -4 2 . T h e  g a in  a n d  p h ase  c ro s s o v e rs  a n d  th e  g a in  a n d  p h a se  m a rg in s  a re  c lear) 

i n d i c a t e d  o n  th e  m a g n i t u d e - p h a s e  p l o t  o f  L { j io ) .

•  T h e  c r i t i c a l  p o in t  i s  t h e  i n t e r s e c t  o f  th e  0 - d B - a x i s  a n d  th e  - 1 8 0 ° - a x is .

•  T h e  p h a s e  c r o s s o v e r  i s  w h e r e  th e  l o c u s  in t e r s e c t s  t h e  — 1 8 0 ° - a x is .
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-2 2 5  -1 8 0  -135

Phase (deg)

F igu re  8-47 G a in -p h a se  p lo t o f  i ,( s )  =
10

j ( l  + 0 . 2 i ) ( l  + 0 .0 2 5 ) '



•  T h e  g a in  c ro s s o v e r is  w h e re  th e  lo c u s  in te rse c ts  th e  0 -d B -a x is .

•  T h e  g a in  m a rg in  is  th e  v e r t ic a l d is ta n c e  in  d B  m ea su red  f r o m  th e  phase c ro s s o v e r to  

th e  c r it ic a l p o in t.

•  T h e  phase m a rg in  is  th e  h o r iz o n ta l d is ta n ce  m e a su red  in  degrees f r o m  th e  g a in  

c ro s s o v e r to  th e  c r it ic a l  p o in t.

T h e  re g io n s  in  w h ic h  th e  g a in  an d  phase c ro sso ve rs  s h o u ld  b e  lo c a te d  fo r  s ta b i l i ty  are 

a ls o  in d ic a te d . B e cau se th e  v e r t ic a l a x is  fo r  \L{ja>)\ is  in  d B . w h e n  th e  lo o p  g a in  o f  L ijo } )  
cha ng es , th e  lo c u s  is  s im p ly  s h if te d  u p  an d  d o w n  a lo n g  th e  v e r t ic a l a x is . S im ila r ly ,  w h e n  a 

c o n s ta n t phase is  a d de d  to  U ja i) ,  th e  lo c u s  is  s h if te d  h o r iz o n ta l ly  w ith o u t  d is to r t io n  to  th e  

c u rv e . I f  IX jco) c o n ta in s  a p u re  t im e  d e la y  Td, th e  e f fe c t o f  th e  t im e  d e la y  is  to  ad d  a phase 

e q u a l to  -coTd  X 1 8 0 ° / t t  a lo n g  th e  cu rve .

A n o th e r  a d van ta ge  o f  u s in g  th e  m a g n itu d e -p h a s e  p lo t  is  th a t, f o r  unity-feedback  
systems, c lo s e d - lo o p  sys te m  p a ra m e te rs  such as M r, a>r, an d  B W  can a l l  be  d e te rm in e d  

f r o m  th e  p lo t  w i t í i  th e  h e lp  o f  th e  c o n s ta n t-M  lo c i.  T he se  c lo s e d - lo o p  p e rfo rm a n c e  

p a ra m e te rs  a re  n o t rep re sen ted  o n  th e  B o d e  p lo t  o f  th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  

o f  a u n ity - fe e d b a c k  system .

O N S T A N T - /W  LOCI  IN  THE M A G N I T U D E - P H A S E  P L A N E :  THE N IC H O L S  C H A R T

I t  w a s  p o in te d  o u t e a r lie r  th a t, a n a ly t ic a l ly ,  th e  re so n a n t pe ak  M r  an d  b a n d w id th  B W  are 

d i f f i c u l t  t o  o b t a in  f o r  h i g h - o r d e r  s y s t e m s ,  a n d  th e  B o d e  p l o t  p r o v id e s  i n f o r m a t i o n  o n  th e  

c lo s e d - lo o p  sys te m  o n ly  in  th e  fo n n  o f  g a in  m a rg in  an d  phase m a rg in . I t  is  ne cessa ry  to  

d e v e lo p  a g ra p h ic a l m e th o d  fo r  th e  d e te rm in a tio n  o f  M r, (Or, an d  B W  u s in g  th e  fo rw a rd -  

p a th  tra n s fe r  fu n c t io n  Gijco). A s  w e  sh a ll see in  th e  fo llo w in g  d e v e lo p m e n t, th e  m e th o d  is 

d i r e c t ly  a p p lic a b le  o n ly  to  u n ity - fe e d b a c k  sys te m s, a lth o u g h  w i th  som e m o d if ic a t io n  i t  can 

a lso  be  a p p lie d  to  n o n u n ity - fe e d b a c k  system s.

C o n s id e r  ứ ia t G(s) is  th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  o f  a u n ity - fe e d b a c k  sys te m . 

T h e  c lo s e d - lo o p  t ta n s fe r  fu n c t io n  is

M W = ^  ,8 -1 0 4 ,

F o r  s in u s o i d a l  s te a d y  s ta t e ,  w e  r e p l a c e  s  w i th  jco \ G (s )  b e c o m e s  

G {ý tó )  =  ReG {jo}) +  jIm G { j(o )

=  x  +  j y

w h e re , fo r  s im p lic i ty ,  X  deno tes ReG(_/(u) an d  y  de no te s  ĩm G ịjo )) .  T h e  m a g n itu d e  o f  the 

c lo s e d - lo o p  tra n s fe r  fu n c t io n  is  w r i t te n
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(8 -1 0 6 )

F o r  s im p l ic i ty  o f  n o ta tio n , le t  M  de no te  \M { j( j j) \ :  th e n  E q . (8 -1 0 6 )  leads 10

M ^ { 1  + x f + y ^  =  (8 -1 0 7 )

S q u a rin g  b o th  s ides o f  E q . (8 -1 0 7 )  g ive s

M ^ ị ( \ + x Ỷ + ỷ ị = ^ + y ^  (8 -1 0 8 )
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R e a rra n g in g  E q . (8 -1 0 8 )  y ie ld s

(1 -  + (1 -  -  2 M \ = (8-109;

T h is  e q u a tio n  is  c o n d it io n e d  b y  d iv id in g  th ro u g h  b y  ( l  — M ^ )  an d  a d d in g  th e  term 

[A /^ / ( 1  -  o n  b o th  s ides. W e  have

(8- 110)
,  2 2 M 2  /  a / 2  y  \

'l i f ie d  tow h ic h  is  f in a l ly  s im p lif ie d  to

F o r  a g iv e n  v a lu e  o f  M , E q . (8 -1 1 1 )  rep re sen ts  a c irc le  w i th  th e  c e n te r  at

X  =  KtG[jcú) =
r r n f .

y  =  0

T h e  ra d iu s  o f  th e  c irc le  is

M

( 8- 112)

(8-113)

W h e n  M  ta kes o n  d if fe r e n t  v a lu es , E q . (8 -1 1 1 )  d e sc rib e s  in  th e  C (y a ;) -p la n e  a  fa m ily  o f 

c irc le s  th a t a re c a lle d  th e  c o n s ta n t - M  lo c i,  o r  th e  c o n s ta n t - M  c irc le s . F ig .  8 -4 8  illusư a tes a 

ty p ic a l set o f  con s ta n t- iV f c irc le s  in  th e  G (ỹ (y )-p !a n e . T h e se  c irc le s  are s y m m e tr ic a l w ith

Figure 8-48 Constanl-M  circles in polar coordinates.



re sp e c t to  th e  iW =  1 l in e  and th e  re a l a x is . T h e  c irc le s  to  th e  le f t  o f  th e  w  =  1 lo cu s  

co ư e s p o n d  to  va lu e s  o f  M  g re a te r th a n  1, an d  th ose  to  th e  r ig h t  o f  th e  M  =  1 l in e  are fo r  M  
less  th a n  1. E qs. (8 -1 1 1 )  an d  (8 -1 1 2 )  s h o w  th a t, w h e n  M  b e com e s in f in ite ,  th e  c irc le  

dege ne ra te s  to  a p o in t  a t ( - l . ý O ) .  G ra p h ic a lly ,  th e  in te rs e c tio n  o f  th e  c u rv e  and the 

c o n s ta n t-A i c irc le  g ive s  th e  v a lu e  o f  M  a t th e  c o r re s p o n d in g  f re q u e n c y  o n  th e  G (jio )  c u rv e . 

I f  w e  w a rn  to  kee p  th e  v a lu e  o f  M r  less  th a n  a c e r ta in  va lu e , th e  G{jcứ) c u rv e  m u s t n o t 

in te rs e c t th e  c o ư e s p o n d in g  M  c irc le  a t an y  p o in t  an d  a t th e  sam e t im e  m u s t n o t e n c lo se  th e  

( - 1 , /0 )  p o in t .  T h e  c o n s ta n t-M  c irc le  w i th  th e  sm a lle s t ra d iu s  th a t is  ta n g e n t to  th e  G{j<o) 
c u rv e  g ive s  th e  v a lu e  o f  M „  an d  th e  re so n a n t fre q u e n c y  0)r is  re a d  o f f  a t th e  ta n g e n t p o in t  o n  

th e  G (jú )) c u rve .

F ig . 8 -4 9 (a )  i l lu s tra te s  th e  N y q u is l p lo t  o f  G (jù })  fo r  a  u n ity - fe e d b a c k  c o n tro l sys te m  

to g e th e r  w i th  seve ra l c o n s ta n t-M  lo c i.  F o r  a  g iv e n  lo o p  g a in A T =  ATi, th e  in te rse c ts  b e tw e e n  

th e  G (jo ))  c u rv e  and th e  c o n s ta n t-M  lo c i  g iv e  th e  p o in ts  on  th e  |A /(ya»)|-ve rsus-íí>  c u rve . 

T h e  re so n a n t p e a k  M r  is  fo u n d  b y  lo c a t in g  th e  sm a lle s t c irc le  th a t is  ta n g e n t to  th e  G {jo j)

8-14 Constant-MLoci in the Magnitude-Phase Plane; The Nichols Chart '• 465

Figure 8-49 (a) Polar plots o f C(5) and consiant-M  loci, (b) Corresponding magnification curves.
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• W h en  th e  sy s te m  is 
u n s ta b le , th e  c o n s tan t-W  
lo c i a n d  M r  no  lo n g e r  have  
a n y  m ean ing -

« B W  is th e  fre q u en c y  
w h ere  th e  G(/a>) cu rv e  
in te rsec ts  th e  AÍ =  - 3  dB  
lo c u s  o f  th e  N ic h o ls  chart.

c u rv e . T h e  re so n a n t fre q u e n c y  is  fo u n d  a t th e  p o in t  o f  ta n g e n c y  an d  is  d e s ig n a te d  as 0), 
th e  lo o p  g a in  is  in c re a s e d  to  K 2 , and i f  th e  sys te m  is  s t i l l  s ta b le , a c o n s ta n t-W  c ữ c le  w i 

s m a lle r  r a d iu s  th a t c o rre sp o n d s  to  a la rg e r  M  is  fo u n d  ta n g e n t to  th e  G{J(o) c u rv e , and t 

th e  re&onant p e a k  w i l l  be  la rg e r. T h e  re so n a n t f re q u e n c y  is  sh o w n  to  be  Ù)r2y w h ic h  is  clc 

t o  t h e  p h a s e - c r o s s o v e r  f r e q u e n c y  cOp t h a n  (Or\. W h e n  K  i s  i n c r e a s e d  to  K j ,  s o  t h a t  t h e  a  

c u rv e  n o w  passes th ro u g h  th e  ( — l,ỹ O )  p o in t,  th e  sys te m  is  m a r g in a l ly  s ta b le , and M 
i n f in i t e ;  (Opi i s  n o w  th e  s a m e  a s  t h e  r e s o n a n t  f r e q u e n c y  (Or-

W h e n  e n o u g h  p o in ts  o f  in te r s e c t io n  b e tw e e n  th e  G ịjo ) )  c u r v e  a n d  th e  c o n s ta n t -A /  loci 

o b ta in ed , the  m a g n if ic a t io n  c u rve s  o f  |M(_/'a ;)|-versus-cư are p lo tte d , as sh o w n  in  F ig . 8-49i

T h e  b a n d w id th  o f  th e  c lo s e d - lo o p  sys te m  is  fo u n d  a t th e  in te rs e c t o f  th e  G {j(o )  cu 

an d  th e  M  =  0 .7 0 7  lo c u s . F o r  va lu e s  o f  K  b e y o n d  K ị , th e  s y s te m  is  u n s ta b le , and 

c o n s ta n t-A / lo c i  and M r  n o  lo n g e r  ha ve  an y  m e a n in g .

A  m a jo r  d isa d va n ta g e  in  w o r k in g  in  th e  p o la r  co o rd in a te s  o f  th e  N y q u is t  p lo t  o f  G( 

is  th a t th e  c u rv e  n o  lo n g e r  re ta in s  i ts  o r ig in a l shape w h e n  a s im p le  m o d if ic a t io n  such as 

cha ng e  o f  th e  lo o p  g a in  is  m ad e  to  th e  sys te m . F re q u e n tly , in  d e s ig n  s itu a tio n s , no t 01 
m u s t th e  lo o p  g a in  be  a lte re d , b u t a se ries  c o n tr o l le r  m a y  ha ve  to  be  a d d e d  to  th e  syste 

T h is  re q u ire s  th e  c o m p le te  re c o n s tru c t io n  o f  th e  N y q u is t  p lo t  o f  th e  m o d if ie d  G ijũ }). ] 
d e s ig n  w o r k  in v o lv i n g  M r  a n d  B W  a s  s p e c if ic a tio n s , i t  is  m o r e  c o n v e n ie n t  to  w o r k  w ith  

m a g n itu d e -p h a s e  p lo t  o f  G ijo ) \  because w h e n  th e  lo o p  g a in  is  a lte re d , ử ie  e n tire  G(j 
c u rv e  is  s h if te d  u p  o r  d o w n  v e r t ic a lly  w i th o u t  d is to r t io n . W h e n  th e  phase  p rope rties  

G {jw )  are ch a n g e d  in d e p e n d e n tly , w ith o u t  a f fe c t in g  th e  g a in , th e  m a g n itu d e -p h a s e  plo 

a ffe c te d  o n ly  in  th e  h o r iz o n ta l d ire c t io n .

F o r  th a t rea son , th e  c o n s ta n t-A i lo c i in  th e  p o la r  c o o rd in a te s  are p lo t te d  in  magnitu< 

phase co o rd in a te s , an d  th e  re s u lt in g  lo c i a re  c a lle d  th e  N ic h o ls  c h a r t .  A  ty p ic a l N ich  

c h a r t o f  s e le c te d  c o n s ta n t-A i lo c i is  sh o w n  in  F ig .  8 -5 0 . O n ce  th e  G {j( i))  c u rv e  o f  the  systi 

is  c o n s tru c te d  in  th e  N ic h o ls  c h a r t, th e  in te rse c ts  b e tw e e n  th e  c o n s ta n t-A i lo c i  and the 

(jco) t r a je c to ry  g iv e  th e  v a lu e  o f  M  a t th e  c o ư e s p o n d in g  fre q u e n c ie s  o f  G {j(o ).  T h e  reson;

Figu re  8-50 N ic h o ls  c h a n .



p e a k  M r  is  f o u n d  b y  lo c a t in g  th e  s m a lle s t o f  th e  c o n s ta n t-A / lo c u s  ( M  >  1) th a t is  ta n g e n t to  

th e  G ijo i)  c u rv e  f r o m  ab ove . T h e  re so n a n t f re q u e n c y  is  th e  fre q u e n c y  o f  G {jw )  a t the  p o in t  

o f  ta n g e n cy . The bandw idth o f  the c losed-loop system is the frequency a t  w hich the  G ( jiu )  

curve intersects the  M  =  0 .7 0 7  o r  M  =  - 3  dB locus.
T h e  fo llo w in g  e x a m p le  il lu s tra te s  th e  re la t io n s h ip  a m o n g  th e  a n a ly s is  m e th o d s  u s in g  

th e  B o d e  p lo t  an d  th e  N ic h o ls  c h a rt.

M P LE  8-14-1 C onside r the pos ition -conơ ol system o f  the con tro l surfaces o f  the a irsh ip  analyzed in  Section 5-8.
T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  th e  u n ity - fe e d b a c k  sy s te m  is  g iv e n  b y  E q . (5 -1 5 3 ) . a n d  is  

repeated here:

1 5 X 10^

° W = ,( »  +  m 2 6 ) ( ! ,  +  3 0 08 )

T h e  B o d e  p lo ts  f o r  G(.j<o) a re  s h o w n  in  F ig . 8 -5 1  f o r  AT =  7 .2 4 8 ,1 4 .5 ,  1 8 1 .2 , a n d  2 7 Ĩ.5 1 .  T h e  g a in  
a n d  p h a s e  m a rg in s  o f  th e  c lo s e d - I o o p  s y s te m  f o r  th e s e  v a lu e s  o f  K  a re  d e te r m in e d  a n d  s h o w n  o n
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PM =  7.78'
I !

I
PM = 0 “ <
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F ig u re  8-51 B o d e  diagram s o f  th e  sy s te m  in  E x am p le  8 -1 4 -1 .
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Phase  (deg)

F igu re  8-52 G a in -p h a se  p lo ts  a n d  N ic h o ls  c h a n  o f  th e  sy s ie m  in  E x am p le  8 -14 -1 .

Ihe  B o d e  p lo ls .  T h e  m a g n iiu d e -p h a s e  p l o b  o f  C ( jo j)  c o r r e s p o n d in g  to  th e  B o d e  p lo ts  a re  shown 
in  F ig . 8 -5 2 . T h e s e  m a g n itu d e -p h a s e  p lo ts ,  lo g e lh e r  w ith  th e  N ic h o ls  c h a r t ,  g iv e  in fo rm a tio n  on 
th e  r e s o n a n t  p e a k  M ,.  r e s o n a n t  f re q u e n c y  (Uf. a n d  ih e  b a n d w id th  B W . T h e  g a in  a n d  p h a s e  m arg ins 
a re  a lso  c le a r ly  m a rk e d  o n  th e  m a g n itu d e -p h a s e  p lo ts .  F ig . 8 -5 3  sh o w s  ih e  c lo sed - io o p  
f re q u e n c y  re s p o n s e s .  T a b le  8 -2  s u m m a r iz e s  th e  r e s u l ts  o f  th e  f r e q u e n c y -d o m a in  a n a ly s is  for 
th e  fo u r  d i f f e r e n t  v a lu e s  o f  K  to g e th e r  w ith  th e  t im e - d o m a in  m a x im u m  o v e rs h o o t s  d e te rm in e d  in 
S e c t io n  5 -8 .
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10 100 1000 

(1> (rad/sec)

Figure 8-53 C lo se d - lo o p  fre q u en c y  re sp o n se  o f  th e  sy s te m  in  E x am p le  8 -14 -1 .

TABLE 8-2 Summary of Frequency-Domain Analysis

K
M a x im u m

O v e rsh o o K % ) A /, ( ra d /se c )
G ain  

M a rg in  (dB )
P hase  

M a rg in  (deg )
B W

(ra d /se c )

7 .25 0 1.0 1.0 3 1 .57 7 5 .9 119.0

14.5 4 .3 1.0 4 3 .3 3 5 .55 6 4 .25 270 .5

181.2 15.2 7 .6 9 0 0 .0 0 3.61 7 .7 8 1402 .0

2 7 3 .5 7 100,0 oc 1000 .00 0 0 1661.5

ICHOLS C H A R T  A P P L I E D  TO N O N U N I T Y - F E E D B A C K  S Y S T E M S

T h e  con s ta n t-W  lo c i and ứ ie N ic h o ls  cha rt presented in  the p reced ing  sections are l im ite d  to  

c lo se d -lo o p  systems w ith  u n ity  feedback w hose t fa ns fe r fu n c tio n  is  g ive n  b y  E q . (8 -10 4 ). W hen  

a system  has n o n u n ity  feedback, the c lose d -loo p  tran sfe r fu n c tio n  o f  the  system  is  expressed as

G ( i )
M {s) =

\+ G { s ) H { s )
(8 -1 1 5 )

w h e re  H (s) tÍ  Ì .  T h e  c o n s ta n t-A / lo c i and th e  N ic h o ls  c h a r t ca n n o t be  a p p lie d  d ir e c t ly  lo  

o b ta in  th e  c lo s e d - lo o p  fre q u e n c y  response b y  p lo t t in g  G{ jơ))H {jừ j). s ince  th e  n u m e ra to r  o f  

M {s) does n o t c o n ta in  H ijo j).
B y  p ro p e r m o d if ic a t io n , th e  c o n s ta n t-M  lo c i and N ic h o ls  c h a rt can s t i l l  be a p p lie d  to  a 

n o n u n ity - fe e d b a c k  sys te m . L e t us c o n s id e r  th e  fu n c t io n

P [5) =  W {s )M (.t )  =
G [s)H { s)

1 +  G {s)H {s )
(8 -1 1 6 )
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A p p a re n t ly ,  E q . (8 -1 1 6 )  is  o f  th e  sam e fo rm  as E q . (8 -1 0 4 ) . T h e  fre q u e n c y  response 0 
P{jư>) c a n  be  d e te rm in e d  b y  p lo t t in g  th e  fu n c t io n  G {j(ú )H {jw )  in  th e  a m p litu d e -p h a a  

co o rd in a te s  a lo n g  w i th  th e  N ic h o ls  ch a rt. O n ce  th is  is  d o n e , th e  freque ncy-resp on s i 

in fo r m a t io n  f o r  is  o b ta in e d  as fo llo w s .

o r , in  te rm s  o f  d B ,

(8-117

\M {jco )\{dB ) =  \P {jo > )\[d B ) -  \H { jio ) \ {d B )  {8-118;

^  -  l ỉ ỉ { j ũ ) )  (8-119;

8-16 S E N S I T I V I T Y  S T U D IE S  IN T HE F R EQ U EN C Y D O M A I N

• S e n s itiv ity  M udy is e as ily  T h e  a d v a n ta g e  o f  u s in g  th e  f r e q u e n c y  d o m a in  in  l i n e a r  c o n t r o l  s y s t e m s  i s  t h a t  h ig h e r-o rd e i 

curried out in ihc Ircqucncy sys te m s  ca n  be h a n d le d  m o re  e a s ily  ứ ia n  in  th e  t im e  d o m a in . F u lth e n n o re , th e  s e n s it iv ity  ol 

th e  sys te m  w i th  re sp e c t to  p a ra m e te r  v a r ia t io n s  ca n  be  e a s ily  in te rp re te d  u s in g  frequency- 

d o m a in  p lo ts . W e  s h a ll s h o w  h o w  th e  N y q u is t  p lo t  an d  th e  N ic h o ls  c h a r t c a n  b e  u d liz e d  fo i 

th e  a n a ly s is  an d  d e s ig n  o f  c o n tro l sys te m s based o n  s e n s it iv i ty  c o n s id e ra tio n s .

C o n s i d e r  a  l i n e a r  c o n t r o l  s y s t e m  w i th  u n i ty  f e e d b a c k  d e s c r ib e d  b y  th e  t r a n s f e r  fu n c tio n

(8- 120,

T h e  s e n s i t iv i ty  o f  M (s )  w i th  r e s p e c t  to  t h e  l o o p  g a in  K ,  w h ic h  i s  a  m u l t i p ly in g  fa c to r  in 

G ( i ) .  i s  d e f in e d  a s

S ^ { s )  =

dM {s)

M {s )
dG [s)

G{s)

dM {s) G {s) 

'' dG {s) M {s )
( 8- 121)

T a k in g  th e  d e r iv a tiv e  o f  M {s)  w ith  resp e c t to  G{s) an d  s u b s t itu t in g  th e  re su lt into 

E q . (8 -1 2 1 )  an d  s im p l if y in g ,  w e  have

=
1 l /G M  

1 + G { i )  1 +  1 / G ( i )
( 8- 122)

Figu re  8-54 \M {jco )\ 

a n d | s ^ ( > 0>)| v e rs u s w f o r  

, 2 500

5 ( j  +  5 ) ( s  +  2 5 0 0 ) '
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l.oo
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C le a r ly ,  th e  s e n s it iv ity  fu n c t io n  5 ^ ( s )  is  a fu n c t io n  o f  th e  c o m p le x  v a r ia b le  s. F ig .  8 -5 4  

sh o w s  th e  m a g n itu d e  p lo t  o f S ^ ( s )  w h e n  G ( i )  is  th e  ư a n s fe r  fu n c t io n  g iv e n  in  E q . (8 -9 8 ). 

I t  is  in te re s tin g  to  n o te  th a t th e  s e n s it iv i ty  o f  th e  c lo s e d - lo o p  sys te m  is  in fe r io r  a t 

fre q u e n c ie s  g re a te r  th a n  4 .8  rad /sec  to  th e  o p e n - lo o p  sys te m  w h o se  s e n s it iv ity  to  the  

v a r ia t io n  o f  ^  is  a lw a y s  u n ity . In  g e n e ra l, i t  is  d e s ira b le  to  fo rm u la te  a d e s ig n  c r ite r io n  on  

s e n s it iv i ty  in  th e  fo llo w in g  m an ne r:

(8 -1 2 3 )

w h e re  A: is  a p o s it iv e  rea l n u m b e r. T h is  s e n s it iv i ty  c r ite r io n  is  in  a d d it io n  to  th e  re g u la r  

p e rfo rm a n c e  c r ite r ia  on  th e  s te ad y-s ta te  e r ro r  an d  th e  re la t iv e  s ta b il ity .

E q . (8 -1 2 3 )  is  an a lo g o u s  to  th e  m a g n itu d e  o f  th e  c lo s e d - lo o p  tra n s fe r  fu n c t io n , 

\M {j( i) ) \, g iv e n  in  E q . (8 -1 0 6 ) , w i th  G (ỹíư ) re p la c e d  b y  i /G i jo j ) .  T h u s , th e  s e n s it iv ity  

fu n c t io n  o f  E q . (8 -1 2 3 )  can be  d e te rm in e d  b y  p lo t t in g  1 ỊG Ụ tù )  in  ứ ie  m a g n itu d e -p h a se  

c o o rd in a te s  w ith  th e  N ic h o ls  c h a rt. F ig . 8 -5 5  sho w s th e  m a g n itu d e -p h a s e  p lo ts  o f  G{jco) 
a n d  1 iG ( jo i)  o f  E q . (8 -9 8 ). N o t ic e  th a t G {j(o )  is  ta n g e n t to  th e  M  =  1.8 lo cu s  fro m  be lo w ,

I  0

M agnitude- 
)f G{j<jo) and

/

o
t

/

1 1 
' G{ ja» 
1 \ / /

i >

/

/
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\
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_____
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/ Ấ
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/
I
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w h ic h  m ea ns  th a t M rO Ĩ  th e  c lo s e d - lo o p  sys te m  is  1.8. T h e  \ /G { j( o )  c u rv e  is  ta n g e n t to  th 

M  =  2 .2  c u rv e  f r o m  a b ove  an d , a c c o rd in g  to  F ig . 8 -5 4 , is  th e  m a x im u m  v a lu e  o f

E q . (8 -1 2 3 )  sh o w s  th a t, fo r  l o w  s e n s it iv i ty ,  th e  lo o p  g a in  o f  G {jù })  m u s t b e  h ig h , b u ti 

is  k n o w n  th a t, in  g e n e ra l, h ig h  g a in  c o u ld  cau se  in s ta b i l i ty .  T h u s , th e  d e s ig n e r  is  agaii 

c h a lle n g e d  b y  th e  ta s k  o f  d e s ig n in g  a s ys te m  w i th  b o th  a h ig h  d e g re e  o f  s ta b i l i t y  and lo \ 

s e n s it iv i ty .

T h e  d e s ig n  o f  ro b u s t c o n tro l sys te m s ( lo w  s e n s it iv i ty )  w i th  th e  fre q u e n cy -d o m a ii 

m e th o d s  is  d is cu sse d  in  C h a p te r  9.

8-17 M A T L A B  T O O L S  A N D  C A S E  S T U D IE S

A p a r t  f r o m  th e  M A T L A B  to o lb o x e s  in  th is  cha p te r, th is  c h a p te r  do es  n o t co n ta in  an] 

s o ftw a re . In  C h a p te r  9  w e  w i l l  in tro d u c e  th e  A u to m a tic  C o n ư o l S ys te m s  M A T L A B  tcxils 

T h e  A u to m a tic  C o n tro l S ys te m s  s o ftw a re  (A C S Y S )  c o n s is ts  o f  a n u m b e r  o f  m -f ile s  an( 

G U Is  (g ra p h ic a l use r in te r fa c e )  fo r  th e  a n a ly s is  o f  s im p le  c o n tro l e n g in e e rin g  ữansíe: 

fu n c tio n s . A l l  th e  fre q u e n c y  response to p ic s  m a y  a lso  be  s o lv e d  u t i l i z in g  A C S Y S .

8-18 S U M M A R Y

T h e  c h a p te r  b e g a n  by  d e sc r ib in g  ty p ic a l re la tio n sh ip s  b e tw e e n  th e  o p e n -lo o p  a n d  c losed-loo | 
f re q u e n c y  re sp o n se s  o f  lin e a r  sy s te m s . P e rfo rm a n c e  sp e c if ic a tio n s  su c h  a s  th e  r e so n a n c e  peak M, 
re so n a n t fre q u en c y  a n d  b a n d w id th  B W  w ere  d e fin e d  in  th e  f re q u e n c y  d o m a in . T h e  relationship! 
a m o n g  th e se  p a ra m ete rs  o f  a  s e c o n d -o rd e r  p ro to ty p e  sy s te m  w e re  d e riv e d  a n a ly tica lly . T h e  effects 01 
a d d in g  s im p le  p o le s  a n d  z e ro s  to  th e  lo o p  tra n s fe r  fu n c tio n  on  M ,  a n d  B W  w ere  d iscussed .

T h e  N y q u is t c rite r io n  fo r  s ta b ili ty  a n a ly s is  o f  lin e a r  c o n tro l sy s te m s  w a s  d e v e lo p e d -  T h e  stabilit) 
o f  a  s in g le - lo o p  c o n ư o l sy s te m  c an  b e  in v e s tig a te d  by  s tu d y in g  th e  b e h a v io r  o f  th e  N y q u is t p lo t o f  lh( 
lo o p  tra n s fe r  fu n c tio n  G (s)H (s) fo r  w  =  0  to  w  =  00 w ith  r e sp e c t lo  th e  c rit ic a l p o in t, ư  G{s)H(s) is i 
m in im u m -p h ase  t ra n s fe r  fu n c tio n , th e  c o n d itio n  o f  s ta b ili ty  is  s im p lif ie d  so  th a t th e  N y q u ist p lo t wil 
n o t e n c lo se  th e  c rit ica l po in t.

T h e  re la tio n sh ip  b e tw ee n  th e  ro o t loc i a n d  th e  N y q u is t p lo t w a s  d e sc r ib e d  in  S e c tio n  8-7. The 
d isc u ss io n  sh o u ld  a d d  m o re  p e rsp e c t iv e  to  th e  u n d e rs ta n d in g  o f  b o th  su b je c ts .

R e la tiv e  s ta b ili ty  w a s  d e fin e d  in  te rm s  o f  g a in  m a rg in  a n d  p h a se  m a rg in . T h e s e  qua n titie s  wen 
d e fin e d  in  th e  p o la r  c o o rd in a te s  a s  w e ll a s  o n  th e  B o d e  d ia g ra m . T h e  g a in -p h a se  p lo t allow s thí 
N ic h o ls  c h a n  to  b e  c o n s tru c te d  fo r c lo se d - lo o p  a n a ly s is . T h e  v a lu es  o f  M r  a n d  B W  c an  be easil) 
found  by  p lo tt in g  th e  G(jco) lo c u s  on  th e  N ic h o ls  chart.

T h e  s ta b ili ty  o f  sy s te m s  w ith  p u re  lim e  d e la y  is  a n a ly z e d  by  u se  o f  ih e  B o d e  plot.
S e n s it iv ity  fu n c tio n  Sq(ìcũ)  w as  d e fin e d  a s  a  m e a su re  o f  th e  v a ria tio n  o f  ỹ íư )đ u e  to  variation: 

in G ( ja>). ll  w as  sh o w n  lh a l th e  f re q u e n c y -re sp o n se  p lo ts  o f  G {jù })  a n d  1 /C ( jo j )  c an  b e  read ily  usee 
fo r  s e n s itiv i ty  stud ies .

F in ally , u sin g  Ihe  M A T L A B  to o lb o x e s  d e v e lo p e d  in  th is  c h a p te r  o r  th e  A C S Y S  software 
d e sc r ib e d  in d e ta il  in C h a p te r  9 . th e  re a d e r  m a y  p rac tic e  a ll  th e  c o n c e p ts  d isc u sse d  here .

R E V IE W  Q U E S T IO N S

1. E x p la in  w h y  it is im p o rta n t to  c o n d u c t f re q u e n c y -d o m a in  a n a ly se s  o f  lin e a r  c o n ư o l systems

2. D efine  re so n a n ce  p e a k  M r o f  a  c lo se d - lo o p  c o n tro l sy ste m .

3 . D efine  b an d w id th  B W  o f  a  c lo se d - lo o p  sy ste m .

4 . L is t th e  a d v an ta g es  a n d  d isa d v a n ta g e s  o f  s tu d y in g  s ta b ili ty  w ith  th e  N y q u is t p lo t.

5 . L is t ih e  a d v an ta g es  and  d isa d v a n ta g e s  o f  c arry in g  o u t f re q u e n c y -d o m a in  a n a ly s is  w ith  the  Bod< 
p lo t.



6 . L is t  th e  a d v an ta g es  a n d  d isa d v a n ta g e s  o f  c a n y in g  o u t  fre q u e n c y -d o m a in  a n a ly s is  w ith  th e  

m a g n itu d e -p h a se  p lo t.

7 . T h e  fo llo w in g  q u a n titie s  a re  de fined :
z  =  n u m b e r  o f  z e ro s  o f  L(s )  th a t a re  in  Ihe  r ig h t-h a lf  i - p la n e  
p  =  n u m b e r  o f  p o le s  o f  L ( j)  th a t  a re  in  th e  r ig h t-h a lf  5 -p lane  
Pa, =  n u m b e r  o f  p o le s  o f  U s )  th a t a re  o n  th e  ỹ ío-axis 

G iv e  th e  c o n d itio n s  o n  th e se  p a ra m ete rs  fo r  th e  sy s te m  to  b e  ( a )  o p e n -lo o p  s ta b le  a n d  ( b )  c lo sed -  

lo o p  s ta b le .

8 . W h a t c o n d itio n  m u s t b e  sa tisfied  b y  th e  fu n c tio n  U jo } )  so  th a t th e  N y q u is t c rite r io n  is  s im p lified  
to  in v e s tig a tin g  w h e th e r  th e  ( - 1 ,  jO ) p o in l is  e n c lo se d  b y  th e  N y q u is t p lo t?

9 . G iv e  a ll th e  p ro p e r tie s  o f  a m in im u m -p h a se  tf a n s fe r  fu n c tio n .

10 . G iv e  th e  d e fin i tio n s  o f  g a in  m a rg in  a n d  p h a se  m arg in .

11. B y  a p p ly in g  a  s in u so id a l s ig n a l o f  f re q u e n c y  OJO to  a  lin e a r  sy s te m , th e  s te ad y -s ta te  
o u tp u t o f  th e  sy s te m  w ill a lso  b e  o f  th e  s a m e  fre q u en c y .

12 . F o r  a  p ro to ty p e  s e c o n d -o rd e r  sy s te m , th e  va lu e  o f  M r  d e p en d s  so le ly  o n  Uie 
d a m p in g  ra tio  Ị .

13 . A d d in g  a  z e ro  to  ứ ie  lo o p  tr a n s fe r  fu n c tio n  w ill  a lw a y s  in c re a s e  th e  b an d w id th  
o f  th e  c lo se d - lo o p  sy stem .

14. T h e  g e n era l e ffe c t o f  a d d in g  a  p o le  to  th e  lo o p  ư a n s fe r  fu n c tio n  is  to  m a k e  the
c lo se d - lo o p  sy s te m  le s s  s ta b le  w h ile  d e c re a s in g  ứ ie  b an d w id th .

15. F o r  a  m in im u m -p h ase  lo o p  tra n s fe r  fu n c tio n  U jto ) ,  i f  Ihe  p h a se  m a rg in  is 
ne g a tiv e , th e n  th e  c lo se d - lo o p  sy s te m  is  a lw a y s  unstab le .

16. P h a se -c ro s so v e r  f re q u e n c y  is  th e  fre q u en c y  a t w h ic h  th e  p h a se  o f  L( jù })  is  0 ° .

17. G a in -c ro s s o v e r  fre q u en c y  is  th e  f re q u e n c y  a t w h ic h  th e  g a in  o f  H jo j )  is  0  dB .

18. G a in  m a rg in  is  m e asu re d  a t th e  p h a se -c ro s so v e r  f requency .

19. P h a se  m a rg in  is  m e asu re d  a t th e  g a in -c ro sso v e r  f requency .

2« . A  c lo se d - lo o p  sy s te m  w ith  a  p u re  tim e  d e la y  in  th e  lo o p  is  u su a lly  le s s  s ta b le
th a n  o n e  w ith o u t a  tim e  de lay .

21 . T h e  s lo p e  o f  th e  m a g n itu d e  c u rv e  o f  th e  B o d e  p lo l o f  U jo j )  a t  th e  g a in  c ro s so v e r  
u su a lly  g iv e s  in d ic a t io n  on  th e  re la tiv e  s ta b ili ty  o f  th e  c lo se d - lo o p  sy ste m .

22. N ic h o ls  c h a r t c an  b e  u se d  to  f ind  B W  a n d  M r  in fo rm a tio n  o f  a  c lo se d - lo o p

2 3 . B o d e  p lo t c an  b e  u se d  fo r  s ta b ili ty  a n a ly s is  fo r  m in im u m - a s  w e ll as 
n o n m in im u m -p h a se  ư a n s íe r  fu n c tio n s .

Answers to these review questions can be found on this book’s companion Web site: 
w w w .w il e y .c o m /c o lle g e /g o ln a r a g h i .
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P R O B L E M S

8 -1 . T h e  fo rw a rd -p a th  tr a n s fe r  fu n c lio n  o f  a  u n ity - fe e d b a c k  c o n ư o l  sy s te m  is

“  7 ( 7 + 6 1 4 )

A n aly tica lly , fin d  th e  r e so n a n c e  p e a k  Mr, r e so n a n t f re q u e n c y  ứ)„ a n d  b a n d w id th  B W  o f  th e  closed 
lo o p  sy s te m  fo r  th e  fo llo w in g  v a lu es o f  K:
(a) K  =  5

(b )  í :  =  2 1 .3 9

(c )  10 0

U se  th e  fo rm u las  fo r  th e  se c o n d -o rd e r  p ro to ty p e  sy s te m  g iv e n  in  th e  te x t.

8 -2 . U se  M A T L A B  to  v e rify  y o u r  a n sw e r  to  P ro b le m  Í 

8 -3 . T h e  tra n s fe r  fu n c tio n  o f  a sy s te m  is

G {s) =  -

D e te rm in e  w h en  th e  sy s te m  is  a le a d -n e tw o rk  a n d  la g -n e tw o rk .

8 -4 . U se  M A T L A B  to  so lv e  th e  fo llo w in g  p ro b lem s. D o  n o t a n e m p t to  o b ta in  th e  solution; 
a n a ly tica lly . T h e  fo rw a rd -p a th  tran s fe r  fu n c tio n s  o f  u n i ty -fe e d b a c k  c o n tro l sy s te m s  a re  g iven  in thi 
fo llo w in g  e q u a tio n s . F in d  th e  re so n a n ce  p e a k  Mr. r e so n a n t f re q u e n c y  o>„ a n d  b a n d w id th  B W  o f  thỉ 
c lo se d - lo o p  sy stem s, (R e m in d er : M a k e  c e r ta in  th a t th e  sy s te m  is  s ta b le .)

(b )  G (I )  =  -(a )  C {s) =  

(c)  G ( i )  =  

(e)  G {s) =  -

10

i ( l  + 0 .5 5 ) ( 1  + 0 . 1 i )
___________5 0 0 ___________

(j + 1.2}(j +  4 )(5 + 10} 
0 .5

s (52 +  5 + 1)

^  i ( s 2 + i 0 5 + 1 0 0 )

(d )  G{s) 

(f)  G (5 ) =

i ( l  + 0 ,5 5 ) ( 1  + 0 . 1 j ) 

10(^ +  1) 

j ( j  +  2 ) ( i +  10) 
lOOe"^

5 (5 2 +  lO i +  5 0 )

(h )  G {s) =
1 0 ( 5 +  5) 

•(í2 +  5 í  +  5)

8 -5 . T h e  sp e c if ic a tio n s  on  a se c o n d -o rd e r  u n i ty -fe e d b a c k  c o n tro l sy s te m  w ith  th e  closed-loof 
t ra n s fe r  funclion

f i{ i)  +  2Ịcứ„s +  cóị

a re  tha t Ihe  m a x im u m  o v e rsh o o t m u s i n o t e x c e e d  10 % a n d  th e  r is e  tim e  m u st b e  le ss  th a n  0 .1 sec 
F ind  th e  c o rre sp o n d in g  lim itin g  v a lu es  o f  M r  a n d  B W  a n a ly tica lly .

8 -6 . R e p ea t P ro b le m  8-5 fo r m a x im u m  o v e rsh o o t <  2 0 %  a n d  tr <  0 .2  sec.

8 -7 . R e p ea t P ro b le m  8-5 fo r m a x im u m  o v e rsh o o t <  3 0 %  a n d  Ir  <  0 .2  sec.

8 -8 . C o n s id e r  th e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  a u n i ty -fe e d b a c k  c o n ư o l  sy s te m  g iv e n  by

0.5K

í (0 ,2 5 j 2 +  0 .3 7 5 J  +  I)

( a )  A n a ly tica lly  f ind  K  su c h  th a t th e  c lo se d - io o p  b a n d w id th  is  a b o u t 1.5 r a d /s  (0 .2 4  H z).

(b )  U se  M A T L A B  to  v e rify  y o u r  a n sw e r  to  p a n  (a).



8 -9 . R e p ea l P ro b le m  8 -8  w ith  a r e so n a n c e  p e a k  o f  2 .2 .

8 -1 0 . T h e  c lo se d - lo o p  fre q u en c y  re sp o n se  |A /( ;o j) |-v e r su s -f re q u e n c y  o f  a  se c o n d -o rd e r  p ro to ty p e  
sy s te m  is  sh o w n  in  F ig  8P -10 . S k e tc h  th e  c o ư e s p o n d in g  u n it-s te p  re sp o n se  o f  th e  sy s te m ; in d ic a te  th e  
v a lu e s  o f  th e  m a x im u m  o v e rsh o o t, p e a k  tim e , a n d  th e  s te a d y -s ta te  e rro r  d u e  to  a u n it-s te p  inpu t.

Problems <  475

Figure 8P-10

8 -1 1 . T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  a  sy s te m  w ith  an  in te g ra l c o n tro l H {s )  =  — is

, °W  = ĨÕ 7 ^
( a )  F in d  K  w h en  th e  c lo se d - lo o p  re so n a n ce  p e a k  is  1.4.

(b) D e te rm in e  th e  fre q u en c y  a t re so n a n c e , o v e rsh o o t fo r s te p  in p u t, p h a se  m a rg in , a n d  c lo se d - lo o p  
B W  a c c o rd in g  to  th e  re su l t o f  p a rt (a).

8*12 . T h e  fo rw ard -pach  tra n s fe r  fu n c tio n  o f  a  u n i ty -fe e d b a c k  c o n ư o l  sy s te m  is 

1 +  T'i

U se  M A T L A B  to  f in d  th e  v a lu e s  o f  B w  a n d  M r  o f  th e  c lo s e d - lo o p  s y s te m  f o r  T  =  0 .0 5 . 1, 2 ,  3 ,
4 , a n d  5.

8 -1 3 . T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  a  u n i ty -fe e d b a c k  c o n tro l sy s te m  is

2i(s^ +  i + 1 ) ( 1 +  7-S)

U se  M A T L A B  to  fin d  th e  v a lu es  o f  B W  a n d  M r  o f  th e  c lo se d - lo o p  sy s te m  fo r  T  — 0, 0 .5 , 1, 2 , 3 , 4 , 
a n d  5. U se  M A T L A B  to  fin d  th e  so lu tions.

8 -1 4 . I f  a  lo o p  tra n s fe r  fu n c tio n  o f  a sy s te m  is g iv e n  by

0.5Á-
G (s )H {s )  =

0.25s^ +  0 3 1 5 s ^ -+ s  +  Q.5k

( a )  U se  th e  se co n d -o rd e r  a p p ro x im a tio n  to  find  th e  B W  a n d  th e  d a m p in g  ratio ,

(b ) I f  B W  =  1.5 rad /s , find  K  a n d  th e  d a m p in g  ra tio .

(c)  U se  M A T L A B  to  ve rify  y o u r  a n sw e r  10  p a rt (b ).

8 -1 5 . T h e  lo o p  tra n s fe r  fu n c tio n s  L{s)  o f  s in g le -fe ed b a ck -Io o p  sy s te m s  a re  g iv e n  be low . S k e tc h  the  
Nyquist plot o f L(jco) for cy =  0 to a> =  DC. Determine the stability o f the closed-loop sy s te m . If  the 
sy s te m  is  u n sta b le , find the  n u m b e r  o f  p o le s  o f  the  c lo sed -!o o p  tra n s fe r  fu n c tio n  th a t a re  in  th e  righ t-  
h a lf  .v -plane. S o lv e  fo r  the  in te rsec t o f  U  ịcư) o n  th e  n e g a tiv e  rea l ax is  o f  th e  u y'w )-plane a n aly tica lly . 
Y ou m a y  c o n s tru c t th e  N y q u ist p lo t o f  L i ja i)  u s in g  M A T L A B .

i b ) L { s )  =  -(a ) L{s ) --

(c) Us) =

J(1 + 0 . h ) { l  + 0 .5 i )
1 0 0 (1 + 5 )_________

i ( l  + 0 .1 .ẹ ){ l + 0 .2 j )(1 + 0 .5 s)

i-(l + 0 .1 i ) ( l  + 0 .5 i)  

S^{1 + 0 .2 i ) ( l  + 0 .5 5 )
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irv i
( g ) i . ( s ) = -

I 0 ( ĩ + 10)
% ( s  +  1 )( j2  +  2 )  ®  '•<*> -  s ( s  +  1 ) ( s  +  100)

8 -1 6 . T h e  lo o p  tra n s fe r  fu n c tio n s  o f  s in g le - fe e d b a c k - lo o p  c o n ư o l  s y s te m s  a re  g iv e n  in  th e  follow in 
e q u a tio n s . A p p ly  th e  N y q u is t c rite r io n  a n d  d e te rm in e  th e  v a lu es  o f  K  f o r  th e  s y s te m  to  b e  stabli 
S k e tc h  Ihe  N y q u is t p lo t  o f  L ( jítí )  w ith  K  =  1 f o r  cw =  0  to  <u =  0 0 . You m a y  u s e  a  c o m p u te r  prograi 
to  p lo t  th e  N y q u is t p lo ts .

K  ................  A : ( ^ + 1 )
( a )  L{s )  =

í ( í  +  2 ) ( í + 1 0 )  

"  j 2 ( s  +  2 ) ( j + 1 0 )  

(e) L {s ) =

; ( i  +  2 ) ( i  +  5 ) ( s + 1 5 )

(d) L [s )  = ----------------------5
( s  +  5 ) ( s  +  2 )^

K{ s  +  i ) { s + ị )

( i  +  5 0 ) ( s  +  2 ) ’

8 -1 7 . T h e  fo rw a rd -p a th  ư a n s íe r  f u n c d o n  o f  a  u n ity - fe e d b a c k  c o n tro l sy s te m  is

D e te rm in e  b y  m e a n s  o f  th e  N y q u is t c rite r io n , th e  ran g e  o f  K { - o o < K < o o )  f o r  th e  c losed-loo | 
sy s te m  to  b e  s ta b le . S k e tc h  th e  N y q u is t p lo t  o f  G ija i)  fo r  a» =  0  to  £U =  OŨ.
(a ) n =  2

(b )  «  =  3

(c )  n  =  4

8 -1 8 . S k e tc h  th e  N y q u is t p lo t f o r  ứ ie  c o n ư o lle d  sy s te m  sh o w n  in  F ig . 8 P -1 8 .

K
X ----- w s^ +  2s +  2

I
J +  1

Figure 8P-18

D ete rm in e  b y  m e an s  o f  th e  N y q u is i c rite r io n , th e  ra n g e  o f  a : ( - 0 0  <  a : <  o o )  fo r  th e  closed-loop 
sy s te m  to  b e  s ta b le .

8 -1 9 . T h e  c h a ra c te r is t ic  e q u a tio n  o f  a  l in e a r  c o n ư o l  sy s te m  is  g iv e n  in  th e  fo llo w in g  equation. 

s{s^ + 2 s ^  +  S + Ì )  +  K {s^  +  S +  1) = 0

( a )  A p p ly  th e  N y q u is t c rite r io n  to  d e te rm in e  th e  v a lu es  o f  K  fo r  sy s te m  stab ility ,

(b )  C h e ck  th e  a n sw e rs  b y  m e a n s  o f  th e  R o u ih -H u n v itz  c rite r io n .

8 -2 0 . R e p ea t P ro b le m  8 -1 9  f o r  5^ +  +  3 j  +  1 +  A’ =  0.

8 -2 1 . T h e  fo rw a rd - p a th  t r a n s f e r  fu n c t io n  o f  a  u n i ty - f e e d b a c k  c o n tro l  s y s te m  w ith  a PD 
( p r o p o r t io n a l- d e r iv a t iv e )  c o n t r o l le r  is

S e le c t th e  va lu e  o f  K p  so  th a t th e  p a ra b o lic -e rro r  c o n s ta n t Ka is  100. F in d  th e  e q u iv a le n t forward- 
p a th  t ra n s fe r  fu n c tio n  Geọis) fo r  a ; =  0  to  Í0 =  oo . D e te rm in e  ừ ie  ra n g e  o f  K o  f o r  stab iU ty  by the 
N y q u is t c rite r io n .

8-2 2 . T h e  b lo c k  d ia g ra m  o f  a  fe e d b a c k  c o n tro l sy s te m  is  sh o w n  in  F ig . 8 P -2 2 .
( a )  A p p ly  th e  N y q u is t c rite r io n  to  d e te rm in e  th e  ran g e  o f  K  fo r  s tab ility .

(b )  C h e c k  th e  a n sw e r  o b ta in e d  in  p a rt (a )  w ith  th e  R o u th -H u rw itz  c rite r io n .



Problems -4 A l l

F ig u re  8P-22

8 -2 3 . T h e  fo rw a rd -p a th  ư a n s ĩe r  fu n c tio n  o f  th e  liq u id -lev e l c o n tro l sy s te m  in  P ro b le m  5 -4 2  is 

=  K ,K ,r iK ,N

s{R .Js  +  K ,K i,) iA s  +  K „ )

T h e  fo llo w in g  sy s te m  p a ra m e te rs  a re  g iv e n : Ka =  50 , K, =  \ữ , K i  =  5 0 , J  =  0 ,0 0 6 , Kb =  0 .0 7 0 6 , 
n =  0 .0 1 , a n d  Ra =  10. T h e  v a lu es  o f  A , N , a n d  Kg a re  v a riab le .
( a )  F o r  A =  5 0  a n d  =  100 , sk e tch  th e  N y q u is t p lo t o f  G {ju ))  fo r  iti =  0  to  oo  w ith  N  as a  v a ria b le  
p a ra m ete r . F in d  th e  m a x im u m  in te g e r  v a lu e  o f  N  s o  lh a t th e  c lo se d - lo o p  sy s te m  is  stab le .

(b )  L e t N =  lOandATo =  100. S k e tc h  th e  N y q u is t p lo t o f  a n  e q u iv a le n t ư a n s fe r  fu n c tio n  CegiJu}) th a t 

h a s  /4 a s  a  m u lt ip ly in g  fac to r. F in d  th e  c rit ica l va lu e  o f  K „  fo r  stab ility .

(c )  F o r  A  = 5 0 a n d  A /=  10. sk e tc h  th e  N y q u is t p lo t  o f  an  e q u iv a le n t tr a n s fe r  fu n c tio n  G e Ạ jo ))  th a t 
h a s  a s  a  m u lt ip ly in g  fac to r. F in d  d ie  c rit ic a l va lu e  o f  A:„ fo r  stab ility .

8 -2 4 . T h e  b lo c k  d ia g ra m  o f  a  d c -m o to r  co n tro l sy s te m  is  sh o w n  in  F ig . 8 P -2 4 . D e te rm in e  th e  ran g e  
o f K  for stability using the N yquist criterion when K, has the following values;
( a )  K , = Q

(b ) K, =  0.01

(c) K , = 0 . i

Figu re  8P-24

8 -2 5 . F o r  th e  sy s te m  sh o w n  in  F ig . 8 P -2 4 . le t K  =  10. F in d  th e  ran g e  o f  K, fo r  s ta b ili ty  w ith  th e  
N y q u is t c rite r io n .

8 -2 6 . F ig . 8 P -2 6  sh o w s th e  b lo c k  d ia g ra m  o f  a serv o m o to r.

Figure 8P-26
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A ssu m e  J  =  1 kg -m ^  a n d  B  =  1 N -m /ra d /se c . D e ie rm in e  th e  ra n g e  o f  K  fo r  s ta b ili ty  u sing  (I 
N y q u is i c rite r io n  w h e n  i i / h a s  th e  fo llo w in g  va lues:
( a )  / f /  =  0

(b ) A T /=  0,1

(c) ^ / = 0 . 2

8 -2 7 . F o r  th e  sy s te m  sh o w n  in  F ig . 8 P -2 6 . le t K  =  10. F in d  th e  r a n g e  o f  K f  fo r  s ta b ili ty  w ith til 
N y q u is t c rite r io n .

8 -2 8 . F o r  th e  c o n u o lle d  sy s te m  sh o w n  in  F ig . 8 P -2 8 , d ra w  th e  N y q u is t p lo t a n d  a p p ly  th e  Nyqui: 
c r ite r io n  to  d e te rm in e  th e  ran g e  o f  K  fo r  s ta b ili ty  a n d  d e te rm in e  th e  n u m b e r  o f  ro o ts  in  ứ ie  r ig h t-h i 
5 -p lane  fo r  Ihe  v a lu es  o f  K  w h e re  th e  sy s te m  is  u n s ta b le .

F ig u re  8P-28

8 -2 9 . T h e  s te e l-ro llin g  c o n ư o l sy s te m  sh o w n  in  F ig . 4 P -1 8  h a s  th e  fo rw a rd -p a ih  ư a n s fe r  fiinctioi

C ( i )  =
:(í2  +  lO i +  100)

(a )  W h e n  A" =  1, d e te rm in e  ư ie  m a x im u m  tim e  d e la y  Td in  s e c o n d s  fo r  th e  c lo se d - lo o p  system  It 
b e  stab le .

(b ) W h en  th e  tim e  d e la y  Td is  1 se c , find  th e  m a x im u m  v a lu e  o f  K  fo r  sy s te m  stab ility .

8 -3 0 . R e p ea l P ro b le m  8 -2 9  w ith  th e  fo llo w in g  c o n d itio n s .
( a )  W h e n  a : =  0-1 , d e te rm in e  th e  m a x im u m  tim e  d e la y  Td in  s e c o n d s  fo r  th e  c lo se d - lo o p  sysieir 
to  b e  stab le .

(b )  W h e n  th e  tim e  d e la y  Td is  0 .1  se c . find  th e  m a x im u m  va lu e  o f  K  fo r  sy s te m  stab ility .

8 -3 1 . T h e  o p e n -lo o p  tra n s fe r  fu n c tio n  o f  a  sy s te m  is  g iv e n  by

G {s) H { s) --

S tu d y  th e  s ta b ili ty  o f  th e  sy s te m  fo r  th e  fo llo w in g ;
(a )  k  is  sm a ll.

(b )  K  is  la rge .

8 -3 2 . T h e  sy s ie m  s c h e m a tic  s h o w n  in  F ig . 8 P -3 2  is  d e v is e d  to  c o n tro l  ih e  c o n c e n tra tio n  of a 
c h e m ic a l  s o lu t io n  b y  m ix in g  w a te r  a n d  c o n c e n tra te d  so lu t io n  in  a p p ro p r ia te  p r o p o n io n s . The 
tr a n s fe r  f u n c tio n  o f  ih e  sy s te m  c o m p o n e n ts  b e tw e e n  th e  a m p lif ie r  o u tp u t  (V )  a n d  th e  valve 
p o s it io n  X  ( in .)  is

y ( ^ )  . K  
E M  +  1 0 1 + 1 0 0

W h e n  th e  s e n so r  is  v ie w in g  p u re  w ater, th e  a m p lif ie r  o u tp u t v o lta g e  e„  is  z e ro ; w h e n  it  is  view ini 
c o n c e n tra te d  so lu t io n , eu =  lO V ; a n d  0.1 in . o f  th e  va lv e  m o tio n  c h a n g e s  th e  o u tp u t concentraiion 
fro m  z e ro  to  m a x im u m . T h e  va lv e  p o r ts  c a n  be a ssu m e d  to  b e  sh a p ed  so  lh a t ứ ie  output



con cen ư a tio n  varies linearly w ith th e  va lve  p o s it io n . T h e  o u tp u t  tu b e  h a s  a  CTOSS-Sectional area o f
0 .1  in .^  a n d  th e  r a te  o f  flo w  is  10^ in ./s ec  r e g a rd le s s  o f  th e  va lv e  p o s it io n . T o  m a k e  su re  th e  se n so r  
v ie w s  a h o m ogen eou s so lu tion , it  is  d esứ ab le  to  p lace  it  at so m e  d istan ce  D  in. from  the valve .

Problems 479

F ig u re  8P-32

( a )  D er iv e  th e  lo o p  tra n s fe r  fu n c tio n  o f  th e  sy stem .

(b )  W h e n  K  — 10, find  th e  m a x im u m  d is tan c e  D  ( in .)  s o  th a t th e  sy s te m  is  s ta b le . U se  th e  N y q u is t 
s ta b ili ty  c rite r io n .

(c )  L e t  D  =  10 in . F in d  th e  m a x im u m  va lu e  o f  K  fo r  sy s te m  stab ility .

8 -3 3 . F o r  th e  m ix in g  sy s te m  d e sc r ib e d  in  P ro b le m  8 -3 2 . th e  fo llo w in g  sy s te m  p a ra m e te rs  a re  g iven : 

W h e n  th e  s e n so r  is  v iew in g  p u re  w a te r , th e  a m p lif ie r  o u tp u t v o lta g e  e j =  O V ; w h en  it  is  v ie w in g  
c o n c e n tra te d  so lu t io n , f a  =  1 V ; a n d  0.1 in . o f  th e  va lv e  m o tio n  c h a n g e s  th e  o u tp u t c o n c e n u a tio n  
f ro m  z e ro  to  m a x im u m . T h e  re s t o f  d ie  sy s te m  c h a ra c te r is t ic s  a re  th e  sa m e  a s  in  P ro b le m  8-32 . 
R e p e a t th e  th re e  p a rts  o f  P ro b le m  8 -32 .

8 -3 4 . F ig u re  8 P -3 4  sh o w s th e  b lo c k  d ia g ra m  o f  a  c o n tro l sy stem .

K

Ỉ  +  2

í ^ +  2j + 2

F ig u re  8P-34

( a )  D ra w  th e  N y q u is t p lo t a n d  a p p ly  th e  N y q u is t c rite r io n  to  d e te rm in e  th e  ran g e  o f  K  fo r  stab ility .

( b )  D e te rm in e  ứ ie  n u m b e r  o f  ro o ts  in  th e  r ig h t-h a lf  j- p la n e  fo r  th e  v a lu es  o f  K  w h ere  th e  sy s te m  is  
u n sta b le .

(c)  U se  R o u th ’s  c rite r io n  to  d e te rm in e  th e  ran g e  o f  K  fo r  s tab ility .

8 -3 5 . T h e  fo rw a rd -p a th  tran s fe r  fu n c tio n  o f  a  u n ity -fe e d b a c k  c o n tro l sy s te m  is

. IQQO
s ( s ^ + 1051 +  600 )

( a )  F in d  th e  v a lu es o f  iOr, a n d  B W  o f  th e  c lo se d - lo o p  sy stem .

( b )  F in d  th e  p a ra m ete rs  o f  th e  se co n d -o rd e r  sy s te m  w ith  th e  o p e n -lo o p  tra n s fe r  fu n c tio n

G d s )  =
i ( j  +  2fcy„)
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th a t w ill g iv e  Ihe  s a m e  v a lu es  fo r  M r  a n d  cor a s  th e  ư ú rd -o rd e r  sy s te m . C o m p a re  th e  v a lu e s  o f  BW  0 

th e  tw o  sy ste m s.

8 -3 6 . S k e tc h  o r  p lo t  th e  B o d e  d ia g ra m s  o f  th e  fo rw a rd -p a th  ư a n s íe r  f u n c tio n s  g iv e n  in  P rob lem  8-4 
F in d  th e  g a in  m a rg in , g a in -c ro s so v e r  f re q u en c y , p h a se  m a rg in , a n d  ử ie  p h a se -c ro s so v e r  frequency  fo 
e a c h  sy ste m .

8 -3 7 . T h e  lo o p  ư a n s fe r  fu n c tio n  o f  a  sy s te m  is  g iv e n  by

U se  M A T L A B  to  p lo t th e  B o d e  d ia g ra m s  o f  th e  sy s te m  a n d  f in d  th e  p h a se  m a rg in  a n d  g a in  m a ijir  
o f  th e  sy stem .

8 -3 8 . U se  M A T L A B  to  p lo l th e  B o d e  d ia g ra m s  o f  th e  sy s te m  sh o w n  in  F ig . 8 P -3 4  w h e n / l  =  I.anc  
d e te rm in e  th e  s ta b le  ran g e  o f  K  by  u s in g  p h a se  m a rg in  a n d  g a in  m a rg in .

8 -3 9 . T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n s  o f  u n ity - fe e d b a c k  c o n ư o l  s y s te m s  a re  g iv e n  in the 
fo llo w in g  e q u a tio n s . P lo t th e  B o d e  d ia g ra m  o f  G (ỹ c o ) /ằ : , a n d  d o  th e  fo llo w in g : (1 )  F in d  ứ ie  value  o f  A 
so  thac th e  g a in  m a rg in  o f  th e  sy s te m  is  20  d B . (2 ) F in d  Uie v a lu e  o f  K  so  th a t ih e  p h a se  m a rg in  o f  Ihe 
sy s te m  is  4 5 ° .

“  s ( l  + 0 . l s ) ( l  + 0 . 5 i )  ”  s ( l  + 0 . 1 s ) ( l  + 0 . 2 s ) ( l  + 0 .5 s )

“  s ( l + 0 . u  +  0 .0 1 s2 ) ®  =  ỵ ' + ° + 1 )

8 -4 0 . T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n s  o f  u n i ty -fe e d b a c k  c o n tro l sy s te m s  a re  g iven  in the 
fo llo w in g  e q u a tio n s . P lo t G { jo ) ) /K  in  th e  g a in -p h a se  c o o rd in a te s  o f  th e  N ic h o ls  c h a r t, and  do  the 
fo llo w in g : (1 ) F in d  th e  va lu e  o f  K  so  th a t th e  g a in  m a rg in  o f  ih e  sy s te m  is  10 d B . (2 ) F in d  the  value of 
K  so  th a l th e  p h a se  m a rg in  o f  th e  sy s te m  is  4 5 ° . (3 ) F in d  th e  va lu e  o f  K  s o  th a t M r  =  1.2.

(a ) c w  =  (b ) +  0 | j ) ( |  + 0 .2 j )(1 + 0 .5 j )

“ Í Ĩ T Õ Ĩ T T Õ S Ĩ ? )

8-4 1 . T h e  fo rw a rd -p a th  o f  a  u n ity -fe e d b a c k  sy s te m  is  g iv e n  by 

a:(5 +  i ) ( í  +  2)
G {s )H (s )  =

j 2 ( j  +  3 ) ( j 2 + 2 5  +  25)

(a) P lo t th e  B ode  d ia g ra m .

(b ) P lo t th e  ro o t locus.

(c) F in d  (he  g a in  a n d  fre q u en c y  w h e re  in s tab il ity  oc cu rs .

(d ) F in d  th e  g a in  a i th e  p hase  m a rg in  o f  20°.

(e) F in d  the  g a in  m a rg in  w h en  th e  p h a se  m a rg in  is 20®.

8 -4 2 . T h e  B o d e  d ia g ra m  o f  th e  fo rw a rd -p a th  t r a n s fe r  fu n c t io n  o f  a u n i ty - f e e d b a c k  conưo l 
sy s te m  is  o b ta in e d  e x p e r im e n ta l ly  ( a s  s h o w n  in  F ig . 8 P -4 2 )  w h e n  th e  fo rw a rd  g a in  K  is  se t a t its 
n o m in a l v a lu e .

(a )  F in d  th e  g a in  a n d  p hase  m a rg in s  o f  th e  sy s te m  f ro m  th e  d ia g ra m  a s  b e s t y o u  c an  rea d  ư iem . Find 
th e  g a in -  and  p h a se -c ro sso v e r  f re q u en c ie s .

(b )  R e p ea t p a rt (a) i f  th e  ga in  is  d o u b le d  fro m  its  n o m in a l va lue ,

(c) R e p ea t p a n  (a) i r  th e  g a in  is  10 tim es  its  n o m in a l va lue .

(d) Find  ou l how  m u c h  th e  g a in  m u si b e  c h a n g e d  fro m  its  n o m in a l va lu e  i f  th e  g a in  m a rg in  is  4 0  dB-

(e )  F ind  o u t how  m u c h  th e  lo o p  g a in  m u si be c h a n g e d  fro m  its  n o m in a l va lu e  i f  ư ie  p h a se  margin
is 4.V'.



( f)  F in d  th e  s te ad y -s ta te  en ro r o f  th e  sy s te m  i f  th e  r e fe re o c e  in p u t  to  th e  sy s te m  is  a  u n it-s te p  fu n c tio n .

(g ) T h e  fo rw a rd  p a th  no w  h a s  a  p u re  tim e  d e la y  o f  Td sec , s o  th a t  th e  fo rw a rd -p a th  tta n s fe r  fu n c tio n  is  

m u lt ip lie d  b y  F in d  th e  g a in  m a rg in  a n d  th e  p h a se  m a rg in  fo r  Trf =  0.1 sec. T h e  g a in  is  se t a t 
n o m in a l.

(h )  W iU i th e  g a in  se t a t n o m in a l, fin d  th e  m a x im u m  tim e  d e la y  Td  ứ ie  sy s te m  c a n  lo le ra te  w ith o u t 

g o in g  in to  in stab ility .

Problems 481

Figu re  8P-42

8 -4 3 . R e p e a t P ro b le m  8 -4 2  u s in g  F ig . 8 P -4 2  fo r  th e  fo llo w in g  p a rts .
(a) F in d  th e  ga in  a n d  p h a se  m a rg in s  i f  th e  g a in  is  fo u r  tim e s  its  n o m in a l v a lu e . F in d  th e  g a in -  and  
p h a se -c ro s so v e r  f re q u en c ie s .

(b )  F in d  o u t h o w  m u c h  th e  g a in  m u s t b e  c h an g e d  f ro m  its  n o m in a l va lu e  i f  th e  g a in  m a rg in  is  20  dB .

(c )  F in d  th e  m a rg in a l va lu e  o f  th e  fo rw a rd -p a th  g a in  fo r  sy s te m  stab ility .

(d) F in d  o u t h o w  m u c h  th e  g a in  m u sl b e  c h an g e d  f ro m  its  n o m in a l va lu e  i f  th e  p h a se  m a rg in  is  60®.

(e) F in d  ih e  s te ad y -s ta te  e r ro r  o f  th e  sy s te m  i f  th e  re fe re n c e  in p u t is  a  u n it-s te p  fu n c tio n  a n d  th e  g a in  
i s  tw ic e  its  n o m in a l va lue.

(f)  F in d  the  s te ad y -s ta te  e rro r  o f  th e  sy s te m  if  th e  re fe re n c e  in p u t is  a u n it-s te p  fu n c tio n  a n d  th e  g a in  
is  2 0  tim e s  i ts  n o m in a l va lue.
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(g ) T h e  sy s te m  now  h a s  a  p u re  tim e  d e la y  so  th a t th e  fo rw a rd -p a lh  ư a n s íe r  fu n c tio n  is  m u ltip lie d  by

F in d  th e  g a in  a n d  p h a se  m a rg in s  w h e n  =  0 .1  sec . T h e  g a in  is  s e t  a t i ts  n o m in a l value.

( h )  W ith  th e  ga in  se t a t 10 tim e s  its  n o m in a l, fin d  th e  m a x im u m  tim e  d e la y  th e  sy s te m  c an  tolerate 

w ith o u t g o in g  in lo  in stab ility .

8 -4 4 . T h e  fo rw a rd -p a ih  ư a n s fe r  fu n c tio n  o f  a  u n ity -fe e d b a c k  c o n ư o l  sy s te m  is

( a )  D ra w  th e  N y q u is l p lo t o f  th e  sy stem ,

(b )  P lo t Ihe  B o d e  d ia g ra m  o f  th e  sy ste m .

(c )  F in d  th e  p h a se  m a rg in  a n d  g a in  m a rg in  o f  th e  sy ste m .

8 -4 5 . T h e  fo rw a rd -p a th  tr a n s fe r  fu n c tio n  o f  a  u n ity -fe e d b a c k  c o n ư o l sy s te m  is

g ( l + 0 . 2 5 ) ( 1 + Q . U )

1 ^ ( 1 + s ) ( l + 0 . 0 1 i ) ^

(a )  C o n sư u c t th e  B o d e  a n d  N y q u is t p lo ts  o f  G {ic ù ) ỊK  a n d  d e te rm in e  th e  ra n g e  o f  K  fo r system 

stab ility .

( b )  C o n s tru c t th e  ro o t lo c i o f  th e  sy s te m  fo r  K > ũ .  D e te rm in e  (he  v a lu es  o f  AT a n d  to a t the  points 
w h ere  th e  ro o t lo c i c ro ss  th e  ýo ỉ-ax is. u s in g  th e  in fo rm aiio n  fo u n d  f ro m  th e  B o d e  p lo t.

8 -4 6 . R e p ea t P ro b le m  8-45  fo r  th e  fo llo w in g  tra n s fe r  fu n c tio n :

_   ̂ / i r ( i + 1 .5 ) ( 5  +  2)

sHs^ +  2s +  2)

8 -4 7 . R e p ea t P ro b le m  8-45  fo r th e  fo llo w in g  tra n s fe r  function :

1 6 0 0 0 ( 5 +  l) ( . ;  +  5 )

■(s +  0 .1}(5 +  8 ) (j +  2 0 )( í  +  50)

8 -4 8 . T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  th e  d c -m o to r  c o n tro l sy s te m  d e sc r ib e d  in  F ig . 3 P -1 1 is 

^  6 .0 8 7  x  10« a:

s(s^ +  423.42J- +  2.6667 X 10^5 +  4.2342 X 108)

P lo t th e  B o d e  d ia g ra m  o f  G íj(ư )  w ith  K  =  \ .  a n d  d e te rm in e  th e  g a in  m a rg in  a n d  p h a se  m arg in  o f  the
sy s te m . F ind  th e  c rit ica l va lu e  o f  K  fo r stab ility .

8 -4 9 . T h e  tra n s fe r  fu n c tio n  b e tw ee n  th e  o u tp u t p o s it io n  a n d  th e  m o to r  c u rre n t Ia{s) o f  the
ro b o t a rm  m o d e le d  in  Fig . 4 P -5 3  is

^  0 i ( j )  K,(Bs  + K)

w here

A „ ( j)  =  s{J lJ ^ Ỉ  +  +  B ) +  J „{B l  +  Bìịs^

+  +  [B l  +  (7m + 7 z .)^ ].v  +  /C(fiL +  ổ m j}

T h e  a rm  is  c o n tro l le d  by a  c lo se d - lo o p  sy s te m , a s  sh o w n  in  F ig . 8P -49- T h e  sy s te m  p a ra m eters  are

= 0 .0 1 . Jl  =  0 .6 . a n d  =  0 .2 5 .K„ =  6 5 , / r  = 100, A-, := 0 .4 .5 =  0 .2 .J 0 .2 . B l  =

R{s\ Eisi
Gpự)

ớ,(5)

1 Amplifier M oior-roboi-arm

Figure 8P-49



( a )  D er iv e  th e  fo rw a rd -p a th  tta n s fe r  fu n c tio n  G (5 ) =  Q i( s ) /E { s ) .

( b )  D ra w  th e  B o d e  d ia g ra m  o f  G (ju )). F in d  th e  g a in  a n d  p h a se  m a rg in s  o f  th e  sy ste m .

(c )  D ra w  \M {j< ii)\ v e rsu s  a>, w h ere  M {s)  is  th e  c lo se d - lo o p  tr a n s fe r  fu n c tio n . F in d  o)„  a n d  BW . 

8 -5 0 . F o r  th e  b a ll-a n d -b e a m  sy s te m  d e sc r ib e d  in  P ro b le m  4-11  a n d  sh o w n  in  F ig . 8 P -5 0 , a ssu m e  the  
fo llo w in g :

m  =  0 .1 1 k g  m ass o f  the b a ll /  =  9-99  X 10"^ kg-m ^ b a ll’s m om ent o f  in en ia

r  =  0 .0 1 5  r a d iu s  o f  th e  b a ll p  b a il p o s it io n  c o o rd in a te

d  =  0 .0 3  m  le v e r  a rm  o ffse t a  b e a m  a n g le  c o o rd in a te

g  =  9 .8 m /s ^  g ra v ita tio n a l a c c e le ra tio n  Ớ se rv o  g e a r  an g le

L — 1 .0  m  le n g th  o f  th e  b e am

Problems • 483

I f  th e  sy s te m  is  c o n ư o lle d  by  a p ro p o rt io n a l c o n tro l le r  in  a  u n i ty -fe e d b a c k  c o n tro l sy ste m ,
(a )  F in d  th e  t ra n s fe r  fu n c tio n  f ro m  th e  g e a r  ang le  (0) to  th e  b a ll posic ion  (P).

(b )  F in d  th e  c lo se d - lo o p  ư a n s íe r  fu n c tio n .

(c)  F in d  th e  ran g e  o f  K  fo r  s tab ility .

(d )  P lo t th e  B o d e  d ia g ra m  fo r  th e  sy s te m  fo r  Af =  1, and  find  th e  g a in  a n d  p h a se  m a rg in s  o f  the  
sy ste m .

(e) D ra w  \M (i( i}) \  v e rsu s  Ù), w h ere  M (s )  is  th e  c lo sed - lo o p  tra n s fe r  fu n c tio n . F in d  (Or. a n d  BW , 

8 - S l .  T h e  g a in -p h a s e  p lo t  o f  th e  fo rw a rd -p a th  t r a n s fe r  fu n c tio n  o f  G {}Ct))/K  o f  a  u n i ty - fe e d b a c k  
c o n tro l  sy s te m  is  sh o w n  in  F ig . 8 P -5 1 . F in d  th e  fo llo w in g  p e rfo rm a n c e  c h a r a c te r is t ic s  o f  the  
s y s te m .
(a )  G a in -c ro s s o v e r  f re q u e n c y  ( ra d /se c )  w h en  /T =  1. 

i b )  P h a se -c ro s so v e r  fre q u en c y  (ra d /se c )  w h en  ^  =  1,

(c)  G a in  m a rg in  (d B ) w h en  A" =  1.

( d )  P h a se  m a rg in  (d eg )  w h en  A" =  I.

( e )  R e so n a n c e  p e a k  M r  w h en  K  = \ .

( f)  R e so n a n t fre q u en c y  (Or ( ra d /se c )  w h en  AT =  1.

(g ) B W  o f  the  c lo sed -Io o p  sy s te m  w h en  K  =  \ .

( h )  T h e  va lu e  o f  K  so  th a t th e  g a in  m a rg in  is  2 0  dB .

( i)  T h e  va lue  o f  K  so  th a t th e  sy s te m  is  m a rg in a lly  s ta b le . F in d  th e  fre q u en c y  o f  su s ta in e d  o sc illa tio n  
in rad /sec-

(j) Steady-slate error when the reference input is a unil-step function.
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-270.0 -247.5 -225,0 -202.5 -180.0 -157.5 -135.0 -112.5 -90.0

Phase (deg)

Figure 8P-51

8 -5 2 . R e p e a t p a rts  (a )  th ro u g h  (g ) o f  P ro b le m  8-51 w h en  AT =  10. R e p ea t p a rt (h )  fo r  g a in  m a rg in s  
4 0  d B .

8 -5 3 . F o r  th e  sy s te m  in  P ro b le m  8 -4 4 , p lo t th e  N ic h o ls  c h a r t a n d  find  m a g n itu d e s  a n d  p h a se  angles 
o f  th e  c lo se d - lo o p  fre q u en c y  re sp o n se . T h e n  p lo t th e  B o d e  d ia g ra m  o f  th e  c lo se d - lo o p  system . 

8 -5 4 . U se  A C S Y S  o r  M A T L A B  to  a n a ly z e  th e  f re q u e n c y  re sp o n se  o f  th e  fo llo w in g  un ity -feedback  
c o n tro l sy s te m s . P lo t th e  B o d e  d ia g ra m s, p o la r  p lo ts , a n d  g a in -p h a se  p lo ts , a n d  c o m p u te  ư ie  phase 
m a rg in , g a in  m a rg in , a n d  BW .

0 .5 ( 5 + 1 )
( a )  G ( i )  =  

( 0  G ( i )  -  

(e )  G (s )  =  

(g ) C (s )

I + 0 . l s  

s ( s - h  1){1 + 0 .0 1 i )  

i ^ + l )  
í ( 1 + 0 , 2 j ) ( 1 + 0 . 5 s ) 

50

s { s +  1)(1 + 0 .552 ) 
10^-ó.ìí

(b )  G (i )  =  

(d )  G ( j )  -  

(f)  G {s) =

j { l  + 0 . 2 j )(1  + 5  +  0 .5 j 2)

s ị \ + s ) { ì + 0 . 5 s )  

(1 + 0 . Ỉ 5 ) e - ° ‘ ' 

+ 0 .0 1 5 )

8-5 5 . F o r  th e  g a in -p h a se  p lo t o f  G (ja > )/K  sh o w n  in  F ig . 8 P -5 1 , th e  sy s te m  n o w  h a s  a p u re  time 
d e la y  o f  in  th e  fo rw a rd  p a th , so  th a t th e  fo rw a rd -p a lh  t ra n s fe r  fu n c tio n  b e co m e s
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( a )  W ith  K  = 1 ,  find  T j  so  th a t th e  p h a se  m a rg in  is  4 0 ° .

( b )  W ith  K  find  th e  m a x im u m  va lu e  o f  Td so  th a t th e  sy s te m  w ill  re m a in  stab le .

8 -5 6 . R e p e a t P ro b le m  8-55  w ith  K  =  10.

8 -5 7 . R e p ea t P ro b le m  8-55  so  th a t th e  g a in  m a rg in  is  5  d B  w h e n  a : =  1.

8 -5 8 . T h e  b lo c k  d ia g ra m  o f  a  fu m a c e -c o n u o l sy s te m  is  sh o w n  in  F ig . 8 P -5 8 . T h e  tra n s fe r  fu n c tio n  

o f  Ihe p ro c e s s  is

c  J i )  =
(1 +  1 0 i ) ( l  + 2 5 i )

T h e  tim e  d e la y  Td is  2  sec.

F ig u re  8P-58

E(s)
Gp(i)J  '

f

Burner Furaace

(a )  P lo t th e  B o d e  d ia g ra m  o f  G {s) =  Y (s ) /E {s ) ,  a n d  fin d  th e  g a in -c ro s so v e r  a n d  p h a se -c ro sso v e r  
f re q u e n c ie s . F in d  th e  g a in  m a rg in  a n d  th e  p h a se  m arg in .

(b )  A p p ro x im a te  th e  tim e  d e la y  b y  (E q . (4 -223 )]

. -T .s  . 1
\+ T d S + T d s 2 /2

a n d  re p e a t p a n  (a). C o m m e n t o n  th e  a cc u ra cy  o f  th e  a p p ro x im a tio n . W h a t is  th e  n 

be lo w  w h ic h  th e  p o ly n o m ia l a p p ro x im atio n  is a c c u ra te?

(c )  R e p e a t p a rt (b ) fo r  a p p ro x im atin g  th e  tim e  d e la y  te rm  by  [E q . (4 -224 )]

n  fre q u en c y

1 +  T js /2

8 -5 9 . R e p ea l P ro b le m  8 -5 8  w iA  Td =  I sec.

8 -6 0 . P lo lư i e  |5 ^ { ý íư ) Ị - v e r s u s - ũ jp lo t f o r lh e s y s t e m d e s c r ib e d in P r o b le m 8 - 4 9 f o r / r  =  l .F in d th e  
f re q u e n c y  a t w h ic h  th e  s e n s itiv i ty  is m a x im u m  a n d  th e  va lu e  o f  th e  m a x im u m  sensitiv ity ,

8 -6 1 . F ig . 8 P -6 I  sh o w s th e  p itc h  c o n tro l le r  sy s te m  fo r  an  a irc ra f t, as d e sc r ib e d  in  P ro b le m  4 -1 2 .
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I f  th e  sy s te m  is  c o n tro l le d  b y  a p ro p o rt io n a l c o n tro l le r  in  a  u n ity - fe e d b a c k  c o n ư o l  sy s te m ,
( a )  F in d  th e  t ra n s fe r  fu n c tio n  b e tw ee n  p itc h  a n g le  a n d  e le v a to r  d e fle c t io n  a n g le .

(b )  F in d  th e  c lo se d -Io o p  tr a n s fe r  fu n c tio n .

(c )  F in d  th e  ran g e  o f  K  f o r  stab ility .

(d )  P lo t th e  B o d e  d ia g ra m  fo r  th e  sy s te m  fo r  =  I , a n d  fin d  th e  g a in  a n d  p h a se  n ia rg in s  o f  the 
sy ste m .

(e) D ra w  \M { jo })\ v e rsu s  a>. w h ere  M {s )  is  th e  c lo se d - lo o p  tr a n s fe r  fu n c tio n . F in d  M r, it>r. and BW,



Design of Control Systems

9-1 I N T R O D U C T IO N

A l l  th e  fo u n d a tio n s  o f  a n a ly s is  th a t w e  ha ve  la id  in  th e  p re c e d in g  ch a p te rs  le d  to  the  

u lt im a te  g o a l o f  d e s ig n  o f  c o n tro l s ys te m s. S ta r t in g  w i th  th e  c o n tro l le d  p ro cess  s uch  as th a t 

sh o w n  b y  th e  b lo c k  d ia g ra m  in  F ig . 9 -1 , c o n tro l sys te m  d e s ig n  in v o lv e s  th e  fo llo w in g  th re e  

steps;

1. D e te rm in e  w h a t th e  sys te m  s h o u ld  d o  an d  h o w  to  d o  i t  (d e s ig n  s p e c if ic a tio n s ) .

2 . D e te rm in e  th e  c o n tr o l le r  o r  c o m p e n s a to r  c o n f ig u ra t io n , re la t iv e  to  h o w  i t  is  

c o n n e c te d  to  th e  c o n tro l le d  process.

3 . D e te rm in e  th e  p a ra m e te r va lu e s  o f  th e  c o n ư o lle r  to  a c h ie v e  th e  d e s ig n  go a ls .

T h e se  d e s ig n  ta sks are e x p lo re d  fu r th e r  in  th e  fo llo w in g  sec tio ns .

9-1-1 Design Specifications

W e  o f te n  use de s ig n  sp e c if ic a tio n s  to  d e s c r ib e  w h a t th e  s ys te m  s h o u ld  d o  an d  h o w  i t  is  

d o n e . T h e se  sp e c if ic a tio n s  are u n iq u e  to  each in d iv id u a l a p p lic a t io n  and o f te n  in c lu d e  

specifications about relative s ta b i l i t y ,  steady-state accuracy (error), transient-response 
characteristics, and frequency-response characteristics. In som e a p p lic a tio n s  th e re  may 
b e  a d d it io n a l sp e c if ic a tio n s  o n  sensitivity to parameter variations, th a t is , robustness, o r  

d is tu r b a n c e  r e je c t io n .

T h e  d e s ig n  o f  l in e a r  c o n tro l sys te m s c an b e  e a rn e d  o u t in  e ith e r  th e  t im e  d o m a in  o r  the 

f r e q u e n c y  d o m a in .  F o r  in s t a n c e ,  s t e a d y * s t a t e  a c c u r a c y  is  o f t e n  s p e c i f ie d  w i th  r e s p e c t  t o  a 

s t e p  i n p u t ,  a  r a m p  in p u t ,  o r  a  p a r a b o l i c  i n p u t ,  a n d  th e  d e s ig n  t o  m e e t  a  c e r ta i n  r e q u i r e m e n t  

is  m o re  c o n v e n ie n tly  c a r r ie d  o u t in  th e  t im e  d o m a in . O th e r  sp e c if ic a tio n s  such  as 

m a x im u m  o v e rs h o o t,  r is e  t im e ,  an d  s e t t l in g  t im e  are a l l  d e fin e d  fo r  a u n i t - s l e p  in p u t  

a n d ,  th e r e f o r e ,  a r e  u s e d  s p e c i f ic a l l y  f o r  t im e - d o m a in  d e s ig n .  W e  h a v e  le a r n e d  th a t  r e la t iv e  

s t a b i l i t y  is  a l s o  m e a s u r e d  in  t e r m s  o f  g a i n  m a r g i n ,  p h a s e  m a r g i n ,  a n d  M r .  T h e s e  a re  

ty p ic a l f re q u e n c y -d o m a in  s f> ec ifica tion s . w h ic h  sh o u ld  be  used in  c o n ju n c t io n  w ith  such 

to o ls  as th e  B o d e  p lo t ,  p o la r  p lo t ,  ga in -p h a se  p lo t ,  and N ic h o ls  ch a rt.

W e  ha ve  sh o w n  th a t, fo r  a se co n d -o rd e r p ro to ty p e  sys te m , th e re  are s im p le  a n a ly tic a l 

r e l a t i o n s h i p s  b e tw e e n  s o m e  o f  t h e s e  t im e - d o m a in  a n d  f r e q u e n c y - d o m a in  s p e c i f ic a t i o n s .  

H o w e v e r ,  f o r  h ig h e r - o r d e r  s y s te m s ,  c o r r e l a t i o n s  b e tw e e n  t im e - d o m a in  a n d  f r e q u e n c y -  

d o m a in  s p e c if ic a tio n s  are d i f f ic u l t  to  e s ta b lish . A s  p o in te d  o u t e a r lie r, th e  a n a lys is  and

u(/) CONTROLLED y(0

Control PROCESS Gp Controlled variables
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d e s ig n  o f  c o n tro l sys te m s is  p re tty  m u c h  an e xe rc ise  o f  s e le c tin g  f r o m  se ve ra l alte rna tive 

m e th o d s  fo r  s o lv in g  th e  sam e p ro b le m .

T h u s , th e  c h o ic e  o f  w h e th e r  th e  d e s ig n  s h o u ld  be c o n d u c te d  in  th e  t im e  d o m a in  o r  the 

f re q u e n c y  d o m a in  d e pe nd s  o f te n  on  the p re fe re n c e  o f  th e  d e s ig n e r. W e  s h o u ld  be q u ic k  to 

p o in t  o u t, h o w e v e r, th a t in  m o s t cases, t im e -d o m a in  s p e c if ic a tio n s  su ch  as m axim um  

o v e rs h o o t, r is e  t im e , and s e t t l in g  t im e  are  u s u a lly  use d  as th e  f in a l m ea su re  o f  system 

p e rfo rm a n c e . T o  an in e x p e rie n c e d  de s ig n e r, i t  is  d i f f ic u l t  to  co m p re h e n d  th e  physical 

c o n n e c tio n  b e tw e e n  fre q u e n c y -d o m a in  s p e c if ic a tio n s  such  as g a in  an d  phase m arg in s  and 

reso na nce  p e a k  to  a c tu a l sys te m  p e rfo rm a n c e . F o r  in s ta n c e , do es  a g a in  m a rg in  o f  20 dB 

g u a ra n te e  a m a x im u m  o v e rs h o o t o f  less th a n  10% ?  T o  a d e s ig n e r i t  m ake s  m o re  sense to 

s p e c ify , fo r  e x a m p le , th a t th e  m a x im u m  o v e rs h o o t s h o u ld  be less th a n  5*7c an d  a settling 

t im e  less th a n  0.01 sec. I t  is  less o b v io u s  w h a t, fo r  e x a m p le , a phase m a rg in  o f  6 0 °  and an 

M r  o f  le s s  t h a n  1.1 m a y  b r in g  in  s y s te m  p e r f o r m a n c e .  T h e  f o l lo w in g  o u t l i n e  w i l l  h o p e fu lly  

c la r i f y  and e x p la in  the  c h o ic e s  and reasons fo r  u s in g  t im e -d o m a in  ve rsu s  frequency- 

d o m a in  s p e c if ic a tio n s .

1. H is to r ic a l ly ,  th e  d e s ig n  o f  l in e a r  c o n tro l sys te m s w as  d e v e lo p e d  w i th  a w ea lth  o f 

g ra p h ic a l to o ls  such  as th e  B o d e  p lo t ,  N y q u is t  p lo t ,  g a in -p h a se  p lo t ,  and N icho ls  

c h a r t ,  w h ic h  a r e  a l l  c a r r i e d  o u t  in  th e  f r e q u e n c y  d o m a in .  T h e  a d v a n ta g e  o f  these  

t o o l s  is  th a t  th e y  c a n  a l l  b e  s k e t c h e d  b y  f o l lo w in g  a p p r o x im a t i o n  m e ứ io d s  w ith o u t 

d e t a i l e d  p lo t t i n g .  T h e r e f o r e ,  t h e  d e s ig n e r  c a n  c a r ry  o u t  d e s i g n s  u s in g  f re q u e n c y -  

d o m a in  s p e c i f i c a t i o n s  s u c h  a s  g a i n  m a r g in ,  p h a s e  margin, M r ,  a n d  th e  like. 

H ig h -o rd e r  sys te m s d o  n o t g e n e ra lly  pose an y  p a r t ic u la r  p ro b le m . F o r  certain 

typ es  o f  c o n tro lle rs ,  de s ig n  p ro ce d u re s  in  th e  fre q u e n c y  d o m a in  are a va ilab le  to 

red uce th e  tr ia l-a n d -e r ro r  e f fo n  to  a m in im u m .

2 .  D e s i g n  in  th e  t im e  d o m a in  u s in g  s u c h  p e r f o r m a n c e  s p e c i f i c a t i o n s  a s  r i s e  tim e , 

d e l a y  t i m e ,  s e t t l i n g  t i m e ,  m a x i m u m  o v e r s h o o t ,  a n d  th e  l ik e  is  p o ss ib le  

a n a ly t ic a l ly  o n ly  f o r  s e c o n d - o r d e r  s y s t e m s  o r  f o r  s y s t e m s  th a t  c a n  b e  a p p ro x i

m a te d  b y  s e c o n d - o r d e r  s y s te m s .  G e n e r a l  d e s ig n  p r o c e d u r e s  u s in g  tim e -d o m a in  

sp e c if ic a tio n s  are d i f f ic u l t  to  e s ta b lis h  fo r  sys te m s w ith  an o rd e r  h ig h e r  than the 

second.

T h e  d e v e lo p m e n t an d  a v a i la b il i ty  o f  h ig h -p o w e re d  and u s e r - fr ie n d ly  co m p u te r  soft

w a re , such as M A T L A B ,  is  ra p id ly  c h a n g in g  th e  p ra c tic e  o f  c o n tro l sys te m  de s ig n , w h ich  

u n t i l  re c e n tly  ha d  been d ic ta te d  b y  h is to r ic a l d e v e lo p m e n t. N o w  w i th  M A T L A B .  the 

d e s ig n e r  c a n  g o  th r o u g h  a  la r g e  n u m b e r  o f  d e s ig n  r u n s  u s in g  th e  t im e - d o m a in  sp e c if ic a 

t io n s  w i th in  a  m a t t e r  o f  m in u t e s .  T h i s  d im i n i s h e s  c o n s id e r a b ly  th e  h i s t o r i c a l  e d g e  o f  the 

f re q u e n c y -d o m a in  d e s ig n , w h ic h  is  based o n  the c o n v e n ie n c e  o f  p e r fo rm in g  graph ica l 

d e s ig n  m a n u a lly .

T h ro u g h o u t th e  cha p te r, w e  ha ve  in c o rp o ra te d  s m a ll M A T L A B  to o lb o x e s  to  h e lp  your 

u n d e rs ta n d in g  o f  the e xa m p ie s . an d . a t th e  en d  o f  th e  c h a p te r, w e p re sen t th e  A u to m a tic  

C o n tro l S ys tem s s o ftw a re  pa ckag e ( A C S Y S ) — i t  is  easy to  use an d  f u l ly  g ra p h ic s  based to 

e l im in a te  th e  u se r's  need to  w r ite  code.

F in a l ly ,  i t  is  g e n e r a l l y  d i f f ic u l t  ( e x c e p t  f o r  a n  e x p e r i e n c e d  d e s ig n e r )  t o  s e le c t  a 

m e a n in g fu l set o f  f re q u e n c y -d o m a in  sp e c if ic a tio n s  th a t w i l l  c o ư e s p o n d  to  th e  desừed 

t im e -d o m a in  p e rfo rm a n c e  re q u ire m e n ts . F o r  e x a m p le , s p e c ify in g  a phase m a rg in  o f  60 ' 

w o u ld  be m e a n in g le ss  un less  w e  k n o w  th a t i t  c o ư e sp o n d s  to  a  c e r ta in  m a x im u m  o ve rshoot 

A s  it  tu r n s  o u t .  to  c o n t r o l  m a x im u m  o v e r s h o o t ,  u s u a l ly  o n e  h a s  to  s p e c i f y  a t  le a s t  p h a s i 

m a r g i n  a n d  M y. E v e n t u a l l y ,  e s t a b l i s h in g  a n  i n t e l l i g e n t  s e t  o f  f r e q u e n c y - d o m a in  s p e c if ic a 

t io n s  b e c o m e s  a  t r i a l - a n d - e r r o r  p r o c e s s  th a t  p r e c e d e s  th e  a c tu a l  d e s ig n ,  w h ic h  o f t e n  i s  a l s o i



Ir ia l-a n d -e ư o r  e f fo r t .  H o w e ve r, fre q u e n c y -d o m a in  m e th o d s  are s t i l l  v a lu a b le  in  in te r 

p re t in g  no ise  re je c t io n  and s e n s it iv i ty  p ro p e rtie s  o f  th e  s ys te m , an d , m o s t im p o n a n t,  th e y  

o f fe r  a n o th e r p e rs p e c tiv e  to  th e  d e s ig n  pro cess . T h e re fo re , in  th is  c h a p te r  th e  de s ig n  

te c h n iq u e s  in  th e  t im e  d o m a in  a nd th e  fre q u e n c y  d o m a in  are tre a te d  s ide  b y  s ide , so th a t the 

m e th o d s  can  be  e a s ily  com p ared .
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9-1-2 Controller Configurations

In  g e n e ra l, th e  d y n a m ic s  o f  a l in e a r  c o n tro l le d  p ro cess  can be rep re se n te d  b y  the  b lo c k  

d ia g ra m  sh o w n  in  F ig . 9 -1 . T h e  d e s ig n  o b je c t iv e  is  to  have th e  c o n tro l le d  va r ia b le s , 

re p re se n te d  b y  th e  o u tp u t v e c to r  y ( 0 .  be h a ve  in  c e r ta in  d e s ira b le  w a ys . T h e  p ro b le m  

e s s e n t ia lly  in v o lv e s  th e  d e te rm in a tio n  o f  th e  c o n tro l s ig n a l u ( 0  o v e r  th e  p re s c rib e d  tim e  

in te rv a l so th a t th e  d e s ig n  o b je c tiv e s  are a l l  sa tis f ie d .

M o s t  o f  th e  c o n v e n t io n a l  d e s ig n  m e th o d s  in  c o n t r o l  s y s t e m s  r e ly  o n  th e  s o - c a l le d  

f ix e d 'C o n i ig u r a t io n  d e s ig n  in  th a t th e  d e s ig n e r a t th e  o u tse t de c ide s  th e  b a s ic  c o n f ig u ra 

t io n  o f  th e  o v e ra l l  d e s ign ed  sys te m  and de c id e s  w h e re  th e  c o n tr o l le r  is  to  be p o s it io n e d  

re la t iv e  to  th e  c o n tro lle d  process. T h e  p ro b le m  th e n  in v o lv e s  th e  de s ig n  o f  th e  e le m e n ts  o f  

th e  c o n tro lle r .  B e cau se m o s t c o n tro l e f fo r ts  in v o lv e  th e  m o d if ic a t io n  o r  c o m p e n s a tio n  o f  

th e  s y s te m -p e rfo rm a n c e  ch a ra c te ris tic s , th e  g e n e ra l de s ig n  u s in g  f ix e d  c o n f ig u ra t io n  is  a lso  

c a lle d  c o m p e n s a t io n .

F ig .  9 -2  i l lu s tra te s  seve ra l c o m m o n ly  used sys te m  c o n fig u ra tio n s  w i th  c o n tro l le r  

c o m p e n s a tio n . T he se  are d e s c r ib e d  b r ie f ly  as fo llo w s .

•  S e rie s  (ca sca d e ) c o m p e n s a t io n :  F ig .  9 - 2 ( a )  s h o w s  th e  m o s t  c o m m o n ly  u s e d  

sys te m  c o n fig u ra tio n  w i th  th e  c o n tro l le r  p la ce d  in  series  w i th  th e  c o n tro lle d  

p r o c e s s ,  a n d  th e  c o n f ig u r a t io n  is  r e f e ư e d  to  a s  s e r i e s  o r  c a s c a d e  c o m p e n s a t i o n .

•  Feedback c o m p e n s a t io n :  I n  F ig .  9 - 2 ( b ) ,  th e  c o n t r o l l e r  is  p la c e d  in  th e  m in o r  

fe e d b a c k  pa th , an d  th e  sche m e is  c a lle d  fe e d b a c k  c o m p e n s a t io n .

•  S ta te -fe e d b a c k  c o m p e n s a t io n :  F ig .  9 - 2 ( c )  s h o w s  a  s y s te m  th a t  g e n e r a t e s  th e  

c o n tro l s ig n a l b y  fe e d in g  b a c k  the  sta te  va r ia b le s  th ro u g h  co n s ta n t rea l ga ins , 

and th e  schem e is  k n o w n  as s ta te  fe e d b a c k . T h e  p ro b le m  w i th  s ta te -fe e d b a ck  

c o n tro l is  th a t, fo r  h ig h -o rd e r  s yste m s, th e  la rg e  n u m b e r o f  s ta te va r ia b le s  in v o lv e d  

w o u ld  re q u ire  a la rg e  n u m b e r o f  tran sdu ce rs  to  sense th e  sta te va r ia b le s  fo r  

fe e d b a ck . T h u s , th e  ac tua l im p le m e n ta t io n  o f  th e  s ta te -fe e d b a ck  c o n tro l schem e 

m a y  be c o s t ly  o r  im p ra c t ic a l.  E ve n  fo r  lo w -o rd e r  sys te m s, o f te n  n o t a l l  the sta te 

va r ia b le s  a re  d ire c t ly  a cce ss ib le , an d  an o b s e rv e r  o r  e s t im a to r  m a y  b e  necessa ry  to  

c rea te  th e  e s t im a te d  sta te va r ia b le s  f r o m  m e a surem en ts  o f  th e  o u tp u t va ria b le s .

T h e  co m p e n sa tio n  schem es sh o w n  in  F ig s . 9 -2 (a ), (b ), and (c )  a l l  have one degree o f  

fre e d o m  in  th a t th ere  is  o n ly  one c o n tro lle r  in  each sys te m , even th o u g h  th e  c o n tro lle r  m ay  

have m o re  th an  one p a ram ete r th a t can be va rie d . T h e  d isa dva n ta ge  w ith  a on e -d eg re e -o f- 

fre e d o m  c o n tro lle r  is  th a t th e  p e rfo rm a n ce  c r ite r ia  th a t can be re a lize d  are lim ite d . F o r 

e xa m p le , i f  a system  is  to  be d e s ign ed  to  a ch ieve  a c e r ta in  a m o u n t o f  re la t iv e  s ta b il ity , i t  m ay  

have p o o r  s e n s it iv ity  to  p a ram ete r va r ia t io n s . O r  i f  the ro o ts  o f  the c h a ra c te ris tic  eq u a tio n  are 

se le c ted  to  p ro v id e  a c e r ta in  a m o u n t o f  re la t iv e  d a m p in g , th e  m a x im u m  o ve rsho o t o f  th e  step 

response m a y  s t i l l  be excess ive  because o f  th e  zeros o f  the c lo s e d - lo o p  tra n s fe r fu n c tio n . T h e  

co m p e n sa tio n  schem es sh o w n  in  F igs . 9 -2 id ) ,  (e ) . and ( f )  a l] have tw o  degrees o f  fre e d o m .

•  S e rie s -fe e d b a c k  c o m p e n s a tio n :  F ig .  9 - 2 ( d )  s h o w s  th e  s e r i e s - f e e d b a c k  c o m p e n s a 

t io n  f o r  w h ic h  a  s e r i e s  c o n t r o l l e r  a n d  a  f e e d b a c k  c o n t r o l l e r  a re  u s e d .
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CONTROLLER J(0
Cp(5) c

State feedback

(c)

F igu re  9-2 V arious c o n tro l le r  c o n fig u ra tio n s  in  c o n tro l-sy s te m  c o m p e n sa tio n , (a) S e r ie s  o r  cascade 
c o m p e n sa tio n , (b ) F e e d b ac k  c o m p e n sa tio n , (c )  S ta te - fe e d b a c k  c o n tro l , (d ) S e r ie s -fee d b ac k  
c o m p e n sa tio n  ( tw o  d e g re es  o f  f re ed o m ), (e)  F o rw ard  c o m p e n sa tio n  w ith  se rie s  c o m p en sa tio n  
( tw o  d e g re e s  o f  f re ed o m ), (f)  F e e d fo rw a rd  c o m p e n sa tio n  ( tw o  d e g re e s  o f  fre ed o m ).

• F e e d fo r w a r d  c o m p e n s a t io n :  F ig s .  9 - 2 ( e )  a n d  ( f )  s h o w  th e  s o - c a l l e d  f e e d f o r w a r d  

c o m p e n s a t i o n .  I n  F ig .  9 - 2 ( e ) ,  th e  f e e d f o r w a r d  c o n t r o l l e r  G c f  ( j )  i s  p l a c e d  in  se rie s  

w ith  th e  c lo s e d - lo o p  sys te m , w h ic h  has a c o n tr o l le r  G f  (5 ) in  th e  fo rw a rd  pa th . In 

F ig . 9 - 2 (0 ,  th e  fe e d fo rw a rd  c o n tro l le r  Gcf (s) is  p la c e d  in  p a ra lle l w ith  th e  fo rw a rd  

p a th . T h e  k e y  to  th e  fe e d fo rw a rd  c o m p e n s a tio n  is  th a t th e  c o n tr o l le r  Gcf ( i )  is  n o t in



th e  lo o p  o f  th e  s ys te m , so i t  does n o t a f fe c t th e  r o o ts  o f  th e  c h a ra c te ris t ic  e q u a tio n  o f  

th e  o r ig in a l sys te m . T h e  p o le s  an d  ze ro s  o f  Gcf ( i )  m a y  be se le c ted  to  a d d  o r  c an ce l 

th e  p o le s  an d  ze ro s  o f  th e  c lo s e d - lo o p  sys te m  tra n s fe r  fu n c t io n .

O n e  o f  th e  c o m m o n ly  used c o n tro lle rs  in  th e  co m p e n s a tio n  schem es ju s t  d e s c r ib e d  is  a 

P ID  c o n tro lle r ,  w h ic h  a p p lie s  a s ig n a l to  th e  p ro cess th a t is  p ro p o rt io n a l to  th e  a c tu a tin g  

s ig n a l in  a d d it io n  to  a d d in g  in te g ra l an d  d e r iv a t iv e  o f  th e  a c tu a tin g  s ig n a l. B e cau se  these 

s ig n a l co m p o n e n ts  are e a s ily  re a liz e d  and v is u a liz e d  in  th e  t im e  d o m a in . P ID  c o n tro lle rs  

are c o m m o n ly  d e s ig n e d  u s in g  t im e -d o m a in  m e th o d s . In  a d d it io n  to  th e  P ID - ty p e  c o n tr o l

le rs , lea d , la g , le a d -Ia g , and n o tc h  c o n tro lle rs  a re  a lso  f re q u e n t ly  used. T h e  nam es o f  these 

c o n tro lle rs  c o m e  f ro m  p ro p e rtie s  o f  th e ir  re s p e c tiv e  f re q u e n c y -d o m a in  c h a ra c te ris tic s . A s  a 

re s u lt , these c o n tro lle rs  a re o f te n  d e s ig n e d  u s in g  f re q u e n c y -d o m a in  c on ce p ts . D e s p ite  these 

d e s ig n  te n d e n c ie s , h o w e ve r, a l l  c o n tro l s ys te m  d e s ig n s  w i l l  b e n e fit b y  v ie w in g  th e  re s u lt in g  

d e s ig n  f r o m  b o th  t im e -  and f re q u e n c y -d o m a in  v ie w p o in ts .  T h u s , b o th  m e th o d s  w i l l  b e  used 

e x te n s iv e ly  in  th is  cha p te r.

I t  s h o u ld  be  p o in te d  o u t th a t these c o m p e n s a tio n  schem es are b y  no  m eans exh a u s tive . 

T h e  d e ta ils  o f  these co m p e n s a tio n  schem es w i l l  be  d iscu ssed  in  la te r  se c tio ns  o f  th is  

cha p te r. A lth o u g h  th e  system s i l lu s ư a te d  in  F ig . 9 -2  are a l l  fo r  c o n tin u o u s -d a ta  c o n tro l,  the 

sam e c o n fig u ra tio n s  can be a p p lie d  to  d isc re te -d a ta  c o n tro l,  in  w h ic h  case th e  c o n tro lle rs  

are a l l  d ig ita l ,  w ith  th e  ne cessa ry  in te r fa c in g s  and s ig n a l c o n ve n e rs .
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9-1-3 Fundamental Principles of Design

A f te r  a c o n tro l le r  c o n f ig u ra t io n  is  cho sen , th e  d e s ig n e r m u s t cho ose  a c o n tr o l le r  ty p e  th a t, 

w i th  p ro p e r  s e le c tio n  o f  its  e le m e n t va lu es , w i l l  sa t is fy  a l l  th e  d e s ig n  s p e c if ic a tio n s . T h e  

typ e s  o f  c o n tro ile rs  a v a ila b le  fo r  c o n tro l-s y s te m  de s ig n  are b o u n d e d  o n ly  b y  o n e 's  

i m a g in a t io n .  E n g in e e r in g  p r a c t i c e  u s u a l ly  d i c t a t e s  th a t  o n e  c h o o s e  t h e  s i m p le s t  c o n t r o l l e r  

th a t m ee ts  a l l  th e  d e s ig n  s p e c if ic a tio n s . In  m o s t cases, th e  m o re  c o m p le x  a c o n tro l le r  is , the 

m o re  i t  cos ts , th e  less r e l ia b le  i t  is , an d  th e  m o re  d i f f ic u l t  i t  is  t o  d e s ig n . C h o o s in g  a s p e c ific  

c o n t r o l l e r  f o r  a  s p e c i f ic  a p p l i c a t i o n  is  o f t e n  b a s e d  o n  th e  d e s i g n e r ’s  p a s t  e x p e r i e n c e  a n d  

s o m e t im e s  in tu i t i o n ,  a n d  i t  e n t a i l s  a s  m u c h  a r t  a s  i t  d o e s  sc ien ce . A s  a  n o v ic e ,  y o u  m a y  

i n i t ia l ly  f in d  i t  d i f f ic u l t  to  m a ke  in te l l ig e n t  ch o ic e s  o f  c o n tro lle rs  w i th  c o n fid e n c e . B y  

u n d e r s t a n d in g  th a t  c o n f id e n c e  c o m e s  o n ly  th r o u g h  e x p e r i e n c e ,  th i s  c h a p te r  p r o v id e s  

g u id e d  exp e rie n ce s  th a t i l lu s tra te  th e  ba s ic  e le m e n ts  o f  c o n tro l sys te m  des igns.

A f t e r  a  c o n t r o l l e r  is  c h o s e n ,  th e  n e x t  t a s k  is  t o  c h o o s e  c o n t r o l l e r  p a r a m e t e r  v a lu e s .  

T he se  p a ra m e te r va lu e s  are  ty p ic a l ly  th e  c o e ff ic ie n ts  o f  on e  o r  m o re  tra n s fe r  fu n c tio n s  

m a k in g  u p  th e  c o n t r o l le r .  T h e  b a s i c  d e s ig n  a p p r o a c h  i s  t o  u s e  th e  a n a ly s i s  t o o l s  d i s c u s s e d  in  

t h e  p r e v io u s  c h a p t e r s  t o  d e t e r m in e  h o w  in d iv i d u a l  p a r a m e t e r  v a lu e s  in f lu e n c e  th e  d e s ig n  

s p e c if ic a tio n s  an d , f in a l ly ,  sys te m  p e rfo rm a n c e . B a sed  o n  th is  in fo r m a lio n ,  c o n tro l le r  

p a r a m e t e r s  a r e  s e l e c t e d  s o  th a t  a l l  d e s ig n  s p e c i f i c a t i o n s  a r e  m e t .  W h i le  th is  p r o c e s s  is  

s o m e tim e s  s tra ig h tfo rw a rd , m o re  o f te n  th a n  n o t i t  in v o lv e s  m a n y  de s ig n  i te ra tio n s  s ince  

c o n t r o l l e r  p a r a m e t e r s  u s u a l ly  in t e r a c t  w i th  e a c h  o t h e r  a n d  in f lu e n c e  d e s ig n  s p e c i f ic a t i o n s  in  

c o n f l ic t in g  w ays . F o r  e x a m p le , a p a r t ic u la r  p a ra m e te r  va lu e  m a y  be cho sen  so th a t the  

m a x im u m  o ve rsh o o t is  s a tis fie d , b u t in  th e  p rocess o f  v a ry in g  a n o th e r p a ra m e te r v a lu e  in  an 

a tte m p t to  m e e t the r is e - t im e  re q u ire m e n t, th e  m a x im u m  o ve rsh o o t s p e c if ic a tio n  m a y  no  

lo n g e r  be  m e t! C le a r ly , th e  m o re  d e s ig n  sp e c if ic a tio n s  th e re  are and the m o re  c o n tro l le r  

p a ram ete rs  th ere  are, th e  m o re  c o m p lic a te d  th e  d e s ig n  p rocess be com es.

In  c a r ry in g  o u t th e  de s ig n  e ith e r  in  th e  t im e  d o m a in  o r  the fre q u e n c y  d o m a in , i t  is 

i m p o r t a n t  to  e s t a b l i s h  s o m e  b a s ic  g u id e l i n e s  o r  d e s ig n  r u le s .  K e e p  in  m in d  th a t  t im e -  

d o m a in  de s ig n  u s u a lly  re lie s  h e a v ily  on  th e  j-p la n e  an d  the  ro o t lo c i.  F re q u e n c y -d o m a in
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d e s ig n  is  based o n  m a n ip u la t in g  th e  g a in  and phase o f  th e  lo o p  ư a n s fe r  fu n c t io n  so tha t thi 

s p e c if ic a tio n s  are m e t.

In  g e n e r a l i t  is  u s e fu l to  s u m m a riz e  th e  t im e -d o m a in  a n d  fre q u e n c y -d o m a in  character 

is t ic s  so th a t th e y  ca n  be  use d  as g u id e lin e s  fo r  d e s ig n  pu rpo ses .

1. C o m p le x -c o n ju g a te  p o le s  o f  th e  c lo s e d - lo o p  ư a n s fe r  fu n c t io n  le a d  to  a stej 

resp on se  th a t is  u n d e rd a m p e d . I f  a l l  s y s te m  p o le s  are re a l, th e  s te p  response ii 

o ve rd a m p e d . H o w e v e r , ze ro s  o f  th e  c lo s e d - lo o p  tra n s fe r  fu n c t io n  m a y  caus( 

o v e rs h o o t eve n  i f  th e  sys te m  is  o v e rd a m p e d .

2 . T h e  response o f  a sys te m  is  d o m in a te d  b y  th ose  p o le s  c lo se s t to  ứ ie o r ig in  in  the Í  

p la ne . T ra n s ie n ts  du e  to  th o se  p o le s  fa r th e r  to  th e  le f t  d e ca y  fa s te r.

3 . T h e  fa r th e r  to  th e  l e f t  in  th e  5 -p la n e  th e  s y s te m ’ s d o m in a n t p o le s  a re . th e  faster ửỉ« 

sys te m  w i l l  re sp o n d  an d  the g re a te r  its  b a n d w id th  w i l l  be.

4 . T h e  fa r th e r  to  th e  le f t  in  th e  i-p la n e  th e  s y s te m ’ s d o m in a n t p o le s  are , the  m on 

e xp e n s ive  i t  w i l l  be an d  th e  la rg e r  i ts  in te rn a l s ig n a ls  w i l l  be. W h i le  th is  can tx 

ju s t i f ie d  a n a ly t ic a l ly ,  i t  is  o b v io u s  th a t s t r ik in g  a n a i l  h a rd e r w i th  a h a m m e r drive: 

th e  n a i l  in  fa s te r b u t re q u ire s  m o re  e n e rg y  p e r  s tr ik e . S im ila r ly ,  a spo rts  car car 

a cce le ra te  fa s te r, b u t i t  uses m o re  fu e l th a n  an ave rag e  car.

5 . W h e n  a p o le  an d  z e ro  o f  a sys te m  tra n s fe r  fu n c t io n  n e a r ly  c a n c e l each o the r, thí 

p o r t io n  o f  th e  sys te m  resp on se  asso c ia te d  w i th  th e  p o le  w i l l  have a smal 

m a g n itu d e .

6 . T im e -d o m a in  and fre q u e n c y -d o m a in  s p e c if ic a tio n s  are lo o s e ly  assoc ia ted  wiứ 

each o the r. R ise  t im e  an d  b a n d w id th  are in v e rs e ly  p ro p o rt io n a l.  L a rg e r  phase 

m a rg in , la rg e r g a in  m a rg in , and lo w e r  M r  w i l l  im p ro v e  d a m p in g .

► 9-2  D E S IG N  W I T H  T H E  PD CO N T R O LL E R

In  a l l  th e  e x a m p le s  o f  c o n t r o l  s y s te m s  w e  h a v e  d is c u s s e d  th u s  fa r ,  th e  c o n tro lle  

has b e e n  t y p ic a l ly  a s im p le  a m p li f ie r  w i t h  a  c o n s ta n t g a in  K. T h is  ty p e  o f  c o n tr o l  a c lio i 

is  fo r m a l ly  k n o w n  as p r o p o r t i o n a l  c o n t r o l ,  b e ca u se  th e  c o n t r o l  s ig n a l a t th e  ou lpu  

o f  th e  c o n t r o l le r  is  s im p ly  re la te d  to  th e  in p u t  o f  th e  c o n t r o l le r  b y  a p ro p o rtio n a  

c o n s ta n l.

I n tu i t iv e ly ,  on e  s h o u ld  a ls o  be  a b le  to  use th e  d e r iv a t iv e  o r  in te g ra l o f  th e  inpu 

s ig n a l,  in  a d d it io n  to  th e  p r o p o r t io n a l o p e ra t io n . T h e re fo re , w e  c a n  c o n s id e r  a m on 

g e n e ra l c o n t in u o u s -d a ta  c o n tr o l le r  to  be  on e  th a t c o n ta in s  such  c o m p o n e n ts  as adder: 

( a d d it io n  o r  s u b tra c t io n ) ,  a m p li f ie rs ,  a t te n u a to rs , d i f fe r e n t ia to r s ,  a n d  in te g ra to rs . Th( 

d e s ig n e r ’ s ta s k  is  to  d e te rm in e  w h ic h  o f  th ese  c o m p o n e n ts  s h o u ld  be  use d , in  wha 

p r o p o r t io n ,  an d  h o w  th e y  a re  c o n n e c te d . F o r  e x a m p le , on e  o f  th e  b e s t-k n o w n  c o n tro lle r  

use d  in  p ra c t ic e  is  th e  P ID  c o n tr o l le r ,  w h e re  th e  le t te rs  s ta n d  f o r  proportional, integral 
an d  derivative. T h e  in te g ra l an d  d e r iv a t iv e  c o m p o n e n ts  o f  th e  P ID  c o n tr o l le r  hav( 

in d iv id u a l  p e r fo rm a n c e  im p l ic a t io n s ,  an d  th e ir  a p p l ic a t io n s  re q u ire  an u n d e rs ta n d in g  0 
th e  b a s ic s  o f  these e le m e n ts . T o  g a in  an u n d e rs ta n d in g  o f  th is  c o n tr o l le r ,  w e  c o n s id e r  jus 

th e  P D  p o r t io n  o f  th e  c o n tr o l le r  f irs t.

F ig . 9 -3  sho w s ứ ie  b lo c k  d ia g ra m  o f  a fe e d b a ck  c o n tro l sys te m  th a t a r b it ra r i ly  has 

se c o n d -o rd e r p ro to ty p e  p rocess w i th  th e  tra n s fe r  fu n c t io n
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Fig u re  9-3 C o n tro l sy s te m  w ith  P D  c o n ư o lle r

T h e  se ries  c o n tro l le r  is  a p ro p o rt io n a l-d e r iv a t iv e  (P D )  ty p e  w i th  th e  tra n s fe r  fu n c t io n

G c { i )  -  íTp +  K ũ S  (9 -2 )

T h u s , th e  c o n tro l s ig n a l a p p lie d  to  th e  p ro cess  is

_ de{t)
u[t) =  K p e { t ) K d  -

d t
(9 -3 )

w h e re  Kp  and K d  are th e  p ro p o rt io n a l and d e r iv a tiv e  con s ta n ts , re s p e c tiv e ly . U s in g  the 

c o m p o n e n ts  g iv e n  in  T a b le  4 -4 , tw o  e le c tro n ic -c irc u it  re a liz a tio n s  o f  th e  P D  c o n tro l le r  are 

s h o w n  in  F ig . 9 -4 . T h e  tra n s fe r  fu n c t io n  o f  th e  c i r c u i t  in  F ig .  9 -4 (a )  is

(9 -4 )

Figure 9-4 Op-amp circuit
realization of the PD
controller.



Kp =  RtỊRx K d =  RiCx  (9-5:

T h e  tra n s fe r  fu n c t io n  o f  th e  c i r c u i t  in  F ig .  9 -4 (b )  is

C o m p a r in g  E q . (9 -2 )  w i th  E q . (9 -6 ) ,  w e  ha ve

K p =  R iỊR x  K d  =  RdCd (9-7;

T h e  ad va n ta g e  w i th  th e  c ừ c u it  in  F ig .  9 -4 (a )  is  th a t o n ly  tw o  O p -a m p s  are  used. However, 

th e  c i r c u i t  do es  n o t a l lo w  th e  in d e p e n d e n t se le c tio n  o f  K p  an d  K d  because th ey  are 

c o m m o n ly  d e p e n d e n t o n  i?2- A n  im p o n a n t c o n c e rn  o f  th e  P D  c o n tr o l le r  is  th a t, i f  the value 

o f  K d  is  la rg e , a  la rg e  c a p a c ito r  Cl w o u ld  be  re q u ire d . T h e  c i r c u i t  in  F ig . 9 -4 (b )  a llo w s  Kf 
an d  K d  to  b e  in d e p e n d e n tly  c o n tro l le d . A  la rg e  K d  can  be c o m p e n s a te d  b y  c h o o s in g  a large 

va lu e  f o r  Rd, th u s  re s u lt in g  in  a re a lis t ic  v a lu e  fo r  C j.  A lth o u g h  th e  scop e  o f  th is  te x t does 

n o t in c lu d e  a l l  th e  p ra c tic a l issues in v o lv e d  in  c o n tr o l le r  tra n s fe r  f u n c t io n  im p lem en ta tion , 

these issues are o f  th e  u tm o s t im p o r ta n c e  in  p ra c tic e .

T h e  fo rw a rd -p a th  ư a n s íe r  fu n c t io n  o f  th e  co m p e n sa te d  sys te m  is
•  PD CDnlml adds a  simple

I unction. ^ '  \  - r  <> n )

w h ic h  sho w s th a t th e  P D  c o n tro l is  e q u iv a le n t to  a d d in g  a s im p le  z e ro  a t Í  =  - K p /K o  Í0 
th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n .
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C om paring Eq. (9 -2 ) w ith  Eq. (9 -4), we have

9-2-1 Time-Domain Interpretation of PD Control

T h e  e f fe c t o f  th e  P D  c o n tro l o n  th e  ữ a n s ie n t resp on se  o f  a c o n tro l sys te m  can be 

in ve s tig a te d  b y  r e fe r r in g  to  th e  t im e  responses sh o w n  in  F ig . 9 -5 . L e t  us assum e thal 

th e  u n it-s te p  resp on se  o f  a s ta b le  sys te m  w i th  o n ly  p ro p o rt io n a l c o n tro l is  as sho w n  in  Fig.

9 -5 (a ) , w h ic h  has a re la t iv e ly  h ig h  m a x im u m  o v e rs h o o t an d  is  ra th e r  o s c il la to ry . The 

c o r re s p o n d in g  e r ro r  s ig n a l, w h ic h  is  th e  d if fe re n c e  b e tw e e n  th e  u n it-s te p  in p u t and the 

o u tp u t y ( f ) .  and its  t im e  d e r iv a t iv e  d e { t) /d t  are  sh o w n  in  F ig s . 9 .5 (b )  an d  (c ) , respective ly. 

T h e  o v e rs h o o t and o s c i l la t io n  c h a ra c te ris tic s  are  a ls o  re fle c te d  in  eự )  an d  de iO /d t.  F o r  the 

sake o f  i l lu s ữ a t io n . w e  assum e th a t th e  sys te m  c o n ta in s  a m o to r  o f  som e k in d  w iU i it i 

to rq u e  p ro p o rt io n a l to  e(l). T h e  p e r fo rm a n c e  o f  th e  sys te m  w i th  p ro p o rt io n a l co n tro l Í5 

an a ly z e d  as fo llo w s .

1. D u r in g  th e  t im e  in te rv a l 0 < / < / | :  T h e  e r r o r  s ig n a l e {i)  is  p o s it iv e . T h e  motoi 

to rq u e  is  p o s it iv e  an d  r is in g  ra p id ly .  T h e  la rg e  o v e rs h o o t and sub seq ue n t osc illa 

t io n s  in  th e  o u tp u t y ( f )  a re  d u e  to  th e  e xce ss ive  a m o u n t o f  to rq u e  d e ve lo p e d  b y  the 

m o to r  an d  th e  la c k  o f  d a m p in g  d u r in g  th is  t im e  in te rv a l.

2. D u r in g  th e  t im e  in te rv a l r j  < t < t y .  T h e  e r ro r  s ig n a l e{t)  is  n e g a tiv e , and ứií 

c o ư e s p o n d in g  m o to r  to rq u e  is  n e g a tive . T h is  n e g a tiv e  to rq u e  te nd s  to  s lo w  dowr 

th e  o u tp u t a c c e le ra t io n  and e v e n tu a lly  causes th e  d ire c t io n  o f  th e  o u tp u t y(t)  t( 

reve rse  an d  u n d e rsh o o t.
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f ig u r e  9-5  W av e fo rm s  o f  J'C/), e{t)y a n d  d e {t)/d l, sh o w in g  th e  e ffe c t o f  de riv a tiv e  c o n ư o l.  (a )  U n it-  
s te p  re sp o n se , (b ) E r ro r  s ig n a l, (c )  T im e  ra te  o f  c h a n g e  o f  th e  e rro r  s ig n a l.

3 . D u r in g  th e  t im e  in te rv a l T h e  m o to r  to rq u e  is  a g a in  p o s it iv e , th us

t e n d in g  to  r e d u c e  th e  u n d e r s h o o t  in  th e  r e s p o n s e  c a u s e d  b y  th e  n e g a t iv e  t o r q u e  in  

th e  p re v io u s  t im e  in te rv a l.  B e cau se th e  sys te m  is  assum ed to  be  s ta b le , the  e rro r  

a m p litu d e  is  re d u ce d  w i th  each o s c i l la t io n , an d  th e  o u tp u t e v e n tu a lly  se ttles  to  its  

f in a l va lu e .

C o n s id e r in g  th e  ab o ve  a n a ly s is  o f  th e  sys te m  t im e  response, w e  c a n  say th a t the 

c o n tr ib u t in g  fa c to rs  to  th e  h ig h  o v e rs h o o t a re  as fo llo w s :

1. T h e  p o s i t i v e  c o r r e c t in g  t o r q u e  i n  th e  in t e r v a l  0  <  Í  <  / ]  i s  t o o  la r g e .

2 . T h e  r e t a r d in g  to r q u e  in  th e  l im e  in te r v a l  f |  <  /  <  Í2  i s  i n a d e q u a te .

T h e re fo re , to  re d u ce  th e  o v e rs h o o t in  th e  s te p  response, w ith o u t  s ig n if ic a n t ly  inc re a s 

in g  th e  r ise  t im e , a lo g ic a l a p p ro a ch  w o u ld  be  to

1. D e c r e a s e  t h e  a m o u n t  o f  p o s i t i v e  c o ư e c t i n g  to r q u e  d u r in g  0  <  Í <  / ( .

2 .  I n c r e a s e  th e  r e t a r d in g  to r q u e  d u r in g  Í 1 <  Í  <  t j .

S i m i la r ly ,  d u r in g  th e  t im e  in te r v a l ,  Í2 < t < t 4 , th e  n e g a t iv e  c o r r e c t iv e  t o r q u e  in  

t2 < t < h  sh o u ld  be re d u ce d , and th e  re ta rd in g  to rq u e  d u r in g  í3 < / < / 4. w h ic h  is  n o w  

in  th e  p o s it iv e  d ire c t io n , sh o u ld  be inc re a se d  to  im p ro v e  th e  u n d e rsh o o t o f  y(t).
T h e  P D  c o n tro l d e sc rib e d  b y  E q . (9 -2 )  g ive s  p re c is e ly  th e  c o m p e n sa tio n  e f fe c t re q u ire d . 

B e c a u s e  th e  c o n ư o l  s ig n a l  o f  th e  P D  c o n ư o l  is  g iv e n  b y  E q .  ( 9 - 3 ) ,  F ig .  9 - 5 ( c )  s h o w s  th e  

fo llo w in g  e ffe c ts  p ro v id e d  b y  the P D  c o n tro lle r :
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• PD is esseniia lly  an 
an tic ipa tory  contro l.

• D erivative o r  PD contro l 
w i ll  have an effect on a 
steady-state error o n ly  i f  the 
error varies, w ith  tim e.

1. F o r  0  <  Í  <  i ] ,  d e { t ) / d t  i s  n e g a tiv e : th is  w i l l  re d u ce  th e  o r i g i n a l  to rq u e  develope 

d u e  to  e { t )  a lo n e .

2. For /1 < / < Í2. both e {t) and d e ự ) Ịd t  are negative, which means Uiat the negatjv 
r e ta rd in g  to rq u e  d e v e lo p e d  w i l l  be  g re a te r  th a n  th a t w iứ i o n ly  p ro po rtio na

c o n tro l.

3 . F o r ?2 <  i <  Í3 , e ( 0  a n d  h a v e  o p p o s i t e  s i g n s .T h u s ,  t h e  n e g a t iv e  to r q u e  tha

o r ig in a l ly  c o n tr ib u te s  to  th e  u n d e rs h o o t is  re d u ce d  a lso .

T h e re fo re , a l l  these e ffe c ts  w i l l  re s u lt in  s m a lle r  o ve rs h o o ts  an d  u n d e rsh o o ts  in  y (0 -

A n o th e r  w a y  o f  lo o k in g  a t th e  d e r iv a tiv e  c o n tro l is  th a t s ince  d e { t) ld t  represents the slofx 

o f  e { t \  the P D  c o n tro l is  e sse n tia lly  an antic ipa to ry  c o n tro l. T h a t is, b y  k n o w in g  th e  slope, th< 

c o n tro lle r  can a n tic ip a te  d ire c t io n  o f  th e  e ư o r  and use i t  to  be tte r c o n ữ o l the process 

N o rm a lly , in  l in e a r  system s, i f  th e  s lop e o f  e{t) o r  ></) due to  a step in p u t is  large , a high 

o ve rsho o t w i l l  subseq ue n tly  o ccu r. T h e  d e r iv a tiv e  c o n tro l m easures th e  ins tan taneous slope ol 

e (r ). p re d ic ts  the la rg e  o ve rsh o o t ahead o f  t im e , and m ake s a p ro p e r c o rre c tiv e  e f fo r t  be fore ứie 

excess ive  o ve rsho o t a c tu a lly  occurs.

In tu it iv e ly ,  d e r iv a t iv e  c o n tro l a f fe c ts  th e  s te a d y -s ta le  e r r o r  o f  a sys te m  o n ly  i f  the 

s te ad y-s ta te  e r ro r  va ries  w i th  t im e . I f  th e  s te ad y-s ta te  e r ro r  o f  a sys te m  is  con s ta n t w ith 

r e s p e c t  t o  l im e ,  th e  t im e  d e r iv a t iv e  o f  t h i s  e r r o r  i s  z e r o ,  a n d  th e  d e r iv a t iv e  p o r t io n  o f  the 

c o n tro l le r  p ro v id e s  n o  in p u t to  th e  p rocess. B u t i f  th e  s te a d y -s ta te  e r r o r  increa ses w ith  lim e, 

a to rq u e  is  a g a in  d e ve lo p e d  in  p ro p o rt io n  to  d e { t) /d i,  w h ic h  red uce s  th e  m a g n itu d e  o f  the 

e rro r . E q . (9 -8 )  a lso  c le a r ly  sho w s  th a t th e  P D  c o n tro l does n o t a lte r  th e  sys te m  typ e that 

g o ve rn s  the  s te ad y-s ta te  e ư o r  o f  a u n ity - fe e d b a c k  sys te m .

9-2-2 Frequency'Domain Interpretation of PD Control

F o r  fre q u e n c y -d o m a in  de s ig n , th e  tra n s fe r  fu n c t io n  o f  th e  P D  c o n tr o l le r  is  w r itte n

G c is )  =  K p  +  K d s  ^  K p { ^ \  + ^ 5 ^ (9-9)

• The PD con tro lle r is a 
high-pass filter.

• The PD co n lro lie r has the 
disadvantage lha i it  
accenluales high-frequency 
noise.

• T h e  P D  con tro lle r w ill 
generally  increase the BW  
and rcducc ihe rise tim e o f  
the step response.

so th a t i t  is  m o re  e a s i ly  in te r p r e te d  on  th e  B o d e  p lo t .  T h e  B o d e  p lo t  o f  E q . (9 -9 )  is 

s h o w n  in  F ig .  9 -6  w i t h  Kp  =  1. In  g e n e ra ], th e  p r o p o r t io n a l- c o n t r o l  g a in  K p  can be 

c o m b i n e d  w i t h  a  s e r i e s  g a i n  o f  t h e  s y s t e m ,  s o  t h a t  t h e  z e r o - f r e q u e n c y  g a in  o f  the  

P D  c o n t r o l le r  c a n  be  re g a rd e d  as u n ity .  T h e  h ig h -p a s s  f i l t e r  c h a r a c te r is t ic s  o f  the  PD 

c o n t r o l le r  a re  c le a r ly  s h o w n  b y  th e  B o d e  p lo t  in  F ig .  9 -6 . T h e  p h a s e - le a d  p ro p e r ty  may 

b e  u t i l i z e d  to  im p r o v e  I h e  p h a s e  m a r g i n  o f  a  c o n t r o l  s y s t e m .  U n f o r t u n a t e l y ,  the  

m a g n itu d e  c h a r a c te r is i ic s  o f  th e  P D  c o n t r o l le r  p u s h  th e  g a in -c ro s s o v e r  fre q u e n c y  to  a 

h i g h e r  v a lu e .  T h u s ,  th e  d e s ig n  p r in c ip le  o f  th e  P D  c o n t r o l le r  in v o lv e s  th e  p la c in g  o f  

th e  c o r n e r  f r e q u e n c y  o f  th e  c o n t r o l le r ,  CO =  K p / K o ,  s u c h  th a t  a n  e f fe c t iv e  im p ro v e 

m e n t o f  th e  p h a s e  m a r g in  is  r e a liz e d  a t  th e  n e w  g a in - c r o s s o v e r  f r e q u e n c y . F o r  a  g iv e n  

s y s t e m ,  t h e r e  i s  a  r a n g e  o f  v a l u e s  o f  K p / K o  t h a t  i s  o p t i m a l  f o r  im p r o v i n g  th e  d a m p in g  

o f  t h e  s y s t e m .  A n o t h e r  p r a c t i c a l  c o n s i d e r a t i o n  in  s e l e c t i n g  t h e  v a l u e s  o f  K p  a n d  K d  is 

in  th e  p h y s ic a l im p le m e m a t io n  o f  th e  P D  c o n tr o l le r .  O th e r  a p p a re n t e f fe c ts  o f  th e  PD 

c o n tr o l  in  th e  f re q u e n c y  d o m a in  a re  th a i,  d u e  to  its  h ig h -p a s s  c h a ra c te r is t ic s ,  in  m ost 

cases i t  w i l l  in c re a s e  th e  B W  o f  th e  s y s te m  an d  re d u c e  th e  r is e  t im e  o f  th e  step 

re sp o n se . T h e  p r a c t ic a l d is a d v a n ta g e  o f  th e  P D  c o n t r o l le r  is  th a t th e  d if fe r e n t ia to r  

p o r t i o n  i s  a  h i g h - p a s s  f i l t e r ,  w h i c h  u s u a l l y  a c c e n t u a t e s  a n y  h i g h - f r e q u e n c y  n o i s e  th a t 
e n te rs  a i ih e  in p u l .
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F ig u re  9-6 B o d e  d ia g ra m  o f  1 + 1 ,  
Kp

9-2-3 Summary of Effects of PD Control

T h o u g h  i t  is  n o t e f fe c t iv e  w ith  l ig h t ly  d a m p e d  o r  in i t ia l l y  u n s ta b le  syste m s, a p ro p e r ly  

d e s ig n e d  P D  c o n tro l le r  can  a f fe c t Ih e  p e rfo rm a n c e  o f  a c o n tro l sys te m  in  th e  fo llo w in g  

w a ys ;

1. Im p ro v in g  d a m p in g  and re d u c in g  m a x im u m  o v e rsh o o t.

2 . R e d u c in g  r ise  t im e  an d  s e t t l in g  t im e .

3 . In c re a s in g  B W .

4 . Im p ro v in g  G M , P M , and Mr.

5. P o s s ib ly  a c c e n tu a tin g  no ise  a t h ig h e r  fre q u e n c ie s .

6. P o s s ib ly  re q u ir in g  a re la t iv e ly  la rg e  c a p a c ito r  in  c i r c u i t  im p le m e n ia tio n .

T h e  fo llo w in g  e x a m p le  il lu s tra te s  th e  e ffe c ts  o f  th e  P D  c o n tro l le r  o n  the  t im e -d o m a in  

and fre q u e n c y -d o m a in  responses o f  a se co n d -o rd e r sys te m .
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Toolbox 9-2-1
The Bode d iagram  fo r  F ig . 9-6 is ob ta ined by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s

c lo s e  a l l : 
c l e a r  a l l 
e l e :

KP = 1 ;
KD= 1:
n u m =  [K D K P ] : 
d e n  = [ 1 ]  ;
b o d e C t f ( n u m ,d e n ) )  
g r i d

► EXAMPLE 9 -2 -1  L e t u s  r e c o n s id e r  th e  s e c o n d -o rd e r  m o d e l o f  th e  a ữ c ra f t  a ttitu d e  c o n tro l sy s te m  sh o w n  in  Fig . 5-2Ỉ 
The fo rw ard-path transfer fu nctio n  o f  the system is g iven in  Eq. (5 -132) and is repeated here:

L e t u s  se t th e  p e rfo rm a n c e  sp e c if ic a tio n s  a s  fo llo w s:

S te a d y -s ta te  e ư o r  d u e  to  u n it- ram p  in p u t <  0 .0 0 0 4 4 3  

M a x im u m  o v e rsh o o t <  5%

R ise  tim e  tr  <  0 .0 0 5  sec  

S e ttl in g  tim e  fj <  0 .0 0 5  sec

To satisfy the m axim um  value o f  the specified steady-state e rror requirem ent, AT should be seta 
181 .17 , H ow ever, w ith  th is  va lu e  o f  K. d ie  d a m p in g  ra tio  o f  th e  sy s te m  is  0 .2 , a n d  th e  m axim ur 
o v e rsh o o t is  52.1% . as sh o w n  b y  th e  u n it- s te p  r e sp o n se  in  F ig . 5 -31 a n d  a g a in  in  F ig . 9-9. Let u 
consider inserting a PD  con tro lle r in  Ihe fo rw a rd  path o f  the system so that the dam ping and th' 
m a x im u m  o v e rsh o o t o f  th e  sy s te m  a re  im p ro v e d  w h ile  m a in ta in in g  th e  s te a d y -s ta te  e r ro r  due  to  thi 
u n it- ram p  in p u l a t 0 .0 0 0 4 4 3 . ■*

T im e -D o m a in  Design

W ith  th e  P D  c o n t r o l l e r  o f  E q .  ( 9 - 9 )  a n d  K  =  1 8 1 .1 7 ,  t h e  f o r w a r d - p a t h  t r a n s f e r  fu n c t io n  0 

th e  sys te m  becom es

T h e  c lo s e d - lo o p  tra n s fe r  fu n c t io n  is

Q y (» )  ^ ___________ 8 1 5 ,2 6 5 ( g p  +  / fp » ) ____________

0 r ( j )  s2 +  (3 6 1 .2  +  8 1 5 ,2 6 5 A :D )s  +  8 1 5 ,2 6 5 i i r ,  '

T h e  ra m p -e r ro r  co n s ta n t is

K ,  =  lira  sG (s )  =  =  2 2 5 7 .I K ,  (9-13



T h e  s te a d y -s ta te  e r ro r  du e  to  a u n it- ra m p  in p u t  is  Cị ị  =  \ /K v  =  0 .00 04 43 /A T p .

E q . (9 -1 2 )  sho w s th a t th e  e ffe c ts  o f  th e  P D  c o n tro l le r  are as fo llo w s :

1. A d d in g  a z e ro  a t Ỉ  =  - K p Ị K o  to  th e  c lo s e d - lo o p  tra n s fe r  fu n c t io n

2 . In c re a s in g  th e  dam ping term , w h ic h  is  th e  c o e ff ic ie n t o f  th e  s te rm  in  th e

d e n o m in a to r , f r o m  3 6 1 .2  to  3 6 1 .2  +  8 1 5 ,2 6 5 A 'o

T h e  c h a ra c te ris t ic  e q u a tio n  is  w r i t te n

+  (3 6 1 .2  +  8 1 5 , 265K d )s +  8 1 5 , le S K p  =  0  (9 -1 4 )

W e  c a n  s e t  K p  =  1 , w h ic h  is  a c c e p ta b l e  f r o m  th e  s t e a d y - s t a t e  e r r o r  r e q u i r e m e n t .  T h e  

d a m p in g  r a t io  o f  th e  sys te m  is

w h ic h  c l e a r l y  s h o w s  th e  p o s i t i v e  e f f e c t  o f  K d  o n  d a m p in g .  I f  w e  w i s h  to  h a v e  c r i t i c a l

d a m p in g , f  =  I .  E q . (9 -1 5 )  g ive s  K d  =  0 .0 0 1 7 7 2 . W e  s h o u ld  q u ic k ly  p o in t o u t th a t Eq.

(9 -1 2 )  n o  lo n g e r  rep re sen ts  a  p ro to ty p e  se c o n d -o rd e r s ys te m , s in ce  th e  ư a n s ie n t response is 

a lso  a ffe c te d  b y  th e  z e ro  o f  th e  tra n s fe r  fu n c t io n  a t Í  =  —K p ỊK o -  I t  tu rn s  o u t th a t, fo r  th is  

s e c o n d -o rd e r sys te m , as th e  va lu e  o f  K d  inc rea ses , th e  ze ro  w i l l  m o v e  v e ry  c lo s e  to  the 

o r ig in  an d  e f fe c t iv e ly  ca n ce l th e  p o le  o f  G (s )  a t s  =  0 . T h u s , as K d  inc rea ses , th e  tra n s fe r  

fu n c t io n  in  E q . (9 -1 2 )  a p p ro ach es  th a t o f  a f ir s t-o rd e r  sys te m  w i th  th e  p o le  a t Í  =  - 3 6 1 .2 ,  

an d  th e  c lo se d -lo o p  sy s tem  w ill n o t h av e  any  o v e rsh o o t. In  g en e ra l,  fo r  h ig h e r-o rd e r 
s y s t e m s ,  h o w e v e r ,  ứ i e  z e r o  a t  5  =  —K p / K ũ  m a y  in c r e a s e  t h e  o v e r s h o o t  w h e n  K d  b e c o m e s  

v e ry  la rg e .

W e  c a n  a p p ly  th e  r o o t-c o n to u r  m e th o d  to  th e  c h a ra c te ris t ic  e q u a tio n  in  E q . (9 -1 4 )  to  

e x a m in e  th e  e f fe c t o f  v a ry in g  Kp  a n d  K d - F irs t ,  b y  se tt in g  K d  to  ze ro . E q . (9 -1 4 )  becom e s

5^ +  3 6 1 .2 í  +  8 1 5 ,2 6 5 í :p  = 0  (9 -1 6 )

T h e  r o o t lo c i  o f  th e  la s t e q u a tio n  as K p  v a ries  b e tw e e n  0  a nd o c  are s h o w n  in  F ig . 9 -7 . W h e n  

K d ^ Ồ ,  th e  c h a ra c te ris t ic  e q u a tio n  in  E q . (9 -1 4 )  is  c o n d it io n e d  as

T h e  r o o t  c o n to u r s  o f  E q .  ( 9 - 1 4 )  w i th  K p  =  c o n s t a n t  a n d  K p  v a r y in g  a re  c o n s t r u c t e d  b a s e d  

o n  th e  p o le -z e ro  c o n f ig u ra t io n  o f  G e q (j)  an d  are sh o w n  in  F ig .  9 -8  fo r  K p =  0 .2 5  and 

K p  =  \ .  W e  s e e  th a t ,  w h e n  K p  =  1 a n d  K d  =  0 .  th e  c h a r a c t e r i s t i c  e q u a t io n  r o o t s  a r e  a t 

- 1 8 0 . 6  +  ỹ8 8 4 .6 7  an d  - 1 8 0 . 6 - j8 8 4 .6 7 , and th e  d a m p in g  ra t io  o f  the c lo s e d - lo o p  

s y s t e m  i s  0 .2 .  W h e n  th e  v a lu e  o f  K d  is  in c r e a s e d ,  th e  tw o  c h a r a c t e r i s t i c  e q u a t io n  r o o ts  

m o v e  to w a rd  th e  rea l a x is  a lo n g  a c irc u la r  a rc . W h e n  K d  is  inc re a se d  to  0 .0 0 1 7 7 , th e  ro o ts  

are re a l and e q u a l a t —9 0 2 .9 2 . an d  th e  d a m p in g  is  c r it ic a l.  W h e n  A 'o  is  inc rea sed  be yo n d

0 .0 0 1 7 7 , th e  tw o  ro o ts  be co m e  rea l an d  u n e q u a l, an d  th e  sys te m  is  ove rd a m p e d .

W h e n  K p  i s  0 .2 5  a n d  K d  =  0 ,  th e  tw o  c h a r a c t e r i s t i c  e q u a t io n  r o o t s  a re  a t  - 1 8 0 . 6  - f  

ý 4 1 3 ,7 6  a n d  - 1 8 0 . 6  -  ý 4 1 3 .7 6 .  A s  A’o  i n c r e a s e s  in  v a lu e ,  th e  r o o t  c o n to u r s  a g a in  s h o w  th e  

im p ro v e d  d a m p in g  du e  to  th e  P D  c o n tro lle r . F ig . 9 -9  sho w s th e  u n it-s te p  responses o f  the 

c l o s e d - lo o p  s y s te m  w i th o u t  P D  c o n t r o l  a n d  w i th  K p  =  1 a n d  K d  =  0 .0 0 1 7 7 .  W ith  th e  P D

9-2 Design with the PD Controller 499
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Fig u re  9-7 R o o t lo c i o f  E q . (9 -1 6 ).

c o n tro l,  th e  m a x im u m  o v e rs h o o t is  4 .2 % . In  th e  p re se n t case, a lth o u g h  K p  is  chosen f(  

c r it ic a l  d a m p in g , th e  o v e rs h o o t is  du e  to  th e  z e ro  a t Í  =  - K p j K u  o f  th e  c lose d -loo  

tra n s fe r  fu n c t io n . T a b le  9 -1  g ive s  th e  re s u lts  o n  m a x im u m  o v e rs h o o t, r is e  t im e , and settlin  

t im e  fo r  K p =  \ w ở K d =  0 , 0 .0 0 0 5 , 0 .0 0 1 7 7 , and 0 .0 0 2 5 . T h e  re su lts  in  T a b le  9-1 sho' 

th a t th e  p e rfo rm a n c e  re q u ire m e n ts  a re  a l l  s a t is f ie d  w i th  K ũ  >  0 .0 0 1 7 7 . I t  s h o u ld  be kept i 

m in d  th a t K d  s h o u ld  o n ly  be  la rg e  e n o u g h  to  s a t is fy  th e  p e rfo rm a n c e  re q u ire m e n ts . Larg 

K d  c o rre sp o n d s  to  la rg e  B W , w h ic h  m a y  cause h ig h - fre q u e n c y  n o ise  p ro b le m s , a nd th e re : 

a lso  th e  co n ce rn  o f  th e  c a p a c ito r  va lu e  in  th e  o p -a m p -c irc u it  im p le m e n ta iio n .

TABLE 9-1 Attributes of the Unit-Step Responses of the System in Example 9-2-1 w ith 
PD Controller

K d

0

0 .0 0 0 5

0 .0 0 1 7 7

0 .0 0 2 5

(sec)

0 .0 0 1 2 5

0 .0 0 7 6

0 .0 0 1 1 9

0 .0 0 1 0 3

(sec )

0 .0151

0 .0 0 7 6

0 .0 0 4 9

0 .0 0 1 3

M axim um  
O v ersh o o t (9

52.2

25.7

4.2
0.7
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Figure 9-9 U nit-step response o f  the an ilude conư ol system in  F ig . 5-29 w ith  and w itho u t 
P D  c o n tro lle r .
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Toolbox 9-2-2
R oot lo c i o f  Eq. (9 -J6) shown in Fig. 9 -7  a re  ob ta ined by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s  

KP = 1 ;
d e n =  [ 1  3 6 1 .2  8 1 5 2 6 5 *K P ] ; 
num = [ 1 ] :  
r lo c u s ( n u m , d e n )  
h o ld  on  
KP = 0 ;
d e n =  [1  3 6 1 .2  8 1 5 2 6 5 *K P ] : 
num = [ 1 ] ;  
r lo c u s C n u m .d e n )

T h e  g e n e ra l c o n c lu s io n  is  th a t th e  P D  c o n tr o l le r  decreases th e  m a x im u m  overshooi 

the  r is e  t im e , and th e  s e t t l in g  tim e .

A n o th e r  a n a ly t ic  w a y  o f  s tu d y in g  th e  e ffe c ts  o f  th e  p a ra m e te rs  Kp  an d  K d  is  to  evaluati 

th e  p e rfo rm a n c e  c h a ra c te ris t ic s  in  th e  p a ra m e te r p la n e  o f  K p  an d  K p. F ro m  th e  character 

is t ic  e q u a tio n  o f  E q . (9 -1 4 ), w e  have

0 . 2 + 4 5 1 , 4 6 / ^ 0

7 ^
(9-18

A p p ly in g  th e  s ta b i l i ty  re q u ire m e n t to  E q . (9 -1 4 ), w e  f in d  th a t, fo r  sys te m  s ta b il ity , 

K p > 0  and íT o  > -  0 ,0 0 0 4 4 3

Toolbox 9-2-3
Root contours o f  Eq. (9-14) shown in Fig. 9-8 are ob ta ined by ihe fo llo w in g  sequence o fM A T L A B  functions  

KP = 1 :  KD = 1 :
d e n =  [1  3 6 1 . 2 + 8 1 5 2 6 5  ~KD 8 1 5 2 6 5 ^ K P ] ; n u m =  [ 1 ]  ;
r l o c u s  Cnura, d e n )
h o ld  on
KD = l e - 6 :
f o r  i =  1 :1 :2 6 0

d e n =  [1  3 6 1 .2 + 8 1 5 2 6 S *K D  8 1 5 2 6 5  ' K P ] ; 
num = [ 1 ] ;  
t f ( n u m , d e n ) ;
[ n u m C L , d e n C L ] = c lo o p ( n u m , d e n ) ;
T  = t f  (n ii in C L .d e n C L ) ;
P o le D a ta C : , i ) = p o l e ( T ) :

KD =  K D + 3 e - 5 ;  
en d
i= 6 0  ; %%% f o r  c o n t i n u a t i o n  o f  g r a p h
P o l e D a t a ( l , i + l )  = -  s q r t  (  ( r e a l ( P o le D a t a C l , i )  ) ' '2 )  + ( im a g ( P o le D a t a ( l , i )  ) ^ 2 )  )  : 
P o le D a ta ( 2  , i + 1 )  = -  s q r t  (  ( r e a l ( P o le D a t a ( 2  , i )  ) ^ 2 )  + ( im a g ( P o le D a ta ( 2  , i )  ) ^ 2 )  )  : 
p lo t ( r e a l ( P o le D a t a ( l , : ) )  , i jn a g ( P o le D a ta ( l , : ) )  , r e a l( P o le D a ta ( 2 , : ) )  ,im a g (P o le D a ta C 2 .: ) ) ) ;

KP = 0 ,2 5 :  
KD = 1 ;



d e n =  [1  3 6 1 .2 + 8 1 5 2 6 S * K D 8 1 5 2 6 5 * K P ] : 
num = [ 1 ]  ; 
r l o c u s ( n u m . d e n )  
h o ld  o n  
K D =  l e - 6 ;  
f o r i  =  1 : 1 : 2 6 0

d e n =  [1  3 6 1 .2 + 8 1 5 2 6 S *K D  8 1 5 2 6 5 *K P ] : 
num  = [ 1 ] ;  
t f C n u m . d e n ) :
[n u jn C L ,d e n C L ]= c lo o p (n u m ,d e n )  :
T  =  t f ( n u n iC L .d e n C L )  :
P o le D a ta C : , i ) = p o l e ( T ) :
KD  =  K D + 3 e - 5 ;

e nd
i= 2 3  : %%% f o r  c o n t i n u a t i o n  o f  g r a p h
P o l e D a t a ( l , i + l )  = -  s q r t ( ( r e a l ( P o l e D a t a ( l , i ) ) ^ 2 )  + ( i m a g ( P o l e D a t a ( l , i ) ) ^ 2 ) )  : 
P o le D a t a ( 2 . i + l )  = -  s q r t ( ( r e a lC P o le D a t a Ũ . i ) ) ' 2 ) + ( i m a g ( P o l e D a t a U . i ) ) ^ 2 ) )  : 
p l o t ( r e a l ( P o le D a t a ( l , : ) ) , im a g ( P o le D a ta ( l , : ) )  . r e a l( P o le D a ta ( 2 , : ) )  , i i ta g (P o le D a ta (2 , : ) ) )  :

a x i s ( [ - 3 0 0 0  1 000  - 1 0 0 0  1 0 0 0 ] )
x a x i s l =  - 1 8 1 .0 0 7 6  * o n e s ( 1 . 1 0 0 ) ; y a x i s l  =  - 1 0 0 0 :2 0 :1 0 0 0 - 1  
p l o t ( x a x i s l . y a x i s l ) : 
g r i d
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T h e  b o u n d a r i e s  o f  s t a b i l i t y  i n  t h e  A T p -v e rs u s -^ o  p a r a m e t e r  p l a n e  a r e  s h o w n  in  F ig .  

9 -1 0 . T h e  c o n s ta n t-d a m p in g - ra t io  t r a je c to r y  is  d e s c r ib e d  b y  E q . ( 9 -1 8 )  an d  is  a 

p a r a b o l a .  F i s .  9 - 1 0  i l l u s t r a t e s  t h e  c o n s t a n t - f  t r a j e c t o r i e s  f o r  f  =  0 .5 ,  0 .7 0 7 .  a n d  1 .0 .  

T h e  r a m p - e r r o r  c o n s ta n t Ky  is  g iv e n  b y  E q . ( 9 -1 3 ) .  w h ic h  d e s c r ib e s  a h o r iz o n ta l l in e  in  

t h e  p a r a m e t e r  p l a n e ,  a s  s h o w n  in  F i g .  9 - 1 0 .  T h e  f ig u r e  g iv e s  a  c l e a r  p i c t u r e  a s  t o  h o w  th e  

v a l u e s  o f  K p  a n d  K d  a f f e c t  t h e  v a r i o u s  p e r f o r m a n c e  c r i t e r i a  o f  th e  s y s t e m .  F o r  i n s t a n c e ,  

i f  Ky is  se t a t 2 2 5 7 .1 . w h ic h  c o r re s p o n d s  to  ATp =  1. th e  c o n s ta n t - f  lo c i  s h o w  th a t th e  

d a m p in g  is  in c re a s e d  m o n o to n ic a lly  w i t h  th e  in c re a s e  in  K d- T h e  in te rs e c t io n  b e tw e e n  

t h e  c o n s ia n t-A T , locus a n d  th e  c o n s t a n t - ^  l o c u s  g iv e s  t h e  v a lu e  o f  K d  f o r  t h e  d e s i r e d  Ky  

a n d  C-

Toolbox 9-2-4
B o d e  p lo t  o f  F ig . 9 - Ỉ Ỉ  is  o b ta in e d  b y  th e  f o i lo w in g  sequence o f  M A T L A B  f i i f i c l io n s

KD =  [ 0  0 . 0 0 0 5  0 . 0 0 2  5 0 . 0 0 1 7 7 ]  ;

f o r  i  = l : le n g t h C K D )
n u m =  [8 1 5 ^ 2 6 5 * -K D (i)  8 1 5 2 6 5 ] : 
d e n = [ l  3 6 1 .2  0 ]  ; 
b o d e C t f ( n u m ,d e n ) ) :  
h o ld  o n :

end
a x i s ( [ l  1 0 0 0 0  -1 8 0  - 9 0 ] )  :
g r i d

F r e q u e n c y - D o m a in  D e s ig n

N o w  le t  u s  c a m -  o u t  th e  d e s i a n  o f  th e  P D  c o n t r o l l e r  in  th e  f r e q u e n c y  d o m a in .  F ig .  9 -1 1  

s h o w s  th e  B o d e  p lo t  o f  C (5 )  in  E q . (9 -1  i ) w i th  K p  =  1 a n d  Ả’o  =  0 . T h e  p h a s e  m a r s in  o f
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F ig u re  9-10 Kp-VCTSUS-Ko p a ra m e te r  p la n e  fo r  th e  a ttitu d e  c o n ư o l  sy s te m  w ith  a  P D  controller.

th e  u n c o m p e n s a t e d  s y s t e m  is  2 2 .6 8 ° ,  a n d  th e  r e s o n a n t  p e a k  M r  i s  2 .5 2 2 .  T h e s e  value 

c o r r e s p o n d  to  a  l ig h t ly  d a m p e d  s y s t e m .  L e t  u s  g iv e  t h e  f o l l o w in g  p e r f o r m a n c e  c rite r ia

S t e a d y - s t a t e  e r r o r  d u e  to  a  u n i t - r a m p  in p u t  <  0 .0 0 4 4 3  

P h a s e  m a r g i n  >  8 0 °

R e s o n a n t  p e a k  M r  <  1 .0 5  

B W  <  2 0 0 0  r a d / s e c

T h e  B o d e  p lo t s  o f  G ( i )  f o r  AT/. =  1 a n d Ẳ : ^  =  0 ,0 . 0 0 5 , 0 . 0 0 1 7 7 ,  a n d  0 .0 0 2 5  a re  show  

in  F i g .  9 - 1 1 .  T h e  p e r f o r m a n c e  m e a s u r e s  in  th e  f r e q u e n c y  d o m a in  f o r  th e  c o m p e n s a te  

s y s te m  w iU i t h e s e  c o n t r o l l e r  p a r a m e t e r s  a r e  t a b u la t e d  i n  T a b l e  9 - 2 ,  a lo n g  w i th  th e  time 

d o m a in  a t t r i b u t e s  f o r  c o m p a r i s o n .  T h e  B o d e  p lo t s  a s  w e l l  a s  t h e  p e r f o r m a n c e  d a ta  w ef 

e a s i l y  g e n e r a t e d  b y  u s in g  M A T L A B  to o l s .  U s e  A C S Y S  c o m p o n e n t  c o n t r o l s  t o  rep ro d u c  
th e  r e s u l t s  in  T a b le  9 - 2 .

T h e  r e s u l t s  i n  T a b l e  9 - 2  s h o w  t h a t  t h e  g a in  m a r g i n  i s  a l w a y s  i n f in i t e ,  a n d  th u s  th 

r e l a t i v e  s t a b i l i t y  i s  m e a s u r e d  b y  th e  p h a s e  m a r g i n .  T h i s  is  o n e  e x a m p l e  w h e r e  th e  g a i 

m a r g i n  i s  n o t  a n  e f f e c t iv e  m e a s u r e  o f  t h e  r e l a t i v e  s t a b i l i t y  o f  t h e  s y s t e m .  W h e  

K d  = 0 . 0 0 1 7 7 ,  w h i c h  c o ư e s p o n d s  t o  c r i t i c a l  d a m p i n g ,  th e  p h a s e  m a r g i n  is  8 2 .9 2 ' 

th e  r e s o n a n t  p e a k  M r  is  1 .0 2 5 ,  a n d  B  w i s  1 6 6 9  r a d / s e c .  T h e  p e r f o r m a n c e  r e q u i r e m e n t s  i 

th e  f r e q u e n c y  d o m a i n  a r e  a l l  s a t i s f i e d .  O t h e r  e f f e c t s  o f  t h e  P D  c o n t r o l  a r e  t h a t  th e  BV 

a n d  th e  g a i n - c r o s s o v e r  f r e q u e n c y  a r e  i n c r e a s e d .  T h e  p h a s e - c r o s s o v e r  f r e q u e n c y  i 

a lw a y s  i n f in i t e  in  t h i s  c a s e .
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F ig u re  9-11 B o d e  p lo t  o f  G (i )
8 1 5 ,2 6 5 (1  + K p s )

j ( i  + 3 6 1 .2 )  ■

TABLE 9-2 F req u en c y -D o m a in  C h a r a c te r is t ic s  of th e  S y s tem  in E xam ple  9-2-1 w ith  PD C on tro ller

K o

G M
(dB )

P M
(deg )

G a in  C O  
(ra d /se c)

B W
(ra d /se c ) M r

tr
(sec ) (sec )

M a x im u m  O v ersh o o t 

(% )

0 oo 2 2 .6 8 868 1370 2.522 0 .0 0 1 2 5 0 .0151 5 2 .2

0.0005 (X) 46 .2 9 13 .5 1326 1.381 0 .0 0 7 6 0 .0 0 7 6 25.7

0.00177 oo 82.92 1502 1669 1.025 0 .0 0 1 1 9 0 .0 0 4 9 4 .2

0 .0 0 2 5 00 88 .95 204 6 2 083 1.000 0 .0 0 1 0 3 0 ,0 0 1 3 0 .7



► EXAMPLE 9 - 2 -2  C o n s id e r  th e  th ứ d -o rd e r  a irc ra f t a ttitu d e  c o n tro l sy s te m  d isc u s se d  in  C h a p te r  5 w ith  th e  forw ard-pal 
tf a n s fe r  fu n c tio n  g iv e n  in  E q . (5 -1 5 3 ) .

1 5  X 10^

“  s(sZ  +  3 4 0 8 .3 s  +  l ,2 0 4 ,0 0 0 )

T h e  sa m e  se t o f  t im e -d o m a in  sp e c if ic a tio n s  g iv e n  in  E x a m p le  9-2*1 is  to  b e  u se d . I t w as  show n i 
C h a p te r  5  th a t, w h e n  K =  1 8 1 .17 , th e  m a x im u m  o v e rsh o o t o f  th e  sy s te m  is  7 8 .8 8 % .

L e t  u s  a tte m p t to  m e e t th e  t r a n s ie n t p e rfo n n a n c e  re q u ừ e m e n ts  b y  u se  o f  a  P D  co D ơ o lle r  w ith  tfa 
tra n s fe r  fu n c tio n  g iv e n  in  E q . (9 -2 ) . T h e  fo rw a rd -p a th  ư a n s íe r  fu n c tio n  o f  th e  sy s te m  w ith  the PI 

c o n ư o lle r  a n d  K  =  181 .1 7  is

2 .7 1 8  +

j (j 2 +  3 4 0 8 ,3 j +  1 ,2 0 4 .0 0 0 )  '

Y ou m ay  a lso  u se  o u r  M A T L A B  to o lb o x  A C S Y S  to  so lv e  th is  p ro b le m . S e e  S e c tio n  9 -19 . ■«

Time-Domain Design
S e t t i n g  K p  =  1 a r b i t r a r i l y ,  t h e  c h a r a c t e r i s t i c  e q u a t io n  o f  th e  c l o s e d - l o o p  s y s te m  i s  w rin e i 

j ’  +  34 0 8 .3 s^  +  ( 1 ,2 0 4 ,  ooo +  2 .7 1 8  X lO ’ j f o ) !  +  2 .7 1 8  X  10’  =  0  (9-21

T o  a p p ly  t h e  r o o t - c o n to u r  m e th o d ,  w e  c o n d i t i o n  E q .  ( 9 - 2 1 )  a s
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________________ 2 - 7 1 8  X \ ( ỷ K o s _______________
^ í 3 +  3 4 0 8 .2 j 2 +  i ,2 0 4 .0 0 0 í  +  2 . 7 1 8 x  109

(9 -22

w h e r e

__________________ 2.718 X ltì> K D S__________________

( j +  3 2 9 3 . 3 ) ( j  + 5 7 .4 9  +  j 9 0 6 . 6 ) ( i  + 5 7 . 4 9 - j 9 0 6 . 6 )

Toolbox 9-2-5
R o o t c o n to u rs  o f  F ig . 9 -1 2  a re  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce o f  M A T L A B  fu n c t io n s

Y ou m a y  w ish  to  use d c ,  c lose  a l l ,  o r  d e a r  a l l  b e fo re  r u n n in g  th e  fo l lo w in g

% R o o t c o n to u r s  
k d = 0 .0 0 5 ;
n u m =  [ 2 .  7 1 8 *1 0 ^ 9 * k d  0 ]  :
d e n =  [1  3 4 0 8 .2  1 2 0 4 0 0 0  2 .7 1 8 * 1 0 ^ 9 ]  ;
r lo c u s ( n u m , d e n )

• II a  sy s te m  has ve ry  low  T h e  r o o t  c o n to u r s  o f  E q .  ( 9 - 2 1 )  a r e  p lo t t e d  a s  s h o w n  in  F ig .  9 - 1 2 ,  b a s e d  o n  th e p o le -

d a m p m g  o r  ib un sta b le . z e r o  c o n f ig u r a t io n  o f  G e q(j). T h e  r o o t  c o n to u r s  o f  F ig .  9 - 1 2  r e v e a l  th e  e f f e c t iv e n e s s  o f  ih(

th e  P D  contro l m ay  noi b e  P D  c o n t r o l l e r  f o r  th e  i m p r o v e m e n t  o n  th e  r e l a t i v e  s t a b i l i t y  o f  th e  s y s te m .  N o t i c e  th a t ,  a s  lh<

e ffec tiv e  in  im p ro v in g  th e  Q f in c rease s , o n e  r o o t  o f  th e  c h a r a c t e r i s t i c  e q u a t io n  m o v e s  f r o m  - 3 2 9 3 . 3  tow ari

^ a b il i ty  o f  th e  sy stem . o r ig in ,  w h i le  t h e  tw o  c o m p le x  r o o t s  s ta r t  o u t  t o w a r d  th e  le f t  a n d  e v e n tu a l ly  a p p r o a c h  th<

v e r t i c a l  a s y m p to t e s  th a t  i n t e r s e c t  a t  5 =  — 1 7 0 4 . T h e  im m e d ia t e  a s s e s s m e n t  o f  th e  s itu a tio i 

i s  th a t ,  i f  th e  v a lu e  o f  K d  i s  t o o  la r g e ,  th e  tw o  c o m p le x  ro o ts  w i l l  a c tu a lly  h a ve  reducei
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Figure 9-12 R o o t c o n to u rs  o f
S-* +  3408 .352  +  ( 1 ,2 0 4 ,0 0 0  +  2 .7 1 8  X 10^Ả-£))í +  2 .7 1 8  X 10^ =  0,

dam ping while  increasing the n a tu ra l frequency o f  the system. I t  appears th a t the id e a l 

lo c a t io n  fo r  th e  tw o  c o m p le x  c h a ra c te ris tic  e q u a tio n  ro o ts , f r o m  the  s ta n d p o in t o f  r e la t iv e  

s ta b il ity ,  is  near th e  be nd  o f  th e  ro o t c o n to u r, w h e re  the re la t iv e  d a m p in g  ra t io  is 

a p p ro x im a te ly  0 .7 0 7 . T h e  ro o t co n to u rs  o f  F ig . 9 -1 2  c le a r ly  sh o w  th a t, i f  the o r ig in a l 

s ys te m  has lo w  d a m p in g  o r  is  un s ta b le , th e  z e ro  in tro d u c e d  b y  th e  P D  c o n tro l le r  m a y  n o t be 

a b le  to  add s u f f ic ie n t d a m p in g  o r  eve n  s ta b il iz e  th e  sys te m .
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w ith PD Controller
les of the Third-Order System in Example 9-2-2

K d

%  M a x im u m  
O v ersh o o t

Is
(sec ) C h a ra c te r is tic  E quadoD  R oots

0 78 .8 8 0 .0 0 1 2 5 0 .0 4 9 5 - 3 2 9 3 .3 . - 5 7 .4 9  ±  ý906.6

0 .0 0 0 5 41.31 0 .0 0 1 2 0 0 .0 1 0 6 - 2 8 4 3 .0 7 , - 2 8 2 .6 2  ±  y936.tt

0 .0 0 1 2 7 17.97 0 .0 0 1 0 0 0 .0 0 3 9 8 - 1 5 2 3 .1 1 . - 9 4 2 .6 0  ±  j9 A 6 S

0 .0 0 1 5 7 14.05 0 .00091 0 .0 0 3 3 7 - 8 0 5 .3 3 , - 1 3 0 1 .4 8  ± ;1 2 9 6 . :

0 .0 0 2 0 0 11.37 0 .0 0 0 8 0 0 .0 0 2 5 5 -531.89, - 1 4 3 8 .2 0 ± } l7 4 4 . (

0 .0 0 5 0 0 17.97 0 .0 0 0 4 2 0 .0 0 1 3 0 - 1 9 1 .7 1 , - 1 6 0 8 .2 9  ± y 3 4 0 4 .;

0 .0 1 0 0 0 31.14 0,00026 0.00093 - 9 6 .8 5 , - 1 6 5 5 .7 2  ± > 5 0 3 2

0 .0 5 0 0 0 6 1 .8 0 0 .0 0 0 1 0 0.00144 - 1 9 .8 3 , - 1 6 9 4 .3 0  ± } l l 5 8 3

T a b le  9 -3  g ive s  th e  re su lts  o f  m a x im u m  o v e rs h o o t, r is e  t im e , s e t t l in g  t im e , and tl 

r o o t s  o f  th e  c h a r a c t e r i s t i c  e q u a t io n  a s  f u n c t i o n s  o f  t h e  p a r a m e t e r  K d - T h e  fo llo w ir  

c o n c lu s io n s  a re  d ra w n  on  th e  e ffe c ts  o f  th e  P D  c o n tr o l le r  o n  th e  th ird -o rd e r  system.

1. T h e  m in im u m  v a lu e  o f  th e  m a x im u m  o v e rs h o o t, 11 .3 7% , o c c u rs  w he n  Ko 
a p p ro x im a te ly  0 .0 0 2 .

2 . R i s e  t im e  is  i m p r o v e d  ( r e d u c e d )  w i th  th e  inc rea se  o f  Kp.

3 .  T o o  h ig h  a  v a lu e  o f  K d  w i l l  a c tu a l ly  in c r e a s e  t h e  m a x im u m  o v e rs h c x jt  a n d  tf 

s e t t l in g  t im e  s u b s ta n t ia l ly .  T h e  l a t t e r  i s  because t h e  d a m p in g  i s  re d u ce d  a s  K p  

in c re a se d  in d e f in ite ly .

F ig .  9 - 1 3  s h o w s  th e  u n i t - s t e p  r e s p o n s e s  o f  th e  s y s t e m  w i th  th e  P D  c o n t r o l l e r  f o r  se v e r  

v a lu e s  o f  K d - T h e  c o n c lu s i o n  i s  th a t ,  w h i le  th e  P D  c o n t r o l  d o e s  im p r o v e  th e  d a m p in g  o f  ư  

sys te m , i t  do es  n o t m e e t th e  m a x im u m -o v e rs h o o t re q u ire m e n t.

Figure 9-13 Unit-slep responses o f the system in Example 9-2-2 with PD conưoller.



Frequency*Domain Design
T h e  B o d e  p lo t  o f  E q . (9 -2 0 )  is  used to  c o n d u c t th e  fre q u e n c y -d o m a in  d e s ig n  o f  th e  P D  

c o n tro l le r .  F ig . 9 -1 4  sho w s th e  B o d e  p lo t  fo r  K p =  I and K d =  0. T h e  fo llo w in g  

p e r fo rm a n c e  d a ta  are o b ta in e d  f o r  th e  u n co m p e n sa te d  syste m :

G a in  m a rg in  =  3 .6 d B  

P hase m a rg in  =  7 .7 7 °

R eso n a n t P eak M r  =  7 .6 2

9-2 Design with the PD Controller <  509

lain crossover
(Kq =  0)

(ATp = 0.002)
3ain crossover-

= 0.05

Gain crossover 
(Ai„ = 0.05)

10^1621 10''

(Ufrad/sec)

F ig u re  9-14 B ode  d ia g ra m  o f  C (5 ) o f  th e  sy s ie m  in E x am p le  9 -2 -2  w ith  PD  c on tro ller .
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TABLE 9-4 Frequency-Domain Characteristics of the Third-Order System in Example 9-2-2 
w ith PO Controller

G M  P M  B W  G a in  C O  R iaseC

K d  (d B ) (d e g )  M r  ( ra d /s e c )  ( ra d /s e c )  (rad /se

0  3 .6  7 ,7 7  7 .6 2  1408 .83

0 .0 0 0 5  CO 3 0 .9 4  1 .89  1 4 8 5 .9 8  93 5 .9 1

0 .0 0 1 2 7  oo  5 3 .3 2  1 .19  1939 .21  1 2 1 0 .7 4

0 .0 0 1 5 7  «  5 6 .8 3  1 .12  2 1 9 8 .8 3  1 3 7 2 .3 0

0 .0 0 2 0 0  oo  5 8 .4 2  1.07 2 6 0 4 .9 9  1 620 .75

0 .0 0 5 0 0  CO 4 7 .6 2  1 .24  4 9 8 0 .3 4  3 1 1 8 .8 3

0 .0 1 0 0 0  00  35 .71  1.63 7 5 6 5 .8 9  4 7 8 9 .4 2

0 .0 5 0 0  oo  16 .69  3 .3 4  1 7 9 8 9 .0 3  1 1 5 2 1 .0 0

B a n d vv id ứ i B W  =  14 0 8 .8 3  rad /sec 

G a in  c ro s s o v e r (G C O )  =  8 8 8 .9 4  rad /sec 

P hase c ro sso ve r (P C O ) -  1 1 0 3 .6 9 rad /sec

L e t  u s  u s e  t h e  s a m e  s e t  o f  f r e q u e n c y - d o m a i n  p e r f o r m a n c e  r e q u i r e m e n t s  l is te d  i 

E x a m p le  9 -2 -1 . T h e  lo g ic a l  w a y  to  a p p ro a c h  th is  p ro b le m  is  to  f i r s t  e x a m in e  h o w  muc 

a d d it io n a l phase  is  ne ed ed  to  re a liz e  a phase  m a rg in  o f  8 0 ° .  B e ca u se  th e  uncom pensate 

s y s te m  w i t h  th e  g a in  se t to  m e e t th e  s te a d y -s ta te  r e q u ire m e n t is  o n ly  7 .7 7 ° , the  p 

c o n t r o l l e r  m u s t  p r o v i d e  a n  a d d i t i o n a l  p h a s e  o f  7 2 .2 3 ° .  T h i s  a d d i t i o n a l  p h a s e  m u s t t  

p la c e d  a t th e  g a in  c ro s s o v e r o f  th e  co m p e n s a te d  s y s te m  in  o rd e r  to  re a liz e  a P M  o f  80 

R e fe r r in g  to  th e  B o d e  p lo t  o f  th e  P D  c o n tr o l le r  in  F ig .  9 -6 , w e  see th a t th e  addition; 

p h a s e  is  a lw a y s  a c c o m p a n i e d  b y  a  g a in  in  t h e  m a g n i t u d e  c u r v e .  A s  a  r e s u l t ,  th e  gai 

c ro s s o v e r o f  th e  co m p e n s a te d  s ys te m  w i l l  be  p u sh e d  to  a h ig h e r  fre q u e n c y  a t w h ic h  ứ 

p h a s e  o f  t h e  u n c o m p e n s a t e d  s y s t e m  w o u ld  c o ư e s p o n d  to  a n  e v e n  s m a l l e r  P M . T h u s , w 

m a y  r u n  i n t o  th e  p r o b l e m  o f  d i m i n i s h i n g  r e tu r n s .  T h i s  s y m p t o m  i s  p a r a l l e l  to  t h e  s itu a tic  

i l l u s t r a t e d  b y  th e  r o o t - c o n t o u r  p l o t  i n  F i g .  9 - 1 2 ,  i n  w h ic h  c a s e  t h e  l a r g e r  w o u ld  sim p] 

p u s h  th e  r o o t s  t o  a  h i g h e r  f r e q u e n c y ,  a n d  th e  d a m p i n g  w o u ld  a c t u a l l y  b e  decrease^  

T h e  f r e q u e n c y - d o m a in  p e r f o r m a n c e  d a t a  o f  t h e  c o m p e n s a t e d  s y s t e m  w i t h  t h e  v a lu e s  < 

K d  u s e d  in  T a b l e  9 - 3  a r e  o b t a i n e d  f r o m  th e  B o d e  p l o t s  f o r  e a c h  c a s e ,  a n d  th e  resu l 

a r e  s h o w n  in  T a b l e  9 - 4 ,  T h e  B o d e  p l o t s  o f  s o m e  o f  t h e s e  c a s e s  a r e  s h o w n  in  F ig .  9-1 ' 

N o t i c e  t h a t  t h e  g a in  m a r g i n  b e c o m e s  in f in i t e  w h e n  th e  P D  c o n t t o l l e r  i s  a d d e d ,  ar 

th e  phase  m a rg in  b e co m e s  th e  d o m in a n t m e a su re  o f  re la t iv e  s ta b i l i ty .  T h is  is  because ứ 

phase c u rv e  o f  th e  P D -c o m p e n s a te d  s y s te m  s ta ys  a b o ve  th e  - 1 8 0 ° - a x is ,  an d  the  phai 

c ro s s o v e r is  a t in f in i ty .

Toolbox 9-2-6
Fig. 9-J3  is obta ined  by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s  

K P =  1 :
K D =  c 0 . 0 0 0 5  0 . 0 1 2 7  0 . 0 0 2 ]  ;

f o r  i  = 1 : l e n g t h ( K D )
n u m = [ 2 .  7 1 8 e 9 * K D ( i )  2 .  7 1 8 e 9 * K P ]  ; 
d e n =  [ 1  3 4 0 8 . 3  0  0 ]  ; 
t f ( n u j n , d e n )  :
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[n u m C L , d G n C L ]= c lo o p ( n u m ,d e n ) ; 
St e p  ( nu inC L , d e n C L ) 
h o ld  o n

en d
ax i sC E O  0 . 0 4  0  2 ] )

W h e n  K d  =  0 .0 0 2 ,  th e  p h a s e  m a r g i n  i s  a t  a  m a x im u m  o f  5 8 .4 2 ° ,  a n d  M r  is  a l s o  

m in i m u m  a t  1 .0 7 , w h ic h  h a p p e n s  t o  a g r e e  w i th  th e  o p t im a l  v a lu e  o b t a in e d  in  t h e  t im e -  

d o m a in  d e s ig n  s u m m a riz e d  in  T a b le  9 -3 . W h e n  th e  va lu e  o f  K d is  in c re a se d  b e y o n d  0 .0 0 2 , 

th e  phase m a rg in  decreases, w h ic h  ag rees w i th  th e  f in d in g s  f r o m  th e  t im e -d o m a in  de s ig n  

th a t la rg e  va lu e s  o f  K p  a c tu a lly  d ecrease d a m p in g . H o w e v e r, th e  B w  an d  th e  g a in  c ro sso ve r 

i n c r e a s e  c o n t in u o u s ly  w i th  th e  in c r e a s e  in  K d .  T h e  f r e q u e n c y - d o m a in  d e s ig n  a g a in  s h o w s  

th a t th e  P D  c o n tro l fa lls  s h o r t in  m e e tin g  th e  p e rfo rm a n c e  re q u ứ e m e n ts  im p o s e d  o n  the 

sys te m . Jus t as in  th e  t im e -d o m a in  d e s ig n , w e  h a ve  d e m o n s tra te d  th a t i f  th e  o r ig in a l sys te m  

h as v e ry  lo w  d a m p in g , o r  is  u n s ta b le , P D  c o n tro l m a y  n o t be e f fe c t iv e  in  im p r o v in g  the 

s ta b i l i ty  o f  th e  sys te m . A n o th e r  s itu a tio n  u n d e r w h ic h  P D  c o n tro l m a y  be in e ffe c t iv e  is  i f  

th e  s lo p e  o f  th e  phase c u rv e  n e a r th e  g a in -c ro s s o v e r fre q u e n c y  is  s teep, in  w h ic h  case the 

ra p id  d ecrease o f  th e  phase m a rg in  d u e  to  th e  in c re a se  o f  th e  g a in  c ro s s o v e r f r o m  th e  a d de d 

g a in  o f  th e  P D  c o n tro l le r  m a y  re n d e r th e  a d d it io n a l phase in e ffe c t iv e .

Toolbox 9-2-7
Bode diagram  o f  G(s) in E xam ple  9-2 in F ig . 9-14 is ob ta ined  by the fo llo w in g  sequence o f  M A TLA B  
functions

KD = [0  0 .0 0 2  0 . 0 5 ]  ;
KP=1;

f o r i =  l : l e n g t h ( K D )
n u m = [2 .7 1 8 e 9 * K D ( i )  2 .7 1 8 e 9 * K P ]  ; 
d e n =  [1  3 4 0 8 .3  1 2 0 4 0 0 0  0 ] ;  
b o d e ( n u m . d e n ) ; 
h o ld  o n ;

end

9-3 D E S IG N  W I T H  THE PI C ONTRO LL ER

W e  see f r o m  S e c tio n  9 -2  th a t th e  P D  c o n tro l le r  c an im p ro v e  th e  d a m p in g  an d  r is e  t im e  o f  a 

c o n tro l sys te m  a t th e  e xp en se o f  h ig h e r  b a n d w id th  an d  re so n a n t fre q u e n cy , an d  th e  steady- 

s ta te  e ư o r  is  n o t a f fe c te d  un less  i t  va rie s  w i th  t im e , w h ic h  is  t y p ic a l ly  n o t th e  case fo r  s tep- 

fu n c t io n  in p u ts . T h u s , th e  P D  c o n tro l le r  m a y  n o t f u l f i l l  th e  c o m p e n s a tio n  o b je c tiv e s  in  

m a n y  s itu a tio n s .

T h e  in te g ra l p a r t o f  th e  P ID  c o n tro l le r  p ro d u ce s  a s ig n a l th a t is  p ro p o rt io n a l to  th e  t im e  

in te g ra l o f  th e  in p u t  o f  th e  c o n tro lle r .  F ig . 9 -1 5  i l lu s tra te s  th e  b lo c k  d ia g ra m  o f  a p ro to ty p e  

se c o n d -o rd e r s ys te m  w ith  a series  P I c o n tro lle r . T h e  tra n s fe r  fu n c t io n  o f  th e  P I c o n ư o lle r  is

G , { s ) = K p  +  ^ (9-24)
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Figure 9-15 C on tro l system w ith  P I conưoller.

U s in g  th e  c i r c u i t  e le m e n ts  g iv e n  in  T a b le  4 - 4 ,  tw o  o p - a m p - c ir c u i t  re a liz a t io n s  c 

E q . ( 9 - 2 4 )  a re  s h o w n  in  F ig .  9 -1 6 . T h e  t r a n s fe r  f u n c t io n  o f  th e  tw o - o p - a m p  c i r c u i t  i 

F ig .  9 - 1 6 ( a )  is

(9 -2 Í

C o m p a r in g  E q . (9 -2 4 )  w i th  E q . (9 -2 5 ), w e  have

(9-26

T h e  tra n s fe r  fu n c t io n  o f  th e  th re e *o p -a m p  c i r c u i t  in  F ig .  9 -1 6 (b )  is

E , M  R , R , Q s
(9-27

Figure 9-16 op-am p-circu 

rea liza tion o f  the PI ^  
con tro lle r, C f(5 )  =  K p +  -
(a) Tw o-op-am p cứcuil.
(b ) Three-op-am p circuit.
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T h u s , th e  pa ram ete rs  o f  th e  P I c o n tro l le r  are re la te d  to  th e  c i r c u i t  p a ra m e te rs  as

T h e  a d van ta ge  w i th  th e  c i r c u i l  in  F ig . 9 -1 6 (b )  is  lh a t th e  va lu e s  o f  K p  and K / are 

in d e p e n d e n tly  re la te d  to  th e  c i r c u i t  p a ra m e te rs . H o w e v e r, in  e ith e r  c ir c u it ,  K /  is  in v e rs e ly  

p ro p o rt io n a l to  th e  v a lu e  o f  th e  c a p a c ito r . U n fo r tu n a te ly ,  e f fe c t iv e  P l- c o n tro l d e s ign s  

u s u a l ly  r e s u l t  in  s m a l l  v a lu e s  o f  K /, a n d  th u s  w e  m u s t  a g a in  w a t c h  o u t  f o r  u n r e a l i s t i c a l l y  

la rg e  c a p a c ito r  va lues.

T h e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  o f  th e  co m p e n sa te d  sys te m  is

C le a r ly ,  th e  im m e d ia te  e ffe c ts  o f  th e  P I c o n tro l le r  are as fo llo w s :

1 . A d d in g  a  z e r o  a t  J  =  - K i / K p  t o  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n .

2 . A d d in g  a  p o le  a t  Í  =  0  to  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n .  T h i s  m e a n s  th a t  th e  

s ys te m  ty p e  is  in c rea sed  b y  1 to  a  ty p e  2 sys te m . T h u s , the s te ad y-s ta te  e r ro r  o f  the 

o r ig in a l sys te m  is  im p ro v e d  b y  o ne o rd e r ; th a t is . i f  th e  s te ad y-s ta te  e ư o r  to  a g iv e n  

i n p u t  i s  c o n s ta n t ,  ih e  P I  c o n t r o l  r e d u c e s  i t  t o  z e r o  ( p r o v i d e d  th a t  th e  c o m p e n s a t e d  

s y s te m  r e m a in s  s ta b le ) .

T h e  s y s t e m  in  F i g .  9 - 1 5 .  w i t h  t h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  in  E q .  ( 9 - 2 9 ) ,  w i l l  

n o w  h a v e  a  z e r o  s t e a d y - s t a t e  e r r o r  w h e n  th e  r e f e r e n c e  in p u t  i s  a  r a m p  f u n c t i o n .  H o w e v e r ,  

b e c a u s e  t h e  s y s t e m  i s  n o w  o f  t h e  th i r d  o r d e r ,  i t  m a y  be  less  s ta b le  t h a n  th e  o r ig in a l  

s e c o n d - o r d e r  s y s t e m  o r  e v e n  b e c o m e  u n s ta b le  i f  t h e  p a r a m e t e r s  K p  a n d  K /  a r e  n o t  

p r o p e r ly  cho sen .

I n  th e  c a s e  o f  a  ty p e  1 s y s t e m  w i th  a  P D  c o n t r o l ,  th e  v a lu e  o f  K p  is  im p o r t a n t  b e c a u s e  

t h e  r a m p - e r r o r  c o n s t a n t  K y  i s  d i r e c t l y  p r o p o r t i o n a l  t o  K p , a n d  th u s  th e  m a g n i tu d e  o f  th e  

s t e a d y - s t a t e  e ư o r  i s  i n v e r s e ly  p r o p o r t i o n a l  t o  K p  w h e n  th e  i n p u t  is  a  r a m p .  O n  th e  o th e r  

h a n d ,  i f  K p  is  t o o  la r g e ,  th e  s y s te m  m a y  b e c o m e  u n s ta b le .  S i m i la r ly ,  f o r  a  t y p e  0  s y s te m ,  th e  

s t e a d y - s t a t e  e r r o r  d u e  to  a  s ie p  i n p u l  w il l  b e  i n v e r s e ly  p r o p o r t i o n a l  to  K p.

W h e n  a  t y p e  1 s y s te m  is  c o n v e n e d  to  t y p e  2  b y  Ih e  P I  c o n t r o l l e r ,  K p  n o  l o n g e r  a f f e c ts  

th e  s te ad y-s ta te  e rro r , an d  th e  la t te r  is  a lw a y s  ze ro  fo r  a s ta b le  sys te m  w i th  a ra m p  in p u t. 

T h e  p r o b le m  is  t h e n  to  c h o o s e  t h e  p r o p e r  c o m b in a t io n  o f  K p  a n d  K f  s o  th a t  th e  t r a n s ie n t  

resp on se  is  s a tis fa c to ry .

9-3-1 T im e-D om ain  In terpretation  and Design of PI Control

T h e  p o le - z e r o  c o n f ig u r a t io n  o f  th e  P I c o n t r o l le r  in  E q . (9 - 2 4 )  is  sh o w n  in  F ig .  9 -1 7 . A t  

f i r s t  g la n c e , i t  m a y  seem  th a t P I c o n tr o l w i l l  im p ro v e  th e  s te a d y -s ta te  e r r o r  a t th e  

e xp e n s e  o f  s ta b i l i ty .  H o w e v e r ,  w e  s h a ll s h o w  th a t,  i f  th e  lo c a t io n  o f  th e  z e ro  o f  G , ( j )  is  

s e le c te d  p ro p e r ly ,  b o th  th e  d a m p in g  an d  th e  s te a d y -s ta le  e r r o r  c a n  be  im p ro v e d . 

B e ca u se  th e  P I c o n t r o l le r  is  e s s e n t ia lly  a lo w -p a s s  f i l te r ,  th e  co m p e n s a te d  s ys te m  

u s u a lly  w i l l  h a ve  a s lo w e r  r is e  t im e  an d  lo n g e r  s e t t l in g  t im e .  A v iab le  m e th o d  o f  
d esign ing  the P I c o n tro l is to  select the zero a ls  =  - K i / K p  so th a t i i  is re la tiv e ly  dose  
10  the  o r ig in  a n d  i i u  iJv f r o m  the m ost s ig n ifica n t po les o f  the process: the  values o f  K p  

a n d  K i  s h ou ld  be re la tiv e ly  sm all.
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j-plane

F ig u re  9-17 P o le -ze r 
c o n fig u ra tio n  o f  a PI 
c o n ơ o lle r .

9-3 -2  Frequency-D om ain  In terpretation  and D esign of P I Control

F o r  fre q u e n c y -d o m a in  d e s ig n , th e  tra n s fe r  fu n c t io n  o f  th e  P I c o n ư o ile r  is  w r it te n

(9-3'

T h e  B o d e  p lo t  o f  G c ijo i)  i s  s h o w n  in  F ig .  9 - 1 8 .  N o t i c e  th a t  th e  m a g n i tu d e  o f  G Ặj(ò) 

OJ =  CO i s  2 0  lo g jo A :/ . d B ,  w h ic h  r e p r e s e n t s  a n  a t t e n u a t io n  i f  th e  v a lu e  o f  K p  is  l e s s  than  

T h i s  a t t e n u a t io n  m a y  b e  u t i l i z e d  t o  im p r o v e  th e  s t a b i l i t y  o f  th e  s y s te m .  T h e  p h a s e  o f  G ( iji 

is  a lw a y s  n e g a tive , w h ic h  is  d e tr im e n ta l to  s ta b il ity .  T h u s , w e  s h o u ld  p la ce  the com  

f r e q u e n c y  o f  th e  c o n t r o l l e r ,  CO =  K / / K p ,  a s  f a r  to  th e  le f t  a s  th e  b a n d w i d th  re q u ire m e  

a l lo w s ,  s o  I h e  p h a s e - l a g  p r o p e r t i e s  o f  G c(jo j)  d o  n o t  d e g r a d e  th e  a c h i e v e d  p h a s e  m a r g i n ' 

th e  sys te m .

T h e  fre q u e n c y -d o m a in  d e s ig n  p ro c e d u re  fo r  th e  P I c o n tro l to  re a liz e  a g ive n  pha; 

m a rg in  is  o u t lin e d  as fo llo w s :

1. T h e  B o d e  p lo t  o f  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  G p (s )  o f  th e  u n c o m p e n sa K  

sys te m  is  m ade w i th  th e  lo o p  g a in  set a c c o rd in g  to  th e  s te a d y -s ta te  perform an i 

re q u ire m e n t.

2 . T h e  p h a s e  m a r g i n  a n d  th e  g a in  m a r g i n  o f  th e  u n c o m p e n s a t e d  s y s te m  a  

d e t e r m in e d  f r o m  th e  B o d e  p lo t .  F o r  a  s p e c i f i e d  p h a s e  m a r g i n  r e q u ữ e m e n l ,  tl 

n e w  g a i n - c r o s s o v e r  f r e q u e n c y  c o ư e s p o n d i n g  to  t h i s  p h a s e  m a r g i n  is  fo u n d  ( 

th e  B o d e  p lo t. T h e  m a g n itu d e  p lo t  o f  th e  c o m p e n sa te d  tra n s fe r  fu n c t io n  m ust pa 

th ro u g h  th e  0 -d B -a x is  a t th is  n e w  g a in -c ro s s o v e r fre q u e n c y  in  o rd e r  to  rea lize  il 

de s ire d  phase m a rg in .

3 .  T o  b r in g  th e  m a g n i tu d e  c u r v e  o f  th e  u n c o m p e n s a t e d  ư a n s í e r  f u n c t i o n  d o w n  to 

d B  a t  th e  n e w  g a i n - c r o s s o v e r  f r e q u e n c y  oJg, th e  P I  c o n t r o l l e r  m u s t  p r o v id e  tl 

a m o u n t o f  a t te n u a tio n  e q u a l to  th e  g a in  o f  th e  m a g n itu d e  c u rv e  a t ứ ie new  gai 

c ro sso ve r fre q u e n cy . In  o th e r  w o rd s , set

|c p ( ;a .; ) |  = - 2 0 l o g | „ i r , d B  K p < \ (9-3

from which we have

(9-3
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Figure 9-18 B o d e  d ia g ra m  o f  th e  P I  c o n ữ o lle r . G c ( j)  =  K p -\-  — .

O n c e  th e  v a lu e  o f  K p  i s  d e t e r m in e d ,  i t  i s  n e c e s s a r y  o n ly  to  s e l e c t  th e  p r o p e r  v a lu e  o f  

K ị  to  c o m p le t e  th e  d e s ig n .  U p  to  t h i s  p o in t ,  w e  h a v e  a s s u m e d  th a t ,  a l th o u g h  th e  g a in -  

c ro s s o v e r fre q u e n c y  is  a lte re d  b y  a tte n u a tin g  th e  m a g n itu d e  o f  G fO 'w ) a t Q)'g, U ie 

o r ig in a l phase is  n o t a f fe c te d  b y  th e  P I c o n tro lle r . T h is  is  n o t p o ss ib le , h o w e v e r, s ince , 

as sh o w n  in  F ig .  9 -1 8 , th e  a tte n u a tio n  p ro p e rty  o f  ứ ie  P I  c o n ư o lle r  is  a cco m p a n ie d  

w i th  a phase la g  th a t is  d e tr im e n ta l to  th e  phase m a rg in . I t  is  ap pa ren t th a t, i f  the 

c o m e r  f r e q u e n c y  (O =  K i / K p  i s  p l a c e d  f a r  b e lo w  a jg , th e  p h a s e  l a g  o f  t h e  P I  c o n t r o l l e r  

w i l l  h a ve  a n e g l ig ib le  e f fe c t o n  th e  phase o f  th e  co m p e n sa te d  sys te m  ne a r O n  the 

o ứ ie r  h a nd , th e  v a lu e  o f  K jỊK p  sh o u ld  n o t b e  to o  s m a ll o r  th e  b a n d w id th  o f  th e  s ystem  

w i l l  be to o  lo w , c a u s in g  th e  r is e  t im e  an d  s e t t l in g  t im e  to  be  lo o  lo n g . A s  a ge ne ra ! 

g u id e lin e , K ịỊKp  sh o u ld  c o rre s p o n d  to  a fre q u e n c y  th a t is  a t lea s t on e  decade, 

som e tim e s  as m u c h  as tw o  decades, b e lo w  T h a t is , w e  set

Ễ4— (9-33)



W ith in  th e  g e n e r a l  g u id e l in e ,  t h e  s e l e c t i o n  o f  th e  v a lu e  o f  K i / K p  is  p r e t t y  m u c h  a t  Ih 

d is c re t io n  o f  th e  de s ig n e r, w h o  s h o u ld  be m in d fu l o f  its  e f fe c t o n  B W  a n d  i ts  practica 

i m p l e m e n ta t i o n  b y  a n  o p - a m p  c i r c u i t .

4 . T h e  B o d e  p lo t  o f  th e  c o m p e n sa te d  s ys te m  is  in v e s tig a te d  t o  see i f  th e  p e rfo rm a n o  

s p e c if ic a tio n s  are a l l  m e t.

5 . T h e  va lu e s  o f  AT/ an d  K p  are s u b s titu te d  in  E q . (9 -3 0 )  to  g iv e  th e  d e s ire d  transfe 

f u n c t i o n  o f  th e  P I  c o n t r o l le r .

I f  th e  c o n tr o l le d  p ro c e s s  Gp{s) is  ty p e  0 , th e  v a lu e  o f  K /  m a y  be  s e le c te d  base( 

o n  th e  ra m p - e r r o r -c o n s ta n t  re q u ir e m e n t ,  a n d  th e n  th e re  w o u ld  o n ly  b e  o n e  pa ra m e te r 

K p ,  t o  d e t e r m i n e .  B y  c o m p u t i n g  th e  p h a s e  m a r g i n ,  g a i n  m a r g i n ,  M r ,  a n d  B W  o f  th{ 

c l o s e d - l o o p  s y s t e m  w i t h  a  r a n g e  o f  v a l u e s  o f  K p ,  t h e  b e s t  v a l u e  f o r  K p  c a n  b e  e a s i l j  

se le c te d .

B a sed on  th e  p re c e d in g  d iscu ss io n s , w e  can  s u m m a riz e  th e  a d van ta ge s  an d  d isa dva ii’ 

tages o f  a p ro p e r ly  d e s ig n e d  P I c o n tro l le r  as th e  fo llo w in g :

1 . I m p r o v in g  d a m p in g  a n d  r e d u c in g  m a x im u m  o v e r s h o o t .

2 . In c re a s in g  r ise  t im e .

3 .  D e c r e a s in g  B W .

4 . Im p ro v in g  g a in  m a rg in , phase m a rg in , an d  M r.

5 .  F i l t e r i n g  o u t  h ig h - f r e q u e n c y  n o is e .

I t  s h o u ld  be  n o te d  th a t in  th e  P I  c o n t r o l le r  d e s ig n  p ro c e s s , s e le c t io n  o f  a p roper 

c o m b i n a t i o n  o f  K i  a n d  K p ,  s o  t h a t  t h e  c a p a c i t o r  i n  t h e  c i r c u i t  i m p l e m e n t a t i o n  o f  the  

c o n t r o l l e r  i s  n o t  e x c e s s i v e l y  l a r g e ,  i s  m o r e  d i f f i c u l t  t h a n  in  t h e  c a s e  o f  th e  PD  

c o n tr o l le r .

T h e  fo llo w in g  e x a m p le s  w i l l  i l lu s tra te  h o w  th e  P I c o n tro l is  d e s ig n e d  an d  w h a t its 

e f fe c ts  are.

► E X A M PL E  9-3*1 C o n s id e r  Che s e c o n d -o rd e r  a ttitu d e -c o n lro l sy s te m  d isc u s se d  in  E x a m p le  9 -2 -1 . A p p ly in g  the PI 
c o n tro l le r  o f  E q . (9 -2 4 ), th e  fo rw a rd -p a th  tr a n s fe r  fu n c tio n  o f  th e  sy s te m  b e c o m e s

You m ay  use  A C S Y S  to  so lv e  th is  p ro b lem . Ạ

T im e -D o m a in  D e s ig n

L e t  t h e  t im e - d o m a in  p e r f o r m a n c e  r e q u i r e m e n t s  b e

S t e a d y - s t a t e  e r r o r  d u e  to  p a r a b o l i c  i n p u t  t - U s { i ) / 2  <  0 .2

M a x im u m  o v e r s h o o t  <  5%

R is e  t im e  I r  <  0 .0 1  s e c

S e t t l in g  t im e  r , <  0 .0 2  s e c

W e  h a v e  to  r e l a x  th e  r i s e  t im e  a n d  s e t t l i n g  t im e  r e q u i r e m e n t s  f r o m  th o s e  in  E x a m p le  9-2-1  

s o  th a t  w e  w i l l  h a v e  a  m e a n in g f u l  d e s ig n  f o r  th is  s y s te m .  T h e  s ig n i f ic a n c e  o f  the 

re q u ire m e n t on th e  s te ad y-s ta te  e r ro r  due to  a p a ra b o lic  in p u t  is  th a t i t  in d ire c t ly  places 

a m in im u m  re q u ire m e n t o n  th e  speed o f  th e  tra n s ie n t response.
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. .  . .  > , . _ 2 A iữ ũ K K p (s  +  K , / K p )
Ka =  im  5 G { i )  =  l im  5“ ---------v r  --------

, ' " o  . " o  + 3 6 1 ,2 )

4 5 0 0 K ,  , , , , , ,

T h e  s t e a d y - s t a t e  e ư o r  d u e  to  th e  p a r a b o l i c  i n p u t  t - U s { t ) / l  is

L e t  u s  s e t  K  =  1 8 1 .1 7 ,  s im p ly  b e c a u s e  t h i s  w a s  t h e  v a lu e  u s e d  in  E x a m p le  9 - 2 - 1 .  

A p p a r e n t ly ,  t o  s a t i s f y  a  g iv e n  s t e a d y - s t a t e  e r r o r  r e q u i r e m e n t  f o r  a  p a r a b o l i c  i n p u t ,  th e  

l a r g e r  th e  AT, th e  s m a l l e r  K ,  c a n  b e .  S u b s t i t u t i n g  ẢT =  1 8 1 .1 7  in  E q .  ( 9 - 3 6 )  a n d  s o lv i n g  K /  f o r  

th e  m in i m u m  s t e a d y - s t a t e  e r r o r  r e q u i r e m e n t  o f  0 .2 ,  w e  g e t  th e  m in i m u m  v a lu e  o f  K /  t o  b e

0 .0 0 2 2 1 5 . I f  necessa ry , th e  v a lu e  o f  K  can  be a d ju s te d  late r.

W ith  K  =  1 8 1 .1 7 .  t h e  c h a r a c t e r i s t i c  e q u a t io n  o f  th e  c lo s e d - lo o p  s y s te m  is

s ’  +  3 6 1 .2 j^  +  8 1 5 .  2 6 iK p s  +  8 1 5 ,  2 6 5 X ,  =  0  ( 9 - 3 7 )

A p p ly in g  R o u t h ’s  t e s t  t o  E q .  ( 9 - 3 7 )  y i e ld s  th e  r e s u l t  th a t  t h e  s y s t e m  i s  s ta b le  f o r

0 < K i / K p  <  3 6 1 .2 .  T h i s  m e a n s  th a t  th e  z e r o  o f  (7 (5 ) a t  5  =  ~ K i / K p  c a n n o t  b e  p la c e d

t o o  f a r  to  th e  l e f t  in  t h e  l e f t - h a l f  5 - p Ia n e ,  o r  th e  s y s t e m  w i l l  b e  u n s ta b le .  L e t  u s  p l a c e  th e  z e r o  

a t  —K j Ị K p  r e l a t i v e ly  c lo s e  t o  t h e  o r ig in .  F o r  th e  p r e s e n t  c a s e ,  t h e  m o s t  s ig n i f i c a n t  p o l e  o f  

G /> ( i) . b e s id e s  th e  p o l e  a t  i  =  0 , is  a t  - 3 6 1 . 2 .  T h u s ,  K / ịK p  s h o u ld  b e  c h o s e n  s o  th a t  th e  

f o l l o w in g  c o n d i t i o n  i s  s a t is f ie d :

^ « 3 6 1 . 2  ( 9 - 3 8 )
K p

T h e  r o o t  lo c i  o f E q .  ( 9 - 3 7 )  w ith  K i / K p  =  10  a r e  s h o w n  in  F ig .  9 - 1 9 .  N o t i c e  th a t ,  o lh e r  th a n  

th e  s m a l l  lo o p  a r o u n d  th e  z e r o  a t i  =  - 1 0 ,  t h e s e  r o o t  lo c i  f o r  th e  m o s t  p a r t  a r e  v e r y  s im i l a r  

t o  t h o s e  s h o w n  in  F ig .  9 - 7 ,  w h ic h  a r e  f o r  E q . ( 9 - 1 6 ) .  W i th  th e  c o n d i t io n  in  E q .  ( 9 - 3 8 )  

s a t i s f ie d .  E q . ( 9 - 3 4 )  c a n  b e  a p p r o x im a te d  b y

w h e r e  th e  t e ư n  K i / K p  in  th e  n u m e r a to r  is  n e g l e c t e d  w h e n  c o m p a r e d  w i th  th e  m a g n i tu d e  o f  

s. w h ic h  t a k e s  o n  v a lu e s  a lo n g  th e  o p e r a t i n g  p o in t s  o n  th e  c o m p le x  p o r t i o n  o f  th e  r o o t  lo c i  

t h a t  c o ư e s p o n d  to .  s a y . a  r e l a t i v e  d a m p in g  r a t i o  in  th e  r a n g e  o f  0 .7  <  f  <  1 ,0 . L e t  u s  a s s u m e  

t h a t  w e  w is h  to  h a v e  a  r e la t iv e  d a m p in g  r a t i o  o f  0 .7 0 7 .  F r o m  E q . ( 9 -3 9 ) .  th e  r e q u i r e d  v a lu e  

o f  K p  f o r  th i s  d a m p in g  r a t i o  is  0 .0 8 .  T h i s  s h o u ld  a l s o  b e  t r u e  f o r  th e  t h i r d - o r d e r  s y s t e m  w ith  

t h e  P I  c o n t r o l l e r  i f  th e  v a lu e  o f  A"//AT/, s a t i s f ie s  E q .  ( 9 - 3 8 ) .  T h u s ,  w ith  K p  =  0 .0 8 .  A"/ =  0 .8 ;  

t h e  r o o t  lo c i  in  F ig . 9 - 1 9  s h o w  th a t  th e  r e l a t i v e  d a m p in g  r a t i o  o f  t h e  tw o  c o m p le x  r o o t s  is  

a p p r o x im a te ly  0 .7 0 7 .  I n  f a c t ,  th e  th r e e  c h a r a c t e r i s t i c  e q u a t io n  r o o t s  a re  a t

9*3 Design with the PI Controller < 517

The parabolic-eưor constant is

-1 0 .6 0 5 . -1 7 5 .3  +  ;175,4. and -  175.3 -  >175.4
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Figure 9-19 Root loci o f Eq. (9-37) 
w ith  KịỊKp =  10; Kp varies.

T h e  re a s o n  f o r  th is  is  th a t  w h e n  w e  “ s ta n d ”  a t th e  r o o t  a t  - 1 7 5 . 3  +  7 I 75.4  and 

“ l o o k "  to w a rd  th e  n e ig h b o rh o o d  n e a r  th e  o r ig in ,  w e  see th a t th e  z e ro  a t  J =  - 1 0  is 

r e la t iv e ly  c lo s e  to  th e  o r ig in  a n d . th u s , p r a c t ic a l ly  c a n c e ls  o n e  o f  th e  p o le s  a t J =  0. 

In  fa c t ,  w e  c a n  s h o w  th a t,  as lo n g  as Kf> — 0 .0 8  a n d  th e  v a lu e  o f  K ị is  ch o s e n  such that 

E q . ( 9 - 3 8 )  is  s a t is f ie d , th e  r e la t iv e  d a m p in g  r a t io  o f  th e  c o m p le x  ro o ts  w i l l  be very 

c lo s e  to  0 .7 0 7 . F o r  e x a m p le , le t  u s  s e le c t K ì Ị K p  =  5 ; th e  th re e  c h a r a c te r is t ic  eq ua tion  
r o o ts  a re  a t

Í  =  - 5 .1 4 5 ,  - 1 7 8 .0 3  +  > 1 7 8 .0 3 , an d  -  1 7 8 .03  -  ;1 7 8 .0 3

a n d  th e  re la t iv e  d a m p in g  r a t io  is  s t i l l  0 .7 0 7 . A lth o u g h  th e  re a l p o le  o f  th e  c losed-loop 

tra n s fe r  fu n c t io n  is  m o v e d , i t  is  v e ry  c lo s e  to  th e  ze ro  a t Í  =  - K / Ị K p  so th a t th e  transient 

due to  th e  re a l p o le  is  n e g l ig ib le .  F o r  e x a m p le , w h e n  K p  =  0 .0 8  an d  K i  =  0 .4 , the  closed- 

lo o p  tra n s fe r  fu n c t io n  o f  th e  co m p e n sa te d  sys te m  is

& A s )

&r{s) ''
6 5 ,2 2 1 .2 (5  +  5 )

( i  +  5 . 1 4 5 ) ( i +  1 7 8 .03  +  j l 7 8 . 0 3 ) ( j +  178 .03  - j l 7 8 . 0 3 )
(9 -4 0 )

B e cau se th e  p o le  a t Í  =  5 .1 4 5  is  v e ry  c lo s e  to  th e  z e ro  a t 5 5= - 5 ,  th e  ư a n s ie n l response due 

to  th is  p o le  is  n e g lig ib le ,  and ử ie  sys te m  d y n a m ic s  are  e s s e n t ia lly  d o m in a te d  b y  the  tw o 

c o m p le x  po les .



9-3 Design with the PI Controller M  519

: 9-3-1
' o f  Eg. (9-37) in  F ig . 9 - Ì9  a re  ob ta ined by the fo llo w in g  sequence o f  M A T LA B  func tions

> 0 0 0 0 1 : % s t a r t  w i t h  a  v e r y  s m a l l  KP se e  F ig u r e  9 -1 9  
CP;
CP K I ]  ;
L 3 6 1 .2  8 1 5 2 6 5 *K P  8 1 5 2 6 5 * K I ]  ; 
im .d e n )
: g )

TABLE 9-5 Attributes of the Unit-Step Responses of the System in Example 9-3-1 
w ith  PI Controller

K i lK p K , Kp
M a x im u m  

O v e rsh o o t (% ) (sec)
I,

(sec )

0 0 1.00 5 2 .7 0 ,0 0 1 3 5 0 .015

20 1,60 0 .0 8 15.16 0 .0 0 7 4 0 .0 4 9

10 0 .8 0 0 .08 9 .9 3 0 ,0 0 7 8 0 .0 2 9 4

5 0 .4 0 0 .08 7 .1 7 0 .0 0 8 0 0 .0 2 3

2 0 .1 6 0 .08 5 .4 7 0 .0 0 8 3 0 .0 1 9 4

1 0 ,08 0 .08 4 .8 9 0 .0 0 8 4 0 .0 1 1 4

0.5 0 .0 4 0 .08 4.61 0 .0 0 8 4 0 .0 1 1 4

O.I 0.008 0 .08 4 .3 8 0.0084 0 .0 1 1 5

T a b le  9 -5  g ive s  th e  a ttr ib u te s  o f  th e  u n it-s te p  responses o f  th e  sys te m  w ith  P I c o n tro l 

f o r  v a r io u s  v a lu e s  o f  K ị ỊK p .  w i th  K p  =  0 .0 8 .  w h ic h  c o r r e s p o n d s  to  a  r e l a t i v e  d a m p in g  r a t i o  

o f  0 .7 0 7 .

T h e  re su lts  in  T a b le  9 -5  v e r i fy  th e  fa c t lh a t P I c o n tro l red uce s  th e  o v e rs h o o t b u t a t Ihe  

e x p e n s e  o f  l o n g e r  r i s e  t im e .  F o r  K ị  <  1. th e  s e t t l i n g  t im e s  in  T a b l e  9 - 5  a c tu a l ly  s h o w  a 

s h a r p  r e d u c t io n ,  w h ic h  is  m i s l e a d in g .  T h i s  is  b e c a u s e  th e  s e t t l i n g  t im e s  f o r  t h e s e  c a s e s  a re  

m e a sured  a t th e  p o in ts  w h e re  the  response en te rs  th e  ba nd  b e tw e e n  0 .9 5  an d  1.00 , s in ce  th e  

m a x im u m  ove rsh o o ts  are  less th an  5% .

T h e  m a x im u m  o v e rs h o o t o f  the  sys te m  can  s t i l l  be  re d u ce d  fu r th e r  th an  th ose  s h o w n  in  

T a b l e  9 - 5  b y  u s in g  s m a l l e r  v a lu e s  o f  K p  th a n  0 .0 8 ,  H o w e v e r ,  th e  r i s e  t im e  a n d  s e t t l i n g  t im e  

w i l l  b e  e x c e s s iv e .  F o r  e x a m p le ,  w i th  K p  =  0 , 0 4  a n d  K ị  =  0 .0 4 ,  th e  m a x im u m  o v e r s h o o t  is  

1 .1 % . b u t  th e  r i s e  t im e  is  i n c r e a s e d  to  0 .0 1 8 2  s e c o n d s ,  a n d  th e  s e t t l i n g  t im e  is  0 .0 2 4  
seconds.

F o r  th e  sys te m  co n s id e re d , im p ro v e m e n t o n  the m a x im u m  o ve rsh o o t s lo w s  d o w n  fo r  

K ị  l e s s  th a n  0 .0 8 ,  u n le s s  K p  is  a l s o  r e d u c e d .  A s  m e n t io n e d  e a r l ie r ,  th e  v a lu e  o f  th e  c a p a c i to r  

C a  is  i n v e r s e ly  p r o p o r t io n a l  t o  K ị . T h u s ,  f o r  p r a c t ic a l  r e a s o n s ,  th e r e  is  a  lo w e r  l im i l  o n  th e  
v a lu e  o f  K ị .

F ig . 9 -2 0  sho w s th e  u n it-s te p  responses o f  th e  a t iitu d e -c o n tro l system  w ith  P I c o n tro l, 

w i th  K p  =  0 ,0 8  a n d  s e v e r a l  v a lu e s  o f  K p .  T h e  u n i t - s t e p  r e s p o n s e  o f  th e  s a m e  s y s te m  w i th  

th e  P D  c o n t r o l l e r  d e s ig n e d  in  E x a m p le  9 - 2 - 1 ,  w i th  K p  =  1 a n d  K o  =  0 .0 0 1 7 7 ,  is  a l s o  

p lo tte d  in  th e  sam e f ig u re  as a c o m p a riso n .
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n g u r e  u m i- s ie p  re sp o n se s  o r  m e  sy s te m  in  t x a m p ie  y- 
r e sp o n se  o f  th e  sy s te m  in  E x a m p le  9 -2 -1  w ith  P D  c o n ư o lle r.

Frequency-Domain Design
T h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  o f  th e  u n c o m p e n s a t e d  s y s te m  i s  o b t a in e d  b y  se tting  

K p  =  1 a n d  AT/ =  0  in  t h e  G (s )  in  E q .  ( 9 - 3 4 ) .  a n d  th e  B o d e  p lo t  i s  s h o w n  in  F i g .  9 -2 1 . The 

p h a s e  m a r g i n  i s  2 2 .6 8 ° ,  a n d  th e  g a in - c r o s s o v e r  f r e q u e n c y  is  8 6 8  r a d / s e c .

Toolbox 9-3-2
Fig. 9-20 is ob ta ined by the fo llo w in g  sequence o f  M A TLA B  func tions  

K = 1 0 :
num = [4 5 0 0 * K ]  : 
d e n =  [1  3 6 1 .2  0 ]  : 
t f ( n u m , d e n ) :
[n u m C L ,d e n C L ]= c lo o p ( n u m ,d e n ) ; 
s te p (n u m C L , d e n C L ) 
h o ld  on

K I  =  [  1 . 6  0 . 8  ]  :
K P = K I / 5 ;
K = 1 0 0 :

f o r  i  = l : l e n g t h ( K I )
n u m =  [4 5 0 0 ^ K * K P ( i)  4 5 0 0 ‘' K * K I ( i ) / K P ( i )  ]  ;
d e n = [ l  3 6 1 .2  0 0 ]  ;
t f ( n u m , d e n ) :
[n u m C L ,d e n C L ]= c lo o p C n u m ,d e n ) ; 
s te p C n u m C L , d e n C L ) 
h o ld  on

e n d
a x isC C O  0 .0 5  0 2 ] )
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10' 10^ 
fi»(rad/sec)

Figure 9*21 Bode p lo ts  o f  the con tro l system in  Exam ple 9-3-1 w ith  P I conưoller. 
 ̂ i i5 ,265K p{s  +  K i/K p )

^ ( 7 + 3 6 1 .2 ) -------- ■
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Toolbox 9-3-3
Bode p lo ts  o f  the co n tro l system in E xam ple  9 -3 -Ỉ. F ig. 9-21 is ob ta ined by the fo llo w in g  sequence o f  
M A TLA B  func tions

K I  =  [ 0  1 . 6  0 . 8  0 . 0 8  0 . 0 0 8 ]  ;
K P = 0 . 0 8 :
K = l :

f o r  i  = 1 ;  l e n g t h ( K I )
n u m =  [8 1 5 2 6 5 * K P  8 1 5 2 6 5 * K I ( i )  ]  ; 
d e n = [ l  3 6 1 . 2  0  0 ] ;  
b o d e ( n u m , d e n )  
h o l d  o n

e n d
g r i d

L e t  us s p e c ify  th a t th e  re q u ire d  phase m a rg in  sh o u ld  be  a t lea s t 6 5 ° ,  an d  th is  is  to  be 

ac h ie v e d  w ith  th e  P I c o n tr o l le r  o f  E q . (9 -3 0 ). F o l lo w in g  th e  p ro c e d u re  o u t lin e d  e a rlie r in 

E qs. (9 -3 1 )  th ro u g h  (9 -3 3 )  o n  th e  d e s ig n  o f  th e  P I c o n tro l le r ,  w e  c o n d u c t th e  fo llo w in g  

steps:

1. L o o k  f o r  th e  n e w  g a in -c ro s s o v e r fre q u e n c y  co'g a t w h ic h  th e  phase m a rg in  o f  65° is 

re a liz e d . F ro m  F ig . 9 -2 1 , is  fo u n d  to  be 170 rad /sec . T h e  m a g n itu d e  o f  G(/o>) at

th is  fre q u e n c y  is  2 1 .5  d B , T h u s , th e  P I c o n t r o l le r  s ho u  

- 2 1 .5  d B  a to ig  ^  n O ra d /s e c . S u b s t itu tin g  

and s o lv in g  fo r  Kp, w e  get

d  p ro v id e  an a tten ua tion  o f 

=  2 1 .5  d B  in to  E q . (9-32),

Kp =  =  10-21V20 ^  0.084 (9-41)

N o tic e  th a t, in  th e  t im e -d o m a in  d e s ig n  co n d u c te d  e a r lie r, Kp  w as se lected  to  be

0 .0 8  so th a t th e  re la t iv e  d a m p in g  r a t io  o f  th e  c o m p le x  c h a ra c te ris tic  e q u a tio n  roots 

w i l l  be a p p ro x im a te ly  0 .7 0 7 . (P e rh ap s  w e  ha ve  che a ted  a l i t t le  b y  se le c tin g  the 

d e s ire d  phase m a rg in  to  be 6 5 ° .  T h is  c o u ld  n o t be ju s t  a c o in c id e n c e . C an you 

b e lie v e  th a t w e  ha ve  had no  p r io r  k n o w le d g e  th a t, in  th is  case, Ị  =  0.707 

co rre sp o n d s  to  P M  =  6 5 °? )

2 . L e t  us ch o o s e  K p =  0 .0 8 , so th a t w e  ca n  c o m p a re  th e  d e s ig n  re s u lts  o f 

th e  f re q u e n c y  d o m a in  w i t h  th o se  o f  th e  t im e - d o m a in  d e s ig n  o b ta in ed  

e a r lie r .  E q . ( 9 - 3 3 )  g iv e s  th e  g e n e ra l g u id e l in e  o f  f in d in g  K /  o n c e  Kp is 

d e te rm in e d . T h u s ,

A s  p o in te d  o u t e a r lie r, th e  va lu e  o f  K / is  n o t r ig id ,  as lo n g  as th e  ra t io  K f/K p  is  su ffic ie n t ly  

s m a lle r  th an  the m a g n itu d e  o f  th e  p o le  o f  C (5 )  a t - 3 6 1 .2 .  A s  i t  tu rn s  o u t. th e  va lu e  o iK i 
g iv e n  b y  E q . (9 -4 2 )  is  n o t s u f f ic ie n t ly  sm a ll fo r  th is  sys te m .

T h e  B o d e  p lo ts  o f  Ihe fo rw a rd -p a th  tra n s fe r  fu n c l io n  w i th  Kp =  0 .0 8  an d  K i =  0.

0 .0 0 8 . 0 .0 8 . 0 .8 . and 1.6 are sh o w n  in  F ig . 9 -2 1 . T a b le  9 -6  sho w s the fre q u e n cv -d o m a in
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ice Data of the System in Example 9-3-1
w ith  PI Controller

K ị Ị K p K , Kp

G M
(dB )

PM
(d eg ) M r

B W

(ra d /se c )
G a in  C O  
( ra d /se c )

P h a se  C O  
( ra d /se c )

0 0 1.00 00 22 .6 2 .55 1390 .87 868 00

20 1.6 0 .0 8 00 58 .45 1.12 26 8 .9 2 165.73 o c

10 0 .8 0 .0 8 00 61 .9 8 1.06 26 2 .3 8 164 .96 oc

5 0 ,4 0 .0 8 o c 63 .75 1.03 25 8 .9 5 164 .77 oc

1 0 .0 8 0 .08 cc 65 .15 1.01 25 6 .1 3 164.71 DC

0.1 0 .008 0 .08 oo 65 .47 1.00 25 5 ,4 9 164 .70 oc

p ro p e rtie s  o f  th e  un co m p e n sa te d  sys te m  an d  th e  co m p e n sa te d  sys te m  w i th  v a r io u s  va lu es  

o f  K ị . N o t ic e  th a t, f o r  v a lu e s  o f  K / jK p  th a t a re  s u f f ic ie n t ly  sm a ll, th e  phase m a rg in . M r,  B W , 

and g a in -c ro s s o v e r fre q u e n c y  a l l  v a ry  l i t t le .

I t  s h o u ld  be  n o te d  th a t th e  phase m a rg in  o f  th e  sys te m  can be im p ro v e d  fu r th e r  b y  

re d u c in g  th e  va lu e  o f  Kp  b e lo w  0 .0 8 . H o w e v e r, th e  b a n d w id th  o f  th e  sys te m  w i l l  be fu r th e r  

re d u ce d . F o r  e x a m p le , fo r  K p =  0 .0 4  and K i  =  0 .0 4 . th e  phase m a rg in  is  inc re a se d  to  

7 5 .7 ° . an d  M r =  1 .01 . b u t B W  is  re d u ce d  to  117.3  ra d /se c '

[A M P LE  9-3 -2  N o w  le t u s  c o n s id e r  u s in g  th e  P I c o n tro l f o r  th e  th ir d - o rd e r  a l t i tu d e  c o n tro l sy s te m  d e s c r ib e d  by  
E q . (9 -1 9 ) .  F irs t , th e  t im e -d o m a in  d e s ig n  is  c a ư i e d  o u t a s  f o llo w s . Y ou m a y  u se  A C S Y S  to  so lv e  
{his p ro b le m . <

T im e -D o m a in  D e s ig n

L e t  th e  t im e -d o m a in  sp e c if ic a tio n s  be as fo llo w s :

S tea dy-s ta te  e r ro r  du e  to  th e  p a ra b o lic  in p u t  t^U s {t) l2  <  0 ,2  

M a x im u m  o ve rsh o o t <  5%

R ise  t im e  ĩ r  <  0 .01 sec 

S e tt l in g  t im e  t, <  0 .0 2  sec

T hese are id e n tic a l to  the s p e c ifica tio n s  g ive n  fo r  the  se co nd -o rde r s ystem  in  E x a m p le  9 -3 -1 .

A p p ly in g  th e  P I c o n tro l le r  o f  E q . (9 -2 4 ), th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  o f  the  

sys te m  becom es

1.5 ^  \ữ'>KK,,ụ + K ,/K p)
' ( > » ■ (  I s2(s2 + 3 4 0 8  3 1 + 1 ,2 0 4 .0 0 0 )  „

1.5 X  \ t í > K K p [ s  +  K ị Ị K p )

W e  can  sho w  th a t th e  s te ad y-s ta te  e ư o r  o f  the sys te m  du e  to  th e  p a ra b o lic  in p u t is  aga in  

g iv e n  b y  E q . (9 -3 6 ). and. a r b it ra r i ly  s e tt in g  K  =  181 .17 , th e  m in im u m  v a lu e  o f  K, is
0 .0 0 2 2 1 5 .

T h e  c h a ra c te ris t ic  e q u a tio n  o f  th e  c lo s e d - lo o p  sys te m  w i lh  A' =  181 .17  is 

J-* +  3408.3s-’  +  1. 2 0 4 ,000.V- +  2 .7 1 8  X 1 o'*^-ps +  2 .7 1 8  X I o’ / Í ,  =  0  (9 -4 4 )
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The R outh ’s tabulation o f  the last equation is perform ed as fo llow s :

3 4 0 8 .3

1 ,2 0 4 , 0 0 0  -  7 9 7 4 6 5 A :/ .  2 .7 1 8  X lO K̂,

1 ,2 0 4 ,0 0 0 J ì:f  -  7 9 7 4 6 5 ^ :^  -  3 4 Ũ 8 .3 g f

1 , 2 0 4 ,0 0 0  2 .7 1 8  X 1 0 %

2 .7 1 8  X lO ^K p  0

1 , 2 0 4 ,0 0 0  -  79 7 4 6 5 A :p

2 .7 1 8  X 10^a :, 0

T h e  s t a b i l i t y  r e q u i r e m e n t s  a r e

K / >0  
Í T p <  1 .5 0 9 8

K i< 3 5 3 .2 5 5 K p - 2 3 3 .9 B K ị

(945)

T h e  d e s ig n  o f  th e  P I  c o n t r o l le r  c a l ỉ s  f o r  th e  s e le c t io n  o f  a  s m a l l  v a lu e  f o r  K i/K p ,  re la tiv e  to 

th e  n e a r e s t  p o le  o f  G ( i )  t o  th e  o r ig in ,  w h ic h  is  a t  - 4 0 0 . 2 6 .  T h e  r o o t  lo c i  o f  E q .  (9 -4 4 )  are 

p lo t t e d  u s in g  th e  j x ) le - z e r o  c o n f ig iu a t io n  o f  E q . ( 9 -4 3 ) .  F ig . 9 - 2 2 ( a )  s h o w s  th e  nx> t lo c i a s  Kp

F ig u re  9-22 (a )  R o o t lo c i o f  th e  c o n ư o l  sy s te m  in  E x am p le  9 -3 -2  w ith  P I  c 
K i / K p  =  2 , 0  <  ATp <  CO.
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^  50
■B

f  

®  „

I n  I lit 1 I ! I
^ K i= o .2 i.K p = o m

i f ,  =  0,6. = 0.04 i

■ K ,=  K^ = Ồ ữl5

ii
K, =  ũ. K ^ = \

22.5 d B ^

10-1 10' 10  ̂ 163 10  ̂ IƠ*
<u (rad/sec)

ứJ(rad/sec)

(b)

F ig u re  9 -22 (b) B o d e  p lo ts  o f  ih e  c o n iro i sy s te m  in E x am p le  9 -3 -2  w ith  PI c o n tro l.

v a r ie s  f o r  K i Ị K p  =  2 .  T h e  r o o t  lo c i n e a r  th e  o r ig in  d u e  to  th e  p o le  a n d  z e r o  o f  th e  P I  c o n ư o l le r  

a g a in  f o rm  a  s m a ll  lo o p , a n d  th e  r o o t  lo c i a l  a  d is t a n c e  a w a y  f ro m  ử ie  o r ig in  w ill  b e  v e ry  s im i la r  

to  th o s e  o f  th e  u n c o m p e n s a te d  s y s te m , w h ic h  a re  s h o w n  in  F ig . 5 - 3 4 . B y  s e le c t in g  th e  v a lu e  o f  

K p  p r o p e r ly  a lo n g  th e  r o o t lo c i,  i t  m a y  b e  p o s s ib le  to  s a t is f y  ih e  p e r f o rm a n c e  sp e c if ic a t io n s
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TABLE 9-7 Attributes of the Unit-Step Responses of the System in Example 9-3-2 
w ith PI Controller

K,!Kp K, Kp
M a x im u m  

O v e rsh o o t (% ) (sec)
Is

(sec ) c
R o o ts  o f

0 0 1 76.2 0 .0 0 1 5 8 0 .0 4 8 7 - 3 2 9 3 .3 - 5 7 .5 ± ;9 0 6 .6
20 1.6 0 .0 8 15.6 0 .0 0 7 7 0 .0471 - 3 0 3 5 - 2 2 .7 - 1 7 5 .3 ± ji8 0 .:
20 0.8 0 .0 4 15.7 0 .0 1 3 4 0 .0881 - 3 0 2 1 ,6 - 2 5 9 - 9 9 - 2 8

5 0 .4 0 .0 8 6 .3 0 ,0 0 8 8 3 0 .0 2 0 2 - 3 0 3 5 - 5 .1 - 1 8 4 ± ;1 8 9 ,:
2 0 .0 8 0 .0 4 2.1 0 .0 2 2 0 2 0 .0 1 5 1 5 - 3 0 2 1 .7 - 2 3 4 .6 - 1 4 9 .9 - 2
5 0.2 0 .0 4 4 .8 0 .0 1 7 9 6 0 .0 2 0 2 - 3 0 2 1 .7 - 2 4 0 - 1 4 1 .2 - 5 ,3
2 0 .1 6 0 .0 8 5 .8 0 .0 0 7 8 7 0 .0 1 8 1 8 - 3 0 3 5 .2 - 1 8 5 .5 ± y J 9 0 .8 - 2
I 0 .0 8 0 .0 8 5 .2 0 .0 0 7 9 2 0 .0 1 6 1 6 - 3 0 3 5 .2 - 1 8 6 ± ;1 9 1 .4 -1
2 0 .1 5 0 .075 4 .9 0 .0 0 8 5 0.0101 - 3 0 3 3 .5 - 1 8 7 .2 ± ý l 7 8 - 1
2 0 .1 4 0 .0 7 0 4 .0 0 .0 0 9 1 7 0.01212 - 3 0 3 1 .8 - 1 8 7 .2 ± ; 1 6 4 - 1

g iv e n  a b o v e . T o  m in im iz e  th e  r is e  t im e  a n d  s e t t l i n g  t im e ,  w e  s h o u ld  s e le c t  K p  s o  lh a t the 

d o m in a n t  r o o ts  a re  c o m p le x  c o n ju g a te .  T a b le  9 - 7  g iv e s  th e  p e r f o r m a n c e  a n r ib u t e s  o f  several 

c o m b in a t io n s  o f  K ị Ị K p  a n d  K p . N o t ic e  th a t ,  a l th o u g h  se v e r a l  c o m b in a t io n s  o f  th e s e  pa ram eters  

c o r r e s p o n d  to  s y s te m s  ứ ia t  s a t is f y  th e  p e r f o rm a n c e  s p e c if ic a t io n s ,  th e  o n e  w i th  K p  =  0 .075  

a n d  K ị  =  0 .1 5  g iv e s  th e  b e s t  r is e  a n d  s e t t l i n g  r im e s  a m o n g  th o s e  s h o w n .

Frequency-Domain Design
T h e  B o d e  p lo t  o f  E q .  ( 9 - 4 3 )  f o r  a:  =  1 8 1 .1 7 ,  ATp =  1. a n d  /iT/ =  0  i s  s h o w n  i n  F ig , 9 -22 (b ). 

T h e  p e r f o r m a n c e  d a t a  o f  th e  u n c o m p e n s a t e d  s y s t e m  a r e  a s  f o l lo w s :

G a i n  m a r g i n  =  3 .5 7 8  d B  

P h a s e  m a r g i n  =  7 .7 8 8 °

M r  -  6 .5 7 2  

B W =  1 3 7 8  r a d /s e c

L e t  u s  r e q u ừ e  th a t  th e  c o m p e n s a te d  s y s te m  h a s  a  p h a s e  m a rg in  o f  a t  le a s t  6 5 ° ,  a n d  ứ ù s is 

to  b e  a c h ie v e d  w i th  th e  P I  c o n t r o l le r  o f  E q .  ( 9 -3 0 ) .  F o l lo w in g  th e  p r o c e d u r e  o u t l i n e d  in  Eqs. 

( 9 -3 1 )  t h r o u g h  ( 9 -3 3 )  o n  ử ie  d e s ig n  o f  th e  P I  c o n t ro l le r ,  w e  c a r ry  o u t  th e  f o l lo w in g  steps.

1 . L o o k  f o r  th e  n e w  g a i n - c r o s s o v e r  f r e q u e n c y  a t  w h ic h  th e  p h a s e  m a r g i n  o f  6 5 °  is 

r e a l i z e d .  F r o m  F ig .  9 - 2 0 .  uJg i s  f o u n d  to  b e  1 6 3  r a d / s e c ,  a n d  th e  m a g n i tu d e  of 

G {jcủ) a t  t h i s  f r e q u e n c y  is  2 2 .5  d B .  T h u s ,  th e  P I  c o n t ro l le iỊĨ s h o u ld  p r o v id e  an 

G ụ c o 'g )  \ = 2 2 . 5 d Ba t t e n u a t io n  o f  - 2 2 . 5  d B  a t  =  1 6 3  r a d /s e c .  S u b s t i t u t i n g  

in to  E q .  ( 9 - 3 2 ) .  a n d  s o lv i n g  f o r  K p , w e  g e t

K p  =  1 0 - |C ( ;» ;)L ./2 0  ^  IO-22.5/20 ^  g  075  „ ^ 5 ,

T h i s  is  e x a c t ly  th e  s a m e  r e s u l t  th a t  w a s  s e l e c t e d  f o r  th e  t im e - d o m a in  d e s ig n  th a t  r e s u l te d  in 

a  s y s te m  w i th  a  m a x im u m  o v e r s h o o t  o f  4 .9 %  w h e n  K i  =  0 . 1 5 .  o r  K i / K p  =  2.

2 . T h e  s u g g e s t e d  v a lu e  o f  K ,  is  f o u n d  f r o m  E q . ( 9 -3 3 ) :

K , =
m'gKp 163 X 0.075

(9-47)
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Toolbox 9-3-4
B o d e  p lo ts  o f  th e  c o n t r o l  sys te m  in  E x a m p le  9 -3 -2 . F ig . 9 -2 2 (b )  is  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce o f  

M A T L A B  fu n c t io n s

K I  = [  0 . 6  0 .2 8  0 .0 7 5  0 ]  ;
K P =  [ 0 . 0 4  0 .0 2  0 .0 7 5  1 ]  :
K = l ;

f o r i =  l : l e n g t h ( K I )
n u m =  C l . 5 e 9 * K P C i )  1 . S e g ' - 'K I C i ) ]  ;
d e n = [ l  3 4 0 8 .3  1 2 0 4 0 0 0  0 0 ]  ; 
b o d e C n u m ,d e n )  
h o ld  on

e nd
g r i d
a x i s ( [ 0 . 0 1  1 0 0 0 0  -2 7 0  0 ] )  ;

T h u s ,  K i / K p  =  1 6 .3 .  H o w e v e r ,  t h e  p h a s e  m a r g i n  o f  t h e  s y s t e m  w i th  t h e s e  d e s ig n  

p a r a m e t e r s  is  o n ly  5 9 .5 2 .

T o  r e a l i z e  th e  d e s i r e d  P M  o f  6 5 ° ,  w e  c a n  r e d u c e  th e  v a lu e  o f  K p  o r  K /. T a b le  9 - 8  g iv e s  

th e  r e s u l t s  o f  s e v e r a l  d e s ig n s  w i th  v a r io u s  c o m b in a t io n s  o f  K p  a n d  K /.  N o t i c e  th a t  th e  la s t  

th r e e  d e s ig n s  in  th e  t a b l e  a l l  s a t i s f y  th e  P M  r e q u i r e m e n t s .  H o w e v e r ,  th e  d e s ig n  r a m i f i c a 

t i o n s  s h o w  th e  f o l lo w in g :

R e d u c i n g  K p  w o u ld  r e d u c e  B W  a n d  in c r e a s e  M r.

R e d u c i n g  K /  w o u ld  in c r e a s e  th e  c a p a c i to r  v a lu e  in  t h e  im p l e m e n t in g  c i r c u i t .

I n  f a c t ,  o n ly  t h e  K i  =  K p  =  0 .0 7 5  c a s e  g iv e s  t h e  b e s t  a l l - a r o u n d  p e r f o r m a n c e  in  b o t h  th e  

f r e q u e n c y  d o m a i n  a n d  th e  t im e  d o m a in .  I n  a t t e m p t i n g  to  i n c r e a s e  K /,  t h e  m a x im u m  

o v e r s h o o t  b e c o m e s  e x c e s s i v e .  T h i s  i s  o n e  e x a m p l e  t h a t  s h o w s  th e  i n a d e q u a c y  o f  

s p e c i f y i n g  p h a s e  m a r g i n  o n ly .  T h e  p u r p o s e  o f  t h i s  e x a m p l e  i s  t o  b r in g  o u t  t h e  p r o p e r t i e s  

o f  t h e  P I  c o n t r o l l e r  a n d  th e  im p o r t a n t  c o n s i d e r a t i o n s  in  i t s  d e s ig n .  N o  d e t a i l s  a re  

e x p l o r e d  f u r t h e r .

F ig .  9 - 2 3  s h o w s  th e  u n i t - s t e p  r e s p o n s e s  o f  th e  u n c o m p e n s a t e d  s y s te m  a n d  s e v e r a l  

s y s t e m s  w i th  P I  c o n t ro l .

TABLE 9-8 Performance Summary of the System in Example 9-3-2 w ith PI Controller

K, Kp

G M
(dB )

P M
(deg ) M r

B W

(ra d /se c)
M ax im u m  

O v ersh o o t (9c>
I,

(sec) (sec )

0 0 ] 3 .578 7 .788 6 .572 1378 77.2 0 .0015 0 .0 4 9 0

16.3 1.222 0 .075 25 .67 5 9 .52 1.098 2 64 .4 13.1 0 ,0 0 8 6 0 ,0 4 7 8

] 0 .075 0 .075 26 .06 65 .15 1.006 2 53 .4 4 .3 0 .0085 0 .0 1 1 6

15 0 .6 0 0 0 .0 4 0 3 1 .16 66 .15 1,133 Ỉ3 4 .6 12.4 0 .0 1 4 2 0 .0 9 7 0

14 0 ,2 8 0 0 ,0 2 0 3 7 .20 6 5 .74 1.209 66 .34 17,4 0 .0 2 6 8 0 .1 6 1 6



528 Chapter 9. Design of Control Systems

Time (sec)

F ig u re  9 -23 U n it-s te p  re sp o n se  o f  sy s te m  w ith  P I  c o n tro l le r  in E x am p le  9 -3 -2 .

9-4  D E S IG N  W I T H  THE PID CO N T R O LL E R

F r o m  th e  p r e c e d in g  d is c u s s io n s ,  w e  s e e  th a t  t h e  P D  c o n i r o l l e r  c o u ld  a d d  d a m p in g  to  a 

s y s te m ,  b u t  th e  s t e a d y - s t a t e  r e s p o n s e  i s  n o t  a f f e c te d .  T h e  P I  c o n t r o l l e r  c o u ld  im p r o v e  the 

r e l a t i v e  s t a b i l i ty  a n d  im p r o v e  th e  s t e a d y - s t a t e  e r r o r  a t  th e  s a m e  t im e ,  b u t  ứ ie  r i s e  lim e  is 

i n c r e a s e d .  T h i s  l e a d s  t o  t h e  m o i i v a t i o n  o f  u s in g  a  P I D  c o n t r o l l e r  s o  th a t  th e  b e s t  f e a tu re s  o f 

e a c h  o f  th e  P I  a n d  P D  c o n t r o l l e r s  a re  u t i l i z e d .  W e  c a n  o u t l i n e  th e  f o l l o w in g  p r o c e d u re  fo r 

th e  d e s ig n  o f  th e  P I D  c o n t r o l le r .

1 . C o n s i d e r  th a t  th e  P I D  c o n t r o l l e r  c o n s i s t s  o f  a  P I  p o r t io n  c o n n e c t e d  in  c a s c a d e  w ith  

a  P D  p o r t io n .  T h e  t r a n s f e r  f u n c t i o n  o f  th e  P I D  c o n t r o l l e r  is  w r i t t e n  a s

C(.(5) — K p  +  K [)S  H—  ̂(1 +  K ũ ịS )  ( Kp2  H— Í9 -48 )

T h e  p r o p o r t i o n a l  c o n s t a n t  o f  t h e  P D  p o r t i o n  is  s e i  to  u n i ty ,  s in c e  w e  n e e d  on ly  

th r e e  p a r a m e t e r s  in  th e  P I D  c o n t r o l le r .  E q u a t in g  b o th  s id e s  o f  E q . ( 9 - 4 8 ) .  w e  have

K p =  Kp2 +  A 'd i^ /2  

K d  ~  K d \I^P2 

K i =  Kp_

(9 -49 )

Í9 -5 0 )

(9 -5 1 )



2 . C o n s id e r  th a t th e  P D  p o r t io n  o n ly  is  in  e f fe c t .  S e le c t th e  va lu e  o f  K d ]  so th a t a 

p o r t io n  o f  th e  d e s ire d  re la t iv e  s ta b i l i ty  is  a ch ie ve d . In  th e  t im e  d o m a in , th is  

re la t iv e  s ta b i l i ty  m a y  be  m ea su red  b y  th e  m a x im u m  o v e rs h o o t, an d  in  the  

fre q u e n c y  d o m a in  i t  is  th e  phase m a rg in .

3 . S e le c t ih e  p a ra m e te rs  K f2 an d  Kp2  so  th a t th e  to ta l r e q u ire m e n t o n  r e la t iv e  s ta b i l i ty  

is  sa tis f ie d .
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Toolbox 9*4-1
Fig. 9-23 is ob ta ined  by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s

K I = [ 0  0 . 6  0 .2 8  0 . 0 7 5 ]  ;
K P =  [1  0 .0 4  0 .0 2  0 . 0 7 5 ]  ;
K = l ;
t  =  0 : 0 . 0 0 0 1 : 0 . 2 ;  
f o r i  =  l : l e n g t h ( K I )

n u jn =  [ 1 . 5 e 9 * K P ( i )  1 .  5 e 9 * K I ( i ) ]  ; 
d e n = [ l  3 4 0 8 .3  1 2 0 4 0 0 0  0 0 ] ;  
t f ( n m n , d e n ) :
[ num C L, d e n C L ] = c lo o p ( n u m , d e n ) ; 
s te p C n u m C L , d e n C L , t ) 
h o ld  o n

end
g r i d
a x i s ( [ 0  0 . 2  0 1 . 8 ] )

A s  an a lte rn a tiv e , th e  P I p o r t io n  o f  th e  c o n tr o l le r  can  be  d e s ig n e d  f ir s t  fo r  a p o r t io n  o f  

th e  re q u ire m e n t o n  re la t iv e  s ta b il ity ,  an d , f in a l ly ,  th e  P D  p o r t io n  is  de s ign ed .

T h e  f o l lo w in g  e x a m p le  i l l u s t r a t e s  h o w  th e  P I D  c o n t r o l l e r  i s  d e s ig n e d  in  t h e  t im e  

d o m a in  an d  th e  fre q u e n c y  d o m a in .

► EXAMPLE 9-4-1 C o n s id e r  th e  th ữ d -o rd e r  a ttitu d e  c o n ư o l sy s te m  re p re se n te d  by  th e  fo rw a rd -p a th  tf a n s fe r  function  
g iv e n  in  E q . (9 -1 9 ) . W ith  AT =  1 8 1 .17 , th e  t ra n s fe r  fu n c tio n  is

“  s ( i  +  4 0 0 .2 6 ) ( i  +  3 0 0 8 )

Y ou m a y  u se  A C S Y S  to  so lv e  th is  p ro b lem ; s e e  S e c tio n  9 -19 .

T im e -D o m a in  D e s ig n

L e t  th e  t im e -d o m a in  p e rfo rm a n c e  s p e c if ic a tio n s  be  as fo llo w s :

S t e a d y - s t a t e  e r r o r  d u e  t o  a  r a m p  in p u t  t^ U s ( r ) /2  <  0 .2  

M a x im u m  o v e r s h o o t  <  5 %

R is e  t im e  ỉ r  <  0 .0 0 5  s e c  

S e t t l i n g  t im e  f ,  <  0 .0 0 5  se c

W e  re a liz e  f ro m  th e  p re v io u s  e xa m p le s  th a t these re q u ire m e n ts  ca n n o t be  fu lf i l le d  b y  

e ith e r  th e  P I o r  P D  c o n tro l a c t in g  a lo ne . L e t  us a p p ly  th e  P D  c o n tro l w i th  the tra n s fe r  

f u n c t i o n  (1 +  K o is ) .  T h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  b e c o m e s

2  7 1 8 x l 0 » ( l + < r o . . )

^  ’  s ( j  +  4 0 0 . 2 6 ) { i  +  3 0 0 8 )
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TABLE 9-9 Time-Domain Performance Characteristics of Third-Order Attitude Control System 
w ith  PID Controller Designed in Example 9-4-1

M a x im u m  i r  Í. R o o ts  o f
Kp2 O v e rsh o o t (% )  (sec )  (sec )  C h a ra c te r is tic  E q u a tio n

1.0 11.1 0 .0 0 0 8 8 0 .0 0 2 5 - 1 5 .1 - 5 3 3 .2 - 1 4 3 0 ±  j 1717.;

0 .9 10.8 0 .001  I I 0 .0 0 2 0 2 - 1 5 .1 - 5 3 8 .7 - 1 4 2 7  ± y Í571.I

0 ,8 9 .3 0 .0 0 1 2 7 0 .0 0 3 0 3 - 1 5 .1 - 5 4 6 .5 - 1 4 2 3 ± ; I385.Í

0 .7 8 .2 0 .0 0 1 3 0 0 .0 0 3 0 3 - 1 5 .1 - 5 5 8 .4 - 1 4 1 7 ± y 1168;
0 .6 6 .9 0 .0 0 1 5 5 0 .0 0 3 0 3 - 1 5 .2 - 5 7 9 .3 - 1 4 0 6 ± y 897.1

0 .5 5 .6 0 .0 0 1 7 2 0 .0 0 4 0 4 - 1 5 .2 - 6 2 9 - 1 3 8 2  ± y 470.Í
0 .4 5.1 0 .0 0 2 1 4 0 .0 0 5 0 5 - 1 5 .3 - 1 9 9 3 - 7 0 0  ±  j 215.4

0 .3 4 .8 0 ,00271 0 .0 0 3 0 3 - 1 5 .3 - 2 3 5 5 - 5 1 9  ±  } 263.1
0 .2 4 .5 0 .0 0 4 0 0 0 ,0 0 4 0 4 - 1 5 .5 - 2 6 1 3 - 3 9 0  ± y 221.3
0.1 5 .6 0 .0 0 7 4 7 0 .0 0 7 4 7 - 1 6 .1 - 2 8 4 - 2 8 4  ± ; 94.2
0 .0 8 6 .5 0 .0 0 8 9 5 0 .0 4 5 4 5 - 1 6 .5 - 2 8 6 .3 - 2 6 6  ±  j 4.1

T a b le  9*3  sho w s th a t th e  be s t P D  c o n tro l le r  th a t can  be o b ta in e d  f r o m  ứ ie m axim um  

o v e rs h o o t s ta n d p o in t is  w i ih  AToi =  0 .0 0 2 . an d  the  m a x im u m  o v e rs h o o t is  1 1 .3 7% . T he  rise 

t im e  an d  s e t t l in g  t im e  are w e ll  w i th in  th e  re q u ire d  va lu es . N e x t,  w e  ad d  th e  P I con tro lle r, 

and th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  becom es

, _  5 .4 3 6  X +  50 0 )is  +  K n /K p 2 )

52(j  +  4 0 0 .2 6 ) ( j  +  3 0 0 8 )   ̂  ̂ ^

F o llo w in g  th e  g u id e lin e  o f  c h o o s in g  a re la t iv e ly  sm a ll v a lu e  f o r  K i i / K p i .  w e let 

f ^ n / K p 2 ~  15 . E q .  ( 9 - 5 4 )  b e c o m e s

5 .4 3 6  X 10‘ f r „ ( i + 5 0 0 ) ( s + 15)

=  ~  ; ? ( 7 T 4 0 0  2 6 ) ( . r 3 0 0 8 )

T a b le  9 -9  g ive s  the t im e -d o m a in  p e rfo rm a n c e  c h a ra c te ris t ic s  a lo n g  w i th  th e  ro o ts  o f  the 

c h a ra c te ris t ic  e q u a tio n  fo r  v a r io u s  va lu e s  o f  Kp2 . A p p a re n t ly ,  th e  o p t im a l va lu e  o f  K n  js in 
th e  n e ig h b o rh o o d  o f  b e tw e e n  0 .2  and 0 .4 .

S e lecting  Kp2 =  0 .3 . and w iử i K d \  =  0 .0 0 2  and K ị2 =  15AT/>2 =  4 .5 . the fo llo w in g

resu lts are ob ta in ed fo r  ứ ie param eters o f  the P ID  c o n ffo lle r  us ing  Eqs. (9 -4 9 ) th ro ug h  (9-51):

K ,  =  K ,2  =  4 .5

K p  =  Kp2  +  K o \K i 2 =  0 .3  +  0 .0 0 2  X 4 .5  -  0 .3 0 9  (9-56)

K d  =  K o iK p 2  =  0 .0 0 2  X  0 .3  =  0 .0 0 0 6

N o t i c e  th a t  th e  P I D  d e s ig n  r e s u l t e d  in  a  s m a l l e r  K p  a n d  a  la r g e r  K /,  w h ic h  c o r r e s p o n d  to  

s m a lle r  c a p a c ito rs  in  th e  im p le m e n iin g  c irc u it .

F ig . 9 -2 4  sho w s the u n it-s te p  responses o f  th e  sys te m  w i th  th e  P ID  c o n tro l le r ,  as w e ll 

a s  t h o s e  w i lh  P D  a n d  P i  c o n t r o l s  d e s ig n e d  in  E x a m p le s  9 - 2 - 2  a n d  9 - 3 - 2 .  re s p e c t iv e ly . 

N o tic e  th a t th e  P ID  c o n tro l,  w h e n  d e s ig n e d  p ro p e rly , ca p tu re s  th e  advan ta ge s  o f  b o th  the 

P D  an d  th e  P I c o n tro ls .
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Figure 9-24 S tep  re sp o n se s  o f  th e  sy s te m  in  E x am p le  9-4-1  w ith  P D . P I. a n d  P ID  c o n tro l le rs .

F r e q u e n c y - D o m a in  D e s ig n

T h e  P D  c o n tro l o f  th e  th ird -o rd e r  a t t itu d e  c o n tro l sys te m s w as  a lre a d y  c a r r ie d  o u t in  

E x a m p le  9 -2 -2 , a n d  th e  re su lts  w e re  ta b u la te d  in  T a b le  9 -3 . W h e n  Kp  =  1 an d  K d  =  0 .0 0 2 , 

th e  m a x im u m  o v e rs h o o t is  11 .3 7 % . b u t th is  is  th e  be s t th a t th e  P D  c o n tro l c o u ld  o ffe r . 

U s in g  ứ iis  P D  c o n tro lle r ,  th e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  o f  th e  sys te m  is

G [s) =
2 .7 1 8  X 10 ^(1  + 0 . 0 0 2 i )  

5(5 +  4 0 0 .2 6 ) ( j  + 3 0 0 8 )
(9 -5 7 )

a n d  i ts  B o d e  p lo t  is  sh o w n  in  F ig . 9 -2 5 . L e t us e s t im a te  th a t th e  fo llo w in g  se t o f  fre q u e n c y - 

d o m a in  c r ite r ia  coư e sp o n d s  to  th e  tim e -d o m a in  sp e c if ic a tio n s  g iv e n  in  th is  p ro b le m .

Phase m a rg in  >  7 0 °

M r  < \ . \

B W >  1 .00 0  rad /sec

F ro m  the B o d e  d ia g ra m  in  F ig . 9 -2 5 , w e  see th a t, to  a ch ie ve  a phase m a rg in  o f  7 0 '',  th e  ne w  

ph ase -c ro sso ve r fre q u e n c y  s h o u ld  be =  811 rad /sec , a l w h ic h  the m a g n itu d e  o f  G{j(o) is 

7 d B . T h u s , u s in g  E q . (9 -3 2 ), the  v a lu e  o f  Kp2 is  c a lc u la te d  to  be

KP2 =  1 0 - (9 -5 8 )

N o t ic e  th a t th e  d e s ira b le  ran ge  o f  Kp2 fo u n d  fro m  th e  t im e -d o m a in  de s ig n  w i th  K i2 /K p 2 =  
15 is  f ro m  0 .2  to  0 .4 . T h e  re s u lt g iv e n  in  E q . (9 -5 8 )  is  s l ig h t ly  o u t o f  th e  ran ge . T a b le  9 -1 0  

sh o w s  th e  fre q u e n c y -d o m a in  p e rfo rm a n c e  re su lts  w i th  K d  =  0 .0 0 2 . K n /K p i =  15. and
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F ig u re  9-25 B o d e  p lo t  o f  th e  sy s te m  in  E x a m p le  9-4-1  w ith  P D  a n d  P ĨD  c o n tro l le rs .

TABLE 9-10 Frequencv-Domain Performance of System in Example 9-4-1 w ith  PID Controller

^PT. K n

G M
(d B )

PM
(d eg ) M r

B W
(ra d /se c ) (sec ) (sec )

M axim um  
O v ersh o o t (%)

1.0 0 0 oo 58.45 1.07 2607 0 .0 0 0 8 0 .0 0 2 5 5 11.37

0 .45 6 .75 oo 68.5 1.03 Itso 0.0019 0 .0 0 4 0 5.6

0 .4 0 6 .0 0 CO 69 .3 1.027 1061 0 .0021 0 .0 0 5 0 5 .0

0 .3 0 4 .5 0 oo 71 ,45 1 .024 1024 0 .0 0 2 7 0 .0 0 3 0 3 4.8

0.20 3.00 00 73,88 1.031 528.8 0 .0 0 4 0 0 .0 0 4 0 4 4.5

0.10 1.5 oo 76.91 1.054 269.5 0 .0 0 7 6 0 .0 3 0 3 5.6

0.08 1.2 oo 77.44 1.065 216.9 0 .0 0 9 2 0 .0 0 4 6 9 6.5

seve ra l va lu e s  o f  Kp2 s ta rt in g  w ith  0 .4 5 . I t  is  in te re s tin g  to  n o te  th a t, as Kp2 co n tin u e s  to 

decrease, ứ ie phase m a rg in  inc rea ses m o n o to n ic a ily ,  b u t b e lo w  K f>2 ~  0 .2 , ứ ie m a x im u in  

o v e rs h o o t a c tu a lly  inc rea ses . In  th is  case, th e  phase m a rg in  re su lts  are m is le a d in g , b u t ứie 

re so n a n t pe ak  M r  is  a m o re  a ccu ra te  in d ic a t io n  o f  th is .

► 9-5  D E S IG N  W I T H  P H A S E - L E A D  CO N T R O LL E R

T h e  P ID  c o n tr o l le r  a n d  its  co m p o n e n ts  in  th e  fo rm  o f  P D  an d  P I c o n tro ls  re p re se n t s im p le  

fo rm s  o f  c o n tro lle rs  th a t u t i l iz e  d e r iv a t iv e  and in te g ra t io n  o p e ra tio n s  in  th e  co m p en sa tio n  

o f  c o n tro l sys te m s. In  g e n e ra l, w e  can  re g a rd  th e  d e s ig n  o f  c o n tro l le rs  o f  c o n tro l system s as
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a f i l te r  de s ig n  p ro b le m : th e n  th e re  are a la rg e  n u m b e r  o f  p o ss ib le  schem es. F ro m  the  

f i l te r in g  s ta n d p o in t, th e  P D  c o n tro l le r  is  a h ig h -p a ss  f i l te r ,  the  P I c o n tro l le r  is  a lo w -p a ss  

f i l te r ,  an d  th e  P ID  c o n tro l le r  is  a  b and -pa ss  o r  ba n d -a tte n u a te  f i l te r ,  d e p e n d in g  on  th e  v a lu es  

o f  th e  c o n tr o l le r  pa ram ete rs . T h e  h ig h -p a ss  f i l te r  is  o f te n  re íe ư e d  to  as a p h a s e - le a d  

c o n t r o l le r ,  because p o s it iv e  phase is  in tro d u c e d  to  th e  sys te m  o v e r  s om e fre q u e n c y  range . 

T h e  lo w -p a s s  f i l te r  is  a lso  k n o w n  as a p h a s e - la g  c o n t r o l le r ,  because th e  co rre s p o n d in g  

phase in tro d u c e d  is  n e g a tive . T he se  ideas re la te d  to  f i l te r in g  an d  phase s h ifts  are u se fu l i f  

d e s ig n s  a re  c a r r ie d  o u t in  th e  fre q u e n c y  d o m a in .

T h e  tra n s fe r  fu n c t io n  o f  a s im p le  lea d o r  la g  c o n tro l le r  is  exp resse d as

Gc{s) =  Kc
s +  P i

(9 -5 9 )

w h e re  th e  c o n tro l le r  is  h ig h -p a ss  o r  p h ase -le ad  i f  P \ > Z \ .  an d  lo w -p a s s  o r  p h a se -la g  i f  

P ] < Z ] .
T h e  O p -a m p  c ir c u i t  im p le m e n ta t io n  o f  E q . (9 -5 9 )  is  g iv e n  in  T a b le  4 - 4 (g )  o f  C h a p te r

4  a n d  is  re p e a te d  in  F ig .  9 -2 6  w i th  an in v e r t in g  a m p li f ie r .  T h e  tra n s fe r  fu n c t io n  o f  th e  

c i r c u i t  is

1

E ois) c r  R ịC i
(9 -6 0 )

R2C2

C o m p a r in g  th e  la s t tw o  e q u a tio n s , w e  have

K c - Q / C 2

Zi =  \ / R ^ C i  (9 -6 1 )

PI =  Ỉ / R 2 C 2

W e can red uce  th e  n u m b e r o f  de s ig n  pa ram ete rs  fro m  fo u r  to  th re e  b y  se ttin g  

c  =  C ) =  Cl- T h e n  E q . (9 -6 0 )  is  w r i t te n  as

/ ? 2 / l  + ^ | C A

Rị \ i  + R 2CSJ 
_ 1 A  + a T s \
" f l l  1 +  T i  J

(9-62)
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w h e re

R i  

T  =  R iC (9-64

(9-63

9-5-1 T im e-D om ain  In terpretation and Design of Phase-Lead Control

In  th is  s e c t io n , w e  sh a ll f irs t  c o n s id e r th a t E qs. (9 -6 0 )  an d  (9 -6 2 )  rep re se n t a phase-lead 

c o n tro l le r  ( z i <  P i o r o  >  1). In  o rd e r  th a t th e  ph a se -le a d  c o n tr o l le r  w i l l  n o t degrade ữie 

s te ad y-s ta le  e rro r, th e  fa c to r  a  in  E q . (9 -6 2 )  s h o u ld  b e  a b so rb e d  b y  th e  fo rw a rd -p a th  ga in K. 
T h e n , fo r  d e s ig n  pu rpo ses , c,.(i) can  be w r it te n  as

(9-65)

T h e  p o le -z e ro  c o n f ig u ra t io n  o f  E q . (9 -6 5 )  is  sh o w n  in  F ig . 9 -2 7 . B a sed on  th e  d iscussions 

g iv e n  in  C h a p te r  7  o n  th e  e f f e c t s  o f  a d d in g  a  p o l e - z e r o  p a i r  ( w i th  t h e  z e r o  c lo s e r  to  the 

o r ig in )  to  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n ,  th e  p h a s e - l e a d  c o n t r o l l e r  c a n  im p r o v e  the 

s t a b i l i t y  o f  t h e  c lo s e d - lo o p  s y s te m  i f  i t s  p a r a m e t e r s  a r e  c h o s e n  p r o p e r ly .  T h e  d e s ig n  o f  

p h a s e - l e a d  c o n t r o l  is  e s s e n t i a l l y  th a t  o f  p l a c in g  Ih e  p o l e  a n d  z e r o  o f  G i- i i )  s o  th a t  th e  d e s ig n  

sp e c if ic a tio n s  are s a tis fie d . T h e  ro o t-c o n to u r  m e th o d  can be used to  in d ic a te  the proper 

ranges o f  th e  pa ram ete rs . T h e  A C S Y S  M A T L A B  to o l ca n  be used to  speed u p  the  cut-and- 

t r y  p r o c e d u r e  c o n s id e r a b ly .  T h e  f o l lo w in g  g u id e l in e s  c a n  b e  m a d e  w i th  r e g a r d  to  the 

s e l e c t i o n  o f  th e  p a r a m e t e r s  a  a n d  T.

1. M o v in g  th e  z e r o  -  \ j a T  to w a rd  th e  o r ig in  s h o u ld  im p r o v e  r is e  l im e  a n d  se ttlin g  

tim e . I f  the ze ro  is  m ove d  to o  c lose  to  the o r ig in ,  th e  m a x im u m  o ve rsho o t m a y  again 

in c re a s e ,  b e c a u s e  -  X ja T  a l s o  a p p e a r s  a s  a  z e r o  o f  th e  c lo s e d - lo o p  t r a n s fe r  fu n c tio n .

2 . M o v in g  th e  p o le  a t  -  1 / r  f a r th e r  a w a y  f r o m  th e  z e r o  a n d  th e  o r ig in  s h o u ld  red u c e  

th e  m a x im u m  o v e r s h o o t ,  b u t  i f  th e  v a lu e  o f  T  is  t o o  s m a l l ,  r i s e  t im e  a n d  se ttlin g  

t im e  w i l l  a g a in  increase.

'  aT

Figure 9-27 pole-zero
configuration o f  ứie phase-
lead conưoller.



W e c a n  m a ke  th e  fo llo w in g  g e n e ra l s ta tem e n ts  w i th  resp e c t to  th e  e ffe c ts  o f  ph a se -le a d  

c o n tro l o n  th e  t im e -d o m a in  p e rfo rm a n c e  o f  a c o n tro l sys te m :

1. W h e n  used p ro p e r ly , i t  c a n  inc rea se  d a m p in g  o f  th e  sys te m .

2 . I t  im p ro v e s  r is e  t im e  an d  s e t t l in g  t im e .

3 . In  th e  fo rm  o f  E q . (9 -6 5 ),  ph a se -le a d  c o n tro l does n o t a f fe c t th e  s te a d y -s ta te  e ư o r, 

because G cịo )  =  1.
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9-5-2 F requency-D om ain In terpretation  and D esign of Phase-Lead Control

T h e  B o d e  p lo t  o f  th e  ph a se -le a d  c o n ư o lle r  o f  E q . (9 -6 5 )  is  sh o w n  in  F ig . 9 -2 8 . T h e  tw o  

c o m e r  fre q u e n c ie s  are a t w  =  l / a T  an d  Ù) =  1/r. T h e  m a x im u m  v a lu e  o f  th e  phase, ệ „ ,  
a n d  th e  fre q u e n c y  a t w h ic h  i t  o c c u rs . ii)m, are d e r iv e d  as fo llo w s . B e cau se  com is  the 

g e o m e tr ic  m ea n  o f  th e  tw o  c o m e r  fre q u e n c ie s , w e  w r ite

lo g iQ iu ^  =  ị  ộ o g i o  ^  +  lo g io  ị ì ( 9 -6 6 )

T h u s .

1
(9 -6 7 )

T o  d e te rm in e  th e  m a x im u m  phase ệ „ ,  th e  phase o f  GfỤù)) is  w r it te n  

iG c ijc u )  — 4>{j(o) =  ta n “ 'o « i r  -  ta n “ 'o ) r (9 -6 8 )

20 iog ,„fl

<u(rad/sec)

F ig u re  9*28 B o d e  p lo t o f  p h a se - le ad  c o n ư o U er  C o ( i )  =  a -------a  >  I .
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coaT — 0)T 
lanự>( jo j)  -  w  7•̂

1 +  [ù)aT){ù)T)

S u b s t itu tin g  E q . (9 -6 7 )  in to  E q . (9 -6 9 ), w e  have

a  -  

2 ự ã

a  -  \
ia n 0 „ ,  =  (9-70)

s in 0 „ ,  — Ị- (9-71 )
a +  \

T h u s , b y  k n o w in g  <Ị)„. th e  v a lu e  o f  a  is  d e te rm in e d  f ro m  

1 +  s in 0 „ ,
Q =  ------------------

1 -  s in 0 „ ,
(9-72)

T h e  re la t io n s h ip  b e tw e e n  th e  phase an d  a  and th e  g e n e ra l p ro p e rtie s  o f  ứ ie Bode 

p lo t  o f  th e  p h ase -le ad  c o n tro l le r  p ro v id e  an a d van ta ge  o f  d e s ig n in g  in  th e  frequency 

d o m a in . T h e  d i f f ic u l t y  is . o f  cou rse , in  th e  c o r re la t io n  b e tw e e n  th e  t im e -d o m a in  and 

f r e q u e n c y - d o m a in  s p e c i f ic a t i o n s .  T h e  g e n e r a l  o u t l i n e  o f  p h a s e - l e a d  c o n t r o l l e r  d e s ig n  in  the 

f r e q u e n c y  d o m a in  is  g iv e n  a s  f o l lo w s .  I t  is  a s s u m e d  th a t  th e  d e s ig n  s p e c i f i c a t i o n s  s im p ly  

in c lu d e  s te ad y-s ta te  e r ro r  an d  p h a se -m a rg in  re q u ire m e n ts .

1 . T h e  B o d e  d i a g r a m  o f  th e  u n c o m p e n s a i e d  p r o c e s s  GpỤcư) i s  c o n s t r u c t e d  w ith  the 

g a in  c o n s t a n t  K  s e t  a c c o r d in g  to  th e  s t e a d y - s t a t e  e ư o r  r e q u i r e m e n t .  T h e  v a lu e  o f  K  

h a s  t o  b e  a d ju s t e d  u p w a r d  o n c e  ih e  v a lu e  o f  a  is  d e t e r m in e d .

2 . T h e  p h a s e  m a r g i n  a n d  (h e  g a in  m a r g i n  o f  th e  u n c o m p e n s a t e d  s y s te m  are 

d e t e r m in e d ,  a n d  th e  a d d i t io n a l  a m o u n t  o f  p h a s e  le a d  n e e d e d  10  r e a l i z e  th e  p hase  

m a rg in  is  d e te rm in e d . F ro m  the  a d d it io n a l phase lea d re q u ire d , th e  de s ire d  value 

o f  ộ , „  is  e s t im a te d  a c c o r d in g l y ,  a n d  th e  v a lu e  o f  Ơ is  c a l c u l a t e d  f r o m  E q . (9 -7 2 ) .

3 .  O n c e  a  is  d e t e r m in e d ,  it  is  n e c e s s a r y  o n ly  10  d e t e r m in e  th e  v a lu e  o f  T. a n d  ihe

d e s ig n  is  in  p r in c i p l e  c o m p le t e d .  T h i s  is  a c c o m p l i s h e d  b y  p l a c in g  th e  c o m e r

f r e q u e n c ie s  o f  th e  p h a s e - l e a d  c o n t r o l l e r .  I j o T  a n d  I / r ,  s u c h  t h a t  is  lo c a te d  a t 

th e  n e w  g a i n - c r o s s o v e r  f r e q u e n c y  Wg, s o  i h e  p h a s e  m a r g i n  o f  th e  c o m p e n s a te d  

sys ie m  is  b e n e fite d  b y  ự>„,. I t  is  k n o w n  th a i th e  h ig h - fre q u e n c y  g a in  o f  ứ ie phase- 

le a d  c o n t r o l l e r  is  2 0  lo g  10«  d B .  T h u s ,  t o  h a v e  {he n e w  g a in  c r o s s o v e r  a t  cum. w h ic h  

is  th e  g e o m e t r i c  m e a n  o f  \ j a T  a n d  l / r .  w e  n e e d  lo  p la c e  (Jim a t  th e  f re q u e n c y  

w h e re  th e  m a g n itu d e  o f  the u n co m p e n sa ie d  is  - lO lo g io ữ d B  so that

a d d in g  th e  c o n t r o l l e r  g a in  o f  1 0  lo g i„ í /  d B  to  t h i s  m a k e s  th e  m a g n i tu d e  c u n e  go 

th r o u g h  0  d B  a i

4 . T h e  B o d e  d i a g r a m  o f  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  o f  th e  c o m p e n s a te d  

sys te m  is  in v e s tig a te d  to  c h e c k  th a l a l l  p e r fo rm a n c e  s p e c if ic a tio n s  a re  m e t: i f  no t. a 

n e w  v a lu e  o f  0 „ | m u s t  b e  c h o s e n  a n d  th e  s te p s  r e p e a te d .

5 . I f  th e  d e s ig n  s p e c i f i c a t i o n s  a r e  a l l  s a i i s f ie d .  th e  t r a n s f e r  f u n c t i o n  o f  th e  p h a s e - le a d

c o n i r o l l e r  is  e s t a b l i s h e d  f ro m  th e  v a lu e s  o f  a  a n d  T.
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I f  t h e  d e s ig n  s p e c i f ic a t i o n s  a l s o  in c lu d e  M r  a n d /o r  B W , th e n  th e s e  m u s t  b e  c h e c k e d  

u s in g  e i t h e r  th e  N ic h o l s  c h a r t  o r  th e  o u tp u t  d a t a  f r o m  a  c o m p u te r  p r o g r a m .

W e  u s e  t h e  f o l l o w in g  e x a m p le  t o  i l l u s t r a t e  t h e  d e s ig n  o f  t h e  p h a s e - l e a d  c o n t r o l l e r  in  

th e  t im e  d o m a in  a n d  f r e q u e n c y  d o m a in .

4 -11  is  a g a in  sh o w n  in  Fig .
a ccu racy .

- EXAMPLE 9-5-1 T h e  b lo c k  d ia g ra m  o f  th e  su n -se e k e r  c o n tro l sy s te m  d e sc r ib e d  in  S e c tio n  4-11  is  a g a in  sho
9 -2 9 . T h e  sy s te m  m a y  b e  m o u n te d  on  a  sp a ce  v e h ic le  so  th a t it  w ill trac k  th e  sun  w ith  h ig h  a tu u ia c y . 
T h e  v a ria b le  dr r e p re se n ts  th e  re fe re n c e  a n g le  o f  th e  so la r  ray , a n d  8o d e n o te s  th e  v e h ic le  a x is . T h e  
o b je c tiv e  o f  th e  su n -se e k e r  sy s te m  is  to  m a in ta in  th e  e rro r  a  b e tw ee n  9r a n d  9o n e a r  z e ro . T he

p a ra m e te rs  o f  th e  sy s te m  a re  as fo llow s:

R f  =  1 0 .0 0 0  n

/r , =  0 .0 1 2 5  N -m /A  

J  = 1 0 - ’'  kg-m ^

K  =  to he  d e te rm in e d

Ar* =  0 .0 1 2 5 V /ra d /s e c  

r I  =  6 .2 5 Ũ  

K , =  0.1 A /rad  

B =  0

(9 -7 3 )

T h e  fo rw a rd -p a th  t ra n s fe r  fu n c tio n  o f  th e  u n c o m p e n sa te d  sy s te m  is 

„  &o{s) KsRfKK./n
A (j )  R J s ^  +  KiKbS 

w h ere  0 o ( i )  and  A ( j )  a re  th e  L a p la c e  tra n s fo rm s  o f  do{i) a n d  t t ( 0 ,  resp e ctiv e ly .
S u b s titu t in g  the  n u m e ric a l v a lu es  o f  th e  sy s te m  p a ra m e te rs  in  E q . (9 -7 3 ) . w e  g e t

Y ou m a y  u se  A C S Y S  to  so lv e  th is  p ro b le m  a f te r  re d u c in g  th e  b lo c k  d ia g ra m  in  F ig . 9 -2 9  to  a  s ta n d ard  
fo rm . S e e  S e c tio n  9-15 .

Error Operational Servo
discriminator amplifier Conưoller amplifier

Gear
ưain

GẶS)

F ig u re  9-Z9 B lo ck  d ia g ra m  o f  su n -se e k e r  c o n tro l sy stem .

Time-Domain Design
T h e  t im e - d o m a in  s p e c i f ic a t i o n s  o f  th e  s y s te m  a r e  a s  f o l lo w s ;

1. T h e  s t e a d y - s t a t e  e r r o r  o f  ơ ( r )  d u e  to  a  u n i t - r a m p  f u n c t i o n  in p u t  f o r  9r(r) s h o u ld  b e

<  0 .0 1  r a d  p e r  r a d /s e c  o f  th e  f in a l s t e a d y - s t a t e  o u tp u t  v e lo c i ty .  I n  o th e r  w o r d s ,  th e  

s te a d y - s t a t e  e r r o r  d u e  t o  a  r a m p  in p u t  s h o u ld  b e  <  1% .

2 . T h e  m a x im u m  o v e r s h o o t  o f  th e  s te p  r e s p o n s e  s h o u ld  b e  le s s  th a n  5%  o r  a s  s m a l l  a s  

p o s s ib l e .

3 .  R i s e  t i m e / ; . <  0 .0 2  s e c .

4 . S e t t l in g  t im e  i j  <  0 .0 2  s e c .



538 >• Chapter 9. Design of Control Systems

T h e  m in im u m  v a lu e  o f  th e  a m p li f ie r  g a in . K ,  is  d e te rm in e d  in i t ia l ly  f r o m  th e  steady-state 

re q u ừ e m e n t. A p p ly in g  th e  f in a l-v a lu e  th e o re m  to  a ( r ) ,  w e  ha ve

F o r  a u n it- ra m p  in p u t.  © r ( i )  =  B y  u s in g  E q . (9 -7 4 ) ,  E q . (9 -7 5 )  lea ds  to

 ̂ 0.01 
^ lim  « ( i ) = ^

(9-75)

(9-76)

T h u s , fo r  th e  s te a d y -s ta te  v a lu e  o f a ( r )  to  be  <  0 ,0 1 , m u s t be  >  1. L e t  us set AT =  1. the 

w o rs t case f r o m  th e  s te ad y-s ta te  e r ro r  s ta n d p o in t. T h e  c h a ra c te r is tic  e q u a tío n  o f  the 

u n co m p e n sa te d  sys te m  is

+  25s +  2 5 0 0  =  0 (9-77)

W e  can  sh o w  th a t th e  d a m p in g  r a t io  o f  th e  u n co m p e n sa te d  sys te m  w i th  AT =  1 is  o n ly  0.25, 

w h ic h  c o rre sp o n d s  to  a m a x im u m  o v e rs h o o t o f  4 4 .4 % . F ig .  9 -3 0  sh o w s  th e  un it-step 

resp on se  o f  th e  sys te m  w i th  AT =  1.

T im e {sec)

F igu re  9-30 U n il-s te p  re sp o n se  o f  su n -se e k e r  sy s te m  in  E x a m p le  9 -5 -1 .
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Toolbox 9-5-1
U n it-S le p  re sp o n se  f o r  E x a m p le  9 -6  in  F ig . 9 -3 0  is  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce o f M A  T L A B  J u n c tio n s

a =  [ 1  10 1 2 .5  1 6 . 6 7 ]  ;
T =  [ 1  0 .0 0 5  0 .0 0 4  0 . 0 0 3 ]  ;

f o r  i  =  1 :  le n g t h ( T )
n u m =  [2 5 0 0 ‘ a ( i ) * T ( i )  2 5 0 0 ] ;  
d e n = [ T ( i )  2 5 * T ( i ) + l  25 0 ]  ; 
t f ( n u m , d e n ) ;
[n u m C L ,d e n C L ]= c lo o p ( n u m ,d e n ) ; 
s te p C n u m C L , d e n C L ) 
h o ld  o n

e nd
g r i d
a x isC C O  0 .3 5  0 1 . 8 ] )

A  s p a c e  h a s  b e e n  r e s e r v e d  in  t h e  f o r w a r d  p a th  o f  th e  b l o c k  d i a g r a m  o f  F ig .  9 - 2 9  f o r  a  

c o n t r o l l e r  w i th  t r a n s f e r  f u n c t i o n  G c(s). L e t  u s  c o n s id e r  u s in g  th e  p h a s e - l e a d  c o n t r o l l e r  o f  

E q .  ( 9 - 6 2 ) ,  a l t h o u g h  i n  t h e  p r e s e n t  c a s e ,  a  P D  c o n t r o l l e r  o r  o n e  o f  ử ie  o th e r  ty p e s  o f  p h a s e -  

l e a d  c o n t r o l l e r s  m a y  a l s o  b e  e f f e c t iv e  in  s a t i s f y in g  th e  p e r f o r m a n c e  c r i t e r i a  g iv e n .  T h e  

f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  o f  th e  c o m p e n s a t e d  s y s te m  i s  w r i t t e n

2 5 0 0 K { i+ a T s )

F o r  t h e  c o m p e n s a t e d  s y s te m  to  s a t i s f y  th e  s t e a d y - s t a t e  e r r o r  r e q u i r e m e n t ,  K  m u s t  s a t i s f y

K > a  (9 -7 9 )

L e t  u s  s e t  K  ~  a .  T h e  c h a r a c t e r i s t i c  e q u a t io n  o f  th e  s y s t e m  is

+  25s +  2500) +  Ts'^is +  25} +  ISữữaTs =  0 (9-80)

W e  c a n  u s e  th e  r o o t - c o n to u r  m e th o d  to  s h o w  th e  e f f e c t s  o f  v a r y in g  a  a n d  T  o f  t h e  p h a s e - l e a d  

c o n t r o l l e r .  L e t  u s  f i r s t  s e t  0  =  0 . T h e  c h a r a c t e r i s t i c  e q u a t io n  o f  E q .  ( 9 - 8 0 )  b e c o m e s

+  2 5 5  +  2 5 0 0  +  T s ^ [s  +  2 5 )  -  0  ( 9 - 8 ! )

D iv id in g  b o th  s id e s  o f  t h e  l a s t  e q u a t io n  b y  th e  t e r m s  th a t  d o  n o t  c o n ta in  r ,  w e  g e t

T h u s ,  th e  r o o t  c o n to u r s  o f  E q . ( 9 - 8 1 )  w h e n  T  v a r i e s  a r e  d e t e r m in e d  u s in g  th e  p o l e - z e r o  

c o n f ig u r a t io n  o f  G eq i(-i)  in  E q .  (9 -8 2 ). T h e s e  r o o t  c o n to u r s  a r e  d r a w n  as s h o w n  in  F ig . 9 -3 1 . 

N o t i c e  th a t  th e  p o le s  o f  G e q i ( j )  a r e  t h e  r o o ts  o f  th e  c h a r a c t e r i s t i c  e q u a t io n  w h e n  ữ  =  0  a n d  

r  =  0 , T h e  r o o t  c o n to u r s  in  F ig .  9 -3 1  c l e a r l y  s h o w  t h a t  a d d in g  th e  f a c t o r  (1 +  T i )  t o  th e  

d e n o m in a t o r  o f  E q . ( 9 - 7 4 )  a lo n e  w o u ld  n o t  im p r o v e  th e  s y s t e m  p e r f o r m a n c e ,  s in c e  th e  

c h a r a c t e r i s t i c  e q u a t io n  r o o ts  a r e  p u s h e d  to w a r d  th e  r ig h t - h a l f  p la n e .  I n  f a c t ,  th e  s y s te m  

b e c o m e s  u n s t a b l e  w h e n  T  is  g r e a t e r  th a n  0 .0 1 3 3 .  T o  a c h ie v e  th e  f u l l  e f f e c t  o f  t h e  p h a s e - l e a d  

c o n ư o l l e r ,  w e  m u s t  r e s t o r e  th e  v a lu e  o f  a  in  E q .  ( 9 - 8 0 ) .  T o  p r e p a r e  f o r  th e  r o o t  c o n to u r s
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w ith  a  a s  th e  v a r ia b le  p a r a m e t e r ,  w e  d iv id e  b o th  s id e s  o f  E q . ( 9 - 8 0 )  b y  th e  t e r m s  th a t  d o  not 

c o n ta in  a ,  a n d  th e  f o l l o w in g  e q u a t io n  r e s u l t s :

^  ,  2 5 0 0 a 7 i

1 +  . G e , 2 ( . )  =  1 +  , 2  +  2 5 ,  +  2 5 0 0 + n ^ ( .  +  2 5 )  =  °
(9 -83 )

Toolbox 9-5-2
R o o t c o n to u rs  f o r  F ig . 9 -3 Ì  a re  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce o f  M A T L A B  fu n c t io n s

f o r  T =  1 : 1 :2 6 0
n u m =  [T  3 2 5 *T O  0 ]  ; 
d e n =  [1  25 2 5 0 0 ] : 
t f ( n u m , d e n ) ;
[n u m C L ,d e n C L ]= c lo o p (n u ii i ,d e n )  ;
F = t f ( n u m . d e n ) ;
P o le D a t a C : , T ) = p o le ( F ) ;

e n d

p lo t ( r e a l ( P o le D a t a ( l , : ) ) . im a g ( P o le D a ta ( l, : ) ) , r e a l( P o le D a ta ( 2 , : ) ) , im a g (P o le D a ta (2 , : ) ) ) ;
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F o r  a  g i v e n  T, t h e  r o o t  c o n t o u r s  o f  E q .  ( 9 - 8 0 )  w h e n  a  v a r i e s  a r e  o b t a i n e d  b a s e d  o n  

th e  p o l e s  a n d  z e r o s  o f  G e q 2 ( i ) .  N o t i c e  t h a t  t h e  p o l e s  o f  Geq2 (s )  a r e  t h e  s a m e  a s  th e  

r o o t s  o f  E q .  ( 9 - 8 1 ) .  T h u s ,  f o r  a  g i v e n  T. t h e  r o o t  c o n t o u r s  o f  E q .  ( 9 - 8 0 )  w h e n  a  v a r i e s  

m u s t  s t a r t  {a  =  0 )  a t  p o i n t s  o n  th e  r o o t  c o n t o u r s  o f  F i g .  9 - 3 1 .  T h e s e  r o o t  c o n t o u r s  

e n d  (<2 =  o c )  a t  i  =  0 , o c ,  o c ,  w h ic h  a r e  t h e  z e r o s  o f  C e q 2 ( i ) -  T h e  c o m p l e t e  r o o t  

c o n t o u r s  o f  E q .  ( 9 - 8 0 )  a r e  n o w  s h o w n  in  F i g .  9 - 3 2  f o r  s e v e r a l  v a l u e s  o f  T , a n d  a  

v a r i e s  f r o m  0  to  DC.

F r o m  th e  r o o t  c o n to u r s  o f  F ig .  9 - 3 2 ,  w e  s e e  th a t ,  f o r  e f f e c t i v e  p h a s e - l e a d  c o n t r o l ,  th e  

v a lu e  o f  T  s h o u ld  b e  s m a l l .  F o r  la r g e  v a lu e s  o f  T. th e  n a tu r a l  f r e q u e n c y  o f  th e  s y s te m  

in c r e a s e s  r a p id l y  a s  a  i n c r e a s e s ,  a n d  v e r y  l i t t l e  im p r o v e m e n t  i s  m a d e  o n  th e  d a m p in g  o f  th e  

s y s te m .

L e t  u s  c h o o s e  T  =  0 .0 1  a r b i t r a r i ly .  T a b l e  9 -1 1  s h o w s  th e  a t t r i b u t e s  o f  t h e  u n i t - s ie p  

r e s p o n s e  w h e n  th e  v a lu e  o f  a T is  v a r ie d  f r o m  0 .0 2  to  0 .1 .  T h e  A C S Y S  M A T L A B  lo o l  w a s  

u s e d  f o r  ih e  c a l c u l a t i o n s  o f  th e  t im e  r e s p o n s e s .  T h e  r e s u l t s  s h o w  th a t  th e  s m a l le s t  

m a x im u m  o v e r s h o o t  is  o b t a in e d  w h e n  a T  =  0 .D 5 . a l th o u g h  th e  r i s e  a n d  s e t t l i n g  t im e s  

d e c r e a s e  c o n t in u o u s ly  a s  a T  i n c r e a s e s .  H o w e v e r ,  th e  s m a l l e s t  v a lu e  o f  th e  m a x im u m  

o v e r s h o o t  is  1 6 .2 % , w h ic h  e x c e e d s  th e  d e s ig n  s p e c i f ic a t i o n .
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TABLE 9-11 Attributes of Unit-Step Response of System with 
Phase-Lead Controller in Example 9-5-1: r=0.01

aT a
M a x im u m  

O v e rsh o o t {% ) (sec ) (sec )

0 .0 2 2 2 6 .6 0 .0 2 2 2 0 .0 8 3 0

0 .0 3 3 18.9 0.0191 0 .0 6 6 5

0 .0 4 4 16.3 0 .0 1 6 4 0 .0 5 2 0

0 .0 5 5 16.2 0 .0 1 4 6 0 .W 1 5

0 .0 6 6 17.3 0 .0 1 2 9 0 .0 6 0 6

0 .0 8 8 2 0 .5 0 .0 1 1 2 0 .0 5 6 6

0 .1 0 10 2 3 .9 0 .0 0 9 7 0 .0 4 8 5

Toolbox 9-5-3
R o o t c o n to u rs  f o r  F ig . 9 -3 2  a re  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce  o f  M A T L A B  fu n c t io n s

T =  [ 0 . 0 0 3  0 . 0 0 4  0 . 0 0 5  0 . 0 5  0 . 1  2 .  5 ]  : 
f o r  j = l : l e n g t h C T )

1 = 1 ;
f o r  a  =  0 : 0 . 0 0 5 : 3 0

n u m =  [ T ( j )  2 5 * T C j ) + l  2 5 + 2 5 0 0 * a * T C j )  2 5 0 0 ]  ;
d e n =  [ T ( J )  2 5 * T C j ) + l  25 2 S 0 0 ] ; [n u in C L .d e n C L ]= c lo o p C n u m ,d e n )  :
F  =  t f C n u i n C L . d e n C L )  : P o l e D a t a C :  , i ) = p o l e ( F ) ;  
i = i + l :

e n d
C o u n t  =  i - 1 ;  f o r  g r a p h  c o n t i n u a t i o n  

f o r  i = l :  C o u n t
i f  i m a g ( P o l e D a t a ( l , i ) ) ~ = 0  

b r e a k ; 
e n d  e n d
c o u n t  =  i ;  969Ố f o r  g r a p h  c o n t i n u a t i o n  
f o r  i = l :  c o u n t

P o le D a ta C l , i ) = P o l e D a t a ( l , c o u n t ) :
e n d

f o r  i = l :  C o u n t
i f  i m a g ( P o l e D a t a ( 2 , i ) ) ~ = 0  

b r e a k ;  
e n d  e n d
c o u n t  =  i :  %% f o r  g r a p h  c o n t i n u a t i o n  
f o r  i = l :  c o u n t

P o le D a t a ( 2 , i ) = P o le D a t a ( 2 , c o u n t ) ;
e n d
P o s i t i v e P o s  =  0 ;  
f o r  i = l :  C o u n t

i f  i m a g ( P o l e D a t a ( l , i ) )  <  0  
i f  P o s i t i v e P o s  = =  0

P o s i t i v e P o s  =  i - 1 ;
e n d
P o l e D a t a d  , i )  =  P o l e D a t a ( l , P o s i t i v e P o s )  ;

E n d  e n d
P o s i t i v e P o s  =  0 ;  
f o r  i = l : C o u n t

i f  i m a g ( P o l e D a t a ( 2 , i ) ) <  0



i f  P o s i t i v e P o s  ==  0
P o s i t i v e P o s  =  i - 1 ;

e n d
P o l e D a t a ( 2 , i ) = P o le D a t a ( 2 , P o s i t i v e P o s ) :

E n d  e n d
p lo tC r e a l( P o le D a ta ( l ,  : ) ) , im a g (P o le D a ta C l.  0 ) , r e a l( P o le D a ta ( 2 ,  : ) ) . i jn a g ( P o le D a ta ( 2 . : ) ) ) :  

h o ld  on
e n d
a x i s ( [ - 1 7 5  0 0 I S O ] ) ; s g r i d
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N e x t,  w e  set a T  =  0 .0 5  and v a ry  T  f ro m  0.01 to  0 .0 0 1 , as sh o w n  in  T a b le  9 -1 2 . T a b le  

9 - 1 2  s h o w s  th e  a t t r ib u te s  o f  t ì i e  u n i t - s te p  re s p o n s e s .  A s  th e  v a lu e  o f  r d e c r e a s e s ,  th e  m a x im u m  

o v e r s h o o t  d e c r e a s e s ,  b u t  th e  r i s e  t im e  a n d  s e t t l i n g  t im e  in c re a s e .  T h e  c a s e s  th a t  s a t is f y  th e  

d e s ig n  r e q u i r e m e n ts  a re  i n d ic a t e d  in  T a b le  9 - 1 2  f o r ^ r  =  0 .0 5 .  F ig . 9 - 3 0  s h o w s  th e  u n it - s te p  

r e s p o n s e s  o f  th e  p h a s e - le a d - c o m p e n s a te d  s y s te m  w iứ i  th r e e  s e ts  o f  c o n t r o l l e r  p a ra m e te r s .  

C h o o s i n g  T  =  0 .0 0 4 ,  a  =  1 2 .5 ,  t h e  t r a n s f e r  f u n c t i o n  o f  t h e  p h a s e - l e a d  c o n t r o l l e r  is

T h e  t r a n s f e r  f u n c t i o n  o f  th e  c o m p e n s a t e d  s y s t e m  is

T o  f in d  th e  o p - a m p - c i r c u i t  r e a l i z a t i o n  o f  t h e  p h a s e - l e a d  c o n t r o l l e r ,  w e  a r b i t r a r i l y  s e t  

c  =  0 .1  ị i ĩ ,  a n d  th e  r e s i s to r s  o f  th e  c i r c u i t  a r e  f o u n d  u s in g  E q s .  ( 9 - 6 3 )  a n d  ( 9 - 6 4 )  a s  R \ =

5 0 0 . 0 0 0  n  a n d  i?2 =  4 0 , 0 0 0  n .

F r e q u e n c y - D o m a in  D e s ig n

L e t  u s  s p e c i f y  th a t  th e  s t e a d y - s t a t e  e r r o r  r e q u i r e m e n t  is  t h e  s a m e  a s  t h a t  g iv e n  e a r l ie r .  F o r  

f r e q u e n c y - d o m a in  d e s ig n ,  t h e  p h a s e  m a r g i n  i s  to  b e  g r e a t e r  th a n  4 5 ° ,  T h e  f o l lo w in g  d e s ig n  

s te p s  a r e  ta k e n :

1 . T h e  B o d e  d i a g r a m  o f  E q .  ( 9 - 7 4 )  w i th  A" =  1 is  p lo t t e d  a s  s h o w n  in  F ig .  9 - 3 3 .

2 . T h e  p h a s e  m a r g i n  o f  th e  u n c o m p e n s a t e d  s y s t e m ,  r e a d  a t  th e  g a in - c r o s s o v e r  

f r e q u e n c y ,  (Dc =  4 7  r a d / s e c ,  is  2 8 ° .  B e c a u s e  th e  m in i m u m  d e s i r e d  p h a s e  m a r g i n

TABLE 9-12 Attributes of Unit-Step Responses of System w ith Phase-Lead 
Controller in Example 9-5-1; ar=0.05

T a
M a x im u m  

O v ersh o o t (% ) (sec ) (sec )

0.01 5 .0 16,2 0 .0 1 4 6 0 .0 4 1 5

0 .005 10.0 4,1 0 .0 1 3 3 0 .0 1 7 4

0 .0 0 4 12.5 1.1 0 .0 1 3 5 0 .0 1 7 4

0 .0 0 3 16.67 0 0 .0141 0 .0 1 7 4

0 .0 0 2 2 5 .0 0 0 .0 1 5 4 0 .0 2 0 9

0.001 50 .0 0 0 .0 1 7 9 0 .0 2 4 4
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Figure 9-33 B ode  d ia g ra m  o f  th e  p h a se - le ad  c o m p e n sa tio n  a n d  u n c o m p e n sa te d  sy s te m s  in

i s  4 5 ° .  a i  l e a s t  1 7 °  m o r e  p h a s e  le a d  s h o u ld  b e  a d d e d  to  th e  l o o p  a t  th e  g a in -  

c r o s s o v e r  f r e q u e n c y .

3 .  T h e  p h a s e - l e a d  c o n t r o l l e r  o f  E q , ( 9 - 6 5 )  m u s t  p r o v id e  t h e  a d d i t io n a l  1 7 -  a t t h e g a i n -  

c r o s s o v e r  f r e q u e n c y  o f  th e  c o m p e n s a t e d  s y s te m . H o w e v e r ,  b y  a p p ly in g  th e  p h a se -  

le a d  c o n t r o l le r ,  th e  m a g n i tu d e  c u r v e  o f  th e  B o d e  p lo t  i s  a l s o  a f f e c te d  in  s u c h  a  w ay  

th a t  th e  g a in - c r o s s o v e r  f re q u e n c y  is  s h i f te d  to  a  h ig h e r  f r e q u e n c y .  A lứ i o u g h  it  is  a



s im p le  m a t t e r  t o  a d ju s t  t h e  c o m e r  f r e q u e n c ie s ,  \ Ị a T  a n d  1/r, o f  t h e  c o n ư o U e r  s o  

th a t  ứ i e  m a x im u m  p h a s e  o f  t h e  c o n t r o l l e r  ậ „  f a l l s  e x a c t ly  a t  th e  n e w  g a in - c r o s s o v e r  

f r e q u e n c y ,  t h e  o r ig in a l  p h a s e  c u r v e  a t  t h i s  p o in t  i s  n o  lo n g e r  2 8 °  ( a n d  c o u ld  b e  

c o n s id e r a b ly  le s s )  b e c a u s e  t h e  p h a s e  o f  m o s t  c o n t r o l  p r o c e s s e s  d e c r e a s e s  w i th  ứ ie  

in c r e a s e  i n  f r e q u e n c y .  I n  f a c t ,  i f  t h e  p h a s e  o f  t h e  u n c o m p e n s a t e d  p r o c e s s  d e c r e a s e s  

r a p id l y  w iứ i  i n c r e a s in g  f r e q u e n c y  n e a r  t h e  g a in - c r o s s o v e r  f r e q u e n c y ,  th e  s in g le -  

s ta g e  p h a s e - l e a d  c o n t r o l l e r  w i l l  n o  l o n g e r  b e  e ff e c t iv e .

I n  v i e w  o f  th e  d i f f ic u l t y  e s t im a t in g  th e  n e c e s s a r y  a m o u n t  o f  p h a s e  le a d ,  i t  i s  

e s s e n t i a l  t o  i n c lu d e  s o m e  s a f e ty  m a r g i n  t o  a c c o u n t  f o r  t h e  i n e v i t a b l e  p h a s e  d r o p 

o f f .  T h e r e f o r e ,  i n  th e  p r e s e n t  c a s e ,  i n s t e a d  o f  s e l e c t i n g  a  o f  a  m e r e  1 7 ° . l e t  

b e  2 5 ° .  U s in g  E q .  ( 9 - 7 2 ) ,  w e  h a v e
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( 9 - 8 6 )

4 .  T o  d e t e r m in e  d ie  p r o p e r  l o c a t i o n  o f  th e  tw o  c o m e r  f r e q u e n c ie s  (1  / a T  a n d  1 / T )  o f  

i h e  c o n t r o l l e r ,  i t  i s  k n o w n  f r o m  E q .  ( 9 - 6 7 )  t h a t  th e  m a x im u m  p h a s e  le a d  o c c u r s  

a t  t h e  g e o m e t r i c  m e a n  o f  t h e  tw o  c o r n e r  f r e q u e n c ie s .  T o  a c h ie v e  th e  m a x im u m  

p h a s e  m a r g i n  w i th  t h e  v a lu e  o f  a  d e t e r m in e d ,  s h o u ld  o c c u r  a t  ứ i e  n e w  g a in -  

c r o s s o v e r  f r e q u e n c y  (o'g, w h ic h  i s  n o t  k n o w n .  T h e  f o l l o w in g  s te p s  a r e  t a k e n  to  

e n s u r e  th a t  o c c u r s  a t  Wg.

a .  T h e  h ig h - f r e q u e n c y  g a in  o f  th e  p h a s e - l e a d  c o n t r o l l e r  o f  E q .  ( 9 - 6 5 )  is

2 0  lo g io  a  =  2 0  lo g io  2 .4 6  =  7 .8 2  d B  (9 -8 7 )

b .  T h e  g e o m e t r i c  m e a n  (Om o f  th e  tw o  c o m e r  f r e q u e n c ie s ,  \ Ị a T  a n d  1 / 7 ,  s h o u ld  

b e  l o c a t e d  a t  th e  f r e q u e n c y  a t  w h ic h  th e  m a g n i tu d e  o f  t h e  u n c o m p e n s a t e d  

p r o c e s s  t r a n s f e r  f u n c t i o n  G p {j(o )  in  d B  is  e q u a l  t o  t h e  n e g a t iv e  v a lu e  i n  d B  o f  

o n e - h a l f  o f  th i s  g a in .  T h i s  w a y , t h e  m a g n i tu d e  c u r v e  o f  t h e  c o m p e n s a t e d  

ư a n s í e r  f u n c t i o n  w i l l  p a s s  t h r o u g h  th e  0 - d B - a x i s  a t  CƯ =  (Dm- T h u s ,  (Om s h o u ld  

b e  l o c a t e d  a t  th e  f r e q u e n c y  w h e r e

- 1 0 1 o g , o 2 . 4 6 -  - 3 . 9 1 d B  ( 9 -8 8 )

X 9 - 5 - 4

Ig ra m  f o r  F ig . 9 -3 3  is  o b ta in e d  b y  th e  fo l lo w in g  sequence o f  M A T L A B  fu n c t io n s

46  1 2 .5  S .8 2 8 ]  ;
01 0 6  0 .0 0 4  0 .0 0 5 8 8 ]  ;

l : l e n g t h ( T )  
m = [ 2 5 0 0 * a ( i ) * T ( i )  2 5 0 0 ] ;  
n = [ T ( i )  l + 2 5 * T ( i )  25 0 ]  ; 
d e (n u jT i,d e n )  :
I d  o n ;

C[1 10000 -180 -90]);
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Toolbox 9-5-5
P lo t  o f  G ịs )  f o r  F ig . 9 -3 4  is  o b ta in e d  b y  th e  fo l lo w in g  seq ue nce o f  M A T L A B  fu n c t io n s

a =  [ 2 . 4 6  1 2 .5  5 .8 2 8 ]  ;
T =  [ 0 . 0 1 0 6  0 . 0 0 4  0 . 0 0 5 8 8 ]  ;
f o r  i  =  1 :  l e n g t h ( T )

n u m =  [ 2 5 0 0 * a ( i ) * T ( i )  2 5 0 0 ] ; 
d e n = [ T ( i )  l + 2 5 * T ( i )  25 0 ]  ; 
t  = t fC n u m .d e n )  
n i c h o l s ( t ) :  n g r i d ;  
h o ld  o n ;

e nd

F r o m  F ig .  9 - 3 3 ,  th i s  f r e q u e n c y  is  f o u n d  to  b e  (ứm =  6 0 r a d / s e c .  N o w  u s in g  E q . (9 -67 ) 

w e  have

-  ^  '/a o jm  =  \ / 2 . 4 6  X 6 0  =  9 4 .1  r a d / s e c  (9-89.

T h e n ,  l / ữ T ' =  9 4 . 1 / 2 . 4 6  =  3 8 .2 1  r a d / s e c .  T h e  ừ a n s f e r  f u n c t i o n  o f  th e  ph a se - le ac  

c o n tro l le r  is

T h e  fo rw a rd -p a th  tra n s fe r  fu n c t io n  o f  th e  co m p e n sa te d  sys te m  is

F ig . 9 -3 3  sho w s th a t th e  phase m a rg in  o f  th e  c o m p e n sa te d  sys te m  is  a c tu a lly  47 .6 °.

In  F ig .  9 -3 4 , th e  m a g n itu d e  an d  phase o f  th e  o r ig in a l an d  th e  co m p e n sa te d  system s are 

p lo t t e d  o n  th e  N ic h o ls  c h a r t  f o r  d i s p l a y  o n ly . T h e s e  p lo t s  c a n  b e  m a d e  b y  ta k in g  th e  d a u  

d i r e c t l y  f r o m  th e  B o d e  p lo t s  o f  F ig .  9 - 3 3 .  T h e  v a lu e s  o f  M r, a n d  B W  c a n  a ll  be 

d e te rm in e d  f r o m  th e  N ic h o ls  c h a rt. H o w e v e r , th e  p e rfo rm a n c e  da ta  are m o re  easilj 

o b ta in e d  w i th  A C S Y S .

C h e c k i n g  th e  t im e - d o m a in  p e r f o r m a n c e  o f  th e  c o m p e n s a t e d  s y s t e m ,  w e  h a v e  thí 

fo llo w in g  resu lts :

M a x i m u m o v e r s h o o t  =  2 2 .3 %  i r  =  0 .0 2 0 4 5  s e c  =  0 .0 7 4 3 9 s e c

w h ic h  fa l l  s h o rt o f  the t im e -d o m a in  s p e c if ic a tio n s  lis te d  e a r lie r. F ig . 9 -3 3  a lso  show s th« 

B o d e  p lo t  o f  th e  s y s te m  c o m p e n s a t e d  w i th  a  p h a s e - l e a d  c o n t r o l l e r  w i th  a  =  5 .8 2 8  an< 

T =  0 .0 0 5 8 8 . T h e  phase m a rg in  is  im p ro v e d  to  6 2 .4 ° . U s in g  E q . (9 -7 1 ),  w e  can  sho w  ửia 

t h e  r e s u l t  o f  a  =  1 2 .5  o b t a in e d  in  th e  t im e - d o m a in  d e s ig n  a c tu a l ly  c o r r e s p o n d s  t( 

0 ^  =  5 8 .4 1 .  A d d in g  t h i s  t o  th e  o r ig in a l  p h a s e  o f  2 8 ° .  th e  c o r r e s p o n d i n g  p h a s e  m arg ii 

w o u ld  b e  8 6 .4 T ,  T h e  t im e - d o m a in  a n d  f r e q u e n c y - d o m a in  a t t r i b u t e s  o f  th e  s y s te m  w ith  th( 

th re e  ph ase -le ad c o n tro lle rs  are s u m m a riz e d  in  T a b le  9 -1 3 . T h e  re su lts  s h o w  th a t, w ill



9-5 Design with Phase-Lead Controller <  547

Phase (deg)

F ig u re  9-34 P lo is  o f  G(s) in  th e  N ic h o ls  c h a r t fo r  th e  sy s te m  in  E x am p le  9 -5 -1 . 
2500(1 

j (5 +  2 5 ) ( 1 + r j ) '

TABLE 9-13 A ttr ib u te s  o f S y s tem  w ith  P h a se -L e a d  C o n tro lle r  in E xam ple  9-5-1

a T
P M

(deg )
G a in  C O  
( ra d /se c )

B W

(ra d /se c)
M a x im u m  

O v ersh o o t (% ) (sec) (sec )

I 1 28 .03 2 .06 4 7 .0 74 ,3 44 .4 0 .0 2 5 5 0 .2 1 3 3

2 .4 6 0 .0 1 0 6 4 7 .53 1.26 60 .2 98 ,2 22.3 0 .0 2 0 4 0 .0 7 4 4

5 .828 0 .0 0 5 8 8 62 .36 1.03 79.1 124.7 7 .7 0 .0 1 6 9 0 .0 4 7 4

12.5 0 .0 0 4 0 68 .12 1.00 113.1 172.5 1.1 0 .0135 0 .0 1 7 4



a  =  12 .5  an d  T  =  0 .0 0 4 , e ve n  th e  p ro je c te d  phase m a rg in  is  8 6 .4 1 ° ;  U ie a c tu a l va lue  ii 

6 8 .1 2  du e  to  th e  f a l l - o f f  o f  th e  phase c u rv e  a t th e  n e w  g a in  c rosso ve r.

>  EX A M P LE  9 '5 '2  ỉn  th is  exam ple we illu s tra te  the app lica tion  o f  a phase-iead con ư o lle r tt) a U iird -o rder system with 
re la tive ly  h igh loo p gain.

Le t us consider lh a t the inductance o f  the dc m o to r o f  the sun-seeker system described in  Fig. 

9 -29 is no t zero. The fo llo w in g  set o f  system parameters is given:

R f  =  lo .o o o n  Kb =  0.0125 v /rad /sec

K i =  0 .0 1 2 5 N -m /A  Ra =  6 .2 5 Í Ị

y = 1 0 - ‘ k g -m “ K , =  0.3 A /rad

a : =  to  be de term ined f i  =  0

n =  800 t ,  =  1 0 - ’  H

► Chapter 9. Design of Conừol Systems

The transfer fu nctio n  o f  the dc m o io r is w ritten  

a m ( j )  Ki

Ea{s) +  JRaS +  KiKb)

The fo rw ard-path transfer fu nc iion  o f  Ihe system is

(9-92)

G  is )  (9-93)
/ \ ( i )  siU Js^ +  JRaS +  KiKb) ^

Substitu ting the values o f  the system parameters in  Eq. (9 -92 ), we get

c  ^ 6 8 7 5 x 10^ I f

'  A{s) i (s ^  +  625i + 156, 250)

Y ou m a y  u se  A C S Y S  to  so lv e  th is  p ro b lem . ^

Time>E)oniaiii Design
T h e  tim e -d o m a in  sp e c if ic a tio n s  o f  th e  sys te m  are g iv e n  as fo llo w s :

1. T h e  s te ad y-s ta te  e ư o r  o f  a { t )  du e  to  a  u n it- ra m p  fu n c t io n  in p u t fo r  9 r{t)  sho u ld  be

<  l / 3 0 0 r a d / r a d / s e c  o f  th e  f in a l  s t e a d y - s t a t e  o u t p u t  v e lo c i ty .

2 . T h e  m a x im u m  o v e rs h o o t o f  th e  s te p  resp on se  s h o u ld  b e  less t h a n  5%  o r  as sm all as 

po ss ib le .

3 . R ise  t im e  tr  <  0 .0 0 4  sec.

4 .  S e t t l i n g  t im e  ts <  0 .0 2  s e c .

T h e  m in i m u m  v a lu e  o f  t h e  a m p l i f i e r  g a in  K  i s  d e t e m i n e d  in i t i a l l y  f r o m  th e  s ie a d y -s la te  

r e q u i r e m e n t .  A p p ly in g  th e  f in a l - v a lu e  th e o r e m  to  a { i ) ,  w e  g e t

l im  a ( / )  =  l im  5 A ( i )  =  l im  , ,  (9-95)
/-< 30  5 - 0  i - . O l + G p ( j )

S u b s t itu tin g  E q . (9 -9 4 )  in to  E q . (9 -9 5 ),  and 0 r ( i )  =  I /s ^ ,  w e  have

, ' ^ » “ W  =  3 0 ^

T h u s ,  f o r  t h e  s t e a d y - s t a t e  v a lu e  o f  0f ( / )  t o  b e  <  1 / 3 0 0 ,  K  m u s t  b e  >  1. L e t  u s  s e t  / r  =  1; the  

fo rw a rd -p a th  tra n s fe r  fu n c t io n  in  E q . (9 -9 4 )  becom es



W e  c a n  s h o w  t h a t  th e  c lo s e d - lo o p  s u n - s e e k e r  s y s t e m  w i th  K  =  Ĩ  h a s  th e  f o l l o w in g  

a t t r i b u t e s  f o r  th e  u n i t - s t e p  r e s p o n s e .

M a x i m u m o v e r s h o o t = 4 3 %  R i s e  t im e  f r  = 0 . 0 0 4 7 9 7  s e c  S e t t l i n g  t i m e  0 .0 4 5 8 7  s e c

T o  im p r o v e  th e  s y s t e m  r e s p o n s e ,  l e t  u s  s e l e c t  th e  p h a s e - l e a d  c o n t r o l l e r  d e s c r ib e d  b y  E q . 

( 9 - 6 2 ) .  T h e  f o r w a r d - p a t h  t r a n s f e r  f u n c r io n  o f  t h e  c o m p e n s a t e d  s y s t e m  i s

/ V  4 .6 8 7 5  x  1 0 ^ ^ ( 1  +  0 7 5 )
G ( i )  -  G , { i ) C p ( s )  “  6 2 5 s + 1 5 6 , ^ 0 ) 0  +  Ts) *  ’

N o w  t o  s a t i s f y  th e  s t e a d y - s t a t e  r e q u ữ e m e n t ,  K  m u s t  b e  r e a d ju s t e d  s o  t h a t  AT >  a .  L e t  u s  s e t  

K  =  a . T h e  c h a r a c t e r i s t i c  e q u a t io n  o f  t h e  p h a s e - l e a d  c o m p e n s a t e d  s y s t e m  b e c o m e s

(s^ +  625s^ +  156,250s +  4.6875 X lo ’ ) +  7i^(s^ +  625i +  156,250)

+  4 .6 8 7 5  X 1 0 ' ' o r j  =  0

W e  c a n  u s e  t h e  r o o t - c o n to u r  m e th o d  to  e x a m in e  th e  e f f e c t s  o f  v a r y in g  a  a n d  T  o f  t h e  p h a s e -  

l e a d  c o n t r o l l e r .  L e t  u s  f i r s t  s e t  a  t o  z e r o .  T h e  c h a r a c t e r i s t i c  e q u a t io n  o f  E q .  ( 9 - 9 9 )  b e c o m e s

(s’ +  625s^ +  156.250s+  4.6875 X lo’ ) +  +  625j +  156,250) = 0  (9-100)

D iv id in g  b o th  s id e s  o f  th e  l a s t  e q u a t io n  b y  th e  t e n n s  t h a t  d o  n o t  c o n ta in  r ,  w e  g e t

+ 6 2 5 1 +  1 5 6 ,2 5 0 )

1 +  G e „  ( - )  =  1 +  ^3 +  6 2 5 .2  +  Ì 5 6  2 5 0 .  +  4 .6 8 7 5  X 10 ’  =  “

T h e  r o o t  c o n to u rs  o f  E q . ( 9 -1 0 0 )  w h e n  T  v a r ie s  a re  d e te r m in e d  f ro m  ử ie  p o l e - z e r o  

c o n fig u ra tio n  o f  G e q i( i)  in  E q . (9 -1 0 1 ) and are d ra w n  as sho w n  in  F ig . 9 -3 5 . W h e n  a  varies 

f ro m  0  to  0 0 , w e  d iv id e  b o th  s id e s  o f E q .  (9 -9 9 )  b y  th e  te r m s  th a t  d o  n o t  c o n ta in  a, a n d  w e  h a v e

4 .6 8 7 5  X 1 0 ''

+  e q lU J  -  + 6 2 5 ^ 2  +  1 5 6 ,2 5 0 5  +  4 ,6 8 7 5  X 1 0 ^ +  7-5 2 (5 2 + 6 2 5 5 + 1 5 6 , 2 5 0 )

=  0

( 9 - 1 0 2 )

F o r  a  g iv e n  T , t h e  r o o t  c o n to u r s  o f  E q . ( 9 - 9 9 )  w h e n  a  v a r ie s  a r e  o b t a in e d  b a s e d  o n  th e  p o le s  

a n d  z e r o s  o f  G e q 2 (5 ) -T h e  p o le s  o f G e q i W  a re  th e  s a m e  a s  th e  r o o ts  o f E q .  ( 9 - 1 0 0 ) .  T h u s ,  th e  

r o o t  c o n to u r s  w h e n  a  v a r ie s  s t a r t  {a  =  0 )  a t  t h e  r o o t  c o n to u r s  f o r  v a r ia b le  T . F i g .  9 - 3 4  s h o w s  

th e  d o m in a n t  p o r t i o n s  o f  t h e  r o o t  c o n to u r s  w h e n  a  v a r ie s  f o r  T  =  0 .0 1 ,  0 .0 0 4 5 ,  0 .0 0 1 .

0 ,0 0 0 5 ,  0 .0 0 0 1 ,  a n d  0 .0 0 0 0 1 .  N o t ic e  ih a t .  b e c a u s e  t h e  u n c o m p e n s a t e d  s y s t e m  is  l ig h t ly  

d a m p e d ,  f o r  th e  p h a s e - l e a d  c o n t r o l l e r  to  b e  e f f e c t iv e ,  th e  v a lu e  o f  T  s h o u ld  b e  v e r y  s m a l l .  

E v e n  f o r  v e ry  s m a l l  v a lu e s  o f  T. th e r e  i s  o n ly  a  s m a l l  r a n g e  o f  a  th a t  c o u ld  b r in g  in c r e a s e d  

d a m p in g ,  b u t  Ih e  n a tu r a l  f r e q u e n c y  o f  th e  s y s te m  in c r e a s e s  w i th  t h e  i n c r e a s e  in  a . T h e  r o o t  

c o n to u r s  in  F ig .  9 - 3 5  s h o w  th e  a p p r o x im a te  l o c a t i o n s  o f  th e  d o m in a n t  c h a r a c te r i s t ic  

e q u a t io n  r o o t s  w h e r e  m a x im u m  d a m p in g  o c c u r s .  T a b le  9 - 1 4  g iv e s  t h e  r o o ts  o f  th e  

c h a r a c t e r i s t i c  e q u a t io n  a n d  th e  u n i t - s t e p - r e s p o n s e  a t t r i b u t e s  f o r  t h e  c a s e s  th a t  c o ư e s p o n d  

t o  n e a r - s m a l l e s t  m a x im u m  o v e r s h o o t  f o r  t h e  T  s e le c ie d .  F ig .  9 - 3 6  s h o w s  th e  u n i t - s te p  

r e s p o n s e  w h e n  a  =  5 0 0  a n d  T  =  0 .0 0 0 0 1 .  A l th o u g h  th e  m a x im u m  o v e r s h o o t  i s  o n ly  3 .8 % , 

t h e  u n d e r s h o o t  in  I h is  c a s e  is  g r e a t e r  t h a n  th e  o v e rs h o o t .

9-5 Design with Phase-Lead Controller ^  54 9
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Figure 9-35 R o o t co n to u rs  o f  su n -se e k e r  sy s te m  in  E x a m p le  9 -5 -2  w ith  p h a se - le a d  conưo lle r.

Toolbox 9-5-6
S tep resp on se  f o r  F ig . 9 -3 6  a re  o b ta in e d  b y  th e  fo l lo w in g  sequence o f  M A T L A B  fu n c t io n s

a =  [5 0  1 00  5 0 0 ] ;
T =  [ 0 . 0 0 0 1  0 . 0 0 0 0 5  0 . 0 0 0 0 1 ]  ;

f o r  i  = l : l e n g t h ( T )
num = 4 .6 8 7  5e7 * [ a ( i ) * T ( i )  1 ]  ; 
d e n =  c o n v ( [ l  62 5  1 5 6 2  50 0 ]  , [ T ( i )  1 ] )  ; 
t f ( n u m . d e n ) ;
[n u m C L , d e n C L ]= c lo o p ( n u m , d e n ) I  
s te p C n u m C L , d e n C L ) 
h o ld  on

en d
a x is C iO  0 .0 4  0 1 . 2 ] )  
g r i d
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TABLE 9-14 Roots of Characteristic Equation and Time Response Attributes of System with 
Phase-Lead Controller in Example 9-5-2

T a R o o ts  o f  C h a ra c te r is tic  E q u a tio n

M a x im u m  
O v ersh o o t (% ) (sec ) (sec )

0 .001 4 - 1 8 9 .6 - 1 1 8 1 .6 - 1 2 6 . 9 ±  ;4 3 9 .5 21 .7 0 .0 0 3 7 0.0184
0 .0 0 0 5 9 - 1 6 4 .6 -2114.2 - 1 7 3 .1  ± ; 4 8 9 , 3 13.2 0 .0 0 3 4 5 0.0162
0 .0 0 0 1 50 - 1 4 7 - 1 0 0 2 4 - 2 2 7 ± ; 5 1 7 5 .4 0 .0 0 3 4 8 0 .0 1 5 0

0 .0 0 0 0 5 100 - 1 4 7 - 2 0 0 1 2 - 2 3 3  ± ; 5 1 5 4 .5 0 .0 0 3 5 3 0 .0 1 5 0

0 .00001 500 - 1 4 6 .3 - \ ( ỷ - 2 3 8 ± ; 5 Ỉ 3 . 5 5 3 .8 0 .0 0 3 5 7 0 .0 1 4 6

Frequency-Domain Design
T h e  B o d e  p lo t  o f  G p(s) i n  E q .  ( 9 - 9 7 )  i s  s h o w n  in  F ig .  9 - 3 7 .  T h e  p e r f o r m a n c e  a t t r i b u t e s  o f  

th e  u n c o m p e n s a t e d  s y s te m  a re

P M  =  2 9 .7 4 °

M ,  =  2 .1 5 6  

B W  =  4 2 6 .5  r a d /s e c

W e  w o u ld  l i k e  to  s h o w  th a t  th e  f r e q u e n c y - d o m a in  d e s ig n  p r o c e d u r e  o u t l i n e d  e a r l i e r  d o e s  

n o t  w o r k  e f f e c t iv e ly  h e r e ,  b e c a u s e  th e  p h a s e  c u r v e  o f  Gp(J(o) s h o w n  in  F ig . 9 - 3 7  h a s  a 

v e r y  s t e e p  s lo p e  n e a r  t h e  g a in  c r o s s o v e r .  F o r  e x a m p le ,  i f  w e  w is h  to  r e a l i z e  a  p h a s e  m a r g i n

F ig u re  9-36 U n il-s te p  re sp o n se s  o f  su n -see k er  sy s te m  in  E x am p le  9 -5 -2  w ith  p h a se - le ad  

co n tro l le r . C f ( j )  =  * ^
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F igu re  9-37 B o d e  p lo ts  o f  p h a se - le a d  c o n tro l le r  a n d  fo n v a rd -p a th  t ra n s fe r  fu n c tio n  o f  

su n -se e k e r  sy s te m  in  E x am p le  9 -5 -2 . Gc(s) =  *
I +  Ts

o f  6 5 ° .  w e  n e e d  a t  l e a s t  6 5  -  2 9 .7 4  =  3 5 .2 6 °  o f  p h a s e  le a d .  O r ,  =  3 5 .2 6 ° .  U s in g  Eq. 

( 9 - 7 2 ) ,  th e  v a lu e  o f  a  is  c a l c u l a t e d  t o  b e

1 +  s i n 0 „  1 +  s in  3 5 .2 6 " '

1 — sin  d ■ 1 -  sin  3 5 .2 6 °
(9-103)
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9-5-7
'S shown in  F ig . 9 -37  a re  ob ta ined  by the follow ing sequence o f  M A T IA B  fu n c tio n s  

5 0 0 ] ;
0 0 0 5  0 .0 0 0 0 1 ]  :

L : l e n g t h ( T )
= [ a ( i ) * T ( i )  1 ]  ;
» [ T ( i )  1 ] ;
: ( n u m , d e n ) ;
I o n ;

l : l e n g t h ( T )
= 4 .6 8 7 5 e 7  *  [ a ( i ) * T ( i )  1 ] ;
= c o n v ( t l  6 2 5  1S 62S 0 0 ]  . [ T ( i )  1 ] ) :  
b ( n u m .d e n ) ;
I  o n ;

. I e 6  -3 0 0  9 0 ] )  ;

L e t  u s  c ho ose  a  =  4 . T h e o re t ic a lly ,  to  m a x im iz e  th e  u t il iz a t io n  o f  4>„, (Jim sh o u ld  b e  p la ce d  

a t th e  n e w  g a in  c rosso ve r, w h ic h  is  lo c a te d  a t th e  fre q u e n c y  w h e re  th e  m a g n itu d e  o f  Gpijoi) 
is  - 1 0  log iQ ứ  d B  =  - 1 0  lo g |o 4  =  - 6  d B . F ro m  th e  B o d e  p lo t  i n  F ig . 9 -3 7 , th is  fre q u e n c y  

is  fo u n d  to  b e  3 8 0  rad /sec . T h u s , w e  le t  =  3 8 0  rad /sec. T h e  va lu e  o f  r i s  fo u n d  b y  u s in g  

E q . (9 -6 7 ):

oỉm Vã  380-s/4
{9 -1 0 4 )

H o w e v e r, c h e c k in g  th e  fre q u e n c y  response o f  th e  p h a se -le a d  co m p e n sa te d  sys te m  w i th  

a  =  4  an d  T  =  0 .0 0 1 3 , w e  fo u n d  th a t th e  phase m a rg in  is  o n ly  im p ro v e d  to  3 8 .2 7 ° , and 

M r =  1 .6 9 . T h e  r e a s o n  i s  th e  s t e e p  n e g a t iv e  s lo p e  o f  th e  p h a s e  c u r v e  o f  Gpijoi). T h e  f a c t  is  

th a t ,  a t  th e  n e w  g a in - c r o s s o v e r  f r e q u e n c y  o f  3 8 0  r a d / s e c ,  t h e  p h a s e  o f  G p ija i)  i s  - 1 7 0 ° ,  a s  

a g a in s t  — 1 5 0 .2 6 °  a t  t h e  o r ig in a l  g a in  c ro s s o v e r — a  d r o p  o f  a lm o s t  2 0 ° !  F r o m  th e  t im e -  

d o m a i n  d e s ig n ,  th e  f i r s t  l i n e  in  T a b l e  9 - 1 4  s h o w s  th a t ,  w h e n  0  =  4  a n d  T  =  0 .0 0 1 ,  th e  

m a x im u m  o v e rs h o o t is  2 1 .7 % .

C h e c k i n g  th e  f r e q u e n c y  r e s p o n s e  o f  th e  p h a s e - l e a d  c o m p e n s a t e d  s y s te m  w i th  a  =  5 0 0  

a n d  T  =  0 . 0 0 0 0 1 ,  t h e  f o l l o w in g  p e r f o r m a n c e  d a t a  a r e  o b ta in e d :

P M  =  6 0 .5 5  d egrees M r = \  B W  =  6 6 4 .2  rad /sec

T h is  sho w s th a t th e  v a lu e  o f  a  has to  be inc re a se d  s u b s ta n tia lly  ju s t  to  o v e rc o m e  th e  s leep 

d r o p  o f  th e  p h a s e  c h a r a c t e r i s t i c s  w h e n  th e  g a in  c r o s s o v e r  is  m o v e d  u p w a r d .

F i g .  9 - 3 7  s h o w s  t h e  B o d e  p l o t s  o f  t h e  p h a s e - l e a d  c o n t r o l l e r  a n d  t h e  f o r w a r d - p a t h  

t r a n s fe r  fu n c t io n s  o f  th e  c o m p e n s a te d  s y s te m  w i t h  a  =  10 0 , 7" =  0 .0 0 0 5  an d  

a  =  5 0 0 ,  T  =  0 . 0 0 0 0 1 .  A  s u m m a r y  o f  p e r f o r m a n c e  d a t a  i s  g i v e n  in  T a b l e  9 - 1 5 .
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TABLE 9-15 Attributes of System with Phase-Lead Controller in Example 9-5-Z

T a
PM

(deg )
GM
(dB) Mr

BW
( ra d /se c )

M a x im u m  
O v e rsh o o t (%) (séc ) (sec:

1 1 2 9 .7 4 6 .3 9 2.16 4 3 0 .4 4 3 .0 0 .0 0 4 7 8 0.045

0 .0 0 0 0 5 100 59 .61 31 .41 1 .009 670.6 4.5 0 .0 0 3 5 3 0.015

0 ,00001 500 60 .55 45 .21 1 .000 6 6 4 .2 3 .8 0 .0 0 3 5 7 0.014

S e le c t i n g  a  =  1 0 0  a n d  T  =  0 . 0 0 0 0 5 ,  th e  p h a s e - l e a d  c o n t r o l l e r  is  d e s c r ib e d  b y  th 

t r a n s f e r  f u n c t i o n

1 1 + « 7 5  1 1 + 0 . 0 0 5 5

~  a  1 +  n  1 0 0  1 +  O.OOOOSi '

U s in g  E q s .  ( 9 - 6 3 )  a n d  ( 9 - 6 4 ) .  a n d  le t t i n g  c  =  0 .0 1  ụ.F , th e  c i r c u i t  p a r a m e t e r s  o f  th e  phase  

le a d  c o n t r o l l e r  a r e  f o u n d  to  b e

T  5  y  1 0 “ ^
/Ỉ2  -  -  -  g =  5 0 0 0 n  (9 -1 0 6

= 0 ^ 2  =  5 0 0 . 0 0 0  0  (9 -1 0 7

T h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  o f  th e  c o m p e n s a t e d  s y s t e m  is

e . ( ^ )  ^  4 . 6 8 7 5  X 1 0 ^ (1  + 0 . 0 0 5 1 )

A ( j )  s (j 2 +  6 2 5 s +  1 5 6 ,2 5 0 ) (1  + 0 .0 0 0 0 5 S )

w h e r e  t h e  a m p l i f ie r  g a in  AT h a s  b e e n  s e t  to  1 0 0  to  s a t i s f y  th e  s t e a d y - s t a t e  r e q u ir e m e n t .

F r o m  th e  r e s u l t s  o f  th e  l a s t  tw o  i l l u s t r a t i v e  e x a m p le s ,  w e  c a n  s u m m a r i z e  th e  e ffe c t 

a n d  l im i t a t i o n s  o f  th e  s in g l e - s t a g e  p h a s e - l e a d  c o n t r o l l e r  a s  f o l lo w s .

9-5-3 Effects of Phase-Lead Compensation

1. T h e  p h a s e - l e a d  c o n t r o l l e r  a d d s  a  z e r o  a n d  a  p o le ,  w i th  th e  z e r o  t o  t h e  r ig h t  o f  tht 

p o le ,  to  t h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n .  T h e  g e n e r a l  e f f e c t  i s  t o  a d d  raori 

d a m p in g  to  th e  c lo s e d - lo o p  s y s te m .  T h e  r i s e  t im e  a n d  s e t t l i n g  t im e  a r e  r e d u c e d  ii 

g e n e r a l .

2 .  T h e  p h a s e  o f  t h e  f o r w a r d - p a t h  t r a n s f e r  f u n c t i o n  in  t h e  v ic in i t y  o f  th e  ga in  

c r o s s o v e r  f r e q u e n c y  is  i n c r e a s e d .  T h i s  im p r o v e s  th e  p h a s e  m a r g i n  o f  th e  c lo sed  

lo o p  s y s te m .

3 . T h e  s lo p e  o f  t h e  m a g n i tu d e  c u r v e  o f  th e  B o d e  p lo t  o f  th e  f o r w a r d - p a t h  tran s fe  

f u n c t i o n  is  r e d u c e d  a t  th e  g a in - c r o s s o v e r  f r e q u e n c y .  T h i s  u s u a l ly  c o ư e s p o n d s  ti 

a n  i m p r o v e m e n t  in  th e  r e l a t i v e  s t a b i l i t y  o f  th e  s y s t e m  in  th e  f o m i  o f  im p r o v e d  gaii 

a n d  p h a s e  m a r g i n s .

4 . T h e  b a n d w i d th  o f  th e  c lo s e d - lo o p  s y s te m  i s  in c r e a s e d .  T h i s  c o r r e s p o n d s  to  faste  

t im e  r e s p o n s e .

5 . T h e  s t e a d y - s t a t e  e r r o r  o f  t h e  s y s te m  is  n o t  a f f e c te d .
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9-5-4 L im itations of S in g le -S tag e  Phase-Lead Control

I n  g e n e r a l ,  p h a s e - l e a d  c o n ư o l  is  n o t  s u i t a b l e  f o r  a l l  s y s te m s .  S u c c e s s f u l  a p p l i c a t i o n  o f  

s i n g l e - s t a g e  p h a s e - l e a d  c o m p e n s a t io n  to  im p r o v e  th e  s t a b i l i t y  o f  a  c o n t r o l  s y s t e m  i s  h in g e d  

o n  th e  f o l l o w in g  c o n d i t io n s :

1. B a n d w id th  c o n s id e r a t i o n s :  I f  t h e  o r ig in a l  s y s t e m  is  u n s t a b l e  o r  w i th  a  lo w  s t a b i l i t y  

m a r g i n ,  th e  a d d i t i o n a l  p h a s e  le a d  r e q u i r e d  to  r e a l i z e  ã  c e r t a i n  d e s i r e d  p h a s e  

m a r g i n  m a y  b e  e x c e s s iv e .  T h i s  m a y  r e q u i r e  a  r e l a t i v e ly  l a r g e  v a lu e  o f  a  f o r  th e  

c o n t r o l l e r ,  w h ic h ,  a s  a  r e s u l t ,  w i l l  g iv e  r i s e  t o  a  la r g e  b a n d v v iđ ứ i  f o r  th e  

c o m p e n s a t e d  s y s te m , a n d  th e  t r a n s m is s io n  o f  h ig h - f r e q u e n c y  n o i s e  e n te r in g  

th e  s y s te m  a t  th e  in p u t  m a y  b e c o m e  o b je c t i o n a b le .  H o w e v e r ,  i f  th e  n o i s e  e n t e r s  

th e  s y s t e m  n e a r  th e  o u tp u t ,  t h e n  th e  in c r e a s e d  b a n d w i d th  m a y  b e  b e n e f ic i a l  to  

n o i s e  r e j e c t i o n .  T h e  la r g e r  b a n d w i d th  a l s o  h a s  t h e  a d v a n ta g e  o f  r o b u s tn e s s ;  th a t  is , 

th e  s y s t e m  i s  i n s e n s i t i v e  t o  p a r a m e t e r  v a r i a t i o n s  a n d  n o i s e  r e j e c t i o n  a s  d e s c r ib e d  

b e f o r e .

2 .  I f  th e  o r ig in a l  s y s te m  is  u n s ta b le ,  o r  w i th  lo w  s ta b i l i ty  m a rg in ,  th e  p h a s e  c u r v e  o f  th e  

B o d e  p lo t  o f  th e  f o r w a r d - p a t h  t r a n s f e r  f u n c t io n  h a s  a  s t e e p  n e g a t iv e  s lo p e  n e a r  th e  

g a in - c r o s s o v e r  f r e q u e n c y .  U n d e r  th i s  c o n d i t io n ,  th e  s in g l e - s ta g e  p h a s e - le a d  c o n 

t r o l le r  m a y  n o t  b e  e f f e c t iv e  b e c a u s e  th e  a d d i t io n a l  p h a s e  le a d  a t  th e  n e w  g a in  

c ro s s o v e r  i s  a d d e d  to  a  m u c h  s m a l l e r  p h a s e  a n g le  t h a n  th a t  a t  th e  o ld  g a in  c ro s s o v e r .  

T h e  d e s ứ e d  p h a s e  m a rg in  c a n  b e  r e a l i z e d  o n ly  b y  u s in g  a  v e ry  la r g e  v a lu e  o f  a  f o r  

th e  c o n ừ o l le r .  T h e  a m p l i f ie r  g a in  K  m u s t  b e  s e t  to  c o m p e n s a te  a, s o  a  la r g e  v a lu e  f o r  

a  r e q u i r e s  a  h ig h - g a in  a m p lif ie r ,  w h ic h  c o u ld  b e  c o s i ly .

A s  s h o w n  in  E x a m p le  9 - 5 - 2 ,  th e  c o m p e n s a t e d  s y s te m  m a y  h a v e  a  la r g e r  

u n d e r s h o o t  t h a n  o v e r s h o o t .  O f t e n ,  a  p o r t i o n  o f  th e  p h a s e  c u r v e  m a y  s t i l l  d ip  b e lo w  

th e  1 8 0 ° - a x i s ,  r e s u l t i n g  in  a  c o n d i t i o n a l l y  s t a b l e  s y s te m ,  e v e n  th o u g h  th e  d e s i r e d  

p h a s e  m a r g i n  is  s a t i s f ie d .

3 . T h e  m a x im u m  p h a s e  le a d  a v a i la b le  f r o m  a  s in g l e - s t a g e  p h a s e - l e a d  c o n t r o l l e r  is  

l e s s  t h a n  9 0 ° .  T h u s ,  i f  a  p h a s e  le a d  o f  m o r e  th a n  9 0 °  i s  r e q u i r e d ,  a  m u l t i s ta g e  

c o n t r o l l e r  s h o u ld  b e  u s e d .

9-5-5 M u ltis tag e Phase-Lead Controller

W h e n  t h e  d e s i g n  w i t h  a  p h a s e - l e a d  c o n t r o l l e r  r e q u i r e s  a n  a d d i t i o n a l  p h a s e  o f  m o r e  t h a n  

9 0 ° .  a  m u l t i s t a g e  c o n t r o l l e r  s h o u ld  b e  u s e d .  F i g .  9 - 3 8  s h o w s  a n  o p - a m p - c i r c u i t
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r e a l i z a t i o n  o f  a  t w o - s t a g e  p h a s e - l e a d  c o n t r o l l e r .  T h e  i n p u t - o u t p u t  ư a n s í e r  f u n c t i o n  

th e  c i r c u i t  is

(  1 \ (  J \
E o {s )

E in { ^ 1

\  R i C ) V R x C )

R i R A

(9-IƠ

G c {s )
a i0 2  V Ỉ  +  T is  J \  I + Ĩ 2 S  J

w h e r e  a \  =  R \ / R i ,  0 2  =  R 3 / R 4 , T \ =  R iC ,  a n d  T i  =  R aC .

T h e  d e s ig n  o f  a  m u l t i s t a g e  p h a s e - l e a d  c o n t r o l l e r  in  t h e  t im e  d o m a in  b e c o m e s  m oi 

c u m b e r s o m e ,  s in c e  n o w  th e r e  a r e  m o r e  p o le s  a n d  z e r o s  t o  b e  p l a c e d .  T h e  ro o t- c o n to i  

m e th o d  a l s o  b e c o m e s  i m p r a c t i c a l ,  s in c e  t h e r e  a r e  m o r e  v a r i a b l e  p a r a m e t e r s .  T h e  fre 

q u e n c y - d o m a i n  d e s ig n  in  t h i s  c a s e  d o e s  r e p r e s e n t  a  b e t t e r  c h o ic e  o f  t h e  d e s ig n  m e th o d . Fc 

e x a m p le ,  f o r  a  tw o - s t a g e  c o n ư o l l e r ,  w e  c a n  c h o o s e  t h e  p a r a m e t e r s  o f  ứ i e  f i r s t  s ta g e  o f  

tw o - s t a g e  c o n t r o l l e r  s o  th a t  a  p o r t i o n  o f  th e  p h a s e  m a r g i n  r e q u i r e m e n t  i s  s a t i s f ie d ,  a n d  the 

th e  s e c o n d  s ta g e  f u l f i l l s  t h e  r e m a in in g  r e q u i r e m e n t .  I n  g e n e r a ) ,  th e r e  i s  n o  r e a s o n  w h y  th 

tw o  s ta g e s  c a n n o t  b e  i d e n t i c a l .  T h e  f o l lo w in g  e x a m p le  i l l u s t r a t e s  t h e  d e s ig n  o f  a  sy ster 

w i th  a  tw o - s t a g e  p h a s e - l e a d  c o n t r o l le r .

• EXAMPLE 9-5-3 F o r  th e  su n -se e k e r  sy s te m  d e s ig n ed  in  E x a m p le  9 -5 -2 , le t u s  a l te r  th e  r ise  tim e  a n d  settUng tim 
req u ừ e m e n ts  to  b e

R ise  tim e  <  0 .001  sec  

S e ttl in g  tim e  ts <  0 ,0 0 5  sec

T h e  o lh e r  re q u ứ e m e n ts  a re  n o t a lte re d . O n e  w a y  to  m e e t f a s te r  r ise  tim e  a n d  se ttlin g  tim e  requiremeni 
is  to  in c re ase  th e  fo rw a rd -p a th  g a in  o f  th e  sy s te m . L e t u s  c o n s id e r  th a t ih e  fo rw a rd -p a th  transfi 
fu n c tio n  is

^  1 5 6 ,2 5 0 .0 0 0

'’ *** A {s )  j ( j 2  + 6 2 5 s +  1 5 6 ,2 5 0 )

A n o th e r  w a y  o f  in te rp re tin g  th e  c h a n g e  in  th e  fo n v a rd -p a th  g a in  is  ử ia t ứ ie  r a m p -e rro r  constan t i 
in c re a s e d  to  1000  (u p  fro m  3 0 0  in  E x am p le  9 -5 -1 ) . T h e  B o d e  p lo t  o f  Gp(s) is  sh o w n  in  F ig . 9 -39. Th 
c lo se d - lo o p  sy s te m  is  u n s ta b le , w ith  a  p h a se  m a rg in  o f  - 1 5 .4 3 ° .

Toolbox 9-5-8

n u m  =  1 5 6 2 5 0 0 0 0  * [ 0 . 0 0 8 7  1 ]  ;
d e n  =  c o n v C  [ 0 . 0 0 0 0 8 7  1 ]  , [ 1  6 2 5  1 5 6 2 5 0 ] )  ;
b o d e ( n u m , d e n ) ;

Bode p lo ts  shown in  F ig. 9-39 a re  obta ined  by the fo llo w in g  sequence o f  M A TLA B  fu n c tio n s
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Figure 9-39 Bode plots o f uncompensated and compensated sun-seeker systems in Example 9-5-2 

with two-state phase-lead controller, G p(s) = — ^ .
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h o ld  o n ;

n u m =  1 5 6 2 5 0 0 0 0  * c o n v ( [ 0 . 0 0 8 7  1 ]  , [0 .0 0 2 7 7 8  1 ] )  ; 
d e n  = c o n v ( c o n v (  [0 .0 0 0 0 8 7  1 ]  , [0 .0 0 0 0 2 7 7 8  1 ] ) ,  [ 1  6 25  1 5 6 2 5 0  0 ] )  ; 
b o d e ( n u m ,d e n ) ; 
h o ld  o n ;

n u m =  1 5 6 2 5 0 0 0 0  *  c o n v (  [ 0  . 0 0 3 8 7 2  1 ]  . [0 .0 0 3 8 7 2  1 ] )  ;
d e n  = c o n v ( c o n v (  [ 0 .0 0 0 0 4 8 4  1 ]  , [0 .0 0 0 0 4 8 4  1 ] )  , [ 1  6 25  1 5 6 2 5 0  0 ] )  ;
b o d e ( n u m ,d e n ) :
a x i s ã l  le 5  -3 0 0  2 0 ] )  ;
g r i d

Because the compensated system in  Exam ple 9-5-2 had a phase m argin o f  60.55°, we 
w ou ld  expect that, to  satisfy the more stringent tim e response requirem ents in  th is example, 
the coưesponding phase m argin w ou ld  have to  be greater. A pparently, th is increased phase 
m argin cannot be realized w ith  a single-stage phase-lead contro ller. I t  appears ứiat a two- 
stage co n tro lle r w ould be adequate.

The design invo lves some tria l-and-erro r steps in  a rr iv in g  at a satisfied controller. 
Because we have tw o  stages o f  contro llers at our disposal, the design has a m ultitude of 
fle x ib ility . We can set out by a rb itra rily  setting ứ i =  100 fo r  the firs t stage o f  the phase-lead 
conưoller. The phase lead provided by the con tro lle r is obtained fro m  Eq. (9-71).

(9-112)
\ a i  +  l j  V lO Ự

To m axim ize  the effect o f  the new gain crossover should be at

- lO lo g iQ ứ i -  - lO lo g io  100 -  - 2 0 d B  (9-113)

From  Fig. 9-39 the frequency that coưesponds to  th is gain on the am plitude curve is
approxim ate ly 1150 rad/sec. Substitu ting cy,„i =  1150 rad/sec and ứ 1 =  100 in  Eq. (9-67),
we get

=  7— ^  =  TTTT^Tt^  =  0'000087 (9-114)
1 _ 1

1 1 50^1 00

The forw ard-path transfer function  w ith  the one-stage phase-lead con tro lle r is

. .  ^  1 5 6 ,2 5 0 ,0 0 0 (1  + 0 .0 0 8 7 5 )

i ( s 2 + 6 2 5 S +  1 5 6 ,2 5 0 ) (1  + 0 .0 0 0 0 8 7 S )

The Bode p lo t o f  the last equation is drawn as curve (2 ) in  Fig. 9-39. We see that the phase 
m argin o f  the in te rim  design is o n ly  20.36°. Next, we a rb itra rily  set the value o f  az o f the 
second stage at 100. From  the Bode p lo t o f  the transfer func tion  o f  Eq. (9-115) in  Fig. 9-39, 
we find  that the frequency at w h ich  the m agnitude o f  G(Jco) is - 2 0  dB is approximately 
3600 rad/sec. Thus.

T2 = ------ ^ =  = ---------! - = =  0 .0 0 0 0 2 7 7 8  (9-116)
<Um2V02 3 6 0 0 / ĨÕ Õ
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TABLE 9-16 Attributes of Sun-Seeker System in Example 9'5*3 with Two-Stage
Phase-Lead Controller

fl] =  Ũ2 T\ n
PM

(deg) Mr
BW

(rad/sec)
Maximum 

Overshoot (%) (sic) (sec)

80 0.0000484 0.0000484 80 1 5686 0 0.00095 0.00475
100 0.000087 0.0000278 69.34 1 5686 0 0.000597 0.00404
70 0.0001117 0.000039 66.13 1 5198 0 0.00063 0.00404

The fo rw ard-pa lh  transfer function  o f  the sun-seeker system w iứ i the two-stage phase-lead 
co n tro lle r is (o i = 0 2  =  100)

156,250,000(1  + 0 .0 0 8 7 j) ( l+ 0 .0 0 2 7 7 8 j )

“  j ( i2  +  6255 +  156 ,250)(1 +  0.0000875)(1 +  0 .0 0 0 0 2 7 7 8 5 )  ̂ ^

F ig .  9 -3 9  s h o w s  th e  B o d e  p lo t  o f  th e  s u n -s e e k e r  system w i th  th e  tw o -s ta g e  p h a s e - le a d  

c o n tro lle r  designed above [cu rve  (3 ) ].  A s seen fro m  F ig . 9 -39 , the phase m arg in  o f  the 
system  w ith  G (s) g iven  in  Eq. (9 -1 1 7 ) is  69 .34°. A s  show n by the system a ttribu tes in 
Tab le  9 -16 , the system satisfies a ll the iim e -d o m a in  spec ifica tions. In  fac t, the se lection 
o fa i = 0 2  = 100 appears to be overly stringent. To show that the design is not critical, 
we can select Q] = 0 2  =  80, and then 70 and the tim e -d o m a in  spec ifica tions are s t i l l  
satisfied. F o llo w in g  s im ila r  d e s ig n  steps, we a rrived  at T\ = 0 .0 0 0 1 1 1 7  and Ĩ 2 =
0.000039 fo r  f l i  =  02 =  70, and 7 i =  7 :  =  0 .0000484 fo r  a j =  02 =  80. C u rve  (4 ) o f 
F ig . 9 -39  shows the Bode p lo t o f  the com pensated system w ith  a \ =  02 =  80. Table 
9 - 1 6  su m m ar ize s  al l  the at tributes o f  the  sy st e m  pe rf or m anc e  with  these three 
con tro lle rs .

The unit-step responses o f  the system w ith  the two-stage phase-lead con tro lle r fo r  
a \ =  0 2  =  80 and 100 are shown in  Fig. 9-40.

Toolbox 9-5-9
Fig. 9-40 is obtained by the follow ing sequence o f  M ATLAB functions

num = 1 5 6 2 S 0 0 0 0  *  co n vC  [1 0 0 * 0  .0 0 0 0 8 7  1 ]  , [ 8 0 * 0  . 0 0 0 0 2 7 7 8  1 ] )  : 
d e n  = c o n v ( c o n v (  [ 0 .  0 0 0 0 8 7  1 ]  , [ 0  . 0 0 0 0 2 7 7 8  1 ]  )  . [ 1  62 5  1 5 6 2 5 0  0 ] ) ;  
[n u m C L ,d e n C L ]= c lo o p ( n u m ,d e n ) ; 
stepCnumCL,denCL) 
h o ld  on

n um =  1 5 6 2 5 0 0 0 0  *  co n vC  [8 0 * 0 .0 0 0 0 4 8 4  1 ]  . [8 0 * 0 .0 0 0 0 4 8 4  1 ] )  J
d e n  * c o n v ( c o n v (  [0 .0 0 0 0 4 8 4  1 ]  , [0 .0 0 0 0 4 8 4  1 ] )  , [ 1  62 5  1 5 6 2 5 0  0 ] )  ;
[numCL, denCL] =cloop(niun, den) ;
s te p C n u m C L .d e n C L )
g r i d

9-5-6 S ensitiv ity  C onsiderations

T he sensitiv ity function  defined in  Section 8-16, Eq. (8-122), can be used as a design 
specification to indicate the robustness o f  the system. In  Eq. (9-122), the sensitiv ity o f  the
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Time (sec)

Figure 9-40 Unit-step responses o f sun-seeker system in Example 9-5-2 w ith two-stage phase-leai 
„  / 1 + f l , r | . 5 \ / 1 +a27-25\ 156,250.000

con.roller, G .(,) =  +  6257+ 156 250) ■

closed-loop ffansfer function  w ith  respect to  the variations o f  the forw ard-path ffansfe 
function  is defined as

w dM {s)/M {s) G -^{s)  _  1

’ dG (s)/G {5)  1 + G - ' ( 5 )  l + G ( i )
(9-118

The p lo t o f  |5 ^ (ỹ (t;) | versus frequency gives an ind ica tion  o f the sens itiv ity  o f  the sysien 
as a function  o f  frequency. The ideal robust situation is fo r |5Q {ýít))| to  assume a smal 
value (<§: 1) over a w ide range o f  frequencies. As an example, the sens itiv ity  function 0 
the sun-seeker system designed in  Exam ple 9-5-2 w ith  the one-stage phase-lead controlle 
w ith  a  ~  100 and  T  =  0 .0 0 0 0 5  is p lo tted as shown in  Fig. 9-41. N o te  that ứ ie  sensitivit; 
function  is low  at low  frequencies and is less than un ity  fo r  <o < 4 0 0 rad/sec. A lthough thi 
sun-seeker system in  Example 9-5-2 does not need a multistage phase-lead controller, WI 
shall show that, i f  a iwo-stage phase-lead con tro lle r is used, not on ly  die value o f  a w ill b 
substantia lly reduced, resulting in low er gains fo r  the op-amps, but the system w il l  be mor 
robust. Fo llow ing  the design procedure ou tlined  in  Example 9-5-3. a two-stage phase-leai 
con tro lle r is d es ig n ed  fo r  the sun-seeker system w ith  the process ưansíer functiol 
described by Eq. (9-96).
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t
1.00

-  Two-scage phase-lead conưol

[ One-stage phase-lead control •

0.1 I 10 100 10-* 10‘

0) (rad/sec)

Figure 9-41 Sensitivity functions o f sun-seeker system in Example 9-5-2.

The parameters o f  the con tro lle r are ŨỊ = 02 =  5.83 and T\ = T i =  0.000673. The 
fo rw ard-path transfer function o f  the compensated system is

C (s) =
4.6875 X I0 ''(1  + 0 .0 0 3 9 2 3 6 *)^

s(j2  +  6 2 5 i +  156 ,250)(1 +  0 .000673 i)'
(9-119)

Fig. 9-41 shows that ửie sensitivity function o f  the system w ith  the two-stage phase-lead 
controller is less ứian un ity fo r  Ù) < 600 rad/sec. Thus, the system w ith  the two-stage phase-lead 
controller is more robust than ứie system w ith  the single-stage controller. The reason fo r this is 
that the more robust system has a higher bandwidth. In  general, systems w ith  phase-lead 
control w il l be more robust due to the higher bandwidth. However, Fig. 9-41 shows that the 
system w ith  ửie two-stage phase-lead conữoller has a higher sensitivity at high frequencies.

► 9-6 D E S IG N  W I T H  P H A S E - L A G  C ONT ROLL ER

The transfer function in  Eq. (9-62) represents a phase-lag con tro lle r or low-pass filte r  when 
a < \ .  The transfer function  is repeated as fo llow s.

' l + a T s \
, 1  +  r J

(9-120)

9-6-1 Tim e-D om ain In terpretation  and Design of Phase-Lag Control

The po le -zero  configuration o f  G f( i)  is shown in  F ig. 9-42, U n like  the PI contro ller, w hich 
provides a pole at 5 =  0, the phase-lag con tro lle r affects the steady-state eưor o n ly  in the

i-piane

Figure 9-42 Pole-zero
configuration o f phase-lag
controller.
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sense that the zero-frequency gain o f  Gc(s) is greater than un ity. Thus, any eư or constai 
that is fin ite  and nonzero w il l  be increased by the fac to r i / a  fro m  the phase-lag conữollí 

Because the pole at 5 =  -  1/r is to the righ t o f  the zero at -  l / a T ,  effective use o f Ử 
phase-lag conttoUer to im prove damping w ould have to fo llo w  the same design prindp le  o f ứ 
PI conữol presented in  Section 9-3. Thus, the proper way ofapplym g the phase-lag control is Ì 
place the pole and zero close together. For type 0  and type 1 systems, the combừiaiion shouị 
be located near the origin in the s-plane. Fig, 9-43 illusttates the design sữategìes in  the 5-plar 
fo r type 0 and type 1 systems. Phase-lag conưol should not be applied to a type 2 system

Figure 9-43 Design 
sưategies fo r phase-lag 
conưol for type 0 and type 
systems.



The design p rinc ip le  described above can be explained by considering that the 
con tro lled  process o f  a type 0  con tro l system is

where P\ and Pi are com plex-conjugate poles, such as the s ituation shown in  F ig . 9-43.
Just as in  the case o f  the phase-lead conưoller, we can drop the gain facto r l / iJ  in  Eq. 

(9-121), because whatever the value o f  a  is, the value o f  K  can be adjusted to  compensate 
fo r  it .  A p p ly in g  the phase-lag con tro lle r o f  (9-121), w ith o u t the facto r 1 /a , to  the system, 
the forw ard-path transfer function  becomes

Le t us assume that the value o f  K  is set to  meet the steady-state-error requirem ent. A lso  
assume that, w ith  the selected value o f  K, the system dam ping is low  or even unstable. N ow  
le t 1 / r  ̂  1 /a T ,  and place the po le -ze ro  pa ir near the pole at - 1  / P 3 . as shown in  F ig . 9-43. 
F ig . 9-44 shows the root lo c i o f  the system w ith  and w ithou t the phase-lag conưoller. 
Because the po le -zero  com bination o f  the co n tro lle r is very  close to  the pole at - 1  //» 3 , the 
shape o f  the lo c i o f  the dom inant roots w ith  and w ithou t the phase-lag con tro l w i l l  be very 
sim ilar. T h is  is easily explained by w ritin g  Eq. (9-122) as

Gis)  =  - _________________________________

9-6 Design with Phase-Lag Conừoller M 5 6 3

(s +  p O ís  +  P iX s  +  m X i  +  i / n

a __________ í ị _________
( j + p O i i + p i X s + p s )

Because a  is less than 1. the application o f  phase-lag contro l is equivalent to  reducing the 
fo rw ard-path gain fro m  K  to  Ka, while no t affecting the steady-state perform ance o f  the 
system . F ig. 9-44 shows ửiat the value o f  a  can be chosen so that the dam ping o f  the 
compensated system is satisfactory. Apparently, the am ount o f  dam ping that can be added 
is lim ite d  i f  the poles — P \  and —P i are very close to  the im aginary axis. Thus, we can select 
a  using the fo llo w in g  equation:

(9-124)
K  to  realize the steady-state perfonnance

The value o f  T  should be so chosen that the pole and zero o f  the con tro lle r are very close 
together and close to  - 1 / P 3 .

In  the tim e dom ain, phase-lag con tro l generally has the effect o f  increasing the rise 
tim e and settling time.

quencv-D om ain In terpretation  and Design of Phase-Lag Control

The transfer function  o f  the phase-lag co n tro lle r can again be w ritten  as

G . W = - ! j^  (o < 1 )  (9-125)

by assuming that the gain factor - 1 / a  is eventually absorbed by the fo rw ard  gain K. The 
Bode diagram o f  Eq. (9-125) is shown in F ig. 9-45. The m agnitude curve has com er 
frequencies at cư =  \ Ị a T  and 1/r. Because the ưansíer functions o f  the phase-lead and
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phase-lag contro llers are identica l in  form , except fo r  the value o f  a, the m axim um  phase 
lag 4>,„ o f  the phase curve o f  Fig. 9-45 is given by

,, =  sin  ' ( o <  1) (9-126)
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20 logiRfl

Figure 9-45 Bode diagram o f the phase-lag controller. C c(i) =  a < ]  .

Fig. 9-45 shows that the phase-lag con tro lle r essentially provides an attenuation o f  20 
lo g io ữ  at h igh frequencies. Thus, un like  the phase-lead con tro l that u tilizes the m axim um  
phase lead o f  the contro ller, phase-lag contro l u tilizes the attenuation o f  the con tro lle r at 
h igh  frequencies. Th is  is para lle l to the situation o f  in troduc ing  an attenuation o f  a  to the 
fo rw ard-path gain in  the root-locus design. For phase-lead contro l, the ob jective o f  the 
c o n tro lle r is to  increase the phase o f  the open-loop system in  the v ic in ity  o f  the gain 
crossover w h ile  a ttem pting to  locate the m axim um  phase lead at the new gain crossover. In 
phase-lag control, the objective is to  move the gain crossover to  a low er frequency where 
the desired phase m argin is realized, w h ile  keeping the phase curve o f  the Bode plo t 
re la tive ly  unchanged at the new gain crossover.

The design procedure fo r phase-Iag contro l using the Bode p lo t is outlined as fo llow s:

1. The Bode p lo t o f  the forward-path transfer function  o f  the uncompensated system 
is drawn. The forward-path gain K  is set according to the steady-state performance 
requirement.

2. The phase and gain margins o f the uncompensated system are determ ined from  
the Bode plot.

3. Assum ing that the phase margin is to  be increased, the frequency at which the 
desired phase margin is obtained is located on the Bode p lo t. Th is  frequency is 
also the new gain crossover frequency where the compensated magnitude 
curve crosses the 0-dB-axis.

4. To b ring  the magnitude curve down to 0 dB ai the new gain-crossover frequency
the phase-lag con tro lle r must p rovide the amount o f  attenuation equal to  the 

value o f  the magnitude curve at cup. In other words.

= - 2 0 l o g ,o « d B  ( f l < l )  (9 -1 2 7 )



O nce the va lue o f  a  is determ ined, i t  is necessary o n ly  to  select the p rope r va lue o f  T  to 
com ple te  the design. U s ing  the phase characte ris tics  shown in  F ig . 9 -45 , i f  the comei
frequency l / f lT is  placed fa r  b e low  the new  gain -crossover frequency (o'g, tíie  phase lag of
the c o n tro lle r  w i l l  no t apprec iab ly  a ffe c t the phase o f  the com pensated system nearo;^. 
O n the o ther hand, the value o f  l /a T  shou ld  no t be to o  sm a ll because Uie bandw idth of 
the system w i l l  be too  low , causing the system to  be too  s lugg ish  and less robust. Usually, 
as a general g u ide line , the frequency i /a T  should be app ro x im a te ly  one decade below 
a>'g, tha t is,

1 0>'
=  ^  rad/sec (9-Ỉ29)

aT  10

566 >■ Chapter 9. Design of Contfol Systems

So lv ing  fo r  a  fro m  the last equation, we get

a =  1 0 - M M ) | / 2 0  ( a < i )  (9-128)

Then,

5. The Bode p lo t o f  the compensated system is investigated to  see i f  the phase margin 
requirem ent is m et; i f  not, the values o f  fl and Tare  readjusted, and the procedure is 
repeated. I f  design specifications invo lve  gain m argin, M r,  o r B W , then these 
values should be checked and satisfied.

Because the phase-lag contro l brings in  more attenuation to  a system, then i f  the design 
is proỊ>er. the s ta b ility  m argins w il l  be im proved but at the expense o f  low er bandwidth. The 
on ly  benefit o f  low er bandw idth is reduced sens itiv ity  to  h igh-frequency noise and 
disturbances.

The fo llo w in g  example illusưates the design o f  the phase-lag conư o lle r and all its 
ram ifications.

► EXAMPLE 9-6-1 In this example, we shall use the second-order sun-seeker system described in Example 9-5-1 to 
illusưate the principle o f design o f phase-lag conưol. The forward-path ưansíer function o f the 
uncompensated system is

You may use ACSYS to solve this problem. ^

T im e -D o m a in  Design
The tim e-dom ain specifications o f  the system are as fo llow s:

1. The steady-state e rro r o f  a ( i )  due to  a un it-ra m p  fu n c tio n  in p u t fo r  ớ r(/) should 
be <  1%.

2. The m axim um  overshoot o f  the step response should be less than 5%  o r as small as 
possible.

3. Rise tim e t r  <  0.5 sec.
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Figure 9-46 Root loci o f sun-seeker system in Example 9-6-1.

4. Settling tim e ts <  0.5 sec.

5. Due to  noise problems, the bandw idth o f  the system must be <  50 rad/sec.

N otice  that the rise-tim e and se ttling-tim e requirements have been relaxed considerably 
fro m  the phase-lead design in  Exam ple 9-5-1. The root loc i o f the uncompensated system 
are shown in  F ig. 9-46(a).

As in  Exam ple 9-5-1, we set AT =  1 in itia lly . The dam ping ra tio  o f the uncompensated 
system is 0.25, and the m axim um  overshoot is 44.4% . F ig. 9-47 shows the unit-step 
response o f  the system w ith  ^  =  1.

L e t us select the phase-lag con tro lle r w ith  the transfer function  g iven in  Eq. (9-121). 
The forward-path transfer function o f  the compensated system is

G (5 ) =  G , ( i ) G p ( 5 )  =
2 5 0 0 A :( í+  1 /a D  

s{s +  2 5 ) { s + l /T )
(9-132)

I f  the value o f  K  is m ainta ined at 1. the steady-state e rro r w il l  be a  percent, w h ich  is 
be tter than that o f  the uncompensated system, since f l<  1. For e ffec tive phuse-lag  
control, the p o le  and  zero o f  the controller transfer fu n c tio n  should  be p laced  close 
together, a nd  then fo r  the type 1 system , the com bination should  be located  relaliveiy  
close to the origin o f  the s-plane. From  the root lo c i o f  the uncom pensaied system in 
F ig . 9 -46(a). we see tha l, i f  K  cou ld  be set to  0.125, the dam ping ra tio  w ou ld  be 0.707. 
and the m axim um  overshoot o f  the system w ou ld  be 4.32% . B y  setting the pole and zero 
o f  the co n tro lle r close to  J =  0. the shape o f  the lo c i o f  the dom inant roots o f  the
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Figure 9-47 Unit-step responses o f uncompensated and compensated sun-seeker systems with

phase-lagcontrollerinExample9-6-l. G p{s)=  ứ ^  0.09 r  =  30

com pensated system w il l  be very  s im ila r  to  those o f  the uncompensated system. We car 
find  the value o f  a  using Eq. (9 -124); that is,

K  to  realize the desired dam ping 

K  to realize the steady-state performance
(9-133:

Thus, i f  the value o f  T  is suffic iently large, when ÍT =  1, the dominant roots o f the 
characteristic equation w il l  coưespond to a damping ratio o f  approximately 0.707. Let UÍ 
a rb itrarily  select T  =  100. The root loci o f the compensated system are shown in  Fig. 946(b) 
The roots o f the characteristic equation when K  =  1, ứ =  0.125, and /■ =  100 are

.V - - 0 .0 8 0 5 ,  -1 2 .4 6 5  +  ;12 .465. and -1 2 .4 6 5  -  j l2 .4 6 5

w hich  corresponds to a dam ping ratio  o f  exactly 0.707. I f  we had chosen a sm aller value foi 
T. ihen the dam ping ra tio  w ou ld  be s lig h tly  o f f  0.707. From  a practica l standpoint, the value 
o f  T  cannot be loo large, since from  Eq. (9-64). T  = RiCy a large T  w ou ld  correspond t( 
e ither a large capaciior o r an unrea lis tica lly  large resistor. To reduce the value o f  T  anc 
sim ultaneously satisfy the m axim um  overshoot requirem ent, a  should also be reduced 
However, a  cannot be reduced inde fin ite ly , or the zero o f  the co n tro lle r at - 1  ị á ĩ  would bi 
100  fa r to the le ft on the real axis. Table 9-17 gives the attributes o f  the time-domaii



M a x im u m  I r  Is B W  R o o ts  o f
a T  Overshoot (%) (sec) (sec) (rad/sec) Characteristic Equation

LÕÕÕ i  4 44  0.0255 0.2133 75.00 -12.500 ±  j48.412
0.125 100 4.9 0.1302 0.1515 17.67 -0.0805 -12.465 ±  } l  2.465
0.100 100 2.5 0.1517 0.2020 13.97 -0.1009 -12.455 ±  J9.624
0.100 50 3.4 0.1618 0.2020 14.06 -0.2037 -12.408 ±  79.565
0.100 30 4.5 0.1594 0.1515 14.19 -0.3439 -12.345 ± /9.484
0.100 20 5.9 0.1565 0.4040 14.33 -0.5244 -12.263 ±  }9.382
0.090 50 3.0 0.1746 0.2020 12.53 -0.2274 -1 2 .3 9 6 ± }8 .1 3 6
0.090 30 4.4 0.1719 0.2020 12.68 -0.3852 -12.324 ±  ;8.029
0.090 20 6.1 0.1686 0.5560 12.84 -0.5901 -12.230 ± /7.890

perform ance o f  the phase-lag compensated sun-seeker system w ith  various values fo r  a  and 
T. The ram ifications o f  the various design parameters are c learly  displayed.

Thus, a suitab le set o f  co n tro lle r  parameters w o u ld  be fl =  0.09 and T  =  30. W ith  
T  =  30, se lecting  c  =  \ ụ.¥ w o u ld  requ ire  /?2 to  be 30 M i l .  A  sm alle r value fo r  T can be 
rea lized  by using a two-stage phase-lag con tro lle r. The un it-s tep  response o f  the 
com pensated system w ith  a  =  0.09 and r  =  30 is shown in  F ig . 9-47. N o tice  that 
the m a x im u m  overshoot is reduced at the expense o f  rise tim e  and se ttling  lim e . 
A lth o u g h  the se ttling  tim e  o f  the com pensated system is shorter than tha t o f  the 
uncompensated sysiem , i t  a c tua lly  takes m uch lo nge r fo r  the phase-lag-com pensated 
system  to  reach steady state.

I t  w ou ld  be en lighten ing to  exp la in  the design o f  the phase-lag conư o lle r by means o f  
the roo t contours. The roo t-contour design conducted earlier in  Exam ple 9-5-1 using Eqs. 
( 9 -8 0 )  th ro u g h  (9 -8 3 )  fo r  p h ase -le ad  c o n tro l an d  F ig s . 9 -3 1  an d  9 -3 2  is  s t i l l  v a l id  f o r  phase - 

lag con tro l, except that in  the present case, a <  1. Thus, in  F ig . 9-32 on ly  ứie portions o f  the 
roo t contours that correspond to  a <  1 are applicable fo r  phase-lag contro l. These root 
contours c learly  show that, fo r  effective phase-lag con tro l, the value o f  T  should be 
re la tive ly  large. In  F ig. 9-48 we illustra te  fu rthe r that the com plex poles o f  the closed-loop 
ưansfer function  are rather insensitive to  the value o f  T  when the la tter is re la tive ly  large.

F r e q u e a c y - D o m a i i i  D e s ig n

The Bode p lo t o f  Cpijco) o f  Eq. (9-131) is shown in  F ig . 9-49 fo r  a: =  1. The Bode plo t 
shows that the phase margin o f  the uncompensated system is o n ly  28°. N o t know ing  what 
phase m argin w il l  correspond to  a m axim um  overshoot o f  less than 5% , we conduct the 
fo llo w in g  series o f  designs using the Bode p lo t in  F ig. 9-49. S tarting w ith  a phase m argin o f  
45°, we observe that th is phase m argin can be realized i f  the gain-crossover frequency is 

at 25 rad/sec. T h is  means that the phase-lag con tro lle r must reduce the m agnitude curve o f  
Gp{jw) to  0 dB at a; =  25 rad/sec w h ile  i t  does not appreciably a ffect the phase curve near 
th is frequency. Because the phase-lag con tro lle r s t i l l  contributes a sm all negative phase 
when the com er frequency I Ị á ĩ  is placed at 1 /1 0  o f  the value o f  i t  is a safe measure to 

choose at somewhat less than 25 rad/sec, say 20 rad/sec.

at =  20rad/sec is 11.7 dB. Thus.
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TABLf 9-17 Attnbutfts of Perfomiance of Sun-Seeker System in Example with
Phase-Lag Controller

a  =  i o - | G . ( K ) | / 2 0  ^  =  0 .2 6  (9 -1 3 4 )

------- - .w o  ...c*..

From  the Bode p lo t, the value o f  G /, i jiOgj 
using Eq. (9-128), we have
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The value o f  XjaT  is chosen to  be at 1 /1 0  the value o f  =  2 0 rad/sec. Thus,

(9-136)



9-6 Design with Phase-Lag Controller •  571

10’ ^ 10' 25 10^

I  
I

10-̂

Figure 9-49 B o d e  p lo t o f  u n c o m p en sa te d  a n d  c o m p e n sa te d  sy s te m s  w ith  p h a se - la g  c o n tro l le r  in 

E x am p le  9 -6 -1 . G ,f s )  = - ị í - ^ ^ G p ( s )  -
■ s ( ,i  +  25 )

Checking out the unit-step response o f  the system w ith  ihe designed phase-lag control, we found 
that the maximum overshoot is 24.5%. The next step is to try aim ing at a higher phase margin. 
Table 9-18 gives the various design results by using various desired phase margins up to 80°.

Examining the results in Table 9-18, we see that none o f  the cases satisfies the maximum 
overshoot requirement o f <  5%. The a =  0.044 and T  =  52.5 case yields the best maximum 
overshoot, but ihe value o f T  is too large to be practical. Thus, we single out the case w ith 
a =  0.1 a n d r  =  10 and refine the design by increasing the value o f  r .  As shown in Table 9-17,



572 p- Chapter 9. Design of Control Systems

TABLE 9-18 Perfonnance Attributes of Sun-Seeker SystMii in Example s ^ i  wrth
Phase-Lag Controller

Desired
PM(deg) a T

Actual
PM(deg) Mr

BW
(rad/sec)

Maximum 
Overshoot (%)

Ir
(SM )

t,
(so;)

45 0.26 1.923 46.78 Ì.27 33.37 24.5 0.0605 0.2222
60 0.178 3.75 54.0 1.19 25.07 17.5 0.0823 0.303
70 0.1 10 63.87 1.08 14.72 10 .0 0.1369 0.7778
80 0.044 52.5 74.68 1.07 5.7 7.1 0.3635 1.933

w h e n  ứ =  0 .1  and r  =  30 , th e  m a x im u m  ove rsho o t is  red uce d  to  4 .5 % . T h e  B o d e  p lo t o f  the 

com pensated system  is  sh o w n  in  F ig . 9 -4 9 . T h e  phase m a rg in  is  6 7 .6 1 ° .

T h e  u n it-s te p  re sp on se  o f  th e  p h a se - la g -co m p e n sa te d  s y s te m  s h o w n  in  F ig .  9 -4 7  po ints 

o u t  a m a jo r  d isa d va n ta g e  o f  th e  p h a se - la g  c o n tro l.  B e ca u se  th e  p h a se - la g  c o n tro lle r  is 

e s s e n t ia lly  a lo w -p a s s  f i l te r ,  th e  r is e  t im e  an d  s e t t l in g  t im e  o f  th e  co m p e n s a te d  system  are 

u s u a lly  inc rea sed . H o w e v e r , w e  s h a ll s h o w  b y  th e  f o l lo w in g  e x a m p le  th a t p h a se -la g  conư ol 

ca n  be m o re  v e rs a tile  a n d  has a w id e r  ra n g e  o f  e f fe c t iv e n e s s  in  im p r o v in g  s ta b i l i ty  than the 

s in g le -s ta g e  ph a se -le a d  c o n ư o lle r ,  e s p e c ia lly  i f  th e  s ys te m  has lo w  o r  n e g a tiv e  dam ping.

► EXAMPLE 9-6-2 Consider the sun-seeker system designed in Example 9-5-3, w ith the forward-path transfer function 
given in Eq. (9*111). Let us restore the gain K, so tíiaỉ a root-Iocus plot can be made for the system. 
Then, Eq. (9-111) is written

156,250,OOOA:
+  625s-i-156,250)

The root loci o f the closed-loop system are shown in Fig. 9-50. When K =  1, ứie system is unstable, 
and the characteristic equation roots are at -713.14, 44.07 +  ;466.01, and 44.07 -  ;466.01.

Example 9-5-3 shows that the performance specification on stability cannot be achieved with a 
single-stage phase-lead conừoUer. Let the performance criteria be as follows:

Maximum overshoot <  5%

Rise time f, <  0.02 sec 

Settling time f, <  0.02 sec

Let us assume thal the desired relative damping ratio is 0.707. Fig, 9-50 shows that, when 
K  =  0.10675, the dominant characteristic equation roots o f the uncompensated system are at 
-17 2  .77 ±  ;I72.73, which correspond to a damping ratio o f  0.707. Thus, ưie value o f a  is determined 
from Eq. (9-124),

^  to realize the desired damping 0,10675
-= 0 .1 0 6 7 5 (9-138)

AT to reaJize the steady-state performance 1 

Let a =  0.1. Because the loci o f tìie dominant roots are far away from the origin in the j-plane, the 
value o f Thas a wide range o f flexibilily. TabJe 9-19 shows the performance results when a =  0.1 and 
for various values o f  T.

TABLE 9-19 Performance Attributes of Sun-Seeker System in Example 9-8-2 wHh 
Phase-Lag Controller

a T
BW

(rad/sec)
PM

(deg)
% M ax

Overshoot (séc)

0.1 20 173.5 66.94 1.2 0.01273 0.01616
0.1 10 174 66.68 1.6 0.01262 0.01616
0.1 5 174.8 66.15 2,5 0.01241 0.01616
0.1 2 177.2 64.56 4.9 0.01601 0.0101
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Figure 9-50 Root loci o f uncompensated system in Example 9-6-2. 
,  156,250.000/:

'’ ' * ' “ s (s2+ 625s+156.250)'

Therefore, the conclusion is lhai only one stage o f the phase-lag controller is needed to saHsfy 
the stability requirement, whereas two stages o f the phase-lead controller are needed, as shown in 
Example 9-5-3.

S e n s i t iv i ty  F u n c t io n

The sensitiv ity function |5 ^ ( j t t ; ) |  o f  the phase-lag compensated system w ith  a =  0.1 and 
r  =  20 is shown in F ig. 9-51. Notice that the sensitiv ity function is less than un ity  fo r 
frequencies up to on ly  102 rad/sec. Th is  is due to  the low  bandw idth o f  ihe system as a 
result o f  phase-lag control.
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0,1 1 10 100 1000 

(Ú (rad/sec)

Figure 9-51 Sensitivity function o f phase-lag-compensated system in Example 9-6-2.

9 ‘ 6-3  Effects and Lim itations of Phase-Lag Control

From  the results o f  the preceding illus tra tive  examples, the effects and lim ita tio n s  o f  phase- 
lag con tro l on the performance o f  linear contro l systems can be sum marized as follows.

1. For a given forw ard-path gain AT, the magnitude o f  the fo rw ard-pa ih  ưansíer 
function  is attenuated near the gain-crossover frequency, thus im proving the 
relative s tab ility  o f  the system,

2. The gain-crossover frequency is decreased, and thus the bandw idth o f  the system 
is reduced.

3. The rise tim e and settling tim e o f  the system are usually longer, because the 
bandw idth is usually decreased.

4. The system is more sensitive to  parameter variations because ứie sensitivity 
function is greater than un ity  fo r  a ll frequencies approxim ate ly greater than the 
bandw idth o f  the system.

9 - 7  D E S I G N  W I T H  L E A D - L A G  C O N T R O L L E R

We have learned from  preceding sections that phase-lead conưol generally improves rise time 
and damping bm increases the natural frequency o f  the closed-loop system. However, phase- 
lag control when applied properly improves damping but usually results in a longer rise time 
and settling time. Therefore, each o f  these control schemes has its advantages, disadvantages, 
and lim itations, and there are many systems that cannot be satisfactorily compensated by either 
scheme acting alone. It is natural, therefore, whenever necessary, to consider using a 
combination o f  ửie lead and lag conưollers, so that ửie advantages o f  both schemes are utilized.

The transfer function  o f  a sim ple lag-lead  (o r lead -lag ) con tro lle r can be written

1 +  )
I - l e a d  ^1 1

(9-139)

- la g  — I

The gain factors o f  the lead and lag conữollers are not included because, as shown previously, 
these gain and attenuation are compensated eventually by the adjustment o f  the forw ard gain K.

Because the lead-lag  con tro lle r transfer function in  Eq. (9-139) now has fo u r unknown 
parameiers. its design is not as s ira igh tfo rw ard  as the single-stage phase-lead o r phase-lag 
contro ller. In general, the phase-lead portion o f  the controller is used m ainly ÍO achievea 
shorter rise lim e am i higher bumhvidtb. and  thephase-lag portion  is brought in to provide 
m ajor damping o f  the system . E ither the phase-lead or the phase-lag con tro l can be 
designed firs i. We shall use Example 9-7-1 to  illustrate the design steps.



KAMPLE 9-7-1 As an illustrative example o f designing a lead-Iag controller, let us consider the sun-seeker system o f 
Example 9-5-3. The uncompensated system w ilh  a: =  1 was shown to be unstable. A  two-stage 
phase-lead controller was designed in Example 9-6-1. and a single-stage phase-lag conưoller was 
designed in Example 9-6-2.

Based on the design in Example 9-5-3, we can first select a phase-lead conưol with a = 10  and 
T| =  0.00004. The remaining phase-lag control can be designed using either the root-locus method 
or the Bode plot method. Table 9-20 gives the results by letting Ti =  2, which is an insensitive 
parameter, and various values o f a. The results in Table 9-20 show that the optimal value o f ữ2. from 
the standpoint o f minimizing the maximum overshoot, for f li =  70 and Ta =  0.00004, is approxi
mately 0.2. Compared with the single-stage phase-lag control designed in Example 9-6-1, the BW  is 
increased to 351.4 rad/sec from 66-94 rad/sec. and the rise time is reduced to 0.00668 sec from 
0.01273 sec. The system with the lead-lag controller should be more robust, because the magnitude 
o f the sensitivity function should not increase to unity until near the BW o f 351.4 rad/sec. As a 
comparison, the unit-step responses o f the system with the two-stage phase-lead control, the single- 
stage phase-lag conưol, and the lead-lag control are shown in Fig. 9-52.

TABLE 9-20 Períormance Attributes of Sun-Seeker System in Example 9-7-1 w ith 
Lead-Lag Controller: a, s  70, 7, s 0.D0004

9-7 Design with Lead-Lag Controller 575

02
PM

(deg) Mr
BW

(rad/sec)
Maximum 

Overshoot (%) (sec) (sec)

0.1 20 81.81 1,004 122.2 0.4 0.01843 0.02626
0.15 20 76.62 1.002 225.5 0.2 0.00985 0.01515
0.20 20 70.39 1.001 351.4 0.1 0.00668 0.00909
0.25 20 63.87 1.001 443.0 4.9 0.00530 0.00707

0.01 0.040.02 0.03

Time (see)

Figure 9-52 Sun-seeker sysiem in Example 9-7-1 w ith single-stage phase-lag controiier. 
lead-lag controller, and two-slage phase-lead controller.



I t sh o u ld  b e  no te d  th a t th e  b an d w id th  a n d  r ise  tim e  o f  ứ ie  s u n -se e k e r  sy s te m  c a n  b e  fuithei 
in c re a s e d  a n d  re d u c e d , re sp e c t iv e ly , b y  u s in g  a  la rg e r  v a lu e  o f  fli fo r  th e  p h a se - le a d  p o r tio n  o f  the 
c o n ư o lle r . H ow ever, ih e  r e su l tin g  s te p  re sp o n se  w ill h a v e  a  la rg e  u n d e rsh o o t , a i ư i o u ^  th e  maxim uni 
o v e rsh o o t c an  b e  k e p t sm a ll. <

9 - 8  P O L E - Z E R O - C A N C E L L A T I O N  D E S I G N :  N O T C H  FILTER

The tra n s fe r fu n c tio n s  o f  m any co n tro lle d  processes co n ta in  one o r more pairs 
o f  co m p lex-con juga te  poles tha t are ve ry  close to  the im a g in a ry  ax is  o f  the 5-plane. 
These com p lex  poles u su a lly  cause the c lo se d -io o p  system  to  be l ig h t ly  damped or 
unstable. One im m ed ia te  so lu tio n  is to  use a c o n tro lle r  tha t has a trans fe r fu n c tio n  with 
zeros selected, w h ich  w o u ld  cancel the undesirab le  po les o f  the co n tro lle d  process, 
and to p lace the poles o f  the c o n tro lle r  at more des irab le  loca tions  in  the j-p la n e  to 
ach ieve the desired dynam ic perfo rm ance. F o r exam ple , i f  the tra n s fe r fu n c tio n  o f a 
process is

in w h ich  the com plex-conjugate poles may cause s tab ility  problem s in the closed-loop 
system when the value o f  K  is large, the suggested series co n tro lle r may be o f  the form
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5- +  Í  +  10

as +  h
(9-141)

The constants o  and b  may be selected according to  the perform ance specifications o f the 
closed-loop system.

There are p ractica l d iff ic u ltie s  w ith  the po le -zero-cance lla tion  design scheme that 
should prevent the m ethod fro m  being used in d isc rim in a te ly . The prob lem  is that in 
p ractice e x a c t  cance lla tion  o f  poles and zeros o f  transfe r func tions  is ra re ly  possible. In 
p ractice, the transfer fu n c tio n  o f  the process. Gpịs). is usua lly  de term ined through 
testing and phys ica l m ode ling ; line a riza tio n  o f  a non linea r process and approxim ation 
o f  a com plex process are unavoidable. Thus, the true  poles and zeros o f  the transfer 
fu nc tion  o f  the process may not be accurate ly m odeled. In  fact, the true  o rder o f  the 
system may even be h igher than that represented by the transfe r fu n c tio n  used for 
m odeling purposes. A n o the r d if f ic u lty  is that the dynam ic properties o f  the process may 
vary, even very s low ly , due to  ag ing o f  the system com ponents o r changes in  the 
operating env ironm ent, so the poles and zeros o f  the transfer fu n c tio n  m ay move during 
the operation o f  the system. The parameters o f  the co n tro lle r  are constra ined by the 
actual physica l com ponents availab le  and cannot be assigned a rb itra rily . For these and 
other reasons, even i f  we cou ld  p rec ise ly  design the poles and zeros o f  the transfer 
fu nc tion  o f  the con tro lle r, exact p o le -ze ro  cance lla tion  is alm ost never possible in 
practice. We w il l  now  show that, in  most cases, exact cance lla tion  is n o ỉ re a lly  necessary 
to e ffe c tive ly  negate the in fluence o f  the undesirable poles using pole-zero-cancella tion 
com pensation schemes.

Let us assume that a contro lled process is represented by

C p (5 )  =
,y(i-+  / J | ) ( 5 + / 7 | )



w h e r e  /? !  a n d  P i  a r e  t h e  tw o  c o m p le x - c o n ju g a t e  p o l e s  t h a t  a r e  t o  b e  c a n c e l e d .  L e t  th e  

ư a n s í e r  f u n c t i o n  o f  t h e  s e r i e s  c o n t t o l l e r  b e

9-8 Pole-Zero-Cancellation Design; Notch Rtter <  577

G cis) =
j s +  P i  + E | ) ( ^ + / > 1  + g l )  

+  a s  +  b
( 9 - 1 4 3 )

where C| is a com plex num ber whose m agnitude is very sm all and E) is its  com plex 
c o n ju g a t e .  T h e  o p e n - lo o p  t r a n s f e r  f u n c t i o n  o f  t h e  c o m p e n s a t e d  s y s t e m  is

C ( . )  =  G M O , ( s )  =  ( 9 . 1 4 4 ,
' '  i ( i + p , ) ( í + P i ) ( í ^  +  0 í  +  i>)

Because o f  inexact cancellation, we cannot d i s c a r d  the terms (5 +  P i ) ( i  +  P i)  in  the 
d e n o m i n a t o r  o f  E q .  ( 9 - 1 4 4 ) .  T h e  c lo s e d ' i o o p  t r a n s f e r  f u n c t i o n  is

^(■^) ______________________^ ( 5  +  P i  +  £ i ) i ^  +  P i  + ẽ i ) ____________________  ÍQ  M i l

s{ s +  p i ) i s + p i ) { s ^ + a s  +  b) +  K {s+  P i  +  £ i ) ( j +  +  £1 )

T h e  r o o t - lo c u s  d ia g r a m  in  F ig .  9 - 5 3  e x p la in s  th e  e f f e c t  o f  i n e x a c t  p o l e - z e r o  c a n c e l 

la t io n .  N o t i c e  t h a t  th e  tw o  c lo s e d - lo o p  p o le s  a s  a  r e s u l t  o f  in e x a c t  c a n c e l l a t io n  l i e  b e tw e e n  

th e  p a i r s  o f  p o le s  a n d  z e r o s  a t  J  =  - p i , - p i  a n d - P i  -  £ ] ,  - p i  -  Ĩ ] . r e s p e c t iv e ly .  T h u s ,

j a

Rooi
locus

i-plane Pole of
p r o c e s s ^

-P i

Zero
conưoller
-APị + B ì Ì

X
Pole of 

conưoller Pole of 
process

/

X

Ơ

-P2

>-(P2 + Bị )

Figure 9*53 P oie-zero  configuration and root loci o f inexact cancellation.
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these closed-loop poles are very close to  the open-loop poles and zeros lh a i are meant to be 
canceled. Eq, (9-145) can be approxim ated as

Y{s) ^  K { s + P i  + E i ) ( i + P ,  + Ẽ 2 )

R{s) (5 +  P\ +  ổ ])(5  +  P | +  (5]}(5^ +  OJ +  6 +  AT)

5 1 and S] are a pa ir o f  very sm all com plex-conjugate numbers that depend on
the other parameters. The partia l-fraction  expansion o f  Eq. (9-146) is

(9-146)

where s I and 
and all

ns)^_____  _____
R{s) S + P \+ S [  5 + ;? ị+ Ỗ |

+  terms due to  the rem ain ing poles (9-147)

We can show that AT] is p roportional to £[ -  Ổ), w h ich  is a very sm all number. S im ila rly, K2 
is also very sm all. This exercise sim ply shows that, although the poles a t - p j  and -P 2 

cannoi he canceled precisely, the resulting transient-response term s due to inexaci 
cancellation will have insignificant amplitudes, so unless the coniroller zeros earmarked 
fo r  cancellation are too fa r  o f f  target, the effect can he neglected fo r a il p ractica l purposes. 
A nother w ay o f  v iew ing  th is problem  is that the zeros o f  G(s) are retained as the zeros of 
closed-loop transfer function  Y(s)/R(s)s so fro m  Eq. (9-146), we see that the tw o  pairs of 
poles and zeros are close enough to  be canceled from  the transient-response standpoint, 

Keep in m ind that we should never a ttem pt to cancel poles that are in the righl-half 
s-plane. because a m  inexact cancellation will resuli in an unstable system. Inexact 
cancellation o f  poles could cause difficuhies i f  the unwanted poles o f  the process tranter 
fiinclion are very close 10 or right on the imaginơiy axis o f  the s-plaiie. In iliis case, inexact 
caiicellalion m ay ulso resuli in an unstable system. Fig. 9-54(a) illusffates a situation in  which

/ ( A ' = 0

j(0‘

.v-plane <T

,K  = ữ
0 <7

1

Figure 9-54 Root loci showing the effects o f inexact po le-zero  cancellations.



the relative positions o f  ứie poles and zeros intended fo r cancellation result in  a stable system, 
whereas in Fig. 9-54(b), the inexact cancellation is unacceptable. The relative distance 
between the poles and zeros intended fo r  cancellation is small, wh ich  results in  residual terms 
in ửie tim e response solution. A lthough these tenns have very sm all amplitudes, they tend to 
g row  w ithout bound as tim e increases. Hence the system response becomes unstable.

9-8 Pole-Zero-Cancellation Design: Notch Filter 579

c o n d 'O rd er A ctive  F ilter

Transfer functions w ith  com plex poles and/or zeros can be realized by e lectric c ircu its  w ith  
op-amps. Consider the transfer function

^  ^ 2 ( i )  ^ s ‘̂  + b is  +  b2Gc{s ) = - ị^  =  K ~
Elis) + a \ s  + 0 2

(9-148)

where a Ị ,a 2 ,b ị ,  and 02 are real constants. The active -filte r rea lization o f  Eq. (9-148) can be 
accom plished by using the d irect decom position scheme o f  state variables discussed in 
Section 10-10. A  typ ica l op-amp c irc u it is shown in  Fig. 9-55. The parameters o f  the 
transfer func tion  in Eq. (9-148) are related to the c irc u it parameters as fo llow s:

R i
(9-149)

1

~-R2RaC xC2

(9-150)

(9-151)

e ĨỰ) ^ s^ + b ,s + b2
E \ ( i )  +  ữ ị í  +  a i

Figure 9-55 Op-amp circuit realization of the second-order transfer function.
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(9-152)

(9 -153)

Because b i < a \ ,  the zeros o f  G c(j) in  Eq. (9-148) are less damped and are d o se r to  the 
o r ig in  in  the i-p lane  than the poles. B y setting various com binations o f  R j  and R i, and R9 to 
in fin ity , a varie ty  o f  second-order transfer functions can be realized. N ote  that a ll the 
parameters can be adjusted independently o f  one another. For example. R ị  can be adjusted 
to  set ứ i; R 4 can be adjusted to  set 0 2 , and bị and ố2 are set by ad justing R i  and R9, 
respectively. The gain facto r K  is conưolled independently b y  ^6-

9-8 -2  Frequency-Dom ain In terpretation  and Design

W h ile  i t  is s im p le  to  grasp the idea o f  p o le -ze ro -cance lla tion  design in  the i-dom ain, 
the frequency-dom a in  p rov ides added perspective to  the design p rin c ip le s . F ig . 9-56

ứ) (rad/sec)

Figure 9-56 Bode plot o f a notch controller with the ưansíer function. 
(5  ̂ +  o.is  +  4)

G(s} =
( j  +  0 .3 8 4 )( j+  10.42)'
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illu s tra te s  the Bode p lo t o f  the transfe r fu n c tio n  o f  a ty p ic a l second-order c o n tro lle r  
w ith  com p lex  zeros. The m agnitude p lo t o f  the co n tro lle r  ty p ic a lly  has a “ n o tch ”  at the 
resonant frequency (o„. The phase p lo t is negative be low  and pos itive  above the resonant 
frequency, w h ile  passing th rough zero  degrees a t the resonant frequency. The attenua
t io n  o f  the m agn itude  curve and the pos itive-phase characte ris tics  can be used 
e ffe c tiv e ly  to  im prove  the s ta b ility  o f  a lin e a r system. Because o f  the “ n o tch ”  
cha racte ris tic  in  the m agn itude  curve , the c o n tro lle r  is also re feư eđ to  in the indus try  
as a n o tch  f i l t e r  o r n o tc h  c o n tro lle r .

From  the frequency-dom ain standpoint, the notch con tro lle r has advantages over the 
phase-lead and phase-Iag contro llers in  certain design conditions, because the magnitude 
and phase characteristics do not a ffect the h igh- and low -frequency properties o f  the 
system. W ithou t using the pole-zero-cancellation princ ip le , the design o f  the notch 
c o n tro lle r fo r  compensation in  the frequency dom ain invo lves the de ienn ina tion  o f  the 
am ount o f  attenuation required and the resonant frequency o f the controller.

Le t us express the ơansfer func tion  o f  the notch con tro lle r in  Eq. (9-148) as

, + 2^.gj„s +
+2^pO}„s +  ù)ị

(9-154)

where we have made the s im p lifica tion  by assuming that 02 =  l>2 -
The attenuation provided by the m agnitude o f  Gc(/cư) at the resonant frequency o»„ is

= f
‘>P

(9-155)

Thus, know ing  the m axim um  attenuation required at the ra tio  o f  is known.
The fo llo w in g  example illustrates the design o f  the notch con tro lle r based on p o le - 

zero cancellation and required attenuation at the resonant frequency.

EXAMPLE 9-8-1 Complex-conjugate poles in system transfer functions are often due to compliances in the 
coupling between mechanical elements. For instance, i f  the shaft between the motor and load is 
nonrigid, the shaft is modeled as a torsional spring, which could lead to complex-conjugate 
poles in the process transfer function. Fig. 9-57 shows a speed-control system in which the 
coupling between Ihe motor and the load is modeled as a torsional spring. The system equations

dw tjt) (9-156)

Tachometer

Figure 9-57 Block diagram o f speed-control system in Example 9-8-1.
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K l I W Ì  -  »1.(01 +  -  0,l { !) ]  =  Jl ^ - ^  <9-157)

T„{t) = Ko},[t) (9-158)

o j,{ t )  =  0Jr{l) ~  o^L{t) (9-159)

r„ ,( f)  =  motor torque 

£U,„(/) =  motor angular velocity 

w iit) =  load angular velocity 

^l (i) =  load angular displacement 

0„{ỉ) = motor angular dispiacement 

J„, = motor inertia =  0.0001 oz-in.-sec^

Ji_ = load inertia =  0.0005 oz-in.-sec^

B,„ = viscous-friction coefficient o f m otor =  0.01 oz-in.-sec 

B i  =  v isc o u s-fr ic lio n  c o e ffic ie n t o f  sh a ft =  0 .001  o z -in .-se c  

Kl =  spring constant o f shaft =  100on-in./rad 

K = amplifier gain =  1 

The loop transfer function o f ihe system is

Bis  +  Ki
“  J , J ls> +  (B ^ J l  +  B lJ „  +  +  {K i Jl  +  +  K J ^ ) s  +  B ^ K l

By subslituting ihe system parameters in the last equation, G^(5) becomes

__________20.000(5+100.000)________
“  j - ^ +  1 1 2 5 -+  1 .200,2005 +  2 0 ,0 0 0 ,0 0 0  

20.000(5+ 100,000)
s +  16,69)(j + 47,66 +  yi094}(5 +  47.66 -  jI0 9 4 )

Thus, the shaft compliance between the motor and the load creates two complex-conjugate poles in 
G^(i') that are lightly damped. The resonant frequency is approximately 1095 rad/sec, and ửie closed- 
loop system is unstable. The complex poles o f Gp(s) would cause the speed response to oscillate even 
i f  ihe system were stable. 4

P o le -Z er o- Ca nc e l la t i on  D es ign  w ith  N o t c h  C on tr ol l er
The fo llo w in g  are the performance specifications o f  the system:

The steady-state speed o f  the load due to  a unit-step inpu t should have an eưor o f not 
more lhan 1%.

M axim um  overshoot o f  output speed <  5%.

Rise tim e fr< 0 .5 s e c .

Settling tim e ty < 0.5 sec.

To compensate the system, we need to get rid . or. perhaps more rea lis tica lly , m inim ize 
the effect, o f  the com plex poles o f  Gp(s) a t5  =  -4 7 .6 6  +  ;1094  and -4 7 .6 6  -  >1094. Lei



us select a notch con tro lle r w ith  the ttansfer func tion  g iven in  Eq. (9*154) to  im prove  the 
perform ance o f  the system. The com plex-conjugate zeros o f  the con tro lle r should be so 
placed that they w il l  cancel the undesirable poles o f  the process. Therefore, the transfer 
fu n c tio n  o f  the notch conư o lle r should be
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^  , s ^ + 9 5 3 s + l , m , 6 0 6 . 6
s^ +  2(,o>„s +  o>ị

The fonvard-path transfer function  o f  the compensated system is

(9-162)

Because the system is type 0, the step-error constant is

=  „ . . 6 4 ,
J - .0  '  1 6 .6 9  X 0 ^

For a un it-step input, the steady-state eư or o f  the system is w ritten

e s s =  l im  cưe(/) =  lin i i f l e ( j )  =  ■;— ( 9- 165)  
I—>00 i  —* 0 1 +  Kp

Thus, fo r  the steady-state eư or to  be less than o r equal to  l% ,K p >  99. The coưesponding 
requirem ent on (t}„ is found fro m  Eq. (9-164),

0J„ <  1210 (9-166)

W e can show that, from  the s ta b ility  standpoint, i t  is better to  select a large value fo r  (o„. 
Thus, le t úỉ„ =  1200rad/sec, w h ich  is at the h igh  end o f  the a llowable range fro m  the 
steady-state eư or standpoint. However, the design specifications given above can on ly  be 
achieved by using a very large value fo r  ^p. For example, when fp  =  15,000, the tim e 
response has the fo llo w in g  perform ance attributes:

M axim um  overshoot =  3.7%

Rise tim e i r  =  0.1897 sec 

S ettling tim e  ỈỊ =  0.256 sec

A lthough  the performance requirements are satisfied, the solu tion is unrealistic, because
the extrem ely large value fo r  Ịp  cannot be realized by phys ica lly  available con tro lle r
components.

L e t us choose Ịp  =  10 and (t)„ =  1000 rad/sec. The forw ard-path transfer function  o f  
the system w ith  the notch co n tro lle r is

20,000(5+100,000)
G{s) =  G ,(» )C ,(.) =  ^  16 a 9 ) ( ;+  50)7» +  19,950)

We can show that the system is stable, but the m axim um  overshoot is 71.6% . N ow  we can 
regard the transfer function  in  Eq. (9-167) as a new design problem . There are a number o f



584 Chapter 9, Design of Control Systems

Maximum Ĩ, f,
a T aT  Overshoot (%) (sec) (sec)

0.001 10 0.01 14.8 0.1244 0.3836
0.002 10 0.02 10.0 0.1290 0.3655
0.004 10 0.04 3.2 0.1348 0.1785
0.005 10 0,05 1.0 0.1375 0.1818
0.0055 10 0.055 0.3 0.1386 0.1889
0.006 10 0.06 0 0.1400 0.1948

TABLE 9-21 Time-Domain Performance Attributes of System in Example 9-8-1
with Notch-Phase-Lag Controller

possible solutions to the problem  o f  m eeting the design specifications given. We can 
introduce a phase-lag co n tro lle r or a P I contro ller, among other possib ilities.

Second-Stage Phase-Lag C ontro lle r Design
Le t us design a phase-lag co n tro lle r as the second-stage co n tro lle r fo r  the system. The roots 
o f  the characteristic equation o f  the system w ith  the notch co n tro lle r are ai 
i  =  -1 9 9 5 4 . -3 1 .3 2 8 +  7316.36, and -3 1 .3 2 8  -  j3 16 .36 . The transfer function  o f the 
phase-lag co n tro lle r is

=  (“ < > )

where fo r design purposes we have om itted  the gain facto r l / o  in  Eq. (9-168).
Le t us select r  =  10 fo r  the phase-lag contro ller. Table 9-21 gives time-domain 

performance attributes fo r  various values o f  a. The best value o f  a  fro m  the overall 
perfonnance standpoint appears to be 0.005. Thus, the transfer function  o f  the phase-lag 
con tro lle r is

 ̂ \ + a T s  1 + 0 .0 5 j  ^

The forward-path transfer func tion  o f  the compensated system w ith  the notch-phase-lag 
con tro lle r is

 ̂ ^  s 2 0 .0 0 0 (5 +  100,000)(1 + 0 ,0 5 i)
C( . ) = G, . ( . ) C. , ( . ) G, ( . ) = ( 9 - 1 7 0 )

The unit-step response o f  the system is shown in Fig. 9-58. Because the step-eưor constant 
is 120.13. the steady-state speed eư or due to  a step input is 1/120.13. o r 0.839c.

Second-Stage PI Contro lle r Design
A  PỈ con tro lle r can be applied to the system to im prove the steady-state e rro r and ihe 
s tab ility  s im ultaneously. The transfer function  o f  the PI con tro l is w ritten
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Time (sec)

Figure 9-58 Unit-step responses o f speed-contfol system in Example 9-8-1.

We can design the P I co n tro lle r based on the phase-lag co n ư o lle rb y  w ritin g  Eq. (9*169) as

/ i  +  2 0 \
Gel ( i )  =  0 .0 0 5 1

i  +  o.iy
(9-172)

Thus, we can set Kp =  0.005 and K i/K p  =  20. Then, Af/ =  0.1. F ig, 9-58 shows the un it- 
step response o f  the system w id i the notch-PI contro ller. The attributes o f  the step response 
are as fo llow s:

% M axim um  overshoot =  1 %

Rise tim e tr =  0.1380 sec 

Settling tim e / j  =  0.1818 sec

w h ich  are extrem ely close to  ứiose w ith  the notch-phase-lag contro ller, except that in  the 
notch-PI case the steady-state ve loc ity  e rro r is zero when the input is a step function.

Sensitivity Due to Imperfect Pole-Zero Cancellation
A s m entioned earlier, exact cancellation o f  poles and zeros is almost never possible in real 
life . Le t us consider that the numerator po lynom ia l o f  the notch con tro lle r in Eq. (9-162) 
cannot be exactly realized by physical resistor and capacitor components. Rather, the 
transfer function  o f  the notch con tro lle r is more rea lis tica lly  chosen as

G c{s) =
ĩ ^ + 1 0 0 ĩ +  1 .0 0 0 .0 0 0

+  2 0 ,0 0 0 s  +  1 .0 0 0 ,0 0 0
(9 -1 7 3 )
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F ig . 9-58 shows the unit-step response o f  the system w ith  the notch conưoHer in  Eq. 
(9-173). The attributes o f  the unit'S tep response are as fo llow s;

% M ax im um  overshoot =  0.4%

Rise tim e ir  =  0.17 sec 

Settling tim e i f  =  0.2323 sec

Frequency*Domain Design
To cany out the design o f  the notch controller, we refer to  the Bode p lo t o f  Eq. (9-161) shown in 
F ig. 9-59. Due to  the complex-conjugate poles o f  Gp{s), the magnitude p lo t has a peak o f 24.86 
dB at 1095 rad/sec. From  the Bode p lo t in  Fig. 9-59, we see that we may want to  bring the 
magnitude plot down to - 2 0  dB at the resonant frequency o f  1095 rad/sec so that the resonance 
is smoothed out. This requừes an attenuation o f  -4 4 .8 6 d B . Thus, from  Eq. (9-155),

Í G c ( M ) l  =  - 4 4 . 8 6 d B = Ì  =  2 : ^  (9-174)
Cp ĩp

where is found fro m  Eq. (9-62). S o lv ing  fo r  Ịp  fro m  the last equation, we gel 
=  7.612. The attenuation should be placed at the resonant frequency o f  1095 rad/ 

sec; thus, (0„ =  1095 rad/sec. The notch con tro lle r o f  Eq. (9-162) becomes

s2 +  95.3s +  1 ,198,606.6  

+  1 6 ,6 7 0 .2 8 5 +  1 ,199,025 * ’

The Bode p lo t o f  the system w ith  the notch co n tro lle r in  Eq. (9-175) is shown in  Fig. 9-59. 
We can see that the system w ith  the notch co n tro lle r has a phase m argin o f  o n ly  13.7°, and 
M r  is 3.92.

To com plete the design, we can use a PI con tro lle r as a second-stage conưoller. 
F o llo w in g  the gu ide line g iven in  Section 9-3 on the design o f  a PI con tro lle r, we assume 
that the desired phase m arg in  is 80°. From  the Bode p lo t in  Fig. 9-59, we see that, to realize 
a phase m argin o f  80°, the new gain-crossover frequency should be (óg =  43 rad/sec, and 
the m agnitude o f  g (  ja jg j is 30 dB. Thus, fro m  Eq. (9-32),

Kp =  1 0 - | ° ( - ' " ; ) i r  =  1 0 -“ /20 =  0.0316 (9-176)

The value o f  K/ is determ ined using the gu ide line given by Eq. (9-25),

Because the o rig ina l system is type 0, the fina l design needs to  be refined by adjusting the 
value o f  K/. Table 9-22 gives the perform ance attributes when Kp =  0.0316 and K/ is varied 
from  0.135. From  the best m axim um  overshoot, rise tim e, and settling tim e measures, the 
best value o f  K/ appears to  be 0.35. The forw ard-path transfer function o f  the compensated 
system w ith  the notch-PI con tro lle r is

^  20 ,000(5  +  100,0 0 0 )(0 .0 3 16. +  0.35)

 ̂ ’ 5 (5 + 1 6 .6 9 ) (5 2 + I6 ,6 7 0 .2 8 j+  1 ,199,025) '   ̂ ^
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Figure 9-59 Bode plots o f the uncompensated speed-control system in Example 9-8-1, with 
notch controiler and w ith notch-PI conưoller.

F igu re  9 -59  shows the Bode p lo t o f  the system  w ith  the n o tch -P I co n tro lle r, 
w ith  Kp =  0 .0316 and K/ =  0.35. The un it-s tep  responses o f  the com pensated system 
w ith  Kp  =  0 .0316 and K/ =  0.135, 0.35, and 0 .40  are shown in  F ig . 9-60.
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TABLE 9-22 Performance Attributes of System in Example 9-8-1 w ith  Notch-PI Controller
Designed in Frequency Domain

0.0316
0.0316
0.0316
0.0316
0.0316
0.0316

PM
(deg)

Maximum 
Overshoot (%;

Ir
(sec) (sec)

0.1
0.135
0.200
0.300
0.350
0.400

76.71
75.15
72.22
67.74
65.53
63.36

1.00
1.00
1.00

1.00
1.00
1.00

0
0
0
0
1.6

4.3

0.2986
0.2036
0.0430
0.0350
Q.0337
0.0323

0.5758
0.4061
0.2403
0.1361
0.0401
0.0398

Time (sec)

Figure 9-60 Unit-step responses o f speed-conưol system in Example 9-8-1 with notch-PI conưoller,

= *2  + 16 ,670  28' +  1 199 025 G.2W  =  0.0316 +

9 - 9  F O R W A R D  A N D  F E E D F O R W A R D  C O N T R O L L E R S

T h e  c o m p e n s a tio n  schem es d iscu ssed  in  th e  p re c e d in g  s e c tio n s  a l l  have one degree o f 

fre e d o m  in  th a t th e re  is  e s s e n t ia lly  one c o n tro l le r  in  th e  sys te m , a lth o u g h  th e  c o n ư o lle r  can 

c o n ta in  s eve ra l stages c o n n e c te d  in  se ries  o r  in  p a ra lle l. T h e  lim ita t io n s  o f  a o n e -d eg re e -o f- 

fre e d o m  c o n tr o l le r  w e re  d iscu ssed  in  S e c tio n  9 -1 . T h e  tw o -d e g re e -o f - fre e d o m  com pensa

t io n  schem e sh o w n  in  F ig . 9 -2 (d )  th ro u g h  F ig . 9 - 2 ( 0  o f fe rs  de s ig n  f le x ib i l i t y  w he n  a 

m u lt ip le  n u m b e r o f  d e s ig n  c r ite r ia  ha ve  to  be s a tis fie d  s im u lta n e o u s ly ,
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From  Fig. 9-2(e), the closed-loop transfer function  o f  the system is 

y (^ )  G c fi^ ) G M G ,( s )
R ( s ) -  l + G M G . i s )  ’

and the e rro r transfer function is

m .
R (s) l+ G c {s )G p {s )

(9-180)

Thus, the con tro lle r Gcis) can be designed so that the e rro r transfer function  w il l  have 
certa in  desirable characteristics, and the co n tro lle r Ccf(s) can be selected to  satisfy 
perform ance requirements w ith  reference to  the inpu t-ou tpu t re la tionship. A nother way 
o f  describ ing the fle x ib ility  o f  a two-degree-of-freedom  design is that the conư o lle r Gi;(s) is 
usually designed to  provide a certain degree o f  system stab ility  and performance, but 
because the zeros o f  Gc(s) always become the zeros o f  the c losed-loop transfer function, 
unless some o f  the zeros are canceled by the poles o f  the process transfer function , Gp(s), 
these zeros may cause a large overshoot in  the system output even when the rela tive 
dam ping as detennined by the characteristic equation is satisfactory. In  th is case and fo r 
other reasons, the transfer function  Gcf(s) m ay be used fo r  the con tro l o r cancella tion o f  the 
undesirable zeros o f the closed-loop transfer function , w h ile  keeping the characteristic 
equation intact. O f course, we can also introduce zeros in  Gcfis) to cancel some o f  the 
undesirable poles o f  the closed-loop transfer function  that could not be otherw ise affected 
by the con tro lle r Gc(s). The feedforward compensation scheme shown in  F ig . 9 -2 (f) serves 
the same purpose as the fo rw ard  compensation, and the difference between the tw o  
configurations depends on system and hardware im plem entation considerations.

I t  should be kept in  m ind that, w h ile  the forward and feedforward compensations may 
seem powerful because đ iey can be used directly fo r  ứie addition or deletion o f  poles and zeros 
o f  ứie closed-ioop ttansfer function, ứiere is a fundamental question invo lv ing the basic 
characteristics o f feedback. I f  the forward or feedforward conưoller is so powerful, ứien why do 
we need feedback at all? Because Gcf(s) in the systems o f  Figs. 9-2(e) and 9-2(f) are outside the 
feedback loop, the system is susceptible to parameter variations in Therefore, in reality, 
these types o f  compensation cannot be satisfactorily applied to  all situations.

XAMPLE 9-9*1 As an illustration o f the design o f the forward and feedforward compensators, consider the second- 
order sun-seeker system with phase-lag conưol designed in Example 9-6-1. One o f the disadvantages 
o f phase-lag compensation is that the rise time is usually quite long. Let us consider that the phase- 
lag-compensated sun-seeker system has the forward-path transfer function

The time-response attributes are as follows:

Maximum overshoot =  2.5%

=  0.1637 sec 

=  0.2020 sec

We can improve the rise time and ihe settling lime while not appreciably increasing the overshoot by 
adding a PD controller Cự(s) to the system, as shown in Fig. 9-61 (a). This effectively adds a zero to 
the closed-loop transfer function while not affecting the characteristic equation. Selecting the PD 
controller as

Ccfis] =  1 + 0 .0 5 i  Í9-182)
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CONTROLLER
à ỷ )

CONTROLLER «(f). 
g J s )

CONT1ỈOLLED

(b)

Figure 9-61 (a) Forward compensation with series compensation, (b) Feedforward compensation 
with series compensations.

Maximum overshoot =  4.3% 

=  0.1069 sec 

=  0.1313sec

libutes are as follows:

I f  instead the feedforward configuration o f Fig. 9-61(b) is chosen, tíie transfer function o f Cffl(5) is 
dữectly related to Cợ-(5); that is, equating the closed-Ioop ưansfer functions o f  the two systems in 
Figs. 9-61(a) and 9-61(b), wc have

[G cfi is) +  Gc(^)]Cp(^) G ^G .(.)G p (.)
l + C , { 5 ) G p ( i )  l+ G , ( i ) G p ( i )

Solving for Grfi(s) from Eq. (9-183) yields

C . / iW = [ G , / ( s ) - l ] G , ( s )  (9-184)

Thus, with as given in Eq. (9-179), we have the ưansfer function o f the feedforward controller:

(9-183)

(9-185)

<

►  9 - 1 0  D E S I G N  OF R O B U S T  C O N T R O L  S Y S T E M S

I n  m a n y  c o n t r o l - s y s t e m  a p p l i c a t i o n s ,  n o t  o n ly  m u s t  t h e  s y s t e m  s a t i s f y  t h e  d a m p in g  and  

a c c u r a c y  s p e c i f i c a t i o n s ,  b u t  th e  c o n t r o l  m u s t  a l s o  y ie ld  p e r f o n n a n c e  th a t  i s  r o b u s t  

( in s e n s i t i v e )  t o  e x t e r n a l  d i s t u r b a n c e  a n d  p a r a m e t e r  v a r i a t i o n s .  W e  h a v e  s h o w n  tha t 

f e e d b a c k  in  c o n v e n t io n a l  c o n t r o l  s y s t e m s  h a s  t h e  i n h e r e n t  a b i l i t y  t o  r e d u c e  th e  e ffe c ts  

o f  e x t e r n a l  d i s t u r b a n c e  a n d  p a r a m e t e r  v a r i a t i o n s .  U n f o r tu n a t e ly ,  r o b u s tn e s s  w ith  the  

c o n v e n t io n a l  f e e d b a c k  c o n f ig u r a t io n  is  a c h i e v e d  o n ly  w i th  a  h ig h  lo o p  g a in ,  w h ic h  is 

n o r m a l ly  d e t r i m e n t a ]  t o  s ta b i l i ty .  L e t  u s  c o n s id e r  t h e  c o n t r o l  s y s t e m  s h o w n  in  F ig .  9 -6 2 .

Figure 9-62 Conưol system with disturbance.



The external disturbance is denoted by the signal d(t), and we assume that the am p lifie r 
gain K  is subject to  varia tion during  operation. The inp u t-o u tp u t ưansfer function  o f  ihe 

system when d{t)  =  0 is

K C ^(s)G c (s:)0 ,{s)

and the dis turbance-output transfer func tion  when r ( f )  =  0 is

In  general, the design sưategy is to  select the co n tro lle r Gc{s) so ữiat the output y (0  is 
insensitive to  the disturbance over the frequency range in  w h ich  the la tte r is dom inant and 
to  design the feedforw ard co n tro lle r Gcf{s) to  achieve the desired transfer func tion  between 
the inpu t r(t) and the output y{t).

Let us define the sensitiv ity o f  M{s) due to  the varia tion o f  Af as

percent change in  M ( i )  ^  dM {s)ỊM {s) ( 9 - m )
^  percent change in / l  d K /K

Then, fo r  the system in  F ig . 9-62.

w h ich  is identica l to Eq. (9-187). Thus, the sensitiv ity function  and the disturbance-output 
transfer function  are identica l, w h ich  means that disturbance suppression and robustness 
w ith  respect to variations o f  K  can be designed w ith  the same contro l schemes.

The fo llo w in g  example shows how the two-degree-of-freedom  contro l system o f  Fig. 
9 -62 can be used to achieve a h igh-gain system that w il l  satisfy the perform ance and 
robustness requirements, as w e ll as noise rejection.

KAMPLE 9-10-1 Let us consider the second-order sun-seeker system in Example 9-6-1, which is compensated wilh 
phase-lag control. The forward-path transfer function is

where AT =  I . The forward-path transfer function o f the phase-lag-compensated system with a =  0.1 
and r =  100 is

Because the phase-lag controller is a low-pass filter, the sensitivity o f the closed-loop transfer 
function M{s) with respect to K  is poor. The bandwidth o f  the system is only 13.97 rad/sec, but i l  is 
expected that |5 ^ ( ja>)| w ill be greater than unity at frequencies beyond 13.97 rad/sec. Fig. 9-63 
sh o w s th e  u n it-s te p  re sp o n se s  o f  ih e  sy s te m  w h e n  / Í  =  1, th e  n o m in a l v a lu e , a n d  Ẩ’ =  0 .5  a n d  2 .0 . 
Notice thal, i f  for some reason, the forward gain K  is changed from its nominal value, the system 
response o f the phase-lag-compensated system would vary substantially. The attributes o f the step 
responses and the characteristic equation roots are shown in Table 9-23 for the three values o f K. 
Fig. 9-64 shows the root loci o f the system with the phase-lag conưoller. The two complex roots o f the 
characteristic equation vary substantially as K  varies from 0.5 to 2.0,

9-10 Design of Robust Conưol Systems •* 591
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Time (sec)

Figure 3-63 Unit-step responses o f the second-order sun-seeker system with phase-lag conưoller, 
2500( 1 +  IQj)

G(5) =
5(í  +  25)(1 +  IOOj )'

TABLE 9-23 Attributes of Unit-Step Response of Second-Order Sun-Seeker System with 
Phase-Lag Controller in Example 9-10-1

K Maximum Overshoot (%) tr (sec) ts (sec) Roots o f Characteristic Equation

2.0 12.6 0.07854 0.2323 -0.1005 -  12.4548 ±  jl8.51
1.0 2.6 0.1519 0.2020 -0.1009 -  12.4545 ±y-9.624
0.5 1.5 0.3383 0.4646 -0.1019 -  6.7628 -  18,1454

Toolbox 9-10-1
Fig. 9-63 is obtained by ihe follow ing sequence o f  M ATLAB functions  

K = 1 ;
num = K * 2 5 0 0  * [1 0  1 ]
d e n  = c o n v ( [ l  25 0 ]  , [ 1 0 0 1 ] ) ;
[n u m C L ,d e n C L ]= c lo o p C n u m ,d e n ) ; 
s te p C n u m C L , d e n C L )

h o ld  o n ;

K =  2 :
num = K *2 5 0 0  * [1 0  1 ]
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den = conv([l 25 0]. [100 1]); 
[n u m C L , d e n C L ]= c lo o p ( n u n i , d e n )  ; 
s te p C n u m C L , d e n C L )

hold on;
K=0.5;
nxim = K*2500 * [10 1] 
den = conv([l 25 0] . [100 1]); 
[ n u m C L ,d e n C L ]= c lo o p ( n u jn .d e n )  Í 
s t e p ( num C L, d e n C L )

hold on;
axis([0 10 1.2]): 
grid

Figure 9-64 Root loci o f ứie second-order sun-seeker system with phase-lag conữoller. 
2500(1 +  105)

C (s):
i(s  +  25){l +  lOOi)'
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The design Sữategy o f the robust controUer is to place two zeros o f the ccKrtrollCT near die desired 
closed-loop poles, which according to ửie phase-lag-compensaled system are al J =  -12.455 ±/9.624. 
Thus, we let the conữoUer transfer function be

^  ( . + 1 3 +  j l O ) ( ^  1 3 -^ 1 0 )  ^  +
269 269

The forward-path Uansfer function o f the system with the robust conưoller is 

9 .2 9 3 7 i:fj2 ^ 2 6 5  +  269)

^
Toolbox 9-10-2
Fig. 9-64 is obtained by the follow ing sequence o f  M ATLAB functions  

K= 1;
num = K * 2 5 0 0  * [1 0  1 ]
d e n  = c o n v ( [ l  25 0 ]  . [1 0 0  1 ] ) :
[n u m C L , d e n C L ] = c lo o p C n u m , d e n )  
r lo c u s C n m n C L .d e n C L ) I

h o ld  o n

K =  2:
num = K * 2 5 0 0  *  [1 0  1 ]
d e n  = c o n v ( [ l  25 0 ]  , [ 1 0 0 1 ] ) ;
[n u m C L , d e n C L ] = c lo o p C n u m , d e n )  
r lo c u s ( n u m C L ,d e n C L ) ;

h o ld  o n

K =  1 ;
n im  = K *2 5 0 0  *  [1 0  1 ]
d e n =  c o n v ( [ l  25 0 ] ,  [ 1 0 0 1 ] ) ;
r l o c u s ( n n m , d e n ) ;

h o ld  o n

K =  2:
num = K * 2 5 0 0  * [1 0  1 ]
d e n  = convC  [1  25 0 ]  , [ 1 0 0 1 ] ) ;
r lo c u s ( n u m . d e n ) ;

h o ld  on

Fig. 9-65 shows the root loci o f the system with ihe robust conffoller. By placing the two zeros o f G^s) 
near the desired characteristic equation rools, ihe sensitivity o f ứ>e system is greatly improved. In faa  
the root sensitivity near the two complex zeros at which the root loci terminate is very low, Fig. 9-65 
shows that, when K  approaches infinity, the two characteristic equation roots approach -1 3  ±  yio.

Toolbox 9-10-3
Fig. 9-65 is obtained by the follow ing sequence o f  M ATLAB functions  

K = l ;
n u m =  9 .2 9 3 7 * K  ^-^[1 26 2 6 9 ] 
d e n =  [1  25 0 ]  :
[num C L, d e n C L ] = c lo o p C n u m , d e n )  
r lo c u s ( n u m C L ,d e n C L ) ;
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h o l d  o n  

K =  2 :
n u m =  9 . 2 9 3 7 * K  * [ 1  2 6  2 6 9 ]  
d e n =  [ 1  2 5  0 ]  :
[ n i im C L ,  d e n C L ]  = c l o o p ( n u j n ,  d e n )  
r l o c u s C n u m C L . d e n C L ) ; 
h o l d  o n

K= 1;
n \ u n =  9 . 2 9 3 7 * K  * [ 1  2 6  2 6 9 ]  
d e n =  [ 1  2 5  0 ]  ; 
r l o c u s C n u m , d e n ) ;

h o l d  o n

K =  2 ;
n u m  =  9 . 2 9 3 7 * K  * [ 1  2 6  2 6 9 ]  
d e n =  [ 1  2 5  0 ]  ; 
r l o c u s  C n i im , d e n )  ; 
a x i s ( [ - 3 5  2 - I S  1 5 ] )
96 g r i d

K=2 
-12.9745 + 7 9 .3 2 3 6 '

-12.9514+78.6676
K = Q.5 

-12.9115+77.393

F ig u re  9-65 R o o t loci o f  th e  se co n d -o rd e r  su n -se e k e r  sy s te m  w ith  ro b u st co n tro ller ,

9.2937 í í ( i 2 +  26s +  269)

= ------------Í 7 Ĩ 2 5 Ì ------------■
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©ríí)

GẶS)

D(s)

ĨSữữK I 
s i s + w

c^(i) Gpis)

Figure 9-66 Second-order sun-seeker system w ith robust conưoller and forward coD ữoller.

Because the zeros o f the forward-path ưansíer function are identical to the zeros o f the closed- 
ỉoop transfer function, the design is not complete by using only the series conưoỉler G r(j), because the 
closed-ioop zeros w ill essentially cancel the closed-loop poles. This means we must add ứie forward 
conưoller. as shown in Fig. 9-62, where G(fis) should contain poles to cancel the zeros o f + 
26s +  269 o f the closed-loop tfansfer function. Thus, the transfer function o f the forward controlleris

(9-194)

'I lu iiv iiv / ii. I  Ilua, Liiw xtoitatKti

, , 269
% (» )  -  j2 +  26s +  269

The block diagram o f the overall system is shown in Fig. 9-66. The closed-loop ưansíer function of 
the compensated system with AT =  1 is

0 „(5 ) 242.88
0 , ( j )  s 2 ^2 5 .9 0 3 i + 242.88

(9-195)

The unit-step responses o f the system for K = 0.5, 1.0, and 2.0 are shown in Fig. 9-67, and their 
attributes are given in Table 9-24. As shown, the system is now very insensitive to the variation of K.

Because the system in Fig. 9-66 is now more robust, it is expected that the disturbance effect will 
be reduced. However, we cannot evaluate the effect o f the controllers in the system o f Fig. 9-66 by

Time (sec)

Figure 9-67 Unit-slep responses o f the second-order sun-seeker system with robust controller 
and forward controller.
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TABLE 9-24 Attributes of Unit-Step Response of Second-Order Sun-Seeker System w ith
Robust Controller in Example 9-10-1

K
Maximum 

Overshoot (%) (séc) (sec)
Roots o f 

Characteristic Equation

2.0 1.3 0.1576 0.2121 -12.9745 ±ý9.3236

1.0 0.9 0.1664 0.2222 -12.9514 ± ;8 .6 676
0.5 0.5 0.1846 0.2525 -12.9115 ±;7 .3 930

_  -20

I 
ẳ

-30

-40

-60
/

System with 
phaU-lag control

/

/

I llllllll I II
Uncompensated system

System with robust 
and forward controllers

10° 10‘ 10̂  10̂  10'‘ 10̂  

w(rad/sec)

Figure 9-68 Amplitude Bode plot o f response due to noise o f second-order sun-seeker system.

applying a unit-slep function as d ịi ị  The true improvement on the noise rejection propenies is more 
appropriately analyzed by investigating the frequency response o f &o(s)/D{s). The noise-to-output 
ưansfer function, written from Fig, 9-66, is

& o{s)________ 1______________ i ( j  +  25)
D (i) 10,2937s2 +  266.636s +  2500

(9-196)

The amplitude Bode plot o f Eq. (9-196) is shown in Fig. 9-68. along with those o f the uncompensated 
system and the system with phase-lag control. Notice that the magnitude o f the frequency response 
between D{s) and ®a{s) is much smaller than those o f the system without compensation and with 
phase-lag control. The phase-lag control also accentuates the noise for frequencies up to approxi
mately 40 rad/sec, adding more stability to the system. ^

[AMPLE 9-10-2 In this example, a robust controller with forward compensation is designed for the third-order sun- 
seeker system in Example 9-6-2 with phase-lag conưol. The forward-path transfer function o f the 
uncompensated system is

I n n n K
(9-197)

156,250,000/^ 
“ s(s^ +  625s +  156.250)
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Figure 9-69 Root loci o f the ihird-order sun-seeker system with robust and forward conưollers.

where K =  1. The root loci o f the closed-loop system are shown in Fig. 9-50. which lead to the phase- 
lag control with results shown in Table 9-19. Let us select the parameters o f the phase-lag conffoller as 
ứ =  0.1 and T  = 20. The dominant rools o f the characteristic equation are s = —187.73 ±  _/164.93.

Lei us place the two zeros o f the second-order robust conưoller at -1 8 0  ±  ý 166.13, so that ứie 
controller transfer function is

5  ̂ +  3605 +  60,000
60.000

(9-198)

To ease the high-frequency rea lem o f the controller, we may add two nondominani poles
to Cc(s). The following analysis is carried out with c,(s) given in Eq. (9-198), however. The root loci 
o f the compensated system are shown in Fig. 9-69. Thus, by placing the zeros o f the conưoller very

TABLE 9-25 Attributes of Unit-Step Response and Characteristic Equation Roots of Third-Order 
Sun-Seeker System with Robust and Forward Controllers in Example 9-10-2

K
Maximum 

Overshoot (%) ?r(sec) f, (sec)
Characteristic 

Equalion Roois

0,5 1.0 0.01115 0.01616 -1558.1 -  184.5 ±  >126.9
].o 2.1 0.01023 0.01414 -2866.6 -  181.3 =  }l47.1
2.0 2.7 0.00966 0.01313 -5472.6 -  180.4 ± }l5 6 .8
10.0 3.2 0.00924 0.01263 -26307 -  180.0 x;164 .0



close to the desired dominant roots, the system is very insensitive to changing values o f K  near and 
beyond the nominal value o f K. The forward controller has the transfer function

The attributes o f the unit-step response for K =  0.5. 1.0. 2.0, and 10.0 and the coưesponding 
characteristic equation roots are given in Table 9-25. <

► EXAMPLE 9-1Q-3 In this example, we consider the design o f a position-control system that has a variable load inertia.
This type o f situation is quite common in conưol systems. For example, the load inertia seen by the 
motor in an electronic printer w ill change when different printwheels are used. The system should 
have satisfactory performance for all the printwheels intended to be used with the system.

To illustrate the design o f a robust system that is insensitive to the variation o f load inertia, 
consider that the forward-path transfer function o f a unity-feedback control system is

KK-

The system parameters are as follows:

K i =  m otor torque constant =  1 N-m/A

Kf, = motor back-emf constant =  1 v/rad/sec

R = motor resistance =  1 n

L  = motor inductance =  0.01 H

B = motor and load viscous-friction coefficient ^ 0

J  = motor and load inertia, varies between 0,01 and 0.02 N-m/rad/sec^

K -  amplifier again 

Substituting these system parameters into Eq. (9-200). we get

For 7 ^ 0 .0 2  ,9-202,

The performance specifications are as follows:

Ramp eưor constant >  200 

Maximum overshoot <  5% oras small as possible 

Rise time fr <  0.05 sec 

Settling timer, < 0.05 sec

These specifications are CO be maintained for 0.01 < J <  0.02,
To satisfy the ramp-error constant requiremenl. the value o f K must be at least 200. Fig. 9-70 

shows the root loci o f the uncompensated system fo r7  =  0.01 and J = 0.02. We see that, regardless 
o f Ihe value o f J. the uncompensated system is unstable for K >  100.

T o a ch ie v e  ro b u s t c o n tro l , le t us c h o o se  th e  sy s te m  c o n fig u ra tio n  o f  Fig- 9 -6 H a ) . W e in tro d u c e  a 
s e c o n d -o rd e r  se rie s  c o n tro l le r  w ith  th e  ze ro s  p la ce d  n e a r  the  d e s ire d  d o m in a n t c h a ra c te r is t ic  eq u a tio n  
o f the compensated system. The zeros should be so placed that the dominant characteristic equation 
ro o ts  w o u ld  b e  in se n sitiv e  to  the  va ria tio n  in  J. T h is  is d o n e  by p la c in g  th e  tw o  ze ro s  a t - 5 5  ±  )4 5 , 
a lth o u g h  the  e x a c i lo catio n  is u n im p o rta n i. B y  c h o o s in g  th e  iw o  c o n lro l le r  z e ro s  a s  d e s ig n a te d , the 
roo l loc i o f  the compensated system show that the IWO com plex roots o f  the characteristic equaiion 
w ill  be very close to  these zeros fo r various values o f y. especia lly when the value o f  K  is large. The 
transfer function  o f the robust con tro lie r is

9-10 Design of Robust Control Systems 599
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Figure 9-70 Root loci o f the position-conữol system in Example 9-10-3 with robusi and 
forward conưollers.

As in the last example, we may add two nondominant poles to G<(i) to ease the high-frequency 
realization problem o f the controller. The analysis is carried out with G,(5) given in Eq. (9-203).

Let AT =  1000, although 200 would have been adequaie to satisfy the Ky requirement. Then, for 
J =  0.01, the fonvard-path transfer function o f the compensated system is

and for J  =  0.02,

 ̂ 9 9 0 .9 9 ( j - +  1105 + 5 0 5 0 )

“  5(í 2 +  100s+  5000)
(9-205)
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TABLE 9-26 Attributes of Unit-Step Response and Characteristic Equation Roots of System with
Robust and Forward Controllers in Example 9-10-3

Maximum Roots of
J  N-m/rad/sec^ Overshoot (%) i.(sec) i,(sec) Characteristic Equation

0,01 J.6 0.03453 0.04444 -1967  -  56.60 ±  y43.3
0.02 2.0 0.03357 0.04444 -978.96 -  55.57 ±  >44.94

To cancel ưte two zeros o f ư>e closed-loop transfer function, the transfer function o f  the forward 
conưoller is

5050

The attributes o f  the unit-step response and the characteristic equation roots o f  the compensated 
system with K =  1000, J  = 0.01, and /  =  0.02 are given in Table 9-26. <

► 9 - 1 1  M I N O R - L O O P  F E E D B A C K  C O N T R O L

The conưol schemes discussed in  the preceding sections have a ll u tilize d  series contro llers 
in  die fo rw ard  path o f  the m ain loop  o r  feedforw ard patíi o f  the conưol system. A lthough 
series contro llers are the most com m on because o f  theữ s im p lic ity  in  Im plem entation, 
depending on the nature o f  the system, sometimes there are advantages in  p lac ing  tìie 
c o n tro lle r in  a m ino r feedback loop, as shown in  F ig . 9-2(b). For example, a tachometer 
may be coupled d irec tly  to  a dc m o to r not o n ly  fo r  the purpose o f  speed ind ica lion  bu t more 
o ften fo r  im prov ing  the s tab ility  o f  the c losed-loop system by feeding back the output 
signal o f  the tachometer. The m otor speed can also be generated by processing the back 
e m f o f  the m otor electron ica lly. In  princ ip le , the P ID  con tro lle r o r phase-lead and phase-lag 
con tro lle rs  can a ll, w ith  varying degrees o f  effectiveness, be applied as m inor-loop  
feedback conưollers. Under certain conditions, m ino r-loop  conưol can y ie ld  systems 
that are more robust, that is, less sensitive to  external disturbance o r internal parameter 
variations.

9-11-1 R ate-Feedback or Tachom eter-Feedback Control

T he p rinc ip le  o f  using the derivative o f  the actuating signal to  im prove the dam ping o f  a 
c losed-loop system can be applied to  the output signal to  achieve a s im ila r effect. In  other 
words, the derivative o f  the input signal is fed back and added algebra ica lly to  the actuating 
signal o f  the system. In  practice, i f  the output variable is m echanical displacement, a 
tachom eter may be used to  convert mechanical displacement in to  an e lectrica l signal that is 
proportiona l to  the derivative o f  the displacement. Fig. 9-71 shows the b lock  diagram o f  a 
con tro l system w ith  a secondary path that feeds back the derivative o f  the output. The

Cpíí)

Figure 9-71 Conưol system with tachometer feedback.
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transfer func tion  o f  the tachom eter is denoted by KrS, where K, is the tachom eter constan 
usually expressed in  vo lts  per radian per second fo r  ana ly tica l purposes. C om m ercia lly, /  
is given in  the data sheet o f  the tachometer, typ ica lly  in  vo lts  per 1000 rpm . The effects c 
rate o r tachometer feedback can be illus tra ted  by app ly ing  i t  to  a second-order prototyp 
system. C onsider that the con tro lled  process o f  the system shown in  Fig. 9-71 has th 
transfer function

The closed-loop transfer func tion  o f  the system is

> ; W -  , ______  (9.2,
R{s) +  KiO>l)s +  <ol

and the characteristic equation is

+  {2Ca>„ +  KrO)l)s +  o > l= 0  (9-209

From  the characteristic equation, it is apparent that the effect o f  the tachom eter feedbad  
is the increase o f  the damping o f  the system , since K ( appears in the sam e term  as th( 
dam ping ratio

In  th is  respect, tachom eter-feedback c o n tro l has e xa c tly  the same e ffe c t as the PC 
c o n tro l. H ow ever, the c losed -loop  trans fe r fu n c tio n  o f  the system  w ith  PD contro l ir 
F ig . 9-3 is

Y j s )  a , l i K ,  +  K o s )

R{s) +  (2 ^0) +  KdíÓ^)s +  cứ^Kp

C om paring  the tw o  trans fe r fu n c tio n s  in  Eqs. (9 -2 0 8 ) and (9 -210 ), we see tha t the twc 
cha rac te ris tic  equations are id e n tic a l ' ị f K p = \  and ATữ =  K,. H ow ever, Eq. (9 -210) hai 
a zero at Í  =  -K p /K o .  whereas Eq. (9 -208 ) does no t. Thus, the response o f  the systeir 
w ith  tachom eter feedback is u n iq u e ly  de fined b y  the ch a ra c te ris tic  equation , whereas 
the response o f  the system w ith  the PD c o n tro l a lso depends on the zero ai 
s =  —K p /K o ,  w h ich  co u ld  have a s ig n ific a n t e ffe c t on the overshoot o f  the Stef 
response.

W ith  reference to the steady-state analysis, the fo rw ard-path transfer function o f  the 
system w ith  tachometer feedback is

E{s) s{s +  2^0)„+ K i0)l)

Because the system is s till type 1, the basic characteristics o f  the steady-state error are noi 
altered by the tachometer feedback; that is, when the input is a step function , the steady' 
state eư or is zero. For a un it-ram p function  input, the steady-state e rro r o f  the system ii 
( 2 f  +  K,íOn)Ịwn, whereas that o f  the system w ith  PD contro l in  Fig. 9-3 is 2^Ị(U„. Thusjo l 
a type Ỉ  system , tachom eter fee d b a ck  decreases the ramp-error constant Ky but does no 
affect the step-error constant Kp.



9-11-2 M inor-Loop  Feedback Control w ith  A ctive  F ilter

Instead o f  using a tachometer, an active filte r  w ith  R C  elements and op-amps can be used to 
reduce cost and save space in  the m in o r feedback lo op  fo r compensation. We illustra te  this 
approach w ith  the fo llo w in g  example.

► EXAMPLE 9-11-1 Consider that, for ỬÍ6 second-order sun-seeker system in Example 9-6-1, instead o f using a series 
controller in the forward path, we adopt the minor-loop feedback control, as shown in Fig. 9-72(a), with

9-11 Minor-Loop Feedback Control 603

H{s) =
K,s

l  +  7 i
To maintain the system as type 1, it is necessary ứiat H{s) contain

(9-2J3)

at Í  =  0. Eq. (9-213) can be 
realized by the op-amp cứcuit shown in Fig. 9-72(b). This cứcuit cannot be applied as a series conffoUer 
in ihe forward path, because it acts as an open circuit in the steady state when ủie frequency is zero. As a 
minor-loop conưoller, ửie zero-ffansmission property to dc signals does not pose any problems.

The forward-path Uansfer function o f the system in Fig. 9-72(a) is

'  1 + G ^W H (5 )

2500(1 +  Ts)
(9-214)

j [(5 +  25)(1 +  7 i)  +  2500a:,]

The characteristic equation o f the system is

r p  +  (2 5 r +  l)s^ +  (25 + 2500r +  2500A:,)5 + 2500 =  0 (9-215)

To show the effects o f the parameters/l, and T, we consinict the root contours o f Eq. (9-215) by first 
considering that K, is fixed and T  is variable. Dividing both sides o f Eq. (9-215) by ihe terms that do 
not contain T. we get

ri(i2+25í +  2500)
j2 +  (25 +  2 5 W ) i  +  5000

(9-216)

When the value o f K, is relatively large, the two poles o f the last equation are real with one very close 
to the origin. I t  is more effective to choose K, so that the poles o f Eq. (9-216) are complex.

Cpis)
0„(i)

Hịs)

Figure 9-72 (a)
Sun-seeker control 
system with minor- 
loop conưol. (b) Op- 
amp circuit 
realization o f 

K,s 
I +Ts'
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i-plane
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Figure 9-73 Root contours o f Ts^ + {25T +  1 )i^  +  (25 +  2500AT, +  2 5 0 0 r) i +  2500 =  0.
K, =  0.02.

Fig. 9-73 shows the root contours o f Eq. (9-215) w ith K, =  0.02, and T  varies from 0 to 00. 
When T =  0.006, the characteristic equation roots are at -56.72, —fi lA l  +  )52.85, and 

-67.47 -  y'52.85. The anributes o f tìie unit-step response are as follows:

Maximum overshoot =  0 

f, =  0.04485 sec 

t, =  0.06061 sec 

fmax =  0.4 sec

The ramp-error constant o f the system is

=  lim  sG{s) =
1 +  iooa:,

(9-217)

Thus, just as with tachometer feedback, Uie minor-loop feedback controller o f Eq. (9-213) reduces ứie 
ramp-eưor constant Ky, although the system is still type 1. ^
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► 9 - 1 2  A  H Y D R A U L I C  C O N T R O L  S Y S T E M

In  th is case study, we model a four-w ay e lectro -hydrau lic-va lve  contro l o f  a linear actuator. 
A fte r  deriv ing  the m athematical model fo r the system, we apply the model to do position 
con tro l fo r  three d iffe ren t applications; 1) robot arrn jo in t (translational system), 2) 
d ropping a d isk in to  a hole (rotational system), and 3) variable load. A t the end. we 
design p, PD, P I, and P ID  contro llers fo r  the robo t-a rm -jo in t system.

A  schematic diagram o f  the system fo r  the first application (robot arm jo in t)  is shown 
in  F ig. 9-74. The diagram is the same fo r  a ll the applications except fo r  the load. This 
system consists o f  a double-acting single rod  linear actuator, a two-stage electro-hydraulic 
valve, con tro lle r c ircu itry , and potentiom eter. The input to the system is the voltage 
corresponding to  the desired output position o f  the load. The output position is fed back 
through the potentiometer. The output voltage o f  the potentiom eter gets subtracted from  
the input voltage to  produce the erro r signal. Th is  erro r signal is used to  con tro l the position 
o f  the m ain valve displacement, w h ich  controls the pressure leve l and flow  rate entering and 
leaving the linear actuator. The output force exerted by the linear actuator rod is d irectly  
proportiona l to the pressure d ifference between tw o sides o f  the piston.

9-12-1 M odeling  L inear A ctuator

A  double-acting single rod actuator is shown in  F ig. 9-75. We ca ll i i  double acting since its 
p iston can be forced in  both r ig h t and le ft directions. The d irection  o f  the piston movement 
depends on the pressure difference on the tw o  sides o f  the piston; port A  and po rt B. We call 
th is actuator single rod since the piston is connected to  on ly  one rod.
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Figure 9-75 Schematic of 
double-acting single rod 
actuator.

The hydrau lic  flu id  can enter and e x it the actuator fro m  e ither port A  o r port B. The 
m agnitude o f  the flo w  and pressure o f  ports A  and B  are con tro lled  by the four-w ay valve 
explained in  the fo llo w in g  section. For now, we w ant to  develop a re la tionship between 
the flu id  pressures in  port A  and port B , the area o f  the piston (A), and the displacement of 
the piston rod.

We can take sides A  and B o f  the piston to  have the same area A. Igno ring  the pressure 
transient e ffect o f  the actuator, we can express the applied force F  to  the actuator as

F  =  [A P A -A P B )r)f (9-218)

Note that in  Eq. (9-218) rjfis the force effic iency o f  the actuator, w h ich  is due to  the friction 
o f the piston and the viscous shear o f  the hydrau lic  flu id . The force e ffic iency is always less 
than one. For ideal actuators, we can consider the force e ffic iency to  be one.

V o lum etric e ffic iency, rji,. is another source o f  non-idea lity  in  linear actuators. The 
vo lum etric  e ffic iency w il l  always be less than one due to  hydrau lic  flu id  compression and 
leakage past the piston. We can express vo lum etric  e ffic iency as

Av

" ' ' ~ Q a
(9-219)

where A is the area o f  the piston, and V is the ve loc ity  o f  the piston. For an ideal case, we can 
neglect the leakage and consider the hydrau lic  flu id  to be incompressible. For an ideal case, 
we can w rite

Qa = A v =  A z (9-220)

Th is  equation is based on the law  o f  conservation o f  mass in flu id  mechanics shown in Eq. 
4-124.

9-12-2  Four-W ay Electro-Hyciraulic V alve

The fo u r-w a y  e lec tro -h yd ra u lic  valve is a iwo-stage con tro l valve that takes voltage as 
inpu t and provides the required f lu id  flo w  and pressure to  the actuator. The firs t stage of 
the valve is an e le c tr ic a lly  actuated hyd ra u lic  va lve, w h ich  con tro ls  the displacem ent of 
the spool o f  the second stage o f  the valve. The second stage is a fo u r-w a y  spool valve, 
w h ich  con tro ls  the flu id  flo w  and pressure in to  and ou t o f  ports A  and B o f  the actuator. 
The firs t stage its e lf  is not capable o f  overcom ing  opposing  spring  and flo w  forces: 
therefore, the second stage is required. F ig . 9 -76  shows the schem atic o f  the electro- 
hyd rau lic  valve.

From  Figs. 9-75 and 9-76, we can see that the displacement o f  the m ain spool is 
con tro lled by the le ft and righ t flow  rates, w hich are contro lled by the displacem ent o f  the
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Figure 9-76 Electro-hydraulic 
two-stage four-way valve.

p ilo t spool. The conưol valve consists o f  a tw o-w ay c r it ic a lly  centered valve, w hich has a 
p ilo t spool attached to  a torque motor. The ou tput fro m  the servo a m p lifie r actuates the 
torque m otor and contro ls the displacem eni o f  the p ilo t spool.

The displacem ent o f  the p ilo t spool Xc is d irec tly  p roportional to  the output voltage o f  
the servo am plifier. W hen the m ain spool is centered, there are no flo w  rates and both sides 
o f  the m ain spool are zero. We look  at the operation o f  the valve around an operating po int 
to be able to use Che linearized flow equations derived in the following sections. A t the 
nom inal operating conditions,

X m = X c =  0, P o = P ^ -  Pbo =  Ps0 -  Pao =  a n d =  0

where x „  is Ihe displacement o f  the main valve, Xf is the displacem ent o f  the p ilo t spool, 
P/^O and P b o  are pressure in  the lines going from  the m ain valve 10 the actuator, and P r  is the 
pressure o f  the return line  to  the reservoir. Note that, during the valve operation, the supply 
pressure com ing from  the pum p is kept constant and equal fo r  both the m ain valve and the 
contro l valve.

Orifice Equation
F irst, le t’s see what happens as the flu id  passes through an o rifice . Consider Fig. 9-77, 
w hich shows a flow  passage w ith  a sharp-edged o rifice  separating tw o  sides o f  Ihe flow  
passage. The classic o rifice  equation fo r the flu id  flow  can be w ritten  as

Q =  A o C j Pa ) (9 -221)



608 Chapter 9. Design of Control Systems

Figure 9-77 Fluid passing through an orifice.

where Q  is die volum ettic flow  rate ửưough ứie orifice, ^ 0  is the cross-sectional area o f tl 
orifice, p  is ửie flu id  density. Pi is ửie flu id  pressure before passing through the orifice, Pỵị is ư 
flu id  pressure after passing ứưough the orifice, and Q  is ữie discharge coefficient and is given b

(9-22:

where Aq, A j  and A 2 are shown in  F ig. 9-77.

Liberalized Flow Equations fo r  the Four-W ay Valve
In  the o rifice  equation, we note that and Pa are both variab les./4, the opening area o f th 
valve, is a func tion  o f  the displacem ent o f  the spool. Using Tay lo r series, we can write E< 
(9-221) as

(9-222

For Eq. (9-223) to  be va lid , the operating conditions o f  the valve should not deviate to 
much from  the nom inal operating conditions. I f  we take JO =  0 and pQ =  PsQ -  Pbũ -

Psữ -  Pao =  w e  can w rite  Eq. (9-223) as

Q =  \ Q q +  K^x  +  Kc[Ps - P a ) (9-224

Qp Qb.Pi

Figure 9-78 Main valve schematic.
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Figure 9-79 Rectangular valve-port geomeưy.

where Kq is called flo w  gain and is g iven by

and Kc is the pressure-flow coe ffic ient and is given by 

ACd______
Kc =

y / l p i P s Q -Pao)

(9-225)

(9-226)

The term  —  can be evaluated based on the va lve-porting geometry. For the rectangular
JQ

geom etry shown in  Fig. 9-79, we can w rite

A =  hỆ (9-227)

where Ệ is the open distance o f  the valve port and h is the w id th  o f  the valve port. For the 
open-centered valve shown in  F ig . 9-79,

Ệ =  x +  u (9-228)

where X  is the displacement o f  the spool and u is the fixed underlapped dimension. 
Therefore,

N o w  we can w rite  the fo llo w in g :

(9-229)

K g = h C d J - P o

uhCd

(9-230)

(9-231)

P q =  PsO -  P bo =  P sO -  Paũ ~  2 ^ ^ (9-232)

L e t’s now apply the linearized flow  equation to  the open-centered four-w ay valve shown 
in  F ig. 9-76. For the four-w ay valve, ports A  and B are used fo r d irecting  flow  to and
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f r o m  th e  l in e a r  a c tu a to r . T o  d ir e c t  f lo w  in to  p o r t  A  an d  re c e iv e  f lo w  f r o m  p o r t  B ,  ứ ie ma 

s p o o l m o ve s  to  th e  r ig h t ,  th u s  a l lo w in g  f lu id  f lo w  f r o m  th e  s u p p ly  l in e  to  p o r t  A  an d , at tl 

sam e t im e , a l lo w in g  f lu id  f lo w  f r o m  p o r t  B  to  th e  re tu rn  l in e . T h e  f lo w  ra te  an d  pressu 

le v e ls  a t p o r ts  A  a n d  B  a re  th e  fu n c t io n  o f  th e  v a lv e  d is p la c e m e n t x „ .  W h e n  m o d e lin g  i l  

w h o le  s ys te m , w e  ca n  n e g le c t th e  p re ssu re  d ro p  in  th e  p ip e lin e s  c o n n e c t in g  p o rts  A  and 

o f  th e  lin e a r  a c tu a to r  to  p o r ts  A  an d  B  o f  t ì ie  fo u r -w a y  v a lv e . H e n c e , w e  ca n  assuit 

p re ssu re  le v e ls  an d  f lo w  ra te s  a t p o rts  A  an d  B  o f  th e  fo u r -w a y  v a lv e  are th e  same i 

p re ssu re  le v e ls  an d  f lo w  ra te s  a t p o r ts  A  an d  B  o f  th e  l in e a r  ac tu a to r.

N o w  c o n s id e r  th e  m a in  sp o o l is  m o v e d  to  th e  r ig h t  b y  a d is p la c e m e n t x „ .  U s ir 

E q . (9 -2 3 2 ) , w e  ca n  w r ite

Q l = ^ Q o - K , X „ + K c i P A - P r ) (9-23 :

Q 2 = ^ Q o +  K , X ^  +  K c{Ps - P a ) (9-23^

Ổ1 = ị Q o - K , X ^ + K A P s - P B ) (9 -23 Í

C l  = ị Q o  +  K g X „ + K , { P B - P r ) (9 -23 Í

Note that, in the above equations, we can use the same flo w  gain. Kg, and the same pressun 
f lo w  c o e ff ic ie n t,  Kc,  f o r  a l l  th e  m e te r in g  lan ds  because th e  n o m in a l p re ssu re  across eac 

m etering land is equal to  h a lf the supply pressure P j / 2  and Pr =  0.
T h e  v o lu m e tr ic  f lo w  ra te s in to  and o u t  o f  th e  a c tu a to r  c a n  n o w  be  exp ressed as

=  S2 -  C l =  2 V ”  -  Í í í c í í í  -  p , n )  (9-23/

C s  =  2 4  -  Ổ3 =  2 K , X „  +  1 K , ( P b  -  P , / 2 )  (9 -23 Í

N o te  th a t th e  above  f lo w  e q u a tio n s  a re  v a l id  fo r  o p e n -ce n te re d  fo u r -w a y  va lve s . F o r othe 

va lv e  d e s ig n s  such as c r i t ic a l ly  c e n te re d  o r  c lo s e d -c e n te re d  d e s ign s , th e  f lo w  eq ua tions ai 

d if fe re n t.  F o r  c r i t ic a l ly  c e n te re d  va lve s , such as th e  c o n tro l v a lv e  in  F ig . 9 -7 6 . the flo ' 

e q u a tio n  ca n  be  exp resse d as

Qa = Q b ^  K ,Xc (9-23!

Th e  f lo w -ra te  e q ua tions in to  and o u t o f  th e  a c tua to r are v e ry  im p o rta n t in  c o n ơ o l analysi; 

w h ic h  w i l l  fo llo w . T h e  reason is  th a t ứiese eq ua tion s  en ab le  us to  re la te  the f lo w  rate and th 

pressure level, which delivers power to ứie actuator. Using these equations, we are able to contn 
the displacement and velocity o f  the linear actuator (which depends on pressure level and Ế 
f lo w  rate d e live re d  to  po rts  A  and B  o f  the  actua to r) based on  th e  m a in  spo o l d isp lace m e n t x „ .  1 

o the r w o rd s , fo r  th is  open -cen te red  fo u r -w a y  va lv e  c o n ư o l, w e  can  change f lo w  ra te  and pressui 

level simultaneously using a single variable o f  the main spool displacement x„ .

Relationship between Input Voltage and Main spool Displacement x„
B e cau se th e  c o n tro l v a lv e  is  c r i t ic a l ly  ce n te re d , th e  f lo w  e q u a tio n  o f  the p i lo t  spo o l can t 

exp resse d as

Q p  =  KgXc (9-24(
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Figure 9-80 Two-sta

A ssum ing  an incom pressib le  f lu id , the in te rac tion  between the tw o  stages can be 
described by

(9-241)

where A „  is the area o f  the m ain spool. The displacement o f  the p ilo t spool can be 
expressed as

=  Vi„KaKr (9-242)

Equating Eq. (9-241) and (9-242), we get

(9-243)

For the two-stage valve alone (igno ring  the output pos ition feedback fo r  Uie m oment), 
using Laplace transforms and assuming zero in it ia l conditions, we have

(9-244)

V iM ) =  -  K fX „[s)

where Xm is the Laplace transform  o f  Xm-
The transfer function  o f  the two-stage valve can be expressed as

Xn.{s) 1

Vdesired K f{ l+ T c S )

(9-245)

(9-246)

where

T c = - (9-247)
KgKaKfKr

W e can represent the two-stage valve w ith  the b lock diagrams in  Figs. 9-80 and 9-81.

1

Kf(i+T,sj

Two-stage valve characteristics

Figure 9-81 Two-Stage valve block diagram incorporating Eq, (9-247),



9-12-3 M o d e lin g  the H ydrau lic  System

F ig . 9-82 shows the schematic diagram o f  the w hole system. In  the fo llo w in g  sections, let 
us rew rite  the mathem atical equations we derived fo r  each component.
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Force  Balance E q u a tio n  fo r  an Idea l L in e a r  A c tu a to r
I f  the rod o f  the linear actuator is used fo r opposing a load force Fi_ in the r  direction, using 
Eq. (9-247). we can express the force balance equation fo r  the rod as

Fl = A { P a - P b ) 

where we assume the force e ffic iency to be one.

(9-248)

E xpress ing  the P ressure Leve l P4 and  the P ressure Leve l Pg
Substituting Eq. (9-220) in to  Eq. (9-237) and rearranging the terms, we can express Pa as

(9-249)
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Substitu ting Eq. (9-220) in to  Eq. (9-239) and rearranging the terms, we can express Pb as 

K , "  2K ,P j  =  -  iou, +  P,/2  (9-250)

p plications

E xpress ing  the P ressure D iffe re n ce  Betw een T w o  Sides o f  the L in e a r  A c tu a to r
We can express the pressure difference. Pa -  Pb . by subữacting Eq. (9-249) from  Eq. (9-250):

Pa - P b = 2 ^ x„ - ^ z„., (9-251)

G e n e ra l E q u a tio n
A ssum ing an ideal actuator where force and volum e efficiencies are one, and by 
substitu ting Eq. (9-248) in to  Eq. (9-251), we get

Fl  =  -  ^ ^ Z o u i  (9-252)

Eq. (9-252) is the general equation that w il l  be used to  find  the transfer functions fo r 
d iffe ren t applications in  the fo llo w in g  section.

In  th is section we apply the system model in  three d iffe ren t applications: translational 
m otion, rota tional system, and variable load.

P os ition  C o n tro l o f  a H y d ra u lic  System (T ra n s la tio n a l M o tio n )
In  th is application, the linear actuator rod is used to move a mass. M: a spring, k i ,  and a 
damper, Di_ in  the z  d irection, as shown in F igure 9-82.

For the two-stage valve alone.

(9-253)

V 'm (s) =  -  K fX „ { s )  (9-254)

The transfer function o f  the two-stage valve can be expressed as

x ,„ js) I

Vdesired K f( i  +  T,s)
(9 -2 5 5 )

W e can  rep re sen t th e  tw o -s tag e  v a lve  w ith  the b lo ck  d iag ram  in F ig . 9 -81 .
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To m aintain pos ition  con tro l o f  the actuator, a voltage Vo is fed back fro m  the actuator 
displacem ent z\

Vo =  hzout (9-257)

w h e re  h  is th e  gain o f  th e  tran sdu ce r. T h e  in p u t  v o lta g e  to  th e  tw o -s ta g e  v a lv e  Verror can be 

expressed as

te r r o r  —  ^desired  — =  ydesired  ~  hZout ( 9 -258 )

I t  is desired to have pos ition  as inpu t instead o f  voltage. A s  a result, a potentiom eter is used
to  c o n v e r t th e  d e s ire d  in p u t  Zdesired to  th e  d e s ire d  v o lta g e  Vdesired- T h e  re la t io n s h ip  can be

expressed as

Vdesired  -  hzde^ired  ( 9 - 259 )

Using general Eq. (9-252), the equation-relating inpu t (m a in  valve displacem ent x„,) and 
ou tput (actuator displacem ent Zoul) can be expressed as

Zou, [ m ỉ - +  ( o  +  ^ ) *  +  ‘ í )  =

From  the valve equation derived above, we know  that m ain valve displacem ent x„, can be 
expressed as

So the transfer func tion  is

K fi l  +  T ,s ) ( m s  ̂ +  ( D  + ^ y  +  k^ 'j

where Tc -

(9-262)

K q K ^ K fK r '

In  the above equation,

= F low  gain o f  Ihe con tro l valve 

=  Pressure-flow coe ffic ient 

Ka =  Gain o f  the p roportional con tro lle r

K f =  Gain o f  the main spool feedback transducer

Kf =  Ratio  between the inpu t voltage and displacem ent o f  the contro l spool 

A,„ =  A rea o f  the m ain spool

M  =  Mass o f  the load

D  =  D am ping o f  the load 

ki_ =  Load spring stiffness 

h =  Transducer gain 

A =  A rea o f  the actuator piston
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W e can represent the system with the block diagrams in Figs. 9-83 and 9-84.

Position  C o n tro l (R o tational System )
In this application we refer to Fig. 9-85, where the linear actuator rod is used to move a 
mass, M, 6 radians. We start by writing the translational displacement o f the rod in terms of 
the angular displacement 6:

(9-263)

From the valve equation derived in the previous section, we know that main valve 
displacement x „  can be expressed as

Xmis) = I
K f ( \ + T c s ] ,

]{V d es ired -h $ o ,. ,L ) (9-264)

, 1 J Xm

AK„

K f( l+ T ^ ) Ms^-HD +  — )s +  ki_

VaJve characteristics System characteristics

. . . . . .

AK„

Kf( 1 + T,si(M s~ +  (D +  — )s + 2ki_) + 2h
------------------------- 1

System characteristics 

tb)

Figure 9-84 Translational reduced system block diagram.
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Using Eq. (9-260) and Eq. (9-263) for the system  shown, the equation-relating 
input (m ain valve displacem ent x,„) and output (actuator displacem ent Qoui) can be 
expressed as

(9-265)

where ]  is the momenl of inertia. Substituting Eq. (9-264) into Eq. (9-265). we can express 
the system transfer function as

______
Qđeúreà ^ ^ { 1  +  +  I h L ^

Í9-266)

V ariab le  Load
In this application, as shown in Figure 9-86. the linear actuator rod is used to exert force on 
a variable load. From the valve equation derived in the previous section, we know that main 
valve displacement .v,„ can be expressed in Laplace domain as

]{ydesired -  hZou,) (9-267)
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Using general Eq. (9-252), the general equation for the system shown in Fig. 9-88 can be 
expressed as

i^^esired hZout) (9-268)

:ONTROLLER DESIGN 
Control

C onsider the model o f the hydraulic system shown in Fig. 9-88, where we added a 
proportional conưoller in the forward path. The new system block diagram is shown in 
F igure 9-87.
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Pole-Zero Map

Figure 9-88 Pole-zero 
Real Axis x lo 4  m ap o f  Eq. (9-269).

T his system assumes an ideal actuator where force and volum e efficiencies are one.

Kq =  0.359 Flow gain of the control valve

Kc =  1.70*10“ “  m^/Pa/s Pressure-flow coefficient 

Kg =  1 Gain of the proportional controller 

K f =  1 Gain of the main spool feedback transducer

K r =  1 Ratio between the input voltage and displacement o f the control spool 

A „  =  550 X 10"^ Area o f the main spool 

A/ =  4 kg M ass of the load 

D  =  1 N-s/m  Damping of the load 

k i  =  2 N/ra Load spring stiffness 

h =  1 Transducer gain

A =  1.1 X 10“  ̂m - Area of th e  actuator piston

Substituting the preceding values into the hydraulic system transfer function [Eq. (9-262)], 
we get

3 033*10'®
^  (s +  1.4235* 105)(i +  65 3 )(j +  7.02* IQ-S)

The poles o f Eq. (9-269) are shown in Fig. 9-88. Poles are at -142350, -653 , and
-7 ,0 2 .1 0 - '’,

We simplify the forward-path transfer function in Eq. (9-269) by neglecting the pole at 
-142350. The simplified hydraulic system transfer function is

G {s )  =
213041 

52 +  6535 +  0.004584
(9 -270)

We note that one o f the dom inant poles is very close to the origin: therefore, we can write 
the forward-path transfer function as

G(.v) =
213041 

i ( j  +  653)
(9-271)
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\  “
-326.5

Figure 9-89
Eq. (9-274).
Figure 9-89 Root loci of

A pplying a proportional controller, the forward-path transfer function becomes

213041 (a: ,)  
. ^ + 6 5 3 .

The closed-loop transfer function is

213041(A:p) 
s^ +  653s +  2 l i0 4 iK p

The characteristic equation is written

5- +  6535 +  213041/r/. =  0

(9-272)

(9-273)

(9-274)

The rooi loci o f Eq. (9-274) are shown in Fig. 9-89.
By looking at the root loci in Fig. 9-90, we see that, depending on the value o f Kp. we 

can get two real o r two complex-conjugate poles. W hen Kp =  0.500, we get a damping

Step Response

0 ().(K)5 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 Figure 9-90 U n it-s te p
Time (sec) re sp o n se s  w ilh  p  c o n tro l.
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Figure 9-91 System block diagram.

ratio o f  1, and the system is critically damped. For values o f  Kp  greater than 0.500, the 
system is underdamped, and for values o f Kp less than 0.500, the system is overdamped. We 
also note that ứie system is stable for all the values o f  K p >  0. The step responses of the 
system for three different values o f Kp are shown in Fig. 9-91.

Toolbox 9-13-1
Fig. 9-89 is ob ta ined  by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s  

nu m =  [ 3 .0 3 3 3 e + 1 0 ] ;
d e n =  c o n v ( c o n v ( [ l  1 .4 2 3 5 e 5 ]  , [1  6 5 3 ] ) ,  [1  7 . 0 2 e - 6 ] )  
p z m a p C n u m .d e n ) :

Fig. 9-90 is ob ta ined by the fo llo w in g  sequence o f  M A TLA B  Junctions

K P = 1 ;
K D = 0;
n u m  =  [ 1  6 5 3 + 2 1 3 0 4 1 * K D  2 1 3 0 4 1 * K P ]  ;
d e n =  [ 1  6 5 3  2 1 3 0 4 1 * K P ]  ;
t f ( n \ u T i , d e n )
r l o c u s ( n i u n ,  d e n )
a x i s ( [ - 7 0 0  0  - 1  1 ] )

Fig. 9-91 is ob ta ined by the fo llo w in g  sequence o f  M A T IA B  func tions  

K P = 0 . 3 ;
n u m =  [ 0  2 1 3 0 4 1 * K P ]  ; 
d e n =  [ 1  6 5 3  2 1 3 0 4 1 - K P ]  ; 
s t e p ( n u m , d e n )  
h o l d  o n ;
K P = 0 . 5 :
n u m  =  [ 0  2 1 3 0 4 1 * K P ] ; 
d e n =  [ 1  6 5 3  2 1 3 0 4 1 * K P ]  ; 
s t e p ( n u m . d e n )  
h o l d  o n ;
K P = 2 ;
n u m =  [ 0  2 1 3 0 4 1 * K P ]  ; 
d e n =  [ 1  6 5 3  2 1 3 0 4 1 * K P ]  ; 
s t e p C n u m , d e n )  
h o l d  o n ;



TABLE 9-27 Attributes of the Unit'Step Response w ith p control

Kp
Maximum 

Overshoot (%) /.(sec) ựsec)
Steady-State Error 
Due to Unit Step

2 16.3 0,0124 0.00253 0
0.5 _ 0.0179 0.0103 0
0.3 — 0.0348 0.0191 0

9-13-2 PD Control

Table 9-27 summarizes the attributes o f the system ’s unit-step response for three 
different values o f Kp.

W hen poles are complex conjugates, as we increase Kp, the overshoot o f the system 
increases, but the settling time and rise time o f the system remain unchanged. Also note 
that steady-state error due to unit-step input decreases as Kp increases.

Consider the second-order forward-path transfer function o f the hydraulic system dis
cussed in Section 9-13-1. A pplying a PD controller, the forward-path transfer function 
becomes

C (i) =
2 m A \ { K p  +  K ps) 

+  653)
(9-275)

The system block diagram is shown in Fig. 9-91.
Now, let us set the performance specifications as follows:

Settling time <  0.005 sec 

Maximum overshoot <  5%

Steady-siate error due to unit-ramp inpul <  0.00061

The closed-loop transfer function is

, 2 m A \ { K p  +  Kps)

i2 + (6 5 3 +  2 I3041 í íd )i + 213041/ip

The characteristic equation is written

.1- +  (653 +  21304IẢ-O),! +  i m W K p  =  0

We start by finding the steady-state eư o r for a unit-ramp input:

I 1
-  lim. ,0 I ^  -  I ^  2l3(U)/r,.

(9-276)

(9-277)

(9-278)

Therefore, for the system to have steady-state eư o r due to unil ramp <  0 .00061. we need 
Kp >  5. The damping ratio o f the system for Kp =  5 can be expressed as

6 5 3  +  /ro 2 ]3 0 4 1
=  0 . 3 1 6 +  ] 0 i . 2 0 9 K f )
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If we wish to have critical dam ping, f  =  1, the above equation gives K d  =  0.0066. Oi 
thing we need to check is that this value satisfies the settling-tim e requừem ent. Settlii 
time can be expressed as

■ (653 +  213041A:d )
(9-281

We see that, for K d  >  0.0044, we have ts<  0.005 sec. Therefore, with K d  =  0.006624, w 
can satisfy the settling-tim e requirem ent. We note that Eq. (9-280) is an approximation am 
as dam ping ratio com es closer to one, the actual settling time will be higher; therefore, K 
m ust be higher than 0.0044 to satisfy the settling tim e for dam ping ratio o f one. Nevei 
theless, we can still use the approxim ation and verify our answ er by simulation once 
value for K d  is found. Also, we need to m ake sure that, for the values found for Kp  and Ki 
the system is stable. Applying the stability requirem ent, we find that for system stabilit

K p > 0  and K d >  -  0.00307

Alternatively, we can use the system ’s root contours to find K p  and K p. We can apply th 
root-contour method to the characteristic equation in Eq. (9-277) to exam ine the effect 0 

varying Kp  and K o. First, by setting K d  to zero. Eq. (9-277) becomes

+  6535 + 2 1 3 0 4 1 /:/. = 0 (9-281

The root loci o f Eq. (9-281) are shown in Fig. 9-92.
The code used to plot the root locus is given in Toolbox 9-13-2 for Kd =  Í 

Alternatively you can use Toolbox 5 -8 -Ỉ. W hen K d  the characteristic equation ii 
Eq. (9-281) becomes

, ^   ̂ ^  , 2 1 3 0 4 \K d s

s2 + ộ5 3 5 ^ 2 1 3 0 4 1 ìí:p “
(9-282

The root conrours for Kp =  1 and Kp = 5  based on the pole-zero  configuration o f  Geq{s 
are shown in Fig. 9-94. Note that we chose K p =  5 to  satisfy the steady-state eưo:

j-plane

-653
*^-326.5

0

Figure 9-92 Root loci of
0  Eq. (9-281).
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Figure 9-93 The root 
contours of Eq. (9-281) or 
Eq. (9-277) when Ko =  0.

requirem ent. For K p =  5 and K d  =  0, the characteristic equation roots are at —326,5 ±  
j9 1 9 .0 ề  and the damping ratio o f the closed-loop system is 0.316. W hen the value of K d  is 
increased, the two characteristic equation roots move toward the real axis along a circular 
arc. The dashed line shows the points on the i-p lane with the constant dam ping ratio of 
0.69, which coưesponds to 5%  overshoot. We see that this line intersects the root contour 
for Kp =  5 ai K d  =  0.00362. Because this value o f K o  is not big enough to satisfy the 
settling-tim e requirem ent of less than 0.002 sec, we need a larger K d- W hen Kd is increased 
to 0.006624, the roots are real and equal at -1032.09 , and the damping is critical. A t this 
point K d  >  0.0044; therefore, our settling-tim e requirem ent is met. W hen K p  =  1 and 
K d  =  0, the two characteristic equation roots are at -3 2 6 .5  ±  _/326.3. As K q increases in 
value, the root contours again show the improved damping due to the PD controller.

Fig. 9-95 shows the unit-step responses o f the closed-loop system without PD conttol and 
wiứi K p = 5  and K d  =  0.006624. With the PD control, although K d  is chosen for critica]

damping, the maximum overshoot is 0.888%. This is because o f the zero at 5 =  -  for the
K d

Step Response

I

Figure 9-94 Unit-step 
responses with and wiihout 
PD control using Toolbox 
9-13-3.
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Figure 9-95 System block diagram with PI conưoller.

closed-loopữansfer function. W hen K p = ^ 5 a n á K o  =  0.0066, the zero is a t -754.5. whichÌ! 
close to the dominant poles o f the system at -1032.09: therefore, it has a significant effect 01 

the ưansient response of the system. Note that the zero makes the response faster by lowerinj 
the rise time and ứie settling time o f the system.

Toolbox 9-13-2
Fig. 9-94 is obta ined  bv the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s

% C lo se d  lo o p  t r a n s f e r  f u n c t i o n  f o r  Kp=5 
s g r i d ( 0 .6 9 ) :
Kp = 5 ;K d  = l e - 6 ;  
f o r i =  1 :1 :2 6 0  

i f  ( i = =  2 2 2 )
Kd = C ( ( K p * 2 1 3 0 4 1 ) A ( 0 .5 ) * 2 ) - 6 5 3 ) /2 1 3 0 4 1 ;  % i f  t h i s  s t a t e m e n t  i s  n o t  u s e d  

t h e n  t h e  g r a p h  w i l l  n o t  c o n t i n u o u s  
e n d
n u m = [2 1 3 0 4 1 -K d  213041"--Kp] ; d e n  = [1  6 53  0 ]  : 
t f ( n u m . d e n ) :
[n u m C L .d e n C L ]= c lo o p (n u in ,d e n )  :
T = tfC n v u n C L ,d en C L ):
P o le D a ta C : , i ) = p o l e C T ) :
Kd =  K d + 3 e -5 :

e n d
p lo t ( r e a l ( P o le D a ta ( l ,  : ) ) , im a g ( P o le D a ta ( l ,  : ) ) , r e a l ( P o le D a ta ( 2 ,  : ) ) , i in a g ( P o le D a ta ( 2 , : ) ) ) :

% C lo se d  lo o p  t r a n s f e r  f u n c t i o n  f o r  K p= l 
Kp = 1 ; Kd = l e - 6 ;  
f o r  i  = 1 : 1 : 2 6 0  

i f  ( i  == 4 4 )
K d =  C C ( K p * 2 1 3 0 4 1 )A ( 0 .5 )‘- 2 ) - 6 S 3 ) /2 1 3 0 4 1 ;

e n d
n u m = [2 1 3 0 4 1 * K d  213 0 4 1 '-K p ] ; d e n  = [1  6 53  0 ]  : 
t f ( n u m . d e n ) ;
[ n u m C L ,d e n C L ]= c lo o p (n u m ,d e n ) :
T = tf (n u in C L .d e n C L ) :
P o le D a ta C : , i ) = p o l e ( T ) :
Kd = Kd + 3 e - 5 :

en d
h o l d  on
p l o t ( r e a l ( P o le D a t a ( l ,  : ) )  ,i jn a g (P o le D a ta ( l , ; ) )  , r e a l (P o le D a ta (2 ,  : ) )  ,im a g (P o le D a ta (2 , : ) ) )  ;
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1  l o o p  t r a n s f e r  f u n c t i o n  
L; Kd = 0 :
[2 1 3 0 4 1 * K d  2 1 3 0 4 1 * K p ] ;
[ 1  6 5 3  0 ]  ; 

o n
i s ( n i a m ,d e n ) ;
:c - 1 8 0 0  0 - 1 5 0 0  1 5 0 0 ] )
[n u m .d e n )
o n ;

;nuin = [0  21 3 0 4 1 * K P ] ; d e n =  [1  6 53  2 1 3 041*K P ] ; 
[n u m ,d e n )

Table 9-28 summarizes the attributes o f the unit-step response fo r K p  — 5 and different 
values o f  Kp.

TABLE 9-28 Attributes of the Unit-Step Response with PD Control

K d  M ax im um  O vershoot (% ) r.,(sec) /r(sec)

0.001 23.9 0.00794 0.00141
0.006624 0.888 0.00215 0.00138
0.01 — 0.00363 0.00126

•OX 9-13-3
■94 is ob ta ined  by the fo llo w in g  sequence o f  M A TLA B  fu n c tio n s

; ;K d =  0 .0 0 6 6 ;
[2 1 3 0 4 1 * K d  2 1 3 0 4 1 * K p ] ;
[1  6S3 0 ]  ; 

u n .d e n ) :
:L ,d e n C L ] = c lo o p ( n u m ,d e n ) ;
;n u m C L , d e n C L )  
o n
. : K d  =  0 :
[2 1 3 0 4 1 * K d  2 1 3 0 4 1 * K p ] ;
[1  6 53  0 ]  ; 

im .d e n )  ;
I L ,d e n C L ] = c lo o p ( n u jn ,d e n )  :
;num C L ,denC L )

At this point we need to go back to the original hydraulic transfer fijnction expressed in 
Eq. (9-269), which has three poles. We need to make sure that the thừd pole is still far away 
from the origin so that the second-order approximation is valid. In the root locus o f ứie pure 
proportional conưol system, the third pole moves to the left as K  increases; therefore, the 
second-order approximation is valid for any value of /T >  0. For the PD control design system, 
we inưođuce a zero in the forward path, which changes the behavior of the third pole. In this 
case, the third pole starts to move toward the origin as we increase K d - For K p = 5  and 
K o  =  0.0066, the poles of the closed-loop third-order system are at -14093, -1090, and -980.
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9-13-3 PI Control

Because the thứd pole is still far away from the origin relative to the oứier poles, it can be 
safely neglected, and our second-order approximation holds.

Consider the second-order forward-path transfer function o f the hy±-aulic system discussed 
in Section 9-13-1. Applying a PI controller, the forward-path transfer function becomes

The system ’s block diagram  is shown in Fig. 9-95.
Let the time-domain perform ance requirem ent be as follows:

Settling time <  0.06 sec 

Rise time tr  <  0-01 sec 

M axim um  overshoot <  1.52%

Steady-state error due to parabolic input <  0.2

We Stan by finding the steady-state eư o r for a ramp input:

'" 1 '’“™“  “  213041A-,/653

Therefore, for the system to have steady-state error due to parabolic input <  0.2. we need 
K ị  > 0 .0 1 5 . Later we need to make sure that the value o f K f used is above 0.015.

The characteristic equation of the closed-loop system is

+  6 5 3 r  +  213041/r/.5 +  213041/r, -  0 (9-285)

Applying Routh 's test to Eq. (9-277) yields the result that the system is stable for

0 <  —  < 6 5 3 . This m eans that, i f  the zero o f G (j) be placed too far to the left in the 
Kp

left-half 5-plane, the system will be unstable.
Let us place the zero at - K i / K p  relatively close to the origin. For Ihis case, the mosl 

significant poles of the forward-path transfer function w ithout the PI controller are ai -653 
and 0. Thus K i/K p  should be chosen so that the following condition is satisfied

—  «  653 (9-286)
Kp

The rooi loci of Eq. (9-283) with K i ịK p  =  5 are shown in Fig. 9-96. Notice that one of the 
poles always has a value close to zero while the other two poles behave the same as those 
shown in Fig. 9-93. which is for Eq. (9-281).

With the condition in Eq. (9-286) satisfied, the pole near zero is effectively cancelled
by the zero at - K i / K p ,  and we are left with the poles o fE q . (9-283). Therefore. Eq. (9-284)
can be approximated by
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L et us assume we wish to have a  relative damping ratio o f 0.9. From Eq. (9-287), the 
required value ofA'^ for this dam ping ratio is 0.62. Thus withẢ^/> =  0.62 and K ị  =  3.09, we 
find the roots o f the characteristic equation of Eq. (9-285):

5  =  -5 .1 3  -3 2 3 .9 4  +  ;I5 2 .8  and -3 2 3 .9 .3  -  ;152 .8

In this case we see that the real pole o f the closed-loop system  is very close to the 
zero at —K i/K p  so that the transien t due to  the real pole is negligible, and the system 
dynam ics are essentially  dom inated by the tw o com plex poles; therefore, Kp =  0.62 will 
give us a dam ping ratio  that is close 10  0.9. In general, when s takes on values along the 
operating points on the com plex portion o f the root loci, we can neglect the effect o f the 
real pole o f the closed-ioop system  and use Eq. (9-287) to find the system 
characteristics.

Table 9-29 summarizes the attributes o f the unit-step response for various values of 
K iỊK p  wiứi K p =  0,62, which coưesponds to a relative damping ratio o f 0.9, The results 
verify that PI control reduces overshoot at the expense o f longer rise time.

Fig. 9-97 shows the unit-step response o f the hydraulic system with PI control with 
K p  =  0.62 and K ị  =  3.09. The unit-step response is the same for system with p  control 
designed in Section 9-13-1.

TABLE 9-29 Attributes of the Unit-Step Response with PĐ Control

K tlK p Kp
Maximum 

Overshoot (%) f.(sec) /,(sec)

0 0 5 35.1 0.0108 0.00131
20 12.4 0.62 8.78 0.0856 0.00688
12 7.44 0.62 5.59 0.099 0.00723
5 3.09 0.62 2.52 0.0555 0.00778
3 1.86 0.62 1.6 0.0121 0.0078
1 0.62 0.62 _ 0.0126 0.00787
0.5 0.31 0.62 - 0.D128 0.00791
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I  0.8

PI conưol
K, =  l.W .K p  =  Q.Ố2

Figure 9-97 Unit-step
________________________ responses of the system with

" 'o  0.02 0.04 0,06 0.08 0.1 0.12 0.14 0.16 0.18 PD  and P I conư ol using
Time (sec) T oo lbox 9-13-1,

Toolbox 9-13-4
Fig. 9-97 is ob ta ined  by the fo llo w in g  sequence o f  M A T LA B  fu n c tio n s

K i = 3 .0 9  
Kp = 0 .6 2
nu m =  [2 1 3 0 4 1 * K p  2 1 3 0 4 1 * K i/K p ]  
d e n =  [1  6 53  0 0 ]  ; 
t f ( n u m . d e n ) :
[num C L, d e n C L ] = c lo o p ( n u m ,d e n ) ; 
s tep C n u m C L , denC L ) 
h o l d  o n  
K p =  5;
Kd = 0 .0 0 6 6 ;
n u m = [2 1 3 0 4 1 * K d  2 1 3 0 4 1 ^ K p ] : 
d e n =  [1  653  0 ]  ; 
t f ( n u m , d e n ) :
[n u in C L ,d e n C L ]= c lo o p (n u m ,d e n )  ; 
s te p (n u m C L , denC L ) 
h o l d  o n

9-13-4 PID Control

Consider the second-order forward-path transfer function o f the hydraulic system discussed 
previously. Applying a PID conưol, the forward-path transfer function o f the plant is

G {s) =
2 m A \ { K p ^  ^K D\s ){K p 2  +  K n ls )  

.9(5 +  653)
(9-288]

The system 's block diagram is shown in Fig. 9-98.
Let the time-domain perform ance requirements be as follows:

Rise time i r  <  0.003 sec 

Settling time /j <  0.004 sec
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Figure 9-98 System block diagram with PID controller.

M axim um  overshoot <  1.2%

Steady-state eư o r due to parabolic input <  0.2

We realize that we need a PID controller to fulfill the above requirements. First, we apply 
the PD control with the transfer function K p\ +  kp is . The forward-path transfer function 
becomes

G {s) =
2 m ‘X\[Kpx + K p ịs )  

i ( j  +  653)
(9-289)

Table 9-28 shows that the PD controller that can be obtained from the settling time 
standpoint is with ^DI =  0.0066 and Af/>1 =  5, andthe maximum overshoot is 0.888% . The 
rise time and settling time are well within required values. Next we add the PI controller, 
and the forward-path transfer function becomes

G {s) =
\A Q (ìữ lK p2{s  +  757.58)(^ +  K n jK n )  

5(j2 +  653i)
(9-290)

Following the guidelines o f choosing a relatively small value for K i2 ịK p 2 , we let
— 5. Eq. (9-290) becomes

, 1406.07/:p2(i +  757 .58 )(i +  5)
------ (9-291)

Table 9-30 gives the time domain performance characteristics along with the roots of the 
characteristic equation for various values o f A'/n,

TABLE 9-30 Attributes of the Unit-Step Response with PID Control

Kp2
Maximum 

Overshoot (%) /,(sec) /r(sec)
Roots of 

Characteristic Equation

2 1.23 0,00113 0.000718 -5  -799.5-2660.6
1.2 1.27 0.00178 0.00116 -5.0 -14464.5-870.3
0.9 1,2 0.00232 0.00151 -5.02 -956.7 ±j200.2
0.62 1.05 0.00327 0,00213 -5 .0 2  -759.9 ± jl% lA
0,40 0.91 0.00505 0.00321 -5.04 -605,9 ±j237.8
0.20 - 0.00983 0,00622 -5.08 -542.6-386.5
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Step Response

0.005 0.01 0.015 0.02 0.025 0,03 0,035 0.04 0.045
Time (sec)

Figure 9-99 Unit- 
step responses with 
PD. PI. and PID
control using 
Toolbox 9-13-5.

Setting K p\ =  5. Kd\ =  0.0.0066. Kp 2  =  0.62. and K / 2  =  5Kp2 =  3.09. the followir 
results are obtained for the param eters o f the PID controller.

Kp =  3.12 

K / =  15.5 

K d  -  0.0041

Fig. 9-99 shows the unit-step responses o f the system with the PID controller, as well Í 
those with PD and PI controls designed before.

Toolbox 9-13-5
Fig. 9-99 is obta ined by the fo llow ing  sequence o f  M A T LA B  func tions  

Kpl=5:kdl=0.0066;
num= [21304*kdl 21304-Kpl] ; den = conv( [ 1 0] , [1 653]) : 
tf(num,den)
[m im C L ,d e n C L ]= c lo o p (n u in ,d e n )  ;
step(numCL,denCL)
hold on
Kp2=0.62;KI2=5~Kp2;
num= conv(conv([0 1406.07^Kp2],[1 757.58]),[1 KI2/Kp2])
den = conv( [1 0] , [1 653 0] ) :
tf(num,den)
[numCL,denCL]=cloop(num,den); 
stepCnumCL,denCL) 
hold on
Kp2=2;num = conv(conv([0 1406.07*Kp2] ,[1755.58 3),[15]); 
den= [1 653 0 0] : 
tf (mur.den)
[n u m C L ,d e n C L ]= c lo o p C n iu n ,d e n ) ; 
tf(numCL,denCL) 
s t ep(numCL,denCL)
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MATLAB TOOLS AND CASE STUDIES
In this section we will go through the steps involved in finding some o f the results and 
displaying many o f the graphics from the examples in this chapter using the ACSYS 
software. The tcx)ls involved are all contained in the Controller Design Tool. This tool 
allows the user to conduct the following tasks:

• Enter the ttansfer function values in polynom ial form. (U ser m ust use the tftool as 
discussed in Chapter 2 to convert the transfer function from pole-zero-gain form 
into polynomial form.)

• Obtain the step, impulse, parabolic, ramp, or other type input time responses.

• Obtain the closed-loop frequency plots.

• Obtain the phase and gain m argin Bode plots and the polar plot o f the loop ưansíer 
functions (in a single feedback loop configuration).

• Understand the effect o f adding zeros and poles to the closed-loop or open-loop 
transfer functions.

• D esign and com pare various contro llers including  PID , lead, and lag 
com pensators.

To run the Controller Design Tool, type “Acsys” at the MATLAB command line and click 
the appropriate button on the menu. Fig. 9-100 will appear on the screen.

Figure 9-100 Main Controller Design Tool window.



► EXAMPLE 9-2-1 Recall from Example 9-2-1 the forward-path transfer function for the altitude-conơol system Wi 

R evisited  G M  -  4 5 0 0 ^ ^  (9-29:
J(s + 361.2)

The design constraints for this problem were as follows:

Steady-state error due to unit-ramp input = 0.000443 
Maximum overshoot <  5%

Rise time tr <  0.005 sec 
Settling time fj <  0.005 sec
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To enter the transfer function into the CONTROLS tool, click on the G(s) box in th 
transfer function input panel. For the mom ent we will leave the value o f K  as 1, so in th 
num erator text box. enter [4500], and in the denom inator text box, enter [1,361.2,0], as i 
pictured in Fig. 9-101.

Pressing the enter button will display the cuư ent closed-loop transfer function. For 
more accurate representation of the transfer function, press the “ Display on Commam 
L ine” button and refer to the MATLAB com m and window.

Now click on the C(s) box and enter the value [181.2]. C lick on the “ S tep Response’ 
option from the "T im e R esponse” menu to see the step response o f this system. The mail 
window should now look like Fig. 9-102.

Press the “ Print 1 
more information about the response.

As in Exam ple 9-2-1, we shall use a PD controller to improve the response of Ih' 
system. We will use the root contour tool to see the effect that the PD controller has on th' 
poles o f the system. From the "C ontro ller Design Tool” menu, choose the “ PD desigi 
option."

The Root C ontour tool plots the poles o f a system as functions o f certain varyin; 
controller parameters. W ith the PD controller, the closed-loop transfer function is

V look like Fig. 9-102.

t To Figure” button, and right-click on the resulting plot to s&

C (i) =
ey(^ ) _  % \5.165{K p +  K ps)

Qe{s) ■ 5 (5  +  361.2)
(9-293

Kp is held at 1, and Kd will vary between the limits that we specify. Choose K d  min to b 
0.001, choose Kd max to be 0.005, and choose 2000 steps. Press enter and you will see th

G{s)=
4500

[1,361,2,0]|

E n te r I C ancel

E n te r co e fic ie n ts  o f th e  po lynom ia ls  

eg. for + 3 s  - 7 
en te r 1 0  3 -7 Figure 9-t01 Transfer function input 

module.
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contour plot pictured in Fig. 9-104 in the axis in the top right o f the window. Notice that ứiis 
plot is similar to that in Fig. 9-8. The two X ’s correspond to the poles o f Ihe system with 
K d  =  0. You will notice that they are the same as the poles displayed in the lower right axis, 
which are the poles o f the proportionally controlled system we entered earlier. Pressing the 

*-̂ -*1 button below the axis will enable you to scroll through the different values o f K d  with Uie 

arrow keys and see the corresponding poles. As Kp  increases, the two poles o f the system 
move together until their imaginary parts disappear. They then move apan on the real axis. We 
know that, for a second-order system such as this, two real and equal poles is a characteristic of 
a critically damped system. To find the value of K d  that coưesponds to a critically damped 
system, zoom in on the point where the two root contour lines meet on the real axis. To do this, 

click on the zoom-in button, and then click and drag a box on the area you would like to 

enlarge. By scrolling through the values of K d , we can see that the two poles are real and equal 
forsom e value ofA ’o  between 0.0017712 and 0.0017726. If we choose/To =  0.001772, then 
we have found exactly what was found analytically in Example 9-2-1.

Now enter the PD conữoller values in the C(s) box by clicking on the box and entering 
181.2‘[0.001772,l] in the numerator text box. After pressing enter, the new closed-loop 
transfer function will be displayed in the middle of the window and the poles of the new system 
will be plotted in the bottom axis. Notice lhat while the poles are not equal Uiey are relative]y 
close. To check whether we have met our design constraints, open die SISO tool by clicking on 
the Root Locus option in the Controller Design menu. Now from the Other Responses option 
from the Analysis menu, choose Step and press OK. You will now see the step response of the 
system plotted versus time. Right-click on the plot and choose characteristics from the pop-up 
menu. Choose Peak Response to see the overshoot of ứie step response. A dol will appear at the 
maximum point on the response plot; holding the mouse over it will display the percentage



overshoot as 4.17% which is witflin our constraint. Checking the other characteristics will 
show you that all the design consưaints have been met.

You will notice that there are many exam ples in this book where m ultiple time- 
responses are plotted on the same axes as in Fig. 9-107. The capability to do this is not built 
into the ACSY S software. However, there is a short tutorial in Section 9-11 that shows you 
the steps involved in plotting multiple responses on the same axes.

Now let us repeat this sam e analysis using the SISO design tool, which is built into the 
Control System Toolbox, which is a com ponent o f MATLAB. C lick on the C(s) block and 
change the value in the numerator text box back to [1].

To exam ine the performance o f the proportional controller, we need to find the system 
root locus. The root locus o f the system may be obtained by clicking the “ Root Locus” 
option from the “ Controller Design Tool”  m enu, which will activate the MATLAB SISO 
design tool. Fig. 9-104 shows the root locus o f system. To see the poles and zeros o f G  and 
H , go to the View menu and select System Data or, alternatively, double-click the blocks G  
or H  in the top right com er o f the block diagram in the lop right com er o f the figure.

The squares in Fig. 9-104 correspond to the closed-loop system poles for AT =  I. To see 
the closed-loop system time response to a unit-step input, select the Closed-Loop Step 
option from the Other Loop Responses category within the Analysis menu, which is 
located at the top o f the screen shown in Fig. 9-105. Fig. 9*106 shows the unit-step response 
o f the closed-Ioop system for AT =  1. You may also obtain the closed-loop system poles by 
selecting Closed-Loop Poles from  the View menu in the SISO Design Tool window. Recall 
the poles of the closed-loop system are
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512 =  -1 8 0 .6  ± V 3 2 6 1 6 - 4 5 0 0 í : (9-294)
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Figure 9-1D6 The root-locus diagram for Example 9-2-1. after incorporating the percent overshooi 
and the settling tim e as design consưaints.

Changing K, therefore, affects the pole locations. In the Root Locus windows. ' ’Cis)*' 
represents the controller transfer function; in this case, C (j) =  K  =  Ì.  Hence, if  C(5) is 
increased, the effective value o f K  increases, forcing the closed-loop poles to move together 
on the real axis and then ultim ately to move apart to become complex.
In c o rp o ra tio n  o f th e  Design C rite r ia : As a first step to design a controller, we use the 
built-in design criteria option within the SISO Design Tool to establish the desired pole 
regions on the root locus. To add Ihe design constraints, choose the Root Locus option from 
the Edit menu. “ New” must then be selected within the Design Constraints option. The 
Design Constraints option allows the user to investigate the effect o f the following:

• Settling lime

• Percent overshoot

• Damping ratio

• Natural frequency

In ứiis case we have included settling time and percent overshoot as design consưainis. Enter the 
two consưaints as ửiey are listed at the beginning of this example, one at a time. In order also to 
enter the rise time as a consưaiĩit. ứie user must first establish a relation between Uie damping ratio 
and the natural frequency usmg an equation for rise time. Recall that the approximate equations for 
rise time for a second-order prototype system were provided m Chapter 5. Because the settling 
time and the percent overshoot are more important criteria in this example, we will use them as 
primary constraints. After designing a conưoller based on these constraints, we will determine 
wheUier the system complies wiửi Uie rise-time consơaint.

Fig. 9-106 shows the desired closed-loop system pole locations on the root locus after 
inclusion o f ihe design constraints. Obviously, the poles of the system ÍOT K  =  I are noi in
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Figure 9*107 Addition of a 
zero to the controller C(5) to 
create a PD conlroller.

the desired area. The desừed poles o f the system must lie to the left of the boundary imposed 
by the settling time between -7 0 0  and-8 0 0  markers in Fig. 9-106. Obviously, it is impossible 
to use the proportional conơoller (for any value of K )  to move the poles of the closed-loop 
system farther to the left-half plane. However, a PD conưoller may be used to accomplish this 
task. As proposed earlier in the solution to Example 9-2-1, a PD controller with a zero at 
z =  -1 /0 .0 0 1 7 7 2  may be used for this purpose. Recall from the solution o f Example 9-2-1 
that this num ber was obtained from the steady-state eư or criterion by examining Eq. (9-13). 
In this case, if  the proportional component o f a PD controller is set to K p  =  1, the steady- 
state eư or due to a unit-ramp input is 6ss =  0.000443 for Kd =  0.001772.

To enter a zero to the controller, click the C(s) block in the block diagram  in the top 
right com er o f Fig. 9-106, or simply follow the instructions on the bottom o f the screen 
shown in Fig. 9-106 and right-click the mouse to edit the controller transfer function. Fig. 
9-107 shows the Edit Compensator window and how the PD controller is added.

The new root-locus diagram for the system appears in Fig. 9-108. It is now very easy to 
establish the requừed gain to push the poles to the desừed region. Using the value of 
K  =  181.2, which was proposed in the original solution of Example 9-2-1, would force the

Ffe Edt »ew C.o(Tipensator; Wndow ftete
- lo lx l

c<s).

Figure 9-10B The root-locus diagram for Example 9-2-1. after incorporating a zero in the PD 
controller al -1/0.001772.



638 Chapter 9. Design of Conừol Systems

Figure 9-109 The root-locus diagram for Example 9-2-1 after incorporating a zero in the PD 
controller at -1/0.001772 and using a gain of 181.

closed-loop poles to the right region, as shown in Fig. 9-109. After dragging the poles, you car 
view theữ current location from the View menu. The step response o f ứie conưolled system ữ 
Fig. 9-110 shows the system has now complied with all design criteria. The 2% settling time ii 
now 0.0488 sec. while the percent overshoot is A M .  It is interesting ứiat, although ứie closed 
loop poles are both real, the system has a non-oscillatory response with an overshoot. This i‘ 
because of ứie effect o f zero on the response. Review the effect o f adding a zero to a closed- 
loop transfer function, which was discussed in Section 5-11, to further appreciate this behavior 

Finally, in practice, always verify that the actuator used has enough torque or load tc 
create such response. The actuator limitations must always be included because they are 
some o f the most im ponant design constraints.

F requency-D om ain  Design
Now let us cany  out the design o f the PD controller in the frequency dom ain using thí 
following performance criteria:

Steady-state error due to a unii-ramp input <  0.00443 
Phase margin >  80°

Resonant peak Mr <  1.05 

BW  <  2000 rad/sec

To start the frequency-domain design process, click the Bode button in the ConưoUer Desigr 
main window (Fig. 9-100) to get the MATLAB SISO Design Tool, as shown in Fig. 9-112.

As in the root-locus design approach, a PD controller with a zero at 2  =  - 1  /0 .00177: 
may be used for this purpose. Recall that this num ber was obtained from the steady-state 
error criierion. Similar to the root-tocus approach, in order to enter zero for the controller
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Figure 9-11D Step response of the system in Example 9-2-1 with a PD conưoller, 
C {s )=  181(i+  1/0.001772).

Figure 9-111 The loop magnitude and phase diagrams in the frequency-domain SISO Design 
Tool for Example 9-2-1.
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Figure 9-112 The 1(
in the PD conưoller ai -1 /0.00!772 and a gain of K  =  18].2.

e and phase diagrams for Example 9-2-1. after incorporating a zero

click the C(s) block in the block diagram in the top right com er o f the screen shown in Fig. 
9-112. The new open-loop Bode diagram o f the system appears in Fig. 9-113 for the system 
with a PD controller G c { s )  =  C (i) =  181.2(1  +  0.0017725). The gain margin in this case 
is infinity, while the phase margin is 83'^. As a result, the system has also fully complied 
with all the design criteria in the frequency domain. Review the effect o f adding a zero to a

Kd = 0 0020007
Oirert Poles Afe. 
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-1438.2375-1744 40971 
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XI
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r
Figure 9-113 R o o t c on tou rs
o f  th e  P D -c o n ư o lle d  sy stem s

fro m  E x am p le  9 -2 -2 .



closed-loop transfer function, which was discussed in Section 9-3 (see also Section 9-4 for 
addition o f a pole) to  appreciate this behavior. Alternatively, you may select the Open-Loop 
Bode option from the View menu in the root-locus diagram in Fig. 9-108 to obtain the root- 
locus and frequency-response representations o f the system together on the same figure.

XAMPLE 9-2-2 We will now use the ACSYS tool lo solve the problem from Example 9-2-2. Recall that ihe forward- 
Revisited path transfer function for the system was
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G(j)
1.5 X lO’K 

% (j2 +  3408.3j +  1,204,000}
(9-295)

And the design contraints remain the same as in Example 9-2-2.
Click on the G(s) block to enter the plant transfer function. In the numerator text box, enter 

[I.5e7], and in the denominator text box, enter (1,3408.3,1204000,0). K  will be chosen to be 181.17, 
which we will enter in the C(s) block. Click on the C{s) block and enter [181.17] in the numerator text 
box. Let us again use the Root Contour tool. Choose the “PD design; Root Contour” option from the 
Controller Design menu. Choose Kd min to be 0.00001, choose Kd max lo be 0.005. and choose 3000 
steps. Pressing enter w i ll  d isp lay the p lo t shown in  F ig. 9 -113, w h ich  is  s im ila r to  F ig. 9-12. Press the 
“ arrow cursor” button and scroll through the values o f Pd. You will see the behavior described in 
Exam ple 9 -2 -2 ; as the value o f  K q  increases, the real pole moves toward the o rig in  and the tw o 
complex poles approach asymptotically to the line at J =  -1704.

In Example 9-2-2 the value of 0.002 is chosen for Kd '. let us apply a PD conừoUer with K d =  
0.002 to see its effect. Kp will be left at 1. Click on the C(s) block and enter 181.17*[.002,1] in the 
numerator text box. After pressing enter, click on the Step Response option from the Time Response 
menu and then press the Print to Figure button. Right-click on the resulting plot and choose 
“Characleristics” and “Peak Response” from the pop-up menu. Holding the pointer over the marker 
that appears at the point of maximum amplitude will display ihe value of the overshoot for this system. 
Repeating this for the rise time and the settling time will show you all the dala listed in Table 9-3.

To see the Bode plots of this PD-controlled system, choose the Bode option from ihe Controller 
Design menu and you will see the window shown in Fig. 9-114.



► EXAMPLE 9-3 We will now go through the steps involved in finding some of the results of Example 9-3-l.Pừstinpu 
Revisited the plant for the system. Click on the G(s) block and enier [45001 in the numerator text box ani

[1,361,2,0] in the denominator text box. Adding the PI conưoller is accomplished by setting C(s 
equal to a function of the form
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C{s) = (9-296

Adding the PI controller effectively adds a zero at s =  K i/K p  and a pole at J =  0. We cai 
use MATLAB’s SISO toot to do this. As is done in Example 9-3-1 let's have K  =  181.17, d id  
on Ihe C(s) block and enter (181.17] in the numerator text box. From the Conưoller Design menu 
choose the Root Locus option. This will open the SISO Design Tool pictured in Fig. 9-115. The plo 
shows the effect on the poles of the system of varying the value of a constant muldplied by C(i) 

Now to add the PI controller, we need to add in the pole and zero. Click on the c  block in th( 
block diagram located in the top right of the SISO window. Now, add a pole at J =  0, and as is done it 
Example 9-3-1, add a zero at Í  =  -10 , Click OK and you will see the plot pictured in Fig. 9-116 

Notice that this plot is similar to that in Fig. 9-19. As it is now, the value of C(s) is equal to 181. n 
times the function pictured just above the Root Locus plol. Let LS set the conưoller parameters equa 
to those in the chird row of Table 9-5. We already have the ratio of K i/K p  that we want. To change ihi 
value of Kp. grab one of the complex poles and drag it toward the real axis. You will see lhai the valut 
of the gain in front of the controller function starts to decrease. Move the pole until the gain is equal t(
0.8. Now from the Analysis menu, choose the Step option from the Other Loop Responses menu 
Right-click on the resulting graph and choose "Characteristics” and “ Peak Response.” Hold tht 
fwinier over ihe dot marking the maximum response to see the percentage overshoot, as pictured ir 
Fig. 9-117. Repeat this for the rise time and the settling time and you will see values close to thost 
listed in Table 9-5. Note thai the sealing time referred to in Table 9-5 is the 5% settling time, so yoL 
may need to change the definition of seltling lime in the Properties menu, located in the same pop-uf 
menu as the characteristics option- If you pul both the main SISO window and the Step Responsi

Ble view £ompensators H^p

ÍẸ" X o  I- ^  1 u  w. Ĩ  X  1 w

C(s)- fl

Root Locus Edlor (O
’— r  ’

Figure 9-115 Root loci o f the system from Example 9-3-1.
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Figure 9-118 Bode plots of the Pl-controlied system from Example 9-3-1.

window in view at the same lime, you can see ihe effect that moving ihe poles has on the response i 
real lime.

Now return to the Controller Design Tool window. To obtain the Bode plots shown at the end ( 
Example 9-3-1, using Ihe parameters from the second row in Table 9-6. enter 181.17*[0.08,1,6] int 
the C(s) numerator, and enter [1.0] into the C(s) denominator. Then choose the Bode option from til 
Controller Design Tool menu. You will then see the window pictured in Fig. 9-118.

EXAMPLE 9-3-2 We will now go through the steps involved in finding some of the results of Example 9-3-2 using th 
Revisited ACSYS software. First enter ihe plant tfansfer funciion. Click on the C(s) block, and in the numerate 

text box, enter [ 1 5e7j. In the denominator texl box, enter (1.3408.3,1.204e6,0). Press enter, and the 
click the C(s) block, and enter 181.17. From the Time Response menu, choose the Step option. Yo 
will oblain one of ihe plots shown in Fig. 9-23.

To improve Ihe system, we will apply a PỈ coniroller. Lei us use ihe parameter values from th 
fourth row in Table 9-8- Click on Ihe C(s) block. In Ihe numerator texl box. enlt 
18 1.17*0.075*11.II- and in the denominalor text box. enter [1,0], Again plot the step respons 
and you will see one of the olher plots shown in Fig. 9-23. To see Ihe frequency response, choos 
Ihe Bode option from the Controller Design Tool menu and you will see some of the informalio 
shown in Figure 9*22.

EXAMPLE 9-4-1 We will now go through the steps involved in inputting the p rs thai correspond to the Pll 
Revisited controller of Example 9-4-1. First enter the plant transfer funclion. Click on theG(s) block, and ente 

[2.718e9Ị in the numerator text box and (1.3408.3.1204000.0Ị in the denominator text box. Toente 
the PID controller in the C(s) lexl boxes, ii needs to be written in the form of the left side of Eq. (9-48 
We will choose Kp =  0.0006. Kp =  0.309, and Ki =  4.5. In ihe C(s) numerator text box. enu 
[0.0006,0.309.4.51. and in the denominator lext box. enter [1.0], Press enter, and then choose the Ste 
Response option from the Time Response menu; you will obtain one of ưie plots shown in F if. 9-2‘  

From the Controller Design Tool menu, choose the Bode opiion. and you will see ihe Bode pl( 
shown in Fig. 9-25.
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EXAMPLE 9-5-1 We will now use ACSYS to obtain some of the results from Example 9-5-1. First, enter the plant 
Revisited of the system. In the C(s) numerator text box, enter [2500], and in the denominator text box, 

enter [1.25.0]. We are going to use a phase-lead controller to improve the performance of the 
system. Let us use the root contour tool to examine the effect that varying rh a s  on the poles of 
the system. From the Controller Design Tool menu, choose the "Lead Lag Design: Root 
Contour” option. Set a to be 0. Set Tmin to be O.OOOl. set Tmax to be 100. and choose 400 steps. 
After pressing enter, you will notice that the X  scale on the resulting plot is much wider than that 
in Fig. 9-31. To get a better view, click on the zoom-in button below the plot. Then click and drag 
the box around the area you would like to be displayed. You should be able to generate 
something that looks similar to Fig. 9-119.

Now we will apply the Phase-Lead controller to see its effect on the response. Choosing the 
parameter values from the fourth row in Table 9-12. we will have a =  16.67 and T  =  0.003. Click on 
the C(s) block, and in the numerator text box, enter [0.05.1]; in the denominator text box, enter 
[0.003.1]. Press enter, and then plot the step response from the Time Response menu. Press the Print 
to Figure button, and right-click on the plot to see details about the response.

Figure 9-119 Root contours 
of Ihe lead-lag controlled 
system from Example 9-5-1.

EXAMPLE 9-5-2 Now we will use some of the ACSYS tools to exam ine the application of a phase-lead controller 
RGVisitGd to the Ihird-order system of Example 9-5-2. First input the plani transfer function. In the G(s) 

numerator text box. enter [4.6875e7], and in the denominator text box. enter [ 1.625,156250.0]. 
As in Example 9-5-2. we will use a phase-lead controller to improve the performance of the 
system. First let’s use the root contour tool to examine the effect that the controller has on the 
poles of the system. From the Controller Design Tool menu, choose the "Lead Lag Design: Root 
Contour" option. Choose a =  0. Tmin -  0.0005. and Tmax -  1. and choose 500 steps. After 
pressing enter, you will see the plot shown in Fig. 9-121. which is similar 10  one of the lines 
plotted in Fig. 9-35.

Now implement the phase-lead controller with the parameiers from the last row in Table 9-14. 
In the C(s) numerator texl box. enter [0.005.1 ]. and in the denominator text box. enter [0.00001.1 ]. 
From  ihe T im e Response menu, choose the Step Response o p tion , press the P rin t to  F igu re bu tton, 
and right-click on the resulting plol to see the characteristics of ihe system, which are listed in 
Table 9-14. From the Controller Design menu, choose the Bode option to see the Bode plots for



646 Chapter 9. Design of Control Systems

Figure 9-120 Root contours 
of the system from Example 
9-5-2.

Closed-Loop Step Response

this system. Right-click on the ploi and change the properties t( 
shown in Fig. 9-37.

Figure 9-121 Step Response 
of the uncompensated systen 
from Example 9-5-3.

;e the full range of frequencie;
4

EXAMPLE 9-5-3 We will now eo through some of the steps of Example 9-5-3 using the ACSYS toots. First input th( 
Revisited planl transfer function. Click on the G(s) block, and in the numerator lext box. enter [1.5625e8]. li 

the denominaior text box. enier [1.625.156250.0]. After pressing enter, click ihe Bode option fron 
the Controller Design Tool menu to see the Bode plot of ihe uncompensaled system, which is showi 
in Fig. 9-39. From the Time Response menu, choose the Step command and you will see that th' 
system is indeed unstable. The step response of the uncompensated system is shown in Fig. 9-121



To improve the performance we will use a two-stage phase-iead conơoller. Lei us use the 
parameter values from the first row of Table 9-16. To input ứie controller transfer function, we need to 
rewrite ứie numerator and denominator in polynomial form. In the C(s) numerator text box. enter
11 -499e-5,7.744e-3 1 ], and in ửie denominator text box. enter [2.343e-9,9.68e-5.1], Press enter and plot 
the step response from the Time Response menu to see one of the plots shown in Fig. 9-40. <

EXAMPLE 9-6-1 Now we will go through some of the steps involved in applying the phase-lag controller to a second- 
Revisited order system, as in Example 9-6-1. Input the plant ưansíer function. Click on the G(s) block. K  will be 

set equal to 1, so in the G(s) denominator text box, enter (2500]; in the numerator text box, enter
[1,25,0], Choose the Step option from the Time Response menu to see the step response of the 
uncompensated system, which is shown in Fig. 9-47.

Let us use the conttoUer parameters from the second-io-last row in Table 9-17. Click on the C(s) block, 
and in the numerator text box. enter Í2.7,1], In the denominator text box. enter [30,1]. Press enter, and again 
plot the step response. Press ửỉe Print to Figure button, and righi-click on the resulting plot. By clicking 
the Properties option, you can set ứie X-Umits of the response plot to get a better view of the response.

EXAMPLE 9-6-2 We will now go through some of the steps involved in Example 9-6-2 with the ACSYS tools. First 
Revisited input the plant transfer function. Click on the G(s) block, and enter [1.5625e8] in the numerator text 

box, and enter [1.625,156250,0] in the denominator text box. After pressing enter, select the Root 
Locus option from the Controller Design menu. You will see the root loci plot pictured in Fig. 9-50.

We will implement a phase-lag conưoller to improve the performance of the system. Let’s use 
the parameter values from the second row of Table 9-19. Click on the C(s) block, enter [1.1] in 
the numerator text box, and enter [10,1] in the denominator text box. Click the enter button, and 
choose the Step option from the Time Response menu. Right-click on the resulting plot to check the 
characteristics of the cuirent system.
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PLOTTING TUTORIAL
You will notice that in many o f the examples in this book there are figures containing 
m ultiple response plots, each coưesponđing to a certain param eter value. Arranging plots 
in this way is obviously very helpful in discovering the effect that a cenain param eter has 
on a system. The functionality to overlay the response plots on the same figure is not built 
into the ACSYS software. This short tutorial will go through the steps involved. This 
tutorial can also serve as an introduction to manipulating graphics and data ai the 
MATLAB command line.

The plots we wish to display are the step responses o f the system in Example 9-2-1. 
One plot will be the response of the system with a proponional controller, and (he other will 
be the system with a PD controller. W hat we will do is generate the step response plots for 
each system and then plot the data from each on another figure: this will leave us with a 
graph sim ilar to thal in Fig. 9-110.

Press the G(s) block, enter [4500] in the numerator text box, and enter [ 1.361.2,0] in 
the denom inator text box. Press the C(s) block, and enter [181.17] in the numerator text 
box. A fter pressing enter, choose the Step Response option from the Time Response menu, 
and press the Print to Figure button under the resulting plot. Now change the value in the c 
(s) numerator to 181.17*[.00177.1], Repeat the procedure to generate a second figure. We 
now have iwo separate figures, each with its own set o f axes and its own set o f data plotted.

We now want to extract the plotted data from each figure so we can plot them again on 
new axes on a new figure. Choose *‘Data Cursor" from the toolbar on one o f the figures, 
and click somewhere on the line so a marker appears on it. Now. at the MATLAB command 
line, type the following:

tl =  get{gco. ’xdaia '): _vl =  get(gco. 'ydaia '):
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Now repeat the procedure for the second figure, this time using the variable nam es “ t2 
and “ y2.”

The line is a graphics object that has a list o f properties that define it. G CO  stands f( 
“ get current object.” We make the line the cuư en t object by clicking on it wiUi the curs< 
tool; the “ get” com m and puts the value o f the specified property in a variable o f  ourchoici 
Xdata is a property o f  the line, which is a row vector o f values. We now have tw o vectors, 
time vector t l  and an am plitude vector}'!. W hen we plot, we will be plotting ea ch y l valu 
versus its coưesponding 11 value. Repeat the procedure for the second figure and place th 
xdata and ydata in the variables l2  and y2, respectively.

Now we are ready to plot the data on a single axis. At the com m and line, type ih 
following;

figure; axes; p lo t( t l ,y l ) ;  hold on; p lo t(t2 .y2); 

p lo t([0,0.05], [1,1], ‘co lor’ , [0 ,0 ,0], iin es ty le ’

The “ hold on ” com m and stops MATLAB from erasing the first plot when the second pic 
com m and is given. The third plot com m and jusl draws a black dotted line between th 
points (0,1) and (.05,1).

There is one final adjustm ent to make the new graph com plete. It would be much bette 
to display the two plots in different colors. Again, choose “ Data C ursor” from the toolbai 
and click on one o f the lines. Now type the following:

set(gco. 'c o lo r ', [1 ,0 ,0]):

The “ set” command gives the specified value to the specified property o f the specific! 
object. You should now have a window that looks like Fig. 9-122.

W W I I
Fge_ View Insert Tocb Desfctqi VWdow Help__________

Figure 9-122 Step responses o f syslem.



SUMMARY
This chapter was devoted to ứie design of linear continuous-daia conữol systems. It began by giving some 
fundamental considerations on system design and then reviewed the specifications in the time domain and 
frequency domain. Fixed configurations of compensation schemes used in practíce, such as series, 
forward and feedforward, feedback and minor loop, and state feedback were illustrated. The types of 
conuollers considered were the PD, PI, PID, phase-lead, phase-lag, lead-ỉag, pole-zero cancellation, and 
notch filters. E>esigns were carried out in ihe time-dofnain (5-domain) as well as the frequency domain. 
The time-domain design was characienzed by specifications such as ứie relative damping ratio, maximum 
overshoot, rise lime, delay time, settling time, or simply the location of * e  characterisdc-equalion roots, 
keeping in mind that the zeros of the system transfer function also affect ihe transient response. The 
performance was generally measured by ửie step response and the steady-state eưor. Frequency-domain 
designs were generally carried out using Bode diagrams or gain-phase plots. The perfomance 
specifications in the frequency domain were ưie phase margin, gain margin, Mr, BW, and the like.

The effect of feedforward conưol on noise and disturbance reduction was demonsưated. A 
section was devoted to the design of robust control systems.

While ứie design techniques covered in this chapter were outlined with analytical procedures, 
the text promotes the use of MATLAB Toolboxes and specifically ACSYS. The Controller Design 
Tool has been developed by the authors for this purpose. Through ihe GUI approach, ACSYS creates 
a user-friendly environment to reduce the complexity of conưol systems design.

;w  QUESTIONS
1. What is a PD conưoller? Write its input-oulpul transfer function.

2. A PD conưoller has the constants Ko and Kp. Give the effects of these constants on the steady- 
state error of the system. Does the PD contfol change the type of a system?

3. Give Ae effects of the PD control on rise time and settling time of a conưol system.

4. How does ihe PD conưoller affecl the bandwidth of a control system?

5. Once the value of Kp of a PD conưoller is fixed, increasing the value of Kp will
increase the phase margin monotonically. (T) (F)

6. If a PD controller is designed so that the characteristic-equation roots have better 
damping than the original system, then the maximum overshoot of the system
is always reduced. (T) (F)

7. What does it mean when a conưol system is described as being robust?

8. A syslem compensated with a PD controller is usually more robust than the
system compensated with a PI controller. (T) (F)

9. What is a PI controller? Write its input-output ưansíer function.

1«. A PI conưoller has the constants Kp and K/. Give the cffects of the PI controller on the 
sleady-state error of the system. Does the PI control change the system type?

11. G ive  the effects o f  the PI con tro l on the rise tim e and settling lim e  o f  a conư ol system.

12. How does the PI controller affect the bandwidth of a control system?

13. W hat is  a P ID  contro ller? W rite  its inp u t-o u tp u t transfer function.

14. Give the limitations of the phase-lead controller.

15. How does the phase-lead controller affecl the bandwidth of a conưol system?

16. Give the general effects of the phase-lead controller on rise time and settling time.

17. For the phase-lcad controller, GcU) =  (1 +  aTs)/( \ +  7̂ Ỹ). a > 1. whai is the effect 
of the controller on the steady-siate performance of the system?

18. The phase-lead controller is generally less effective if the uncompensated
system is very unstable lo begin with. (T) (F)

Review Questions 649
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19. The maximum phase that is available from a single-stage phase-lead conữoUer is 90®. (T)

20. The design objective of the phase-lead controller is to place the maximum phase
(T) (lead at the new gain-crossover frequency.

21. The design objective of the phase-lead conơoller is to place the maximum phase
lead at the frequency where the magnitude of the uncompensated G p {jw )  is - 1 0  logioớ. 
where a is the gain of the phase-lead conưoller. (T) Í

22. The phase-lead controller may not be effective if the negative slope of the 
un-compensated process ữansfer function is too steep near the gain-crossover ữequency. (D  (

23. For the phase-lag controller, Gc(j) =  (1 +  aT s)/{\ +  Ts), a < l .  what is the effect of tl 
controller on the steady-state performance of ihe system?

24. Give the general effects of the phase-lag controller on rise time and settling time.

25. How does the phase-lag conưoller affect the bandwidth?

26. For a phase-lag conưoUer, if the value of T  is large and the value of a is small, il is
equivalent to adding a pure attenuacion of a to the original uncompensated system
at low frequencies. (T) (]

27. The principle of design of the phase-lag controller is to utilize the zero-frequency
attenuation property of the controller. (T) (]

28. The comer frequencies of the phase-lag controller should not be too low or else ihe
bandwidth of the system will be too low. (T) (]

29. Give the limitaUons of the pole-zero-cancellalion conưol scheme.

30. How does the sensitivity function relate to the bandwidth of a system?

Answers to these review questions can be found on this book’s companion Web sit
www.wiley.coin/college/golnaraghi.
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Coniral Symposium, pp. 49-54. June 1983.

► PRO BLEM S
Most ofthefoUowmg problems van he."iohed using a computer program. This is highly recommendi 
i f  the reader has access to such a program.

9-1. The block diagram of a control system with a series controller is shown i 
transfer funcUon of ihe controller c ,(s i so that the following specifications ai 

The ramp-error constanl K, ib 5.
The closed-!oop transfer function is of ihe form

I Fig. 9P-I. Findtl 
: satisfied:

>•(») _________ K_________
« ( j )  (52 +  20s  +  2 0 0 ) (s +  o )

where K  and a are real constants. Find the values o f K  and a.

http://www.wiley.coin/college/golnaraghi
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4 Ợ Cf(í) lỌQ—_
"  í (5 V ỉ0 í+ 1 0 0 )

Figure 9P-1

The design sưategyis to place the closed-Ioop poles at -1 0  + jlO and - 1 0  -  ýio. and then adjust 
the values of K  and a  to satisfy the steady-state requirement. The value of a is large so that it will 
not affect the ưansieni response appreciably. Find the maximum overshoot of the designed 
system.

9-2. Repeat Problem 9-1 if the ramp-error constant is to be 9. What is the maximum value of Ky
that can be realized? Comment on the difficulties that may arise in attempting to realize a very
large K,.

9-3. The fortt’ard-paứi transfer function of a unit)-feedback control system is

Find the value of A" and T so that the overshoot of the system is 25.4% at die f  =  0.4.

9-4. The fonvard-pa* ưansfer function of a system is

" - ^ 7 T 6 )
Design a PD controller tíiat satisfies the following factors:
(a) The steady-state error is less ứian IT,. 10 when the input is a ramp with a slope of 2-ỈT rad/sec-
(b) The phase marsin is between 40 and 50 degrees.
(c) Gain-crosso\er frequency is greater than 1 rad/sec,
9-5. A control sjstem with a PD controller is shown in Fia. 9P-5.

1000 n i)

^ ■ i<j+10)

Figure 9P-5

(a) Find ihe values o ĩK p  and K c  so that the ramp-error constant K, is 1000 and the damping ratio is 
0.5.
(b) Find the values of Kp and A'o so that the nm ip-e iTor constant K, is 1000 and the damping ratio is 
0.707.
(c) Find the values of Kp and Kp so that ihe ramp-error constant A', is 1000 and the damping ratio is 
1.0 .

9-6. For the conơol system show n in Fig. 9P-5. set the value of Kp so that the ramp-eiTor constant is 
1000.

(ai Van the value of Kn from 0.2 (0 1.0 in increments of 0.2 and determine the values of phase 
margin, gain margin. Sir. and BW of the svsiem. Find the \alue of Kn so that the phase margin is 
maximum.
(b) \ 'a n  the value of A'n from 0.2 to 1,0 in increments of 0,2 and find Uie value of K d  so thai the 
maximum o\ershi>ot is minimum.
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1
“  ( 2 s + l ) ( s + l ) ( 0 . S s +  1)

Design a PD conưoUer such that the Kp =  9 dJid the phase margin is greater than 25 degrees. 

9-8. The loop ưansfer function of a system is

G(s)H{s) =  j(0 ,4 s+  l ) ( j +  l)(s +  6)

(a) Design a PD conưoller to statisfy the following specificadons:
(i) h  =  10.
(ii) The phase margin is 45 degrees.

(b) Use MATLAB to plot the Bode diagram of the compensated system.
9-9. Consider the second-order model of the aircraft altitude conưol system shown in Fig. 5-31. Ti 
transfer function of the process is

4500 a:

9-7. The loop ưansíer function o f a  system ii

Gp(s) -
i ( 5  + 361.2)

(a) Design a  series PD controller with the ư ansíer function G f ( j)  = Kd + Kps so that the followii 
performance specifications are satisfied:

Steady-state error due to a unil-ramp input <  0,001 
Maximum overshoot <  5%
Rise time ir <  0.005 sec 
Settling time < 0.005 sec

(b) Repeat part (a) for all the specifications listed, and, in addition, the bandwidth of ưie syste 
musl be less than 850 rad/sec.
9-10. Fig. 9P-10 shows the block diagram of the liquid-level control system described in Problem. 
42. The number of inlets is denoted by N. Set N =  20. Design the PD controller so that with a unil-su 
input the tank is filled to within 5% of the reference level in less than 3 sec without overshoot.

fi(.v) E(s) \ w
— i{s+l)(i+10)

1
Figure 9P-10

9-11. For the liquid-level control system described in Problem 9-10.
(a) Sei Kp so lhat the ramp-error constant is 1. Vary Kq from 0 to 0.5 and find the value of K d  th 
gives the maximum phase margin. Record the gain margin, Mr. and BW.
(b) Plot ưie sensitivity functions |s ^ (  ỳcư)| of the uncompensated system and ứie compensated syste 
with ứie values of Kd and Kp determined in pan (a). How does ứie PD controller affect ihe sensitívìt; 

9-12. The block diagram of a servo system is shown in Fig. 9P-12.

Figure 9P-12
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Design the PD controller so that the phase margin is greater than 50 degrees and the BW is greater 
than 20 rad/sec. Use MATLAB to verify your answer.

9-13. The loop transfer function of a unity-feedback system is
1000/ir

‘^ W " W = ,( 0 .2 ,+  l ) (0 r o 5 .+  l)

Design a compensator such that the steady-stale error to the unit-step input is less than 0.01 and the 
closed-loop damping ratio <■>0.4.
Use MATLAB to plot the Bode diagram of the compensated system.

9-14. The open-loop ttansfer function of a dc motor is
250

***“ s (0 .2 s+ l)

Design a PD conưoller so that the steady-state error to the input ramp is less than 0.005, the maximum 
overshoot is 20% for the unit-step input, and the B w must be maintained at a value approximately the 
same as that of the uncompensated system.

9-15. The open-loop plant model of a plastic exUTJsion is given by 
, 40

( j +  1)(0.25j +  1)

Design a series of lead compensator, which is described by 
^(t5 + 1 )

' (/-r.ỉ+1)
so that Ihe phase margin is 45 degrees and the BW must be maintained at a value approximately the 
same as that of the uncompensated system.

9-16. Repeat Problem 9-15 assuming that the r< 0 .1 .

9-17. The loop transfer function of a unity-feedback control system is
1000^

C{s)H(s) =
s{0.2s+  l)(0 .05 i+  1)

(a) Design a compensator such that
(i) The steady-state error is less than O.OJ for a unit-ramp input.
(ii) The phase margin is greater (han 45 degrees.
(iii) The steady-state error is less than 0.004 for a sinusoidal input with w<0-2.
(iv) The noise for the frequencies greaier than 200 rad/sec reduced to 100 ai the output.

(b) Use MATLAB to plot the Bode diagram of the compensated system and verify or refine your 
design in pan (a).
9-18. A conlrol system with a type 0 process Gf,ls) and a PI controller is shown in Fig. 9P-I8-

£ ( i)
C f  1 ‘ 0®

m )

^ ' Z + IO j +IOO

Figure 9P-18

(a) Find the value of Kj so thai the ramp-error constant K, is 10.
(b) Find the value of Kp so that the magnitude of' the imaginary pans of the complex roots of the 
characleristic equation of Che system is 15 rad/sec. Find the roots of ihe characlerislic equation.
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(c) Sketch the root contours of the characteristic equation with the value of K/ as determined in pa 
(a) and for Q < K p < o o .

9-19. For the control system described in Problem 9-18.

(a) Set K, so that the ramp-eưor constant is 10. Find the value of Kp so that ihe phase margin 
minimum. Record the values of the phase margin, gain margin. M,. and BW.
(b) Plot the sensitivity functions lioiyw )! of the uncompensated and the compensated syslen
with the values of K, and Kp selected in pari (a). Comment on the effect of the PI control 0

sensitivity.
9-2». For the control system shown in Fig. 9P-18. perform the following:

(a) Find the value of Ki so that the ramp-error constant Ky is 100.
(b) With the value of K, found in part (a), find the critical value of' Kp so that the system is stabl< 
Sketch the root contours of the characteristic equation for Q < K p<oũ .

(c) Show that the maximum overshoot is high for both large and small values of Kp. Use the value c
Ki found in pan (a). Find the value of Kp when the maximum overshoot is a núnimuưi. What is th
value of this maximum overshoot?
9-21. Repeat Problem 9-20 for a:,. =  10.

9-22. The transfer function of a system with uniiy feedback is

“  S ( I+  l)(s  +  6)

(a) Design a PI controller that satisfies the following factors:
(i) The ramp eưor constant Ky >  20.
(ii) The phase margin is belween 40 and 50 degrees.
(iii) Gain-crossover frequency is greater than 1 rad/sec.

(b) Use MATLAB to plot the Bode diagram or Ihe closccl-loop system.
9-23. The transfer function of a robot arm-positioning system with unity feedback is represented b

40

5(5 +  2 ) ( j  +  20)

(a) Design a PI controller such that:
(i) The steady-state eưor is less than 5% of the slope for a ramp input.
(ii) The phase margin Í5 between 32.5 and 37.5 degrees.
(iii) Gain-crossover frequency is 1 rad/sec.

(b) Use MATLAB to plot the Bode diagram of the closed-loop system and verify your design in pai
(a).
9-24. The transfer function of a system with unity feedback is

G U ) = ,
■.5(5.v +  7 } ( j  +  3)

Design a PI controller with a unity dc gain so that the phase margin of the system is greater than 4 
degrees, and then find the BW of the system.

9-25. The transfer function of ihe steering of a ship is given by

G(,5] -  23.‘ì 3A :(7I -5H 0.T)
71if40.s +  13)(5000s +181) 

Design a PI controller such that:
(a) The ramp eưor constant K, =  2.
(b) The phase margin is greater than 50 degrees.
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icy. PM  >  0. This means the system is always(c) For all frequencies greater 
stable without any condition.
(d) Show the closed-loop poles in the root locus wiUi respect to values of K. 

9-26. The transfer function of a unity-feedback system is
2 x  I05

(a) A PD controller with the transfer function of H(s) =  is designed with r  =  0.2 and
( r r j+  1) .

T =  0.05. It is desired to find the gain so that the crossover frequency is 31.6 rad/sec.
(b) Find the ramp error constant Kv by applying the controHer designed in part (a).
(c) Consider the PD conưoller designed in part (a) is applied to the system. Find the value of K  for a 
PI controller so thai the ramp error constant Kv =  100.
(d) If the PI controller pole is at 3.16 rad/sec and the crossover frequency maintains at 31.6 rad/sec, 
whai is the zero of the PI controller? [Consider ihe transfer function of the PI conưoller is

(e) Use MATLAB to plot the Bode diagram of the compensated system and find the phase margin. 
9-27. A conưol system with a type 0 process and a PID controlleris shown in Fig. 9P-27. Design the 
controller parameters so thai the following specifications are satisfied;

Ramp-error constant =  100 
Rise time ir<  0-01 sec 
Maximum overshoot <  2%

Plot the unit-step response of the designed system.

m ) c ,w - ; ™
r+ lO i+ lO O

Figure 9P-27

9-28. A considerable amount of effon is being spent by automobile manufacturers to meet the exhaust- 
emission-performance standards set by the govenunent. Modem automolive-power-plant systems 
consist of an internal combustion engine that has an internal cleanup device called the catalytic 
converter. Such a system requires conữol of the engine aứ-fuel ratio (A/F), the ignition-spark timing, 
exhaust-gas recứculation, and injection air. The conưol system problem considered in this exercise deals 
with the conữol of Ihe aừ-fuel ratio. In general, depending on fuel composition and other factors, a 
typical stoichiomeơic A/F is 14.7:1, ửiat is, 14.7 grams of air to each gram of fuel. An A/F greater or less 
than stoichiometry wilJ cause high hydrocarbons, carbon monoxide, and nitrous oxide in the tailpipe 
emission. The control system whose block diagram is shown in Fig. 9P-28 is devised to control the aứ- 
fuel ratio so that a desired output variable is maintained for a given command signal. Fig. 9P-28 shows 
that the sensor senses the composition of the exhaust-gas mixture entering the catalytic converter. The 
electronic contfoller detects ihe difference or the error between the command and the sensor signals and 
computes the control signal necessary to achieve the desứed exhaust-gas composition. The output 
variable y{i) denotes the effective air-fuel ratio. The transfer function of the engine is given by

M - r  - ' ^ "
U (!j ’ 1 +  t j

where T jis  the time delay and is 0.2 sec. The lime constant T is 
by a power series:

Approximate the time delay

i +  7-j j  +  t; V / 2
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Figure 9P-28

(a) Let the controller be a PI controller so that

Find the value of K i so that the ramp-error constant A’v is 2. Determine the value of Kp so that I 
maximum overshoot of the unit-step response is a minimum and the settling time is a minimum. Gi 
the values of the maximum overshoot and the settling time. Plot the unit-step response of y(/). Fi: 
the marginal value of Kp for system stability.
(b) Can the system performance be further improved by using a PID conưoller?

9-29. One of the advantages of the frequency-domain analysis and design methods is that syster 
with pure time delays can be ưeated without approximation. Consider the automobile-engine conữ 
system treated in Problem 9-28.

The process has the tfansfer function

Let the contfoller be of the PI type so that Gc (j) =  Kp +  K i/s . Set the value of K i so that the ramp-err 
constant Ky is 2. Find the value of Kp so tìiat the phase margin is a maximum. How does this "optima 
Kp compare with the value of Kp found in Problem 9-28(a)? Find ửie critical value of Kp for syste 
stability. How does ửús value of Kp compare wiửi ửie criticaì value of Kp found in Problem 9-28'; 

9-30. Fig. 9P-30 shows a simplified design of an airplane attitude controller.

Figure 9P-30

where D  is the disturbance torque. Design a PID controller with the following satisfactions:
(a) Zero steady-state error
(b) PM =  65"
(c) High bandwidth (as high as possible)

9-31. Consider the open-loop plani model of a plastic extrusion given in Problem 9-15. 

Design a series of lead-lag compensator that is described by

H( s )
(T |5+  1)(T25+ 1) 

, r i s ^ +  ( t i  + - ) s  +



and satisfies the following:
(a) The phase margin is 45 degrees.
(b) The steady-state eưor of a closed-loop system to the unit-step input is less than 1%.
(c) The gain-crossover frequency is 5 rad/sec.
9-32. A telescope for tracking stars and asteroids on a space shuttle may be modeied as a pure 
mass M. It is suspended by magnetic bearings so that there is no friction, and its attitude is 
controlled by magnetic actuators located at the base of the payload. The dynamic model for the 
control of the z-axis motion is shown in Fig, 9P-32(a). Because there are electrical components on 
the telescope, electric power must be brought to the telescope through a cable. The spring shown is 
used to model the wire-cable attachment, which exerts a spring force on the mass. The force 
produced by the magnetic actuators is denoted hy f [ i) .  The force equation of motion in the z 
direction is
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Á1

/w
2

 ̂ M  
2

^  E(s)
G.(i)

F(s)
Gpis)

Z(s)

J  *
f

(a)
Figure 9P-32

f i t )  -  K,z{t) =  M
d h j l )

di^
where A'r =  1 lb/ft, and M  =  1501b (mass);^/) is in pounds, and r(r) is measured in feet.
(a) Show that the natural response of the system output : ( t )  is oscillatory without damping. Find the 
natural undamped frequency of the open-loop space-shuttle system.
(b) Design the PID controller

,

shown in Fig. 9P-32(b) ;

G((j) =  Kp +  K ds  +  —

3 that the following performance specificatio

Ramp-error constant^,. =  100.
The complex charactrerislic equation roois correspond to a relative damping ratio of 0.707 and a 
natural undamped frequency of 1 rad/sec.

Compute and plot the unit-step response of Che designed system. Find the maximum overshoot. 
Comment on the design results.
(c) Design the PID controller so lhat Ihe following specifications are satisfied:

Ramp-error constant A’v =  100 
Maximum overshoot < 5%

Compute and plot the unit-step response of the designed system. Find the roots of the characteristic 
equation of the designed system.
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Ramp-error constant íTv =  100.
The complex charactreristic equation roots coưespond to a relative damping ratio of 1.0 an 
natural undamped frequency of 1 rad/sec.

9-34. Consider a cruise control system shown in Fig. 9P-34.

9-33. Repeat Problem  9-32(b) with the following specifications:

Figure 9P-34

w here/is  the engine force. V is the velocity, u is the friction force, and u =  fiv .  
Assuming M =  1000kg, M =  50Nsec/m. and /  =  500N;
(a) Find the transfer function of the sysiem.

Design a PID conưoller lhat satisfies the following;
(i) Eiise time is less than 5 sec.
(ii) Maximum overshoot is less than 10%.
(iii) Steady-state eưor is less than 2%.

9-35. An inventory control system is modeled by the following state equations: 

dx ịự )

(b)

dl
( ừ ì i t )

=  -2 X 2 (t)  

-  -2u(t)

where ^i(r) =  level of inventory, X2(t) =  rate of sales of product, and w(i) =  production rale. T 
output equation is y(/) =  Xi (i). One unit of time is one day. Fig. 9P-35 shows the block diagram of ( 
closed-loop inventory conưol system with a series coniroller. Lei the controller be a PD conưoll 
G f( i )  =  Kp +  K ds .

Figure 9P-35

(a) Find ửie parameters of the PD controller, Kp and K q. so that the roots of the characteris 
equation correspond to a relative damping ratio of 0.707 and co„ =  1 rad/sec. Plot ửie unit-si 
response of yU) and find the maximum overshoot,
(b) Find the values of Kp and Kd  so that the overshoot is zero and the rise time is less chan 0.06 s
(c) Design the PD conưoller so that Mr =  1 and BW < 40rad/sec.
9-36. The block diagram of a type 2 conơol system with a series controller Cc(s) is sho’An in Fig. 9P'

Rịs) E(s) V(S) 10000 Yis)
G/,s) =  Kp + KoS

j2 ( i + 10)

Figure 9P-36



The objective is to design a PD conưoller so that the folJowing specifications are satisfied: 

Maximum overshoot <  10%
Rise time <  0.5 sec

(a) Obtain the characteristic equatíon of ửte closed-loop system, and determine ứie ranges of the 
values o f Kp and Kd for stability. Show the region o f stability in the Ko-'̂ tĩ%\iĩ,-Kp plane.

(b) Constnict the root loci of the characteristic equation with ATo =  0 and 0 <  AT/> <  oo. Then 
construct the root contours for 0 <  /lo  <  oc and several fixed values ofA’;. ranging from 0.001 to 0.01.
(c) Design the PD conưollerio satisfy the performance specifications given. Use the information on 
the root contours to help your design. Plot the unit-step response of y(i).
(d) Check the design results obtained in part (c) in the frequency domain. Determine the phase 
margin, gain margin, Mr, and BW of the designed system.
9-37. Consider a dc motor shown in Fig. 9P-37 and described in Section 4-7-3.
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Assuming the following:
The rotor inertia Ụ ) =  0.01 kg.m^/s^
Damping ratio of ứie mechanical system (f) =  0.1 Nms 
Back-enữ constant {Kh) =  0.01 Nm/Amp 
Torque constant [K ,) =  0.01 Nm/Amp 
Armature resistance [Ra] =  Ĩ Ĩ I  
Arm ature inductance (La) =  0.5 H

Design a PID controller that satisfies the following:
(a) Settling time is less than 2 sec.
(b) Maximum overshoot is less than 5%.

(c) Steady-state error is less than 1%.
9-38. For the dc motor described in Problem 9-37, assuming the following: 

The rotor inenia (/)  =  3.2284E-6kg.mVs^
Damping ratio of the mechanical system (f) =  3.5077E-6Nms 
Back-emf constant (Kb) =  0,0274Nm/Amp 
Torque constant (K,) =  0.0274 Nm/Amp 
Armature resistance [Ra) = 4 (1  

Armature inductance (La) =  2.75E-6H

Design a PID controller that satisfies the following:

(a) Settling lime is Jess than 40 milliseconds.
(b) Maximum overshoot is less than 16%.
(c) Zero steady-state eưor is less than
(d) Zero steady-state error due to a disturbance.
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9-39. Consider the broom-balancing control system described in Problems 4-21 and 10-51.TheA 
and B* matrices are given in Problem 10-51 for the small-signal linearized model.

A x ( f ) -A - ix ( i )  +  B 'Ar(i)
A>'(i) -  CAx(i)

D * = [ 0  0 1 Oj

Fig. 9P-39 shows the block diagram of the system with a series PD conưoller. Determine if the PC 
controller can stabilize the system; if so, find the values of K p  and Kd- If the PD controller canno 
stabilize the system, explain why not.

Figure 9P-39

9-40. The process of a unity-feedback control system has the transfer function
100

- ^ 2  + I 0 i+  100
Design a series controller (PD. PI, or PID) so that the following performance specifications are 
satisfied:

Steady-state errordue to a step input =  0 
Maximum overshoot <2%
Rise time <0.02 sec

Carry out the design in the frequency domain and check the design in the time domain.

9-41. The forward path of a unily-feedback control system that includes a disturbance signal D{s) is 
given by

C{s) =
1

{s^ +  3.6s +  9)

(a) Design a PID controller with the transfer function of H{s) =  so that the

response 10 any step disturbance is damped in less than 3 sec at the 2% settling time.
(b) Use MATLAB to plot the response of the closed-loop system to various step disturbance inputs 
and verify your design in part (a).
9*42. For the inventory control system shown in Fig. 9P-35, let the controller be of the phase-lead 
type:

1 +  aTs

Determine the values of a and T  so that the following perfonnance specifications are satisfied: 
Steady-stale error due to a step input =  0 
Maximum overshoot < 5%

(a) Design the controller using Ihe root contours with T and a as variable parameters. Plot the unil- 
step response of the designed system. Plot Ihe Bode diagram of G(j) =  Gc(s)Cp(s). and find PM, 
GM. /Wr. and BW of the designed system.
(b) Design the phase-lead controller so that the following performance specifications are salisfied: 

Steady-state eưor due 10  a step input =  0
Phase margin > 75'"
A/r< 1.1



Consinict the Bode diagram of G(j) and cany out the design in the frequency domain. Find the 
attributes of ứie time response of ừie designed system.

9-43. Consider that the process of a unity-feedback conưol system is
1000

Let the series conưoller be a single-stage phase-lead controller:

-

(a) Determine the values of a and T  so that the zero of G<(5) cancels the pole of Gp{s) at J =  -10 . 
The damping ratio of ihe designed system should be unity. Find the atuibuies of the unit-step response 
of the designed system.
(b) Carry out the design in the frequency domain using the Bode plot. The design specifications are 
as follows:

Phase margin >75®
Air <  1.1

Find the attributes of the unit-step response of the designed system.

9-44. Fig. 9P-44 shows the quarter-car model realization with 2 degrees of freedom.
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Figure 9P-44

Assuming:
Body mass {/nr) =  2500k2 
Suspension mass (m„.) =  320kg
Spring constant of suspension system (i.v) =  80.000N/m 
Spring constant of wheel and tire =  500.000N/m 
Damping constant of suspension system (c<) =  350Ns/m 
Damping constant of wheel and tire (c„) =  lS.020Ns/ni

When the vehicle is experiencina anv road disturbance, the vehicle body should not have large 
oscillations, and the oscillations should be damped quickly. If the deformation tire is negligible, and 
the road disturbance iD) is considered a step input.
(a) Design a PID controller that satisfies the following requirements:

(i) Overshooi less than 59r

(ii) Settling time shoner than 5 seconds
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(b ) Use MATLAB to plot the response of the closed-loop system to various step disturbance inpu 
and verify your design in part (a).
9-45. Consider that the conưoller in the liquid-level control system shown in Fig. 9P-10 is a phas 
lead controller:

Gcis)
i+ a T s  

'' I+ T s
J >  I

(a) FotN  =  20, select the values of a  and Tso that the maximum overshoot is barely 0%. The vail 
of a must not exceed 1000. Find the attributes of the unit-step response of the designed system. Pl< 
the unit-step response.
(b ) For A' =  20, design the phase-lead controller in the frequency domain. Find the values of a and 
so that the phase margin is maximized subject to the condition that BW >  100. The value of a mu: 
not exceed 1000.
9-46. The ừansíer function of the process of a unity-feedback control system is

6
Gp(s) =

s(l +0,25)(1 + 0 .5 i)

(a) Construct the Bode diagram of Gp{ j(tí) and determine the PM, GM. and BW of the systen
(b ) Design a series single-stage series phase-lead controller with the transfer function

( \  -\-aTs\
\+ T s  )

a >  1

so that the phase margin is maximum. The valueof ứ must not be greater than 1000. Determine PN 
and Mr of the designed system. Determine the attributes of the unit-step response.
(c) Using the system designed in part (b) as a basis, design a two-stage phase-lead controller so thỉ 
the phase margin is at least 85°. The transfer function of the two-stage phase-lead conưoller is

bT2s\
+  T2s )

1 > \  b > l

where ứ and T| are determined in pan (b). The value of Tz should not exceed 1000. Find the values 0 

PM and Mr of the designed system. Find the attributes of the unit-step response.
(d ) Plot the unit-step responses of the output in parts (a), (b). and (c).
9-47. Fig. 9P-47 shows an inverted pendulum on a carl.

Figure 9P-47



Assuming:
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M mass of the cart 0.5 kg
m mass of the pendulum 0.2 kg

M friction of ihe cart 0.1 N/m/sec
/ length to pendulum center of mass 0.3 m
Ỉ inertia of the pendulum 0,006 kg’m^

(a) Design a PID controller so that the settling time is less than 5 seconds and the pendulum angle is 
never more than 0.05 radians from the vertical position.
(b) If the step input is applied to the cart, design a PID coniroUer so that the settling time for X  and Ớ 
is less than 5 seconds, the rise time for X  is less than 0.5 seconds, and the overshoot of theta is less than 
20 degrees (0.35 radians).
9-48. A phase-lock-loop, dc-motor-speed-conữol system is described in Problem 4-46. The block 
diagram of the system is shown in Fig. 9P-48. The system parameters and ưansfer functions are given 
as follows:

Reference speed command, Wr =  120 pulse/sec 
Phase-detector gain, Kp =  0.06 v/pulse/sec 
Amplifier gain, Ka =  20 
Encoder gain, Ke =  5.73 pulse/rad 
Counter gain, N =  1 
Motor transfer function,

Eais) "

10
i ( l + 0.055)

Figure 9P-48 (pulses/sec) Counter

(a) Let the filter (conưoller) transfer function be of the form

£ ,(i) R^Cs

where /?1 =  2 X 10^ Í Ì  and c  =  1 ụ.F. Determine the value o f  R-> so that the com plex roots o f  the 
closed-loop characteristic equation have a maximum relative damping ratio. Sketch ihe root loci of 
the characteristic equation for 0 <  <  oo. Compute and plot the unit-step responses of the motor
speed (pulse/sec) with the values of R-, found, when the input is 120 pulse/sec- Conven Ihe 
speed in pulse/sec to rpm.
(b) Lei the filter transfer function be

. . .where T =  0.01. Find a so that the complex roots of the characteristic equation have a maximum 
relative damping ratio. Compute and plot the unit-step response of ihe motor .speed fa,(t) (pulse/sec) 
when the input is 120 pulse/sec.
(c) Design the phase-lead controller in the frequency domain so that the phase margin is at least 60°.
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9-49. Consider that the controller in the liquid-level control system shown in Fig. 9P-10 is a singli 
stage phase-Iag controller:

= “ <■

(a) For N  =  20, select the values of a and T  so that the two complex roots of Ihe characterist) 
equation coưespond to a relative damping ratio of approximately 0.707. Plot the unit-step response ( 
the output y(i). Find the attributes of the unil-step response. Plot the Bode plot of GẶs)Cp(s) an 
determine the phase margin of the designed system.
(b) For N  =  20, design ứie phase-lag conưoller in ihe frequency domain so that the phase margin i 
approximately 60°. Plot the unii-step response of the output y(0. and find the atuibutes of the unii 
step response.
9-50. The conữolled process of a unity-feedback control system is

The series conưoller has the ưansfer function

1 +  aTs
Gcis) =  -

(a) Design a phase-lead controller {a >  1) so that the following performance specifications ar 
satisfied:

Ramp-eiTor constant if,. =  10 

Maximum overshoot is near minimum

The value of a must not exceed 1000. Plot the unit-step response and give its atuibutes.
(b) Design a phase-lead controller in the frequency domain so thal the following performanci 
specifications are satisfied:

Ramp-error c o n s t a n t =  10
Phase margin is near maximum 
The value of a must not exceed 1000

(c) Design a phase-lag controller (a <  1) so that the following performance specifications ar< 
satisfied:

Ramp-error constant a:,. =  10 
MaximumovershooK 1%
Rise time fr <  2 sec 
Settling time ;5<2.5sec

Find the PM. GM, Mr. and BW of ihe designed system.
(d) Design the phase-lag controller in the frequency domain so that Ihe following perfomianc< 
specifications are satisfied:

Ramp-eiror constant Âv =  10 
Phase margin > 70°

Check the unit-step response attributes of ihe designed system and compare with those obtained ii 
part (C).
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9-51. Fig. 9P-51 shows the “ beam and ball”  system that is described in Problem 4-11.

Assuming: 

m =  0.11 kg 
r =  0.015 
d  =  0.03 m 
g =  9.8 m/s^

L =  1.0m

mass of the ball 
radius of the ball 
lever ann offset 
gravitational 
acceleration 
length of the beam

/  =  9.99e-6kgm2 
p

ball’s moment of inertia 
ball position coordinate 
beam angle coordinate 
servo gear angle

less than 3 seconds and the nDesign a PID controller so that the settling time i 
is no more than 5%.

9-52. The controlled process of a dc-motor control system wiOl unity feedback has the transfer 
function

__________________6.087 X 10 '°__________________

'’ ^ ^^ “ j (j3 + 4 2 3 .4 2 j2 + 2.6667 X 1 0 6 j +  4.2342 x  IQ8)

Due to the compliance in the motor shaft, the process transfer function conlains two lightly damped 
poles, which will cause oscillations in the output response. The following performance criteria are 
to be satisfied:

Rise tim e/r<  0.15 sec
Settling time f, <  0.15 sec
Output response should not have oscillations
Ramp-error constant is not affected

(a) Design a series phase-lead coniroller,

» > •

so that all ihe step-response attributes (except for the oscillations) are satisfied.
(b) To eliminale the oscillations due to the motor shaft compliance, add another stage to the 
controller with the transfer function

^  +2(.ÙJ„S +  Ŵ
^ +  2ỊpW„s +  aĴ

so that the zeros of G, i(j) will cancel the two complex poles of Gp(s). Set the value of Ịp  so that the 
two poles of C<-|(J) will not have an appreciable affect on the system response. Determine the
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attributes o f the unit-step response to see if  all the requirem ents are satisfied. Plot the unit'Sl 
responses of the uncompensated system and the compensated system with the phase-lead conưol 
designed in part (b).
9-53. A computer-tape-drive system utilizing a permanent-magnet dc-motor is shown in Fig. 9P-53( 
The closed-loop system is modeled by the block diagram in Fig. 9P-53(b). The constant K l represents I 
spring constant of the elastic tape, and B i  denotes the viscous-friction coefficient between the tape a 
the capstans. The system parameiers are as follows:

Speed ơansducer 

(b)

Figure 9P-53

Ki =  motor torque constant =  10oz-in,/A
Kh =  motor back-emf constant =  0.0706 v/rad/sec
B„, =  motor friction coefficent =  3oz-in./rad/sec
/? „ = 0 .2 5 fì L a ^O H
Kl  =  3000oz-in-/rad B t  =  lOoz-in./rad/sec
Jl =  6oz-in./rad/sec^A'/ =  1 v/rad/sec

J,„ =  0.05oz-in./rad/sec^

(a) Write the state equations of the system between and 9 i using ỡi., Cũi, ỡm. and w „  as sii 
variables and e„ as input. Draw a state diagram using the state equations. Derive the transfer function

Ea{s) £a(s)
( b )  The objective of the system is to control the speed of the tape. Oil, accurately. Consider that a 
controller with the transfer function Gc(i) ^  Kp +  K //s  is to be used. Find the values of Kp and Ki 
that the following specifications are satisfied:

Ramp-errnr constant Af,. =  100
Rise time <0.02 sec
Settling time <0.02 sec
Maximum overshoot <  I % or at minimum

Plot the unit-step response o f ojlU) of the system.



(c) Design the PI controller in the frequency domain. The value of K, is 10 be selected as in part (b). 
Vary the value of Kp and compute the values of PM, GM, Mr, and BW. Find the value of Kp so that PM 
is maximum. How does this value of Kp compare with the result obtained in part (b)?
9-54. Fig. 9P-54 shows the block diagram of a motor-control system that has a flexible shaft 
between the motor and the load. The transfer function between the motor torque and motor 
displacement is
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Figure 9P-54

G = ________________________ Jls  ̂ +  Bls +  Kl________________________

‘  T M  +  [K iJ „  +  K i Jl  +  +  B „K l \

where Ji_ =  0.01, S t  =  0.1. Kl  =  10, =  0.01, B„, =  0.1, and K  =  100.
(a) Compute and plot the unit-step response of Bm (0 • Find the attributes of the unit-step response.
(b) Design a second-order notch controller with the transfer function

so that its zeros cancel the complex poles of Gp{s). The two poles of Gf(i) should be selected so that 
they do not affect the steady-state response of the system, and the maximum overshoot is a minimum. 
Compute the ãCưibutes of the unit-step response and plot the response.
(c) Carry out design of the second-order controller in the frequency domain. Plot ứie Bode diagram 
of the uncompensated Gp{s). and find the values of PM, GM. Air, and BW. Set the two zeros of Cf(5) to 
cancel the two complex poles of Cp{s). Determine the value of by determining the amount of 
attenuation required from the second-order notch controller and using Eq. (9-155). Find ihe PM. GM, 
Mr. and BW of the compensated system. How do the frequency-domain design results compare with 
the results in part (b)?
9-55. The transfer function of the process of a unity-feedback control system is

5QQ(.+ 1Q)
'  s(j2 +  10j + 1000)

(a) Plot the Bode diagram of Gp(s) and determine the PM. GM. Mr, and BW of the uncompensated 
system. Compute and ploi the unit-step response of the system.
(b) Design a series second-order notch controller with the transfer function

SO that its zeros cancel Ihe com plex poles o f  c^(5 ). D eterm ine the value o f  Ịp  using the method 
outlined in Seccion 9-8-2. Find the PM. GM. Mr, and BW of the designed system. Compute and plot 
Ihe unit-step response.
(c) Design the series second-order notch controller so that ils zeros cancel the complex poles of 
G^{5). Determine the value of ỉp  so that the following specifications are satisfied;

Maximum overshoot <  \ %
Rise time <0-4 sec 
Settling lime <0.5  sec
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9-56. Design the controllers Gcf(s) and Gc(i) for the system shown in Rg. 9P-56 so lhat 
following specifications are satisfied:

Figure 9P-56

Ramp-error constant ATv =  50
Dominant roots of the characteristic equation at -  5 ±  j5  approximately 
Rise time <  0.1 sec
System must be robust when K  varies ±20% from the nominal value, with the rise time ; 
overshoot staying within specifications

Compute and plot the unil-slep responses to check the design.

9-57. Fig. 9P-57 shows the block diagram of a motor-conưol system. The ưansfer funcQon of 
conưolled process is

ioooa:
C r is ]  = s{s +  a)

Figure 9P-57

where K  denotes the aggregate of the amplifier gain and motor torque constant, and a is the inverse 
the motor time constant. Design the conưollers G^f(s) and Gf(5) so that the following performai 
specifications are satisfied.

Ramp-error constant Ky. =  100 when đ =  10 
Rise time <0-3 sec 
Maximum overshoot < 8%
Dominant characteristic equation roots =  - 5  ±  j5  
System must be robust when a varies between 8 and 12 

Compute and plot the unit-step responses to verify the design,

9-58. Fig. 9P-58 shows the block diagram of a dc-motor control system with tachometer feedbai 
Find the values of K  and K, so that the following specifications are satisfied:

Ramp-error constant ẤT,. =  1
Dominant characteristic equation roots coưespond to a damping ratio of approximately 0.707 
there are two solutions, select the larger value of K

Figure 9P-58



9-59. Carry out the design with the specifications given in Problem 9-58 for ừie system shown in 
Fig. 9P-59.
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Figure 9P-59

9-60. The block diagram of a control system with a type 2 process is shown in Fig. 9P-60, The 
system is to be compensated by tachometer feedback and a series controller. Find the values of a. T, K, 
and K, so that the following performance specifications are satisfied:

Figure 9P-60

Ramp-error constant/kv =  100
Dominant characteristic equation roots correspond to a damping ratio of 0.707 

9-61. The aircrafl-attitude control system described in Section 5-8 is modeled by the block diagram 
shown in Fig. 9P-61. The system parameters are as follows;

K =  variable 
u  =  0.003 

B,„ =  0.005

K, =  1 
K, =  9.0 
Bl = \ . Q

K ị =  10 
Kb =  0.0636 
N  =  0 .\

K i  =  0.5 
7„, =  0.0001

K, — variable Ra — s 

JL =  ữữ\
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Find the values of K  and K, so that the following specifications are satisfied:
Ramp-eưor constant Kv — 100
Relative damping ratio of the complex roots of the characteristic equation is approximately 0.7Ơ;

Plot the unit-step response of the designed system. Show that the system performance is exffemelj 
insensitive to the value of K. Explain why this is so.

9-62. Fig. 9P-62 shows the block diagram of a position-conưol system widi a series controllei
G ,(5).

Ti(s)

Figure 9P-62

(a) Determine ửie minimum value of ihe amplifier gain K  so that the steady-siate value of the output 
v(/) due to a unil-siep torque disturbance is <  0.01.
(Ồ) Show that the uncompensated system is unstable w iU j the m in im u m  value o f  K  determ ined ÍD 
pan (a). Consưuct the Bode diagram for the open-Ioop ưansfer function G(i) =  Y{s)/E{s). and find 
Che values of PM and GM.
(c) Design a single-stage phase-lead controller with the ưansfer function

SO that ửie phase margin is 30®. Show that this is nearly the highest phase margin that can be achieved 
with a single-stage phase-lead conơoller. Find GM. M,. and BW of the compensated system.
(d) Design a two-stage phase-lead conffoller using the system arrived at in pan (c) as a basis so ứiat 
ửie phase margin is 55°. Show that this isihebestPM  that can be obtained for this system wiưi a two- 
stage phase-lead conưoller. Find GM. M „  and BW of the compensated system.
9-63. The ưansíer function of the process of a unity-feedback conưoì system is

“  I ( l+ 0 .2 s ) ( l  +O.Ss)

Show lhat. due to the relative high gain, the uncompensated system is unstable.
(a) Design a two-stage phase-lead conưoller with

c.(i) 1 +bT2s\  
\ +  T2s )

2 > 1 .  b > \

so that ihe phase margin is greater thaD 60°. Conduct ihe design by first determining the values of a 
and ĩ |  to realize a maximum phase margin thal can be achieved with a single-stage phase-lead 
controller. The second stage of the conưoller is then designed to realize the balance of the 60° phase 
margin. Deiermine GM. Mr. and BW of the compensated system. Compute and plot ứie unit-step 
response of Uie compensated system,
(b) Design a single-stage phase-lag conơoller with

so thai the phase margin of the compensated system is ereater than 60°. Determine GM. and BW 
of ửie compensated system. Compute and plot the unit-step response of the compensated system. 
(C) Design a lag-lead con tro lle r w ith  G,.(5) as in  ửie equation in  part (a). Design the phase-lag 
ponion firsi bv senins the phase margin at 40 '. The resulting system is then compensated by lh«
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phase-lead portion to achieve a total of 60° of phase margin. Determine GM. Mr, and BW of the 
compensated system. Compute and plot ứie unit-step response of the compensated system.

9-64. The block diagram of the steel-rolling system described in Problem 4-18 is shown in 
Fig. 9P-64. The ưansíer function of the process is

5e-'
Ks =  1

GẬS) G,(s)

Figure 9P-64

(a) Approximate the time delay by

1 +  0.05J
Design a series conưoller of your choice so that the phase margin of the compensated system is at 
least 60°. Determine GM. and BW of the compensated system. Compute and plot the unit-step 
responses of the compensated and the uncompensated systems.
(b) Repeal part (a) without using the approximation of the time delay.
9-65. Human beings breathe in order to provide for gas exchange for the entire body. A respiratory 
control system is needed to ensure that the body’s needs for this gas exchange are adequately met. The 
criterion of control is adequate ventilation, which ensures satisfactory levels of both oxygen and 
carbon dioxide in the arterial Wood. Respiration is controlled by neural impulses that originate within 
the lower brain and are transmitted to the chest cavity and diaphragm to govern the rate and tidal 
volume. One source of signals consists of the chemoreceptors located near the respiratory center, 
which are sensitive to carbon dioxide and oxygen concentralions. Fig. 9P-65 shows the block diagram 
of a simplified model of the human respiratory control system. The objective is to control Ihe effective 
ventilation of the lungs so that a satisfactory balance of concentrations of carbon dioxide and oxygen 
is maintained in the blood circulated at the chemoreceptor.

Figure 9P-65

(a) Plot the Bode diagram of the transfer function G(i) =  y (j)/£(5) when Cc(i) =  1. Find the PM 
and GM. Determine the stability of the system.
(b) Design a PI conưoller, Gc(s) ~  Kp +  K i/s , so that the following specifications are satisfied: 

Ramp-eưor constant Ky =  1
Phase margin is maximized

Plot the unit-step response of the system. Find the aitributes of the unit-step response.
(c) Design a PI controller so that the following specifications are satisfied:

Ramp-error constant K̂ . =  1
Maximum overshoot is minimized
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Plot the unit-step response of ihe system. Find the atưibutes of ihe unit-siep response. Compare the 
design results in parts (b) and (c).
9-66. The block diagram of a control system with state feedback is shown in Fig. 9P-66. Find the 
real feedback gains k ị, k ĩ ,  and k-i so that:

Figure 9P-6S

The sleady-state eưor [e(0 is the error signal] due to a step input is zero.
The complex rools of the characteristic equation are at - 1 +  ý and - 1  -  j.

Find the third root. Can all three roots be arbitrarily assigned while still meeting ửte steady-state 
requirement?

9-67. The block diagram of a control system with state feedback is shown in Fig. 9P-67(a). The 
feedback gains k i,  *2, and k i  are real constants.

Figure 9P-67

(a) Find the values of ihe feedback gains so that:

The sieady-state error [f(/) is the error signal] due to a step input is zero.
The characteristic equation roots are at - 1  + > . - 1  -  and -1 0 .

(b) Instead of using slate feedback, a series controller is implemented, as shown in Fig. 9P-67(b). 
Find Ihe transfer function of the controller G,(5) in terms of k \. k j.  and k ĩ  found in part (a) and the 
other system parameters.
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State Variable Analysis

INTRODUCTION
In  Chapter 2 we presented the concept and de fin ition  o f  stale variables and stale equations fo r 
linear continuous-data and discrete-data dynam ic systems. In  Chapter 3 we used block- 
diagram  and signal-flow-graph (SFG) methods to  obtain the ttansfer function o f  linear 
systems. In  this chapter, the SFG concept is extended to  the m odeling o f  the state equations, 
and the result is the state d iag ram , ỉn  conữast to  the transfer-funcQon approach to  the analysis 
and design o f  linear control systems, the state-variable method is regarded as modem, since it 
uses underly ing force fo r optim al control. The basic characteristic o f  ứie state-variable 
fo rm ulation is diat linear and nonlinear systems, tim e-invariant and tim e-varying systems, and 
single-variable and muldvariable systems can a ll be modeled in  a un ified manner. Transfer 
functions, on the other hand, are defined on ly  fo r linear tim e-invariant systems.

The objective o f  this chapter is to  introduce the basic methods o f  state variables and state 
equations so that the reader can gain a w ork ing  knowledge o f  the subject fo r  fu rther studies 
w hen the state-space approach is used fo r modem and optim al contro l design. Specifically, 
the closed-form  solutions o f  linear tim e-invariant state equations are presented. Various 
transform ations that may be used to  fac ilita te  the analysis and design o f  linear contro l systems 
in  the state-variable dom ain are introduced. The relationship between the conventional 
transfer-function approach and the state-variable approach is established so that the analyst 
w il l  be able to  investigate a system problem  w ith  various alternative methods. F ina lly, the 
conư o llab ility  and observability  o f  linear systems are defined and the ir applications 
investigated. Some state-space con tro lle r design problem s appear in  the end. A t the end 
o f  the chapter, we also present M A T L A B  tools to  solve most state-space problems.

BLOCK D IAG R A MS ,  TRANSFER FUNCTIONS, A N D  STATE DIAGRA MS
Transfer Functions (Multivariable Systems!

The de fin ition  o f  a transfer function is easily extended to  a system w ith  m u ltip le  inputs and 
outputs. A  system o f  th is type is often refeưed to as a m u ltiva riab le  system. In  a 
m u ltiva riab le  system, a d iffe ren tia l equation o f  the fo rm  o f  Eq. (2-217) may be used to 
describe the relationship between a pa ir o f  inpu l and output variables, when a ll other inputs 
are set to  zero. Th is  equation is restated as

d’yit) , d'-'yự) , , dy(t) , , ,

^  ̂ , du{l) , , ,
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The coeffic ients aQ,a\, . . .  ,a „ -\  and b Q ,b \ , . . . ,b m  are real constants. Because th 
princ ip le  o f  superposition is va lid  fo r  linear systems, the to ta l e ffect on any output du 
to a ll the inputs acting sim ultaneously is obtained by adding up the outputs due to  eacl 
input acting alone.

In general, i f  a linear system has p  inputs and q outputs, ihe ưansíer func tion  betweei 
the ýth input and the ith output is defined as

Yi(s)
R jis )

( 10-2

w ith  Rk{s] = 0 , k  =  1 ,2 .........p. j .  Note that Eq. ( 10-2 ) is defined w ith  o n ly  the jử
input in e ffect, whereas the other inputs are set to  zero. W hen a ll the p  inputs are in  action 
ihe /th output transform  is w ritten

n ( i )  =  G n { s ) R i{s )  +  G a is )R 2 (s) +  •■ • +  G ip {s)R p (s)  

I t  is convenient to  express Eq. (10-3) in m a irix -vec to r form :

Y (5) =  G {s)R is)

where

Y ( i )  =

is the Ợ X 1 transformed output vector,

R(i) =

is the /7 X 1 transformed inpu t vector, and

y^is) 
y2(s)

c , | ( s )  G ,2 ( i)  

C 2 IW  G22M
G ( i)  =

, c „ ( i )  G ,2 { i )  

is the ạ X p  transfer-function m atrix

C ip M

G Ìpis)

G „ ( i )

(10-3.

(10-4;

(10-5)

( 10-6 )

(10-7)

10-2-2 Block Diagrams and Transfer Functions of Multivariable Systems
In this section, we shall illustra te the b lock diagram and m atrix  representations o f 
m u ltiva riab le  systems. Tw o block-d iagram  representations o f  a m u ltiva riab le  system 
w ith  p  inputs and q  outputs are shown in F ig. lO - l(a )  and (b). In Fig. lO - l(a ) . Ihe
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'■1(0 - 
-■2(0 -

r/ t) -

MULTIVARIABLE
SYSTEM

-► yid)

r(f) _______ ^  MULTIVARIABLE
SYSTEM

Figure lO-t Block diagram representations 
o f a multivariable system.

in d iv id u a l inpu t and ou tput signals are designated, whereas in  the b lo ck  diagram  o f 
F ig . 10 -1(b), the m u lt ip lic ity  o f  the inputs and outputs is denoted by vectors. The case o f  
F ig . lO - l(b )  is preferable in  p ractice because o f  its  s im p lic ity .

F ig. 10-2 shows the b lock  diagram  o f a m u ltiva riab le  feedback con tro l system. The 
transfer function relationships o f  the system are expressed in  vector-m atrix fo rm  (see 
Section 10-3 fo r  more detail):

Y {s) =  G {s)V {s) 
U ( í)  =  R ( 5 ) - B ( í )  

B{s) =  H ( s ) \{ s )

( 10 - 8 )

(10-9)

( 10- 10)

where Y ( i )  is the ạ X 1 output vector; U ( i) ,  R(5). and B{5) are a ll /J X 1 vectors; and 
G ( i)  and H ( j)  aie q X p  and p  X q transfer-function matrices, respectively. Substituting 
Eq. (10-9) in to  Eq. (10-8) and then from  Eq. (10-8) to Eq. (10-10), we get

Y ( í ) = G { . ) R ( 5 ) ^ G ( . ) H ( . ) Y ( 5 )  

S o lv ing  fo r  Y(5) fro m  Eq. (10-11) gives

Y (5 ) =  [I  +  G ( í } H ( í ) ] - 'G ( í jR ( 5 ) ( 10- 12)

Figure 10-2 Block diagram of a multivariable
feedback control system.



provided that I  +  G { i)H (s )  is nonsingular. The closed-loop ưansfer m aư ix  is defined as 

M M  =  [ I  +  G W H W ] - 'G W

Then Eq. (10-12) is w ritten
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(10-13)

(10-14)

EXAMPLE 10-2-1 Consider that the forward-path ttansfer function matrix and the f 
matrix o f the system shown in Fig. 10-2 are

1 transfer function

G(5) =

1 _  I
S + Ì  s H(5) =

1 0 
0  1

respectively. The closed-loop transfer function matrix o f the system is given by Eq. (10-14) and is 
evaluated as follows:

I  +  G ( í )H(5) =

^ i  +  2

-5 +  2 1 •
5 + 1  Í

2 ^ +  ^
Í  +  2.

(10-16)

The closed-loop transfer function matrix is

5 +  3 \_
s + 2 s

s + 1

• 1
5 + 1  J

2 s^ + 5 s + 2 
“ i + l i  +  2 s ~  j ( j + l )

M{s) =
s(s+  1)

3j  ̂+  95 +  4
5 (5 + l) (5  +  2)

j ( s +  1)

(10-19)

10'2'3 State Diagram

In  this section, we introduce the state diagram , w hich is an extension o f  the SFG to  portray 
state equations and d iffe ren tia l equations. The significance o f  the state diagram is that it 
form s a close relationship among the state equations, com puter s im ulation, and transfer 
functions. A  state diagram  is constructed fo llo w in g  a ll the rules o f  the SFG using the 
Laplace-transform ed state equations.
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The basic elements o f  a state diagram  are s im ila r to the conventional SFG, except fo r 
the in te g ra tio n  operation. L e t the variables X ](l)  and X 2{t) be related by the first-order 

d iffe ren tia tion ;
d x i j t )  _

d t
- =  X2{t) ( 10-20)

In tegrating both sides o f  the last equation w ith  respect to t  fro m  the in itia l tim e to, we get

^ l ( / ) =  f X2 (r)dT  +  Xi{io) (10-21)
Jto

Because the SFG algebra does not handle in tegration in  the tim e dom ain, we must take the 
Laplace transform  on both sides o f  Eq. (10-20). We have

X i{s )= = c I X2ÌT)dT X] (/o)

_ X 2 (s)
X2ÌT)dT

Í x 2 Ì T ) d T -  f  X 2 (z)d T
J o  Jo

{to)

( 10- 22)

Because the past history o f  the in tegrator is represented by x ,( /o ) , and the state transition is 

assumed to start at T =  fo. Xi('ĩ) =  0 fo r  0 <  T <  /o- Thus, Eq. (10-22) becomes

(10-23)

Eq. (10-23) is now algebraic and can be represented by an SFG, as shown in  Fig. 10-3. 
F ig . 10-3 shows that th e  o u tp u t o f  th e  in te g ra to r  is e q u a l to  t im e s  th e  inpu t, p lu s  th e  
in it ia l  co n d itio n  Xị{ÍQ)/s. A n  alternative SFG w ith  few er elements fo r Eq. (10-23) is shown 
in  Fig. 10-4.

Before em barking on several illus tra tive  examples on the construction o f  state 
diagrams, le t us po int out the im portant uses o f  the state diagram.

X2ÌS)

__ o Figure 10-3 Signal-flow graph representation of
x ,( i)  X ,W  =  [X 2(5)/5] +  [A:,(ro)/i].

XlUo)

Figure 10-4 Signal-flow graph representalion of
x,(j) X |{ i)  =  [X2(j)/s] +  [j:i (ío)Ã].
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1. A  state diagram  can be constructed d irec tly  fro m  the system ’s d iffe re n tia l equatior 
Th is  allows the determ ination o f  the state variables and ứie state equations.

2. A  state diagram  can be constructed fro m  the system ’s ưansíer func tion . This ste 
is defined as the decomposition o f  transfer functions (Section 10-10).

3. The state diagram  can be used to  program the system on an analog com puter or fo 
s im ulation on a d ig ita l computer.

4. The state-transition equation in  the Laplace transform  dom ain m ay be obtainet 
from  the state diagram  by using the SFG gain fo rm u la .

5. The transfer functions o f  a system can be determ ined fro m  ứie state diagram.

6. The state equations and the output equations can be determ ined fro m  the stall 
diagram.

The details o f  these techniques w il l  fo llow .

10-2-4 From DỈHerentíal Equations to State Diagrams
W hen a linear system is described by a h igh-order d iffe ren tia l equation, a state diagram cai 
be constructed from  these equations, although a d irect approach is no t always the mos 
convenient. Consider the fo llo w in g  d iffe ren tia l equation:

(10-24:

Figu re  IQ-5 S ta te -d ia g ra m  rep rese n ta tio n  o f  th e  d ifferenH al e q u a tio n  o f  E q . (1 0 -2 4 ).
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To construct a state diagram using this equation, we rearrange the equation as

V iO^">-(0 ( T -
—^1  -  =  -On - . a 2 ^ - a , y ( t i + r ( t ) (10-25)

A s a firs t step, the nodes representing / ? ( j ) , 5 " y ( j ) , ......... íK (s ), and y(s) are
arranged fro m  le ft to  rig h t, as shown in  F ig . 10-5(a). Because ỹy (5 ) coưesponds to  d ‘y ( t) /  
d i‘, i - 0 .1 ,2 ,  . . . . n, in  the Laplace dom ain, as the next step, the nodes in  F ig . 10-5(a) are 
connected by branches to  portray Eq. (10-25), resulting in  F ig . 10-5(b). F ina lly , ứie 
in tegra to r branches w ith  gains o f  s ~ ‘ are inserted, and the in it ia l conditions are added to 
the outputs o f  the integrators, according to  ứie basic scheme in  F ig. 10-3. The complete 
state diagram  is drawn as shown in  F ig . 10-5(c). The outputs o f  the integrators are defined  
as the sta te  variables, JCi, X2, . . . .  x„. Th is  is usually the natural choice o f  state variables 
once the state diagram is drawn.

W hen the d iffe ren tia l equation has derivatives o f  the inpu t on the r ig h t side, the 
prob lem  o f  draw ing the state diagram d irec tly  is no t as Stfaightforward as ju s t illustrated. 
W e w il l  show ứiat, in  general, i t  is more convenient to obtain the transfer func tion  from  the 
d iffe ren tia l equation firs t and then arrive at the state diagram  through decom position 
(Section 10-10).

EXAMPLE 10-2-2 Consider the differential equation

( 10- 26)

Equating the highest-ordered term o f the

d^y{')
di^

last equation to the rest o f the terms, we have

Following the procedure just outlined, the state diagram o f the system is drawn as shown in 
Fig. 10-6. The state variables jCi and X2 are assigned as shown.

y“ Vo) y(fọ)

Figure 10-6 State diagram fo r Eq. (10-26).

From State Diagrams to Transfer Functions
The transfer function  between an input and an output is obtained from  the state diagram  by 
using the gain fo rm u la  and setting a ll other inputs and in it ia l states to  zero. The fo llo w in g  
example shows how the transfer func tion  is obtained d irec tly  from  a state diagram.



► EXAMPLE 10-2-3 Consider the state diagram o f Fig. Ỉ0-6. The ưansíer function between R(s) and K(s) is obtaioed bj 
applying the gain formula between these two nodes and setting the in itia l states to zero. We havị

10-2-6 From State Diagrams to State and Output Equations
The state equations and the output equations can be obtained d ire c tly  fro m  ứie state 
diagram by using the SFG gain forrnu la . The general fo rm  o f  a state equation and ihe output 
equation fo r  a linear system is described in  Chapter 2 and presented here.

State equation:

= ax(l) +  br{t) (10-29)
at

Output equation:

y{t) = c x { t)  +  dr{t) (10-30)

where x{t)  is the state variable: l i t)  is the inpu t; is the output: and a. b. c, and i/a re
constant coefficients. Based on the general fo rm  o f  the state and output equations, the
fo llo w in g  procedure o f  deriv ing  the state and output equations fro m  the state diagram are
outlined:

1. Delete the in i t ia l  states and the integrator branches w ith  gains from  the state 
diagram, since the state and output equations do not contain the Laplace operator s 
or the in itia l states.

2. For the state equations, regard the nodes that represent the derivatives o f  the staỉe 
variables as output nodes, since these variables appear on the le ft-hand side o f  the 
state equations. The output y (0  in  the output equation is natura lly an output node 
variable.

3. Regard the state variables and the inputs as input variables on the state diagram, since 
these variables are found on the right-hand side o f  the state and output equations.

4. A p p ly  the SFG gain fo rm u la  to the state diagram.

EXAMPLE 10-2-4 Fig. 10-7 shows the slate diagram o f Fig. 10-6 with the integrator branches and the in itia l states 
eJiminated. Using d.\i(t)/dr and d xiin /d i  as Uie output nodes and .Vi(0. XiU). and r(/) as input nodes, 
and applying the gain formula between these nodes, the state equations are obtained as

‘^  =  .<2(0 (10-31)

=  - 2 j | ( r ) - 3 ^ ( 0 +  r( t)  (10-32)
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Figure 10-7 S tate  d ia g ra m  o f  F ig . 10-6 w ith  th e  in itia l s ta te s  a n d  th e  in te g ra to r  b ra n c h e s  le ft ou t.

4
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A p p ly in g  the gain fo rm u la  w ith  -^2( 0 , and r{t) as inpu t nodes and >>(f) as the 
ou tput node, the output equation is w ritten

(1 0 -3 3 )

EXAMPLE 10-2-5 As another example on the determination o f the state equations from the Slate diagram, consider the stale 
diagram shown in Fig. 10-8(a). This example w ill also emphasize the importance o f applying the gain 
formula. Fig. 10-8(b) shows the state diagram with the in itial states and the integrator branches deleted. 
Notice that, in this case, the state diagram in Fig. 10-8(b) still contains a loop. By applying the gain 
formula to the state diagram in Fig. 10-8(b) w ith i]  (í).-^2(0' andi:3 (f) as output-node variables and til), 
■>̂1(0 . X2{t), and X3Í 0  as input nodes, the state equations are obtained as follows in vector-matrix form:

( t ) '
dt 0 1 0 ' '■̂1(0 ' ' 0'

dx2{l) - ( 0 2 + 0 3 ) l - a o 02 , ------ - a \  ----- ----- X2(t) + 0
dt 1 +  00^3 1 +  <>0123

0 0 0 . 1

I  d t Ả

The output equation is
1

1 +  ứoaa

r{t) (10-34)

(10-35)

Figure 10-8 (a) S ta le  d iag ram , (b) S ta te  d ia g ra m  in  p a n  (a) w ith  all in itia l sta te s  a n d  in teg ra to rs  ie flo u t.



10-3 VECTOR-MATRIX REPRESENTATION OF STATE EQUATIONS
Le t the n state equations o f  an «ứ i-order dynam ic system be represented as

« l(t).H 2 (í)’ Up(í). *^2(0......... ».■(/)]

(10-36)

where i =  1,2, . . . ,  n. The /th  State variable is represented by u / i )  denotes the ỹth
input f o r ;  =  1 ,2 ......... p; and W/XO denotes the ^ứ i disturbance input, w ith  k  =  1 ,2 .......... V.

L e t the variables y i ( 0 i3 ’2 ( i) ' the q  ou tput variables o f  the system. In
general, the output variables are functions o f  the state variables and the inpu t variables. The 
o u tp u t equa tions can be expressed as

U2( t ) ,  . . . .  M p ( i),  IV, (r). H-2(/)........K v ( f) ]

(10-37)

where j  =  1 .2 .........q.
The set o f  n  state equations in  Eq. (10-36) and q  output equations in  Eq. (10-37) together 

fo rm  the d yn a m ic  equations. For ease o f  expression and m anipulation, i t  is convenient to 
represent the dynam ic equations in  vector-m atrix form . L e t us define the fo llo w in g  vectors:

State vector:
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x ịt)  =

xxil)
« ( ' )

M ' )

( n x  1) (10-38)

Input vector:

u (/)  =

“ |(<)
«2(<)

Up{l )

( p x  1) (10-39)

Output vector:

D isturbance vector:

y[t) =

VI w
V2{/)

yq{f )

( ạ x  1)

w (/)  =
W2 {r)

{v X I ) ( 1 0 4 1 )
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B y  using these vectors, the n  state equations o f  Eq. (10-36) can be w ritten

dx{t)
dt

=  f [ x ( 0 ,u ( / ) ,  w (/) ] (10-42)

where f  denotes an rt X 1 colum n m atrix  that contains the functions / i ,  / 2 . ■■■, fn as 
elements. S im ila rly , the q  output equations in  Eq. (10-37) become

y ( 0  =  g [x (0 , u (0 ,  w(/)] (10-43)

w here g  denotes a ự X 1 column matrix that contains the functions g i,  g 2 , . . . ,  gq as 
elements.

For a linear tim e-invariant system, the dynam ic equations are w ritten  as 

State equations:

dx{t)
=  A x (0  +  B u { f ) + E w { r )

O utput equations: 

where

y ( / ) = C x ( 0 + D u ( / ) + H w (0

a n ai2 . . .  a]„'
021 022 ■ fl2n

On2 ■• • a„„

r ^ i i b,2 .. ■ b ịp '
h i 622 ■ . - b in

bn2 ■ ■ bnp_

'<'ìl C\2 ■■■ Cị„'
C2 I C22 ■••

Cg2 ■■ ■ Cg„

'^11 d n  .. ■ d ịp -
d2, d22 • ■ d ip

dg, d,2 d^p

^11 e\2 ■. .  eu-
e’21 €22 e2v

e„-> ^nv

(n  x n )

(»  X p)

(q  X n)

( i  X p)

(n X v)

{10-44)

(10-45)

(10-46)

(10-47)

(10-48)

(10-49)

(1 0 -5 0 )
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^11 h i2  . ■■ h u

h n h i2  . h lv

k g i hqZ .

( ợ x v ) (10-5

► 10-4 STA T E-T R A N S IT IO N  M A T R IX

Once the state equations o f  a linear tim e-invarian t system are expressed in  the form  ( 
Eq. (10-44), the next step often invo lves the solutions o f  these equations g iven the in iti 
state vector x(?o), the inpu t vector u(?). and the disturbance vector w (0 . fo r  /  >  Iq. The fir 
term  on the righ t-hand side o f  Eq. (10-44) is know n as the homogeneous part o f  the sta 
equation, and the last tw o  terms represent the fo rc ing  functions u ( /)  and w (r).

The s ta te -tra n s itio n  m a tr ix  is defined as a m a trix  that satisfies the linear homogi 
neous state equation:

dx{t)
=  A x { /) (10-5:

Le t ộ(t)  be th e n  X n  m a u ix  that represents the state-transition m a u ix ; then i t  must satisf 
the equation

dậ{t)
=  XỘ{t) (10-5-

Furtherm ore, le t x (0 ) denote the in itia l state at Í  =  0; then ậ (t)  is  also defined by the matri 
equation

x ( 0  =  0(r)x(O ) (10-54

w hich is the solu tion o f  the homogeneous state equation fo r /  >  0.
One way o f  de term in ing ^ ( 0  is by taking the Laplace transform  on both sides c 

Eq. (10-52); we have

sX{s) -  x (0 ) =  A X { i)  

S o lv ing  fo r  X{5) from  Eq, (10-55), we get

(10-55

X (s ) =  ( s l - A )  ’ x(O) (10-56

where i t  is assumed that the m atrix  ( i l  -  A )  is nonsingular. Taking the inverse Laplac
transform  on both sides o f  Eq. (10-56) y ields

x ( i)  =  £ - ' [ ( j I - A ) - ‘ ]x (0 )  t > 0  (10-57

B y com paring Eq. (10-54) w ith  Eq. (10-57), the state-transition m a trix  is iden tified  to b

( Í ( í ) = £ “ ' í ( i l - A ) ' ' ì  (10-58



A n  alternative w ay o f  so lv ing  the homogeneous state equation is to  assume a solution, 
as in  the classical meứiod o f  so lv ing  linear d iffe ren tia l equations. We le t the solu tion to 
Eq. (10-52) be

x ( i)  =  e * 'x (0 )  (10-59)

fo r  I >  0. where e ^ ‘ represents the fo llo w in g  power series o f  the m a trix  A /, and

e * ' =  1 + A (  +  i  a V + - ! j A V  +  •■• (10-60)

I t  is easy to  show that Eq. (10*59) is a solution o f  the homogeneous state equation, 
since, fro m  Eq. (10-60),

J-Af
^  =  (10-61)

at

Therefore, in  addition to  Eq. (10-58), we have obtained another expression fo r  the slate- 
transition m atrix:

0 ( , )  =  e^ ' =  I  +  A ; +  Ì A V + Ì A ^ r ’ +  (10-62)

Eq. (10-62) can also be obtained d irectly  from  Eq. (10-58). Th is  is le ft as an exercise fo r  the
reader (Problem  10-5).
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Significance of the State-Transition Matrix
Because the state-transition m atrix  satisfies the homogeneous state equation, i t  represents 
the free  response o f  the system. In  other words, i t  governs the response that is excited by 
the in it ia l conditions only. In  v iew  o f  Eqs. (10-58) and (10-62), the state-transition m atrix  is 
dependent on ly  upon the m atrix  A  and. therefore, is sometimes referred to  as the state- 
tra n s it io n  m a tr ix  o f  A . A s  the name im p lies, the state-transiiion m atrix  0 ( i)  com pletely 
defines the transition o f  the states from  the in it ia l tim e / =  0 to  any tim e t when the inputs 
are zero.

Properties of the State-Transition Matrix
The state-transition m atrix  0 ( /)  possesses the fo llo w in g  properties:

1. ^ (0 )  =  I  (the iden tity  m a trix ) (10-63)

Proof: Eq. (10-63) fo llow s  d irec tly  from  Eq. (10-62) by setting t =  0.

2. « - ' ( ( )  =  0 ( - ( )  (10-64)

Proof: P ost-m u ltip ly ing  both sides o f Eq. (10-62) by e ~ ^ \  we get

=  I (10-65)
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= (io-6e

Thus,

Then, p re -m u ltip ly in g  both sides o f  Eq. (10-65) by ậ  ( f ) ,  we get

í ( - í ) = 0 - ' ( r ) = 6— «-A / (10-67

A n  in te resting  result fro m  th is  prof>erty o f  0 ( 0  is tha t Eq. (10-59) can h< 
rearranged to  read

x(0) = «(-i)x(0 (10-68

w hich means that the state-ưansiiion process can be considered as bilateral ii 
tim e. That is, the transition  in  tim e can take place in eiứ ier direction.

3. 0 ( '2 - < | ) 0 ( ( | - < o )  =  0 ( '2 -< o )  foranylo, I|, 

Proof:

0 {i2  -  -  io) -

(10-69

(10-70:

Th is  property o f  the state-ưansition m a trix  is im portant because i t  implies 
that a state-ưansition process can be d iv ided  in to  a num ber o f  sequential 
transitions. Fig. 10-9 illustrates that tíie  trans ilion  fro m  /  =  /0 to  r =  Í2 is equal 
to  the transition from  /o to  Í 1 and then fro m  ÍỊ to  Í2- In  general, o f  course, the state- 
transition process can be d iv ided  in to  any num ber o f  parts.

[^ ( ^ ) ] * ^  fo r  A; =  positive integer (1 0 -7 i)

Proof:

(10-72)
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ST A T E-T R A N S IT IŨ N  EQ UATIO N

The state-transition equation is d e fin e d  a s  th e  solution o f  th e  lin ea r  h o m o g e n e o u s  s ta le  
equation. The linear tim e-invariant state equation «

=  A x (r )  +  B u (() +  E w (r) (10-73)
at

can be solved using either the classical method o f  so lv ing  linear d iffe ren tia l equations or 
the Laplace transform  method. The Laplace transform  solution is presented in  the 
fo llo w in g  equations.

Tak ing  the Laplace transform  on both sides o f  Eq. (10-73), we have

sX{s) -  x (0 ) -  A X ( j )  +  BU(i) +  E W (s ) (10-74)

where x (0 ) denotes the in itia l-s ta te  vecto r evaluated at ? =  0. S o lv ing  fo r  X ( j )  in  Eq. (10* 
74) yie lds

X (s ) =  (s i -  A )^ 'x (O )  +  ( j l  -  A ) - '  |B U (s) +  E W (s )] (10-75)

The state-transition equation o f  Eq. (10-73) is obtained by taking the inverse Laplace 
transform  on both sides o f  Eq. (10-75):

x(<) =  [ ( J l -  A ) - ' ] x ( 0 )  -  A ) - '  [B U (s) +  E W { i ) ] }

=  i ( r ) x ( 0 ) +  / ’ V { » - r ) [ B u ( r ) + E w ( r ) ] d r  ( > 0  
Jo

(10-76)

The state-transition equation in  Eq. (10-76) is useful on ly  when the in it ia l tim e is 
defined to  be at f  =  0. In  the study o f  contro l systems, especially discrete-data contro l 
systems, i t  is often desirable to break up a state-transition process in to  a sequence o f  
transitions, so a more flex ib le  in it ia l tim e must be chosen. Le t the in it ia l tim e be 
represented by ÍQ and the corresponding in it ia l state by x(io), and assume that the input 
u ( /)  and the disturbance w ( i)  are applied at /  >  0. We start w ith  Eq. (10-76) by selling 
t =  fo, and so lv ing  fo r  x(0 ), we get

x{0) =  0 (- io }x ( io ) -  ộ{- í o)  í ' "ộ(to -  r ) [B u (r) +  E w (t) ]^ t  (10-77)
Jo

where the property on ộ ự )  o f  Eq. (10-64) has been applied.
Substituting Eq. (10-77) in to  Eq. (10-76) y ie lds

x ( i ) - 0 ( i ) 0 ( - io ) x { /o ) j  0(io -  ĩ ) [B u { r )+ E w ( t ) ] í í t

+  /  0 (f -  r)[Bu(T) E w (r)] i/r 
Jo

(10-78)

N ow  by using the property o f  Eq. (10-69) and com bin ing  the last tw o  integrals, Eq. (10-78) 
becomes

x ( f)  =  0 ( i  -  ?o)x(io) +  /  0 U - T ) [ B u { r ) + E w ( T ) ] ư r  / > / 0  (10-79)
Jo

I t  is apparent that Eq. (10-79) reverts to Eq. (10-77) when to =  0.
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Once the state-transition equation is determ ined, the ou tpu t vecto r can be expressei 
as a func tion  o f  the in it ia l state and the inpu t vecto r s im p ly  by substitu ting  x ( /)  fron 
Eq. (10-79) in to  Eq. (10-45). Thus, the output vector is

y(0 = C0(i - /oW»o) +  / ' 'c i ( < - r ) |B u ( r ) + E w ( r ) ] r f T
J/o (10-80

+  D u ( f ) + H w ( i )  t> tữ  

The fo llow ing  example illusữates the determ ination o f  ứie siate-ttansition m aữ ix and equation

► EXAMPLE 10-5-1 C onsider the state equation

dx\{ t)
d t

dx2[t)

0 1 

- 2  - 3
u {t)

The problem  is to  determ ine the sia ie -iransition m atrix  0 ( / )  and the state vector x ( /)  fo r  /  >  0 when 
the inp u t is u ( l)  =  1 fo r f >  0. The coe ffic ien t m atrices are identified  to  be

A =  B =  °  E  =  0 (10-82)

Therefore,

s i - A  =

The inverse m atrix  o f  ( i l  -  A )  is

( > > - * r ‘ = ? T 3 7 T 2

The state-ưansilion m atrix  o f  A  is found by tak ing  the inverse Laplace transform  o f  Eq. {10-84). Thus,

J 0 ' 0 1 ■ i  - 1
0  Í - 2  - 3 2 s +  3

s +  3 1
- 2  Í

2e -' -  
- 2 e - ’ +  2e~-

e -  -  e~^' 
- e ~ '  +  2e-'-

The s ta te-lransition equation fo r Í  >  0  is obta ined b y  subs litu ting Eq, (10-85), B . and « (/) in to  Eq. Í 10- 
76). We have

x(0 = 2 e - ' - € - ■  

- 2 e ~ ' +  2e
x(0)

{ 10-86)

x ( /)  =
~ 2 e ~ ' +  2e--

e '  -  e 
- e ~ '  + 2 e - - ‘

x(0) + 0 . 5 - e - '  +  0.5e‘ - (10-87)

As an alternative, the second term  o f the s ta te-transilion equation can be obta ined by taking the 
inverse Laplace transform  o f (s i -  A ) ’ 'B L I( j) .  Thus, we have

[ ( . t l - A ) - ' J b U (s) = £ -  

= c-

1
+  3s +  2 

1

5 +  3 1

- 2  Í

+  3j  +  2

T
0 . 5 - e - '  + 0 .5 e ~ '^ ''

s =

,1 . )
f > 0



Ỉtate-Transition Equation Determined from the State Diagram
Eqs. (10-75) and (10-76) show that ứie Laplace transform  m ethod o f  so lv ing  the state 
equations requires obta in ing the inverse o f  m a trix  (5I  -  A ). We shall now  show that the 
state diagram  described earlier in  Section 10-2-3 and the SFG gain fo rm u la  (Chapter 3) can 
be used to  solve fo r  the state-ưansition equation in  the Laplace dom ain o f  Eq. (10-75). Le t 
the in it ia l tim e be /0; then Eq. (10-75) is rew ritten  as

10-5 State-Transition Equation < 689

X ( j )  =  (il -  A)-'x(/o) +  (s i -  A )-' (B U (i) +  E W ( i) ]  t > to (10-89)

The last equation can be written directly fro m  the sta te  diagram  using the gain form ula,
w ith  X j(s ) , i =  I, 2 ...........n as the output nodes. The fo llo w in g  example illustrates the
state-diagram method o f  find ing  the state-transition equations fo r  the system described in 
Exam ple 10-2-1.

XAMPLE 10-5-2 The slate diagram for the system described by Eq. (10-81) is shown in Fig. 10-10 with Í0 as the in itia l 
time. The outputs o f the integrators are assigned as state variables. Applying the gain formula to the 
state diagram in Fig. 10-10, with and X2( i)  as output nodes and Xi(fo), XzUoX and U{s) as input 
nodes, we have

Xị ( j)  =  f — ịto) +  ^-^X2Ìỉo) +  ^  t / ( i )

X 2 ( l ) = -

(10-90)

(10-91)

A = 1 + 3 5 - '+ 2 í - 2 

After simplification, Eqs. (10-90) and (10-91) are presented in vector-matrix form:

1 ' í + 3  r X] (io) 1 1

X2(5)_ i s + l ) ( s  + 2) - 2  s .•̂ 2̂(^0). + + ! ) ( *  + 2 ) s
(10-93)

The state-ưansition equation for Í  >  /0 is obtained by taking the inverse Laplace transform on both 
sides o fE q . (10-93).

Figure 1Ũ-10 S la te  d ia g ra m  fo r  E q . (1 0 -8 1 ).
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Consider that the input u(t) is a unit-step function applied at t =  fo- Then the follow ing invei 
Laplace transform relationships are identilied:

c  = u ,{ t - tữ )  i> io

'S '"

(10-s

(10-9

Because the in itia l time is defined to be tũ, the Laplace tfansform expressions here do not have t 
delay factor e~'°\ The inverse Laplace ưansfomi o f  Eq. (10-93) is

^ 1 (0 2^ -('- 'o ) _  g-(r-to) _  g-2(i-/oJ

-e ('- 'o ) +  2e "2('-'o) 

0 .5 u ,[ t  -  to) -  f - ' * - ' " '  +

^iơ o)

•*2 (^0)

t> io

The reader should compare this result with that in Eq. (10-87), which is obtained for I > 0.

► EXAMPLE 10-5-3 In this example, we illustrate the utilization o f the ; hod to a system wi
input discontinuity. An RL network is shown in Fig. 10-11, The history o f ihe network is cor 
pletely specified by the initial current o f the inductance, i(0) at f =  0. A t time f =  0, the voltage eu,U) wi 
ứie profile shown in Fig. 10-12 is applied to the network. The slate equation o f the network for t > 0

(10-9'

Comparing the last equation with Eq. (10-44), the scalar coefficients o f the state equation aj 
identified to be

The state-transition matrix is

0 (0  =  . - ' ' ' ^ . - « ' / ^

(10-91

(10-9'

The conventional approach o f solving for /(0  for /  >  0 is to express the input voltage as

e(f) =  Ei„Us{l) + EinUs{t -  f i)  

where Ms(0 is the unit-step function. The Laplace ưansíorm o f e(0 is

(10-10

Figure 10-11 RL network. Figure 10-12 Input V
Fig. 10-3.
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■ Lsịs +  R/L)
(1 ( 10- 102)

By substituting Eq. (10-102) into Eq. (10-76), the state-transition equation, the current for r >  0 is 
obtained:

i(,) =  , - « ' - i ( O K ( t )  +  ^ ( l  (10-103)

Using the state-transition approach, we can divide ihe transition period into two parts: f =  0 to
t = I], and /  =  i] to f  =  oc. First, for the time interval 0 <  Í  <  f i,  the input is

e(t) = E,„Us{t) 0 < f < i ,  (10-104)

(10-105)

Thus, the state-transition equation for the time interval 0 <  r <  ỈỊ

. £<i(r) = «.(<)

Substituling t = ti into Eq. (10-Ỉ06). we get

(10-107)

Thevalueofí'(í)atf =  i j  is now used as the in itia l state for the next transition period o f f ]  <Kcc>. 
The amplitude o f the input for the interval is 2£,„. The state-iransition equation for the second transiũon 
pericxJ is

i{t) - (10-108)

where i{ / ,)  is given by Eq. (10-107).
This example illustrates two possible ways o f solving a state-transition problem. In the first 

approach, the transition is treated as one continuous process, whereas in the second, the transition 
period is divided into pans over which the input can be more easily presented. Although the first 
approach requires only one operation, the second method yields relatively simple results to the 
state-transition equation, and it often presents computational advantages. Notice that, in the 
second method, the stale at Í  =  f| is used as the in itia l state for the next transition period, which 
begins at Í].

R EL A T IO N S H IP  B E T W E E N  STA TE  EQ U A T IO N S  AN D  HIGH-ORDER 
lEN T IA L  EQ U A T IO N S

In  the preceding sections, we defined the state equations and the ir solutions fo r linear tim e- 
invariant systems. A lthough it  is usually possible to  w rite  the state equations d irec tly  from  
the schematic diagram o f  a system, in  practice the system may have been described by a 
h igh-order d iffe ren tia l equation o r transfer function. I t  becomes necessary to investigate 
how  state equations can be w ritten  d irectly  fro m  the h igh-order diffe ren tia l equation o r the 
transfer function. In  Chapter 2 we illustra ted  how the state variables o f  an m h-order 
d iffe ren tia l equation in  Eq. (2-97) are in tu itive ly  defined, as shown in  Eq. (2-105). The 
results are the n  state equations in  Eq. (2-106).
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The state equations are w ritte n  in  vecto r-m au ix  fo rm : 

^  =  A x ( , )  +  B » W (1 0 -109

0 1 0  . . 0

0 0 1 0

0 0 0 1

- a o - ứ l - 0 2  . . • - O n - ]

[n X n) {10-110

(« X 1) {10-]1

N otice that the last row  o f  A  contains the negative values o f  the coeffic ients o f  ih< 
homogeneous part o f  the d iffe re n tia l equation in  ascending order, except fo r  the coefficiem 
o f  the highest-order term , w hich is un ity. B  is a co lum n m a trix  w ith  the last row  equal tc 
one, and the rest o f  the elements are a ll zeros. The state equations in  Eq. (10-109) w iứ i A 
and B  g iven in  Eqs. (10-110) and (10-111) are know n as the phase -va ria b le  canonical 
fo rm  (P V C F ), o r the c o n tro lla b il ity  canon ica l fo rm  (C C F ).

The ou tput equation o f  the system is w ritten

y ( f}  =  C x { r ) = ^ i ( i )  (10-112;

C  =  [1 0 0  0 ]  (10-113:

We have shown earlie r that the state variables o f  a g iven system are not unique. In  general, 
we seek the most convenient way o f  assigning the state variables as long as the de fin ition  0l 
state variables is satisfied. In  Section 10*9 we shall show that, by firs t w r itin g  the ưansfei 
function  and then draw ing the state diagram o f  the system by decom position o f  ứie transfei 
function , the state variables and state equations o f  any system can be found very easily

EXAMPLE 10-6-1 Consider the differential equation

Rearranging the last equation so that the highest-order derivative term is set equal to the rest o f th< 
tenns, we have

dt^

The state variables are defined a
M t)= y { r )  

dy(t)...,Ậ•*2(0 = (10-116
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Then the state equations are represented by the vector-matrix equation

d*{t) 
dl "

A x{r) +  B h(0

where x(0  is the 2 X 1 state vector, u{t) is the scalar input, and

The output equation ii

■ 0 1 0 ■ 0 '
A  = 0 0 1 B = 0

- 2  - 1  -5 _ 1

y(/)=^i(0 = [i 0]x(f)

(10-117)

(10-118)

(10-119)

R EL A T IO N S H IP  B E T W E E N  ST A T E  EQ U A T IO N S  AN D  T R A N S F E R  FU N C T IO N S

We have presented the methods o f  m odeling a linear tim e-invarian t system by transfer 
functions and dynam ic equations. We now  investigate the re la tionship between these tw o  
representations.

Consider a linear lim e-invarian t system described by the fo llo w in g  dynam ic equations:

dx{t)
dt

=  Ax(i) +  Bu{/) +  Ew{/)

y (/)=C x(0+D u{r)+H w (r)

( 10- 120)

( 10- 121)

where

x(/) =  n X 1 state vector 

u (r) — p y .  1 inpu t vector 

y { /)  =  q x  1 output vector 

w ( r )  =  V X 1 d is t u r b a n c e  v e c to r

and A . B. c. D. E. and H are coe ffic ient matrices o f  appropriate dimensions.
Taking the Laplace transform  on both sides o f  Eq. (10-120) and so lv ing fo r  X ( i) ,  we 

have

X (s ) =  (j I  -  A ) “ 'x (0 )  +  {s i -  A ) ~ ‘ |B U (s) +  E W ( i) ]  (10-122)

The Laplace transform  o f  Eq. (10-121) is

Y (s ) -  C X ( ỉ}  +  D U (s) +  H W ( i)  (10-123)

Substituting Eq. (10-122) in to  Eq. (10-123), we have

Y {s) =  C ( . i l -  A ) - 'x (O )  +  C (s l -  A ) |B U ( j)  +  E W ( j) ]  +  D U (s) +  H W ( i)  (10-124)

Because ihe de fin ition  o f  a transfer function  requires that the in itia l conditions be set to 
zero. x(0) =  0; thus, Eq. (10-124) becomes

Y (s) =  [c (s l -  A ) - ' b  +  d ] u (j ) +  [C (s l -  A )E  +  H |w (s )  (10-125)
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Le t us define

G „(5 ) =  C ( í I - A ) " ‘ B + D  

G ^ . ( 5 ) - C ( í I - A ) “ ' e  +  H ( 10- 1 2 /

(10-12Í

where G „ ( i)  is a 9 X y? transfer-function m atrix between u ( /)  and y (0  when w (0  =  0. an 
G „ ( i )  is a ạ X V transfe r-function  m atrix  between w (r) and y (0  when u (0  =  0.

Then, Eq. (10-125) becomes

Y ( i )  =  G „ ( i ) U ( i )  +  G ,v ( i)W ( i)  (10-128

► EXAMPLE 10-7-1 Consider that a multivariable system is described by the differer

í Í ^  +  4 Í ^ - 3 > , W  =  » , ( 0 + 2 » ( , )  

dy\{t) , dy2 [t)
dt

The state variables o f the system a

dt

: assigned

-»̂1 (0 

-C2(0

+ y]{t) + 2y2 {t) =U2 (t)

(10-129

(10-130

-yiU)

dyijt)
dt

■^3(0 = > ’2(0

These state variables are defined by mere inspection o f the two differenlial equations, because ni 
particular reasons for the definitions are given other than that Ihese are the most convenient. Nov 
equating Che first term of each o f the equations o f Eqs. (10-129) and (10-130) to the rest o f the lerm 
and using the state-variable relations o f Eq. (10-131), we arrive at the fo llow ing state equations ari( 
output equations in vector-matrix form:

dĩ 
dxjjt) 

dt 
dx-i(t) 

dt

■ 0 1 0 ■ ■-il(f) ' '0  0 '
" I  (O '

0 '

0 - 4  3 ■^2(0 + 1 0 + 2
«2(0 .

-1  - 1  - 2 .-^3(0. 0 I 0

w{f)

I 0 0 
0 0 1 = Cx(r)

To determine the transfer-function mauix of the system using the state-variable formulation, W( 
substitute the A. B, c. D. and E matrices into Eq. (10-125), First, we form the maơix ( i l  -  A):

(5l -  A ) =
J - 1  0
0 s +  4 - 3
1 1 j  + 2

The determinant o f ( j l  -  A ) is 

Thus,
I s l - A |  +  6i^ +  l l j  +  3

j^ +  6j + 1 1  j + 2  3
- 3  sịs + 2) ĨS

- (1  +  4) - ( j + 1 )  i ( j  +  4)



10-8 Characteristic Equations, Eigenvalues, and Eigenvectors 695 

The iransfer-function matrix between UÍÍ) and y (0  is

5 +  2 3
- ( i + 1 )  s(s +  4

and that between w(r) and y(i) is

2(i +  2) 
- 2 ( j + l ) (10-138)

Using the conventional approach, we take the Laplace transform on both sides o f Eqs. (10-129) 
and (10-130) and assume zero in iiia l conditions. The resulting transformed equations are wrinen in 
vector-matrix form as

W(s) (10-139)
s ( i +  4) - 3  ■ '2'

J + 1  s + 2 / 2(1 ) . U2{s} + 0

Solving fo r Y ( j)  from Eq. (10-139), we obtain

Y (5 ) =  G „ ( í )U (5 ) +  G ,.(5 ) W ( í )

where

GUs) =

s(s + 4) - 3
s + 1  s + 2

i(s  +  4) - 3 -1 2'
s + l  s + 2 0

(10-140)

(10-142)

which w ill give the same results as in Eqs, (10-137) and (10-138), respectively, when the mauix 
inverses are carried out. ^

C H A R A C T ER IST IC  EQ U A T IO N S, E IG E N V A LU E S , A N D  E IG EN V EC T O R S

Characteristic equations play an im portant role in  the study o f  linear systems. They can be 
defined w ith  respect to  d iffe ren tia l equations, transfer functions, or state equations.

Characteristic Equation from a Diflerential Equation
Consider that a linear tim e-invarian t system is described by the d iffe ren tia l equation

d ^ y iO  , d " - ^ y { t )  , , d y { t)  ,

 ̂ (/"«(<)  ̂ </'"-'«(1)  ̂ du{t) , , ,
“ d r  ~ d ( ^ + •  ■ • +  i ,  ^  + i>0»(0

where n >  m. B y  defin ing the operator s as

^ = 4dll:
k = i . 2 .........(1

Eq. (10-143) is w ritten

(10-143)

(10-144)

{ s ^ + a n - i s ”  ’ h--------h CJ]5 +  ữo)v(/) =  ‘ h--------b[ S  +  b(i)u(t)

(10-145)



+  --------- |-a i5  +  ao =  0 (10-14Ế

w h ich  is obtained by setting the homogeneous part o f  Eq. (10-145) to  zero.

EXAMPLE 10-8-1 Consider the differential equation in Eq. (10-114). The characteristic equation is obtained b 
inspection,

.?  +  5 s ^ + s  +  2 =  0  (10-147

10-8-2 Characteristic Equation from a Transfer Function
The transfer func tion  o f  the system described by Eq. (10-143) is

C M  =  +  ( ,„ . ,4 8
s" +  ’ H---------h a i i  +  ao

The characteristic equation is obtained by equating the denom inator po lynom ia l o f th( 
transfer function  to  zero.

EXAMPLE 10-8-2 The transfer function o f the system described by the differential equation in Eq. (10-114) is

The same characteristic equation as in  Eq. (10-147) is  ob ta ined by setting the denominaloi 
polynomial o f Eq. (10-149) to zero.

10-8-3 Characteristic Equation from State Equations
From  the state-variable approach, we can w rite  Eq. (10-126) as

(10-150;
C [a d j( ĩ l -  A ) |B  +  | ĩ l  -  A ỊD  

|s l -  A |

Setting the denom inator o f  the transfer-function m a trix  G „ ( i)  to  zero, we get the 
characteristic equation

Ị5I - A I - 0  (10-151;

which is an alternative fo rm  o f  the characteristic equation but should lead to the same 
equation as in Eq. (10 -146 )./ in  im portant property o f  the characteristic equation is that, ij 
the coefficients o f  A  are real, then the coefficients o f  |a'I -  A | are also real.

E X AM PLE 10-8-3 The m atrix  A  fo r  the Slate equations o f the d iffe ren tia ! equation in Eq. (1 0 -114) is given in  Eq. (IQ-
128). The characteristic equation o f A  is

s - \  0
| . d - A | =  0 J - 1  = s-’ + 5 j2 + . v +  2 =  0 (10-152;

2 1 Í  +  5
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The c h a ra c te r is tic  equ a tio n  o f  the system is defined as
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10-8-4 Eigenvalues

The roots o f  the characteristic equation are often refeưed to  as the eigenvalues o f  the 
m a trix  A .

Some o f  ứie im portant properties o f  eigenvalues are given as fo llow s.

1. I f  the coeffic ients o f  A  are a ll real, then its  eigenvalues are e ither real o r in 
com plex-conjugate pairs.

2. I f  Ằ 1, Ằ2. . . . , are the eigenvalues o f  A , then

t r {A )  =
i= i

(10-153)

T hat is, the trace o f  A  is the sum o f  a ll the eigenvalues o f  A .

3. I f  k i ,  i =  1, 2, . . . .  rt, is an eigenvalue o f  A , then i t  is an eigenvalue o f  A '.

4. I f  A  is nonsingular, w ith  eigenvalues Xj, / = 1 , 2 , . . . , « ,  then 1 /A „  Ỉ =  1, 2, . . . , 
n, are the eigenvalues o f  A “ '.

EXAMPLE 10-8*4 The eigenvalues or the roots o f the characteristic equation o f the matrix A  in Eq. (10-118) are 
obtained by solving for the roots o f Eq. (10-152). The results are

1  = -0 ,0 6 0 4 7  +  jO.63738 Í  = -0 .0 6 0 4 7  -  yo.63738 Í  = -4 .8 7 9 0 6  (10-154)

10-8-5 Eigenvectors
Eigenvectors are useful in  modem  contro l methods, one o f  w h ich  is the s im ila rity  
transform ation, w hich w il l  be discussed in a la ter section.

Any nonzero vector p, that satisfies the m a tr ix  equation

( X , I - A ) p , - 0  (10-155)

where i = I. 2 ...........n, denotes the \th eigenvalue o f  A , called the  e igenvector o f  A
associated with the eigenvalue kị. I f  A  has d is tinc t eigenvalues, the eigenvectors can be 
solved d irec tly  from  Eq. (10-155).

EXAMPLE 10-8-5 Consider that the state equation o f Eq. (10-44) has the coefficient matrices

A  =

The characteristic equation o f A  is

1 -1
0  - 1

|sl -  A| =  -  1

The eigenvalues are X| =  1 and Ả2 =  - 1 .  Let the eigenvectors be written as

P2 =

Substituting A| =  1 and p, into Eq. (10-155). we get

0 r P\i 0'
0 2 . / ’21, 0
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Thus, P2 \ =  0, and /»11 is arbitrary, which in this case can be set equal to 1. 
Similarly, for Ằ2 =  - 1 .  Eq. (10-155) becomes

- 2  r P\2 '0
0 0 . / ’ zz. 0

which leads to

-2/5 |2 +/722 =  0 (10-16:

The last equation has two unknowns, which means that one can be set arbitrarily. Let Pi2 =  1, the 
P22 = 2. The eigenvectors are

10-8-6 Generalized Eigenvectors
I t  should be pointed out that i f  A  has m u ltip le -o rde r eigenvalues and is nonsym m etric, nc 
a ll the e igenvectors can be found using Eq. (10-155). L e t us assume that there are q(< n  
d is tinc t eigenvalues among the n eigenvalues o f  A . The eigenvectors that coưesponđ to th 
q  d is tinc t eigenvalues can be determ ined in  the usual m anner from

( X , I - A ) P i  =  0 (10-163

where X, denotes the ith  d is tinc t eigenvalue, i  =  1, 2, . . . ,q .  A m ong the rem aining high
order eigenvalues, le t k j  be o f  the m th  order (m  <  « -  q). The corresponding eigenvector
are called the genera lized  e igenvectors and can be determ ined fro m  the fo llow ing  n 
vector equations:

(X y l -  A)p„_,y+3 =  -p „_ ạ + 2  (10-164

(Xýl -  -pn_ự .

EXAMPLE 10-8-6 Given the matrix

0 6 - 5
1 0 2
3 2 4

The eigenvalues o f A  are Ằ| =  2, Ằ2 =  k ĩ  = 1, Thus. A  is a second-order eigenvalue ai 1. Th 
eigenvector that is associated with A| =  2 is determined using Eq. (10-163). Thus.

( A l l - A ) p ,  =
' 2  - 6  5  ■

- 1  2 - 2
- 3  - 2  - 2
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Because there are only two independent equations inEq. (10-166). we arbitrarily set/Jii =  2, and we 
have P2] =  - 1  and P i ]  =  -2 .  Thus,

■ 2 ■
Pi = (10-167)

For the generalized eigenvectors that are associated with the second-order eigenvalues, we substitute 
Ằ2 =  1 into the first equation o f Eq. (10-164). We have

(10-168)
1 - 6  5 ' P n

(A2I  -  A)P2 = - 1  1 - 2 P22
- 3  - 2  - 3 .P32.

Setting ;?]2 =  1 arbiưarily, we have P22 =  and PỈ2 — - f -  Thus,

1
_3 

7 
_5 

7

Substituting Ằ3 =  1 into the second equation o f Eq. (10-164), we have 

■ 1 - 6  - 5

( Ằ 3 I - A ) P Ì=  - 1  1 - 2

- 3  - 2  - 3

Setting P i i  arbiưarily to 1, we have Che generalized eigenvector

- r
Pl3 3

P2Ĩ = -P 2  = 7

P33 5

. 7 .

(10-169)

► 10-9 S IM IL A R IT Y  T R A N SFO R M A T IO N

The dynam ic equations o f  a s ingle-input, sing le-output (SISO) system are 

d x(i) _
dt

• =  A x ( / ) + B « ( 0 (10-172)

(10-173)

where x(t)  is the « X 1 state vector, and u(t) and \ '( /)  are the scalar input and output, 
respectively. W hen cany ing  out analysis and design in the state dom ain, it is often 
advantageous to  transform  these equations in to  particu la r form s. For example, as we w il l  
show later, the c o n tro lla b ility  canonical fo rm  (CCF) has many interesting properties that 
make it  convenient fo r  c o n tro lla b ility  tests and state-feedback design.

L e t us consider that the dynam ic equations o f  Eqs. (10-172) and (10-173) are trans
form ed in to  another set o f equations o f the same dimension by the fo llo w in g  transformation: 

x ( /)  =  P x {r) (10-174)
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where p  is an /J X n  nonsingular m au ix , so

x ( l)  =  P“ 'x (() (10-1'

The transform ed dynam ic equations are w ritten

^  =  A x ( r )  +  B a ( l)  (1 0 -n
at

ỹ{t) =  C x it)  +  D u(t) {10-17

T aking the derivative on both sides o f  Eq. (10-175) w ith  respect to  t, we have

^  =  p - '  ^  =  P - 'Ax(r) +  p - 'B u ( f )  
d t d t (10-17

=  p - 'A P x ( i )  +  p - 'B u ( i )

C om paring Eq. (10-178) w ith  Eq. (10-176), we get

Ã  =  P “ ' a P  (10-17

and

B  =  p - 'B  (10-18

Using Eq. (10-174), Eq. (10-177) is w ritten

ỹ ( r ) - C P x ( r ) + D « { / )  (10-18

C om paring Eq. (10-181) w ith  Eq. (10-173), we see that

C  =  C P  D  =  D  (10-18

The transform ation ju s t described is ca lled a s im ila r ity  tra n s fo rm a tio n , because in tl 
transform ed system such properties as the characteristic equation, eigenvectors, eige 
values, and transfer function  are a ll preserved by the transform ation. W e shall describe tl 
c o n tro lla b ility  canonical fo rm  (CC F), the observab ility  canonical fo rm  (O C F), and tl 
diagonal canonical fo rm  (D C F ) transform ations in  the fo llo w in g  sections. The ưansíc 
m ation equations are given w ithou t proofs.

10-9<1 Invariance Properties of the Similarity Transformations
One o f  the im portant properties o f  the s im ila rity  transform ations is that the characterisi 
equation, eigenvalues, eigenvectors, and transfer functions are invariant under tl 
transformations.

C h a ra c te r is tic  E q u a tio n s , E igenva lues, and  E igenvecto rs
The characteristic equation o f  the system described by Eq. (10-176) is | i l  -  Ã Ị = 0  and 
w ritten

| s I - A |  =  I i l - P - ' A P |  =  | S P ^ 'P - P - 'A P |  (10-18



Because the determ inant o f  a product m a trix  is equal to  the product o f  the determ inants o f 
the matrices, the last equation becomes
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| 5 I - A |  =  |P - > | | 5 I - A | | P |  =  | 5 I - A | (10-184)

Thus, the characteristic equadon is preserved, w h ich  na tu ra lly  leads to the same eigen
values and eigenvectors.

T ra n s fe r-F u n c tio n  M a tr ix
F rom  Eq. (10-126). ứie ưansfer-function m a trix  o f  the system o f  Eqs. (10-176) and 
(10-177) is

G ( j)  =  c ( s l  -  A )B  +  D

=  C P ( S I - P - 'A P ) P - 'B  +  D

w h ich  is s im p lified  to

(10-185)

G ( í ) =  C (j I - A ) B - D  =  G (5) (10-186)

Controllability Canonical Form (CCF)
C onsider the dynam ic equations given in Eqs. (10-172) and (10-173). The characteristic 
equation o f  A  is

l i l  -  A | =  5"  +  H---------h a i5  +  ao =  0 (10-187)

The dynam ic equations in Eqs. (10-172) and (1 0 -173) are transformed in to  CC F o f  the form  
o f  Eqs. (10-176) and (10-177) by the transform ation o f  Eq. (10-174). w ith

P =  S M  (10-188)

S = [ b  A B  A -B  A " - ' b ] (10-189)

fli a-< 

a 2 ax

O n - \  1

1 0

1

1 0

0  0

0  0
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Then,

A  =  P - * A P  =

• 0 1 0 0  •
0 0 1 0

0 0 0 I

,-ứ o - a \ - 0 2  • • - a n - \ .

(10-191

(10-192

The matrices c  and D are given by Eq. (10-182) and do no t fo llo w  any particu la r pattern. Thi 
C C F transform ation requữes that P " '  exists, w hich im p lies  that the m a trix  s  must have ai 
inverse, because the inverse o f  M  always exists because its determ inant is ( —1 .  which i 
nonzero. The n X n m atrix  s  in  Eq. (10-189) is later defined as the c o n tro lla b il ity  m a trix

EXAMPLE 10-9-1 Consider the coefficient matrices o f the state equations in Eq. (10-172):

' 1 2  1 ' r
A  = 0 1 3

1 ] 1
B = 0

1

The state equations are to be transformed to GCF- 
The characteristic equation o f A  is

r - i  - 2  -1
0 j - 1  - 3

-1  -1  J - I

Thus, the coefficients o f the characteristic equation are identified 
From Eq. (10-190),

The controllability matrix is

=  - 1 - 3  =  0 (10-194

=  -3 ,0 ]  — - l .a n d o 2 — -3

a\ 02 1 1 - 3  r
M  = ai 1 0 - 3  1 0

1 0 0 1 0 0
(10-195

s =  [ b  a b  a - b ] =
I 2 10
0 3 9
1 2 7

We can show that s is nonsingular, so the system can be transformed into the CCF. Substituiing s an< 
M  into Eq. (10-188), we get

3 - 1  1
0 3 0
0 - I  1

Thus, from Eqs. (10-191) and (10-192), the CCF model is given by

'0  0 ’ '0 '
A =  P - 'A P  = 0 0 1 B =  p - 'B  = 0

3 1 3 1



10-9 Similarity Transformation 703

which could have b ed once the coefficients o f the characteristic equation are known:
however, ứje exercise is to show how the CCF uansformation mauix p is obtained.

lQ-9-3 Observability Canonical Form (OCF)
A  dual fo rm  o f  transform ation o f  the C C F is the o b s e rv a b ility  canon ica l fo rm  (O CF). The 
system described by Eqs. (10-172) and (10-173) is transform ed to the O CF by the 
transform ation

x ( 0  =  Q x (0  {10-199)

T he tra ns fom ed  equations are as given in  Eqs. (10-176) and (10-177). Thus,

Ă  =  Q - 'A Q  B  =  Q - 'B  C  =  C Q  D  =  D  (10-200)

where

( 10-201)

’ 0 0 • 0 - a o

I 0  ■•• 0 - ữ i

A  =  Q - ‘A Q  = 0 1 • • 0 - 0 2

0 0 ■ 1 - f ln - 1  .

0  n ( 10-202)

The elements o f  the m a tric e s ^  and D  are not restricted to  any fo rm . N otice that A  and c are 
the transpose o f  Ihe A  and B  in  Eqs. (10-191) and (10-192), respectively.

The O CF transform ation m a trix  Q  is given by

Q = ( M V ) -  

where M  is as given in  Eq. (10-190), and

(10-203)

c
C A

C a 2 (n  X n) (10-204)

The m atrix  V  is often defined as the o b s e rv a b ility  m a tr ix , and V  ' must exist in order fo r 
the O CF transform ation to  be possible.

EXAMPLE 10-9-2 Consider that the coefficient matrices o f the system described by Eqs. (10-172) and (10*138) are

1 2  1' r
0 1 3
1 1 1

B = 0
1

C =  |1 1 0) D =  0 (10-205)
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Because the matrix A  is identical to that o f the system in Example 10-9-1, the maưix M  is ứie same 
that in Eq. (10-195). The observability mattix is

(10-20

We can show thai V  is nonsingular, so the system can be ưansformed into the OCR Substituting V  ai 
M  into Eq. (10-203), we have the OCF transformation maưix,

c 1 1 0'
v  = CA 1 3 4

5 9 14

0.3333 -0.1667 0.3333
-0,3333 0.1667 0,6667
0.1667 0.1667 0.1667

( 10-20Q  =  (M V )-

From Eq. (10-191), the OCF model o f the system is described by

Í3 1
(10-201

Thus, Ă  andC are of the OCF fonn given in Eqs. (10-201) and (10-202), respectively, and B doesm 
conform to any particular form.

0 0 3 ' 3 '
A  =  Q - 'A Q  = I 0 1 C =  C Q = [0  0 1] B =  Q " 'B  = 2

0 1 3 1

10-9-4 Diagonal Canonical Form (DCF)
G iven the dynam ic equations in  Eqs. (10-172) and (10-173), i f  A  has d is tin c t eigenvalue 
there is a nonsingular transform ation

x { t)  =  T x { t) (10-20Í

w hich  transforms these equations to  the dynam ic equations o f  Eqs. (10-176) and (10-177 
where

a  =  t  ' a t  b  =  t  ' i

The m atrix  A  is a diagonal m atrix,

■^1 0 0 •• 0 ■
0 ^2 0 •• 0

A  = 0 0 ^3 •• 0

0 0 0 •• K

C  =  C T  D  =  D

(«  X n)

(10-2K

( 10- 2 1 ;

where k] , Ả2, . . . , are the n d is tinc t eigenvalues o f  A . The coe ffic ien t maưices B .(  
and D  are given in  Eq. (10-210) and do not fo llo w  any particu lar form .

It is apparent that one o f  ihe advantages o f  the D C F is that the transform ed sta 
equations are decoupled  from  each other and. therefore, can be solved ind iv idua lly .

We show in  the fo llo w in g  that the D C F transform ation m a trix  T  can be form ed by u: 
o f  the eigenvectors o f  A  as its colum ns; that is.

T  =  [P | P3 (10-21:
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w herep i, 1 ,2 , • ■ . denotes the eigenvector associated w ith  the eigenvalue X,. Th is  is 
proved by use o f  Eq. (10-155), w hich is w ritten  as

=  A p , /  =  1 , 2 , . . . ,  n

N ow , fo rm in g  the n X « m atrix,

[X ip ,  X2P 2 ■■■ >.nP„] =  [A p i AP2

=  A |p ,  P2 ■■■

The last equation is w ritten

[P l P2 P j Ã  =  A [p ,  P2 ■

where A  is as g iven in  Eq. (10-211). Thus, i f  we le t

t  =  1pi p 2 ) p„]

Eq. (10-215) is w ritten

Ap„:

(10-213)

(10-214)

(10-215)

(10-216)

A  =  T ^ 'A T (10-217)

I f  the m atrix  A  is o f  the CC F and A  has d is tinc t eigenvalues, then the DC F 
transform ation m atrix  is the Vandermonde m atrix.

1
Ằ24

k ị r '

(10-218)

w hereA |,A .2, . . . , are the eigenvalues o f  A . Th is  can be proven by substituting the CCF 
o f  A  in  Eq. (10-110) in to  Eq. (10-155). The result is that the iửi e igenvector p, is equal to  the 
ith co lum n o f  T  in  Eq. (10-218).

XAMPLE 10.9.3 Consider the maưix

0  1 0
0  0  1

- 6  - 1 1  - 6

which has eigenvalues X] =  - 1 ,  A-2 =  - 2 .  anđẰ3 =  —3. Because A  is CCF, to ưansform it into DCF. 
the transformation matrix can be the Vandermonde matrix in Eq. (10-218). Thus.

T h u s , th e  D C F  o f  A  is  w ritten

1 1 r
k] Ằ2 k ĩ

1 1 
- 1  - 2

i
- 3

k] k ị  k ị 1 4 9

■-1 0 0 ■
: =  T - 'A T  = 0 - 2  0

0 0 - 3



706 Chapter 10. State Variable Analysis

10-9-5 Jordan Canonical Form (JCF)

In  general, when the m a trix  A  has m u ltip le -o rde r eigenvalues, unless the m atrix  
sym m etric w iứ i real elements, i t  cannot be transform ed in to  a d iagonal m atrix . Howevj 
there exists a s im ila rity  transform ation in  the fo rm  o f  Eq. (10-217) such tha t the m atrix  A  
a lm ost diagonal. The m a trix  A  is ca lled the Jordan canonical form (JC F ). A  typ ica l JC 
is shown below.

A  =

^1 1 0 0 0 ■
0 h 1 0 0
0 0 0 0
0 0 0 A.2 0
0 0 0 0 >■3

( 10-22:

where i t  is assumed that A  has a th ird -o rder eigenvalue k  I and d is tinc t eigenvalues Ằ2 an
A.3.

The JCF generally has the fo llo w in g  properties:

1. The elements on the m ain diagonal are the eigenvalues.

2. A l l  the elements be low  the m ain diagonal are zero.

3. Some o f  the elements im m edia te ly  above the m u ltip le -o rde r eigenvalues on th 
main diagonal are Is , as shown in  Eq. (10-222).

4. The Is  together w ith  the eigenvalues fo rm  typ ica l b locks called the Jorda 
b locks. As shown in  Eq. (10-222), the Jordan b locks are enclosed by dashed line!

5. W hen the nonsym m etrical m a trix  A  has m u ltip le -o rde r eigenvalues, its  eiger 
vectors are not linea rly  independent. For an A  that is « X «, there are on ly  r  (wher 
r  is an integer that is less than n  and is dependent on the num ber o f  multiple-orde 
eigenvalues) linearly  independent eigenvectors.

6. The number o f  Jordan blocks is  equal to  the num ber o f  independent eigenvectors I 
There is one and o n ly  one lin e a rly  independent eigenvector associated w ith  eac 
Jordan block.

7. The num ber o f  I s above the m ain diagonal is equal to n ~  r.

To perform  the JC F  transform ation, the transform ation m a tr ix  T  is again fo rm ed  by usin. 
the eigenvectors and  generalized eigenvectors as its columns.

► EXAMPLE 10-9-4 Considerthe matrix given in Eq.(10-165). We have shown that the matrix has eigenvalues 2, l.a n d l 
Thus, the DCF transformation mauix can be formed by using the eigenvector and generalize 
eigenvector given in Eqs. (10-167), (10-169), and (10-171), respectively. That is.

(10-223

■ 2 1 1 ■
1 3 22

P2 P3 1 = * 7 “ 49

2 5 46
. ^ 7 49.

'2  0 0 '
=  t ' a t  = 0 1 I

0 0 1

Thus, Ihe DCF is

Note that in this case there are two Jordan blocks, and there is one element o f 1 above ứie mai 
diagonal.
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► 10-10 D EC O M PO S IT IO N S  OF T R A N S F ER  FU N C T IO N S

U p to  th is po in t, various methods o f  characterizing linear systems have been presented. To 
summarize, i t  has been shown that the starting po in t o f  m odeling a linear system may be the 
system 's d iffe ren tia l equation, transfer function , o r dynam ic equations; a ll these methods 
are c lose ly related. Furthermore, the state diagram is also a useful too l that can not on ly 
lead to  the solutions o f  state equations but also serve as a vehicle o f  transform ation from  
one fo rm  o f  description to the others. The b lock diagram  o f  F ig. 10-13 shows the 
re lationships among the various ways o f  describ ing a linear system. For example, the 
b lock  diagram  shows that, starting w ith  the d iffe ren tia l equation o f  a system, one can find 
the so lu tion by the transfer-function or state-equation method. The b lo ck  diagram  also 
shows that the m a jo rity  o f  the relationships are b ila tera l, so a great deal o f  f le x ib ility  exists 
between the methods.

One subject remains to  be discussed, w h ich  involves the construction o f  the state 
diagram  fro m  the transfer function  between the input and the output. The process o f  going 
from  the transfer function to the state diagram is called decom positìon. In  general, there are 
three basic ways to decompose transfer functions. These are d ire c t decom position , cascade 
decom position , and pa ra lle l decom position. Each o f  these three schemes o f  decomposition 
has its  own m erits and is best suited fo r a particu lar purpose.

10-10-1 Direct Decomposition

D irec t decom position is applied to  an in pu t-ou tpu t transfer function  that is not in  factored 
fo rm . Consider the transfer function o f  an m h-order SISO system between the input U{s)

Figure 10-13 Block
systems-

d ia g ra m  sh o w in g  the  relationships a m o n g  v a rio u s  methods o f  de sc r ib in g  lin e a r
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Y{s)  ̂ + b t - 2s" -^  +  ■ ■ ■ +  b ị S bo (10-225)

U{s) + - - -  +  Oi5 +  ứo

where we have assumed that the order o f  the denom inator is at least one degree h igher than 
that o f  the numerator.

We next show that the d irec t decom position can be conducted in  at least two 
ways, one leading to  a state d iagram  that corresponds to  the C C F and the o ther to the 
OCF.

Direct Decomposition to CCF
The objective is to construct a state diagram  from  the transfer func tion  o f  Eq. (10-225). The 
fo llo w in g  steps are outlined;

1. Express the transfer function  in  negative powers o f  s. Th is  is done by m u ltip ly ing 
the num erator and the denom inator o f  the transfer function  by

2. M u lt ip ly  the num erator and the denom inator o f  the transfer function  by a dummy 
variable X ( j) .  B y  im plem enting the last tw o  steps, Eq. (10-225) becomes

y(.ĩ) ---- + b ọ s -'' x js )  no  2261
U{s) ------ h +  ao-y""

3. The numerators and the denominators on both sides o f  Eq. (10-226) are equated to 
each other, respectively. The results are:

+ h „ -2 S -^  +  ■■ ■ +  ố i5 - " + ' + è o í “ " )A '( í )  (10-227)

U(s) =  (1 +  0 ,5 " " + ' + a o 5 “ ")Ẳ ’( í )  (10-228)

4. To construct a state diagram using the tw o  equations in Eqs. (10-227) and 
(10-228). they must first be in  the proper cause-and-effect relation. I t  is apparenl 
that Eq. (10-227) already satisfies this prerequisite. However. Eq. (10-228) has the 
input on the left-hand side o f  the equation and must be rearranged. Eq. (10-228) is 
reaưanged as

X (s ) =  ơ ( j ) -  + 0 1 ,1 - " + '  + a f,s^" )X (s )  (10-229)

The staie diagram is drawn as shown in Fig. 10-14 using Eqs. (10-227) and (10-228). 
For s im p lic ity , the in itia l states are not drawn on the diagram. The state variables .VịíO.
-V2( 0 ............A '„(0 are defined as the outputs o f  the integrators and are aưanged in  order from
the righ t to the le ft on the state diagram. The state equations are obtained by apply ing the 
SFG gain fo rm u la  to Fig. 1 O' 14 w ith  ihe derivatives o f the state variables as the outputs and 
the state variables and iHi) as the inputs, and overlooking the in tegrator branches. TTie



10-10 Decompositions of Transfer Functions 709

Figure 10-14 CCF state diagram o f the transfer function in Eq. (10-225) by direct decomposition.

output equation is determ ined by apply ing the gain fo rm u la  among the state variables, the 
input, and the output v (0 . The dynam ic equations are w ritten

d \{ t)
dt

=  A x ( i)  +  B « (0

)-(/) =  C x (/)  +  Du{t)

(10-230)

(10-231)

■ 0 1 0 0 • •O '
0 0 I 0 0

A - B  -

0 0 0 o' ] 0

. - a o - a \  - a j - O n - ] . . 1 .

c  = [bo bi ■■ i l  D - 0

(10-232)

(10-233)

Apparently, A  and B  in  Eq. (10-232) are o f  the CCF.

D ire c t D ecom pos ition  to  O C F
M u lt ip ly in g  the num erator and the denom inator o f  Eq. (10-225) by s~". the equation is 
expanded as

'h ---------\-a \s  "■^^+«05

=  + h„ _2S~ ^+  + + b o s- '')U is}
(10-234)

ỵ ( s j  =  - ( ữ „ _ i í  ‘ +  • • • +  a i5  + ứ ( ) í  " )K ( 5 )

+  b„^2S~^ + ------+  b o s '^ iU is )
(10-235)

F ig . 10-15 shows the Slate diagram that results from  using Eq, (10-235). The outputs o f  the 
integrators are designated as the state variables. However, un like the usual convention, the 
state variables are assigned in descending order from  rig h t to le ft. A p p ly in g  the SFG gain
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Figure 10-15 CCF state diagram o f the transfer function in Eq. (10-225) by direct decomposition.

fo rm u la  to  the state diagram , the dynam ic equations are w ritten  as in  Eqs. (10-230) and 
(10-231), w ith

(10-236)

(10-237)

The matrices A and c  are in  O CR
It  should be pointed out that, g iven the dynam ic equations o f  a system, the inpu t- 

output transfer func tion  is unique. However, g iven the transfer function , the state model is 
not unique, as shown by the CCF, OCF, and DCF, and many other poss ib ilities. In  fact, even 
fo r  any one o f  these canonical form s (fo r example, C C F), w h ile  matrices A  and B are 
defined, the elemenls o f  c and D  could s till be d iffe ren t depending on how  the state 
diagram is drawn, that is. how the transfer function  is decomposed. In  other words, 
re ferring to  Fig. 10-14, whereas the feedback branches are fixed, the feed fo rw ard  branches 
that contain the coeffic ients o f  ihe num erator o f  the transfer function  can s till be 
manipulated to  change the contents o f  c.

‘ 0 0 • 0 -a o bo
1 0 • 0 -O i hi
0 1 ■-• 0 -0 2 B = h

0 0 ■ - 1 - a n - i

c - [ 0 0 ■■■ 0 1] D - 0

EXAMPLE 10-10-1 Consider the following inpul-output transfer function:

yfs) 2 s^+ s  + 5
ơ(s) +  l ls  +  4 (10-238)

The CCF state diagram o f the system is shown in Fig. 10-16. which is drawn from Oie following 
equations:

Y(s) = (2 5 -' + ì - ^  +  5 j-- ’ )ằ'(5)

X{s) = U(s) -  ( 6 i - '  +  1 \s~- + 4 i- ^ )X ( j)

(10-239)

(10-240 )
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Figure 10-16 CCF state diagram o f the transfer function in Eq. (10-238). 

The dynamic equations o f the system in CCF are

dt

dX2{t)

^•3(0  
. dt

■ 0 1 0 ■ '0 '

0 0 1 X2{t) + 0

- 4  -1 1  - 6 M ' ) . 1

»( t )

jy(0 =  [5 1 2 Ịx (0  (10-242)

For the OCR Eq. (10-238) is expanded to

f(s )  =  (2j - '  + i - ^  +  5 s -^ )C /(s ) - (6 s - ‘ +  l l s - ^ + 4 s - ’ )i'(s ) (10-243)

which leads to ihe OCF state diagram shown in Fig. 10-17. The OCF dynamic equations are written

dt

àx2{t)
dr

d x i ( t )

d i

'0  0 - 4  ■ '5 '

1 0 -1 1 Xlit) + 1

0 1 - 6 .■*̂ 3(0. 2

«(f)

v(r) =  [0  0 l |x ( 0

Figure 10-17 OCF state diagram o f ihe transfer function in Eq. (10-238).
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Figure 10-18 State diagram o f the transfer function in Eq. (10-246) by cascade decomposilion.

10-10-2 Cascade Decomposition
Cascade compensation refers to  transfer functions that are w ritten  as products o f  simpl 
first-o rder or second-order components. C onsider the fo llo w in g  transfer function , which i 
the product o f  tw o  firs t-o rder transfer functions.

U(s) [ s  + a J [ s  +  a2 j
(10-24Í

where 0 |. Ũ2, b], and 62 are real constants. Each o f  the firs t-o rder transfer functions i 
decomposed by the d irect decom position, and the tw o  state diagram s are connected i 
cascade, as shown in  F ig. 10-18. The state equations are obtained by regarding Ih 
derivatives o f  the state variables as outputs and the state variables and u(i) as inputs ani 
then apply ing the SFG gain fo rm u la  to ihe state diagram in  F ig. 10-18. The integrate 
branches are neglected when apply ing the gain fo rm u la . The results are

■&,(<)■
dt

dX2{l)

L d i \

—ứ[ bj — Ũ2 'xxit)
+

'K

0 -02 K
h (0 (10-247

The output equation is obtained by regarding the state variables and u(t) as inputs and j ( /  
as the output and apply ing the gain fon n u la  to  F ig. 10-18. Thus,

y{t) =  [ b ) - a ĩ  b 2 -  a 2 ] \ it)  + Ku{l) (10-248

W hen the overall transfer function  has com plex poles o r zeros, the ind iv idua l factor 
related to  these poles o r zeros should be in  second-order fo rm . As an example, consider thi 
fo llo w in g  transfer function:

Y[s} _  f s  + 5 \ f  5 + 1 .5  \

[s^ +  3s +  4 Jư{s) \ s  +  2 J
(10-249

where the poles o f  the second term  are com plex. The state diagram  o f  the system w ith  thi 
tw o subsystems connected in  cascade is shown in  Fig. 10-19. The dynam ic equations o f  thi 
system are

' d x ị i t Ỵ

d t ■ 0  1 0  ■ ' 0 '
dX2( l )

d i
- - 4  - 3  3 -^2(0 + 1 m( í ) (10-250

0  0 - 2 . ^ 3 (0 . 1

I  d t .

v(r) =  [1 .5  1 0 ]x (0 (10-251
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Figure 10-19 State diagram o f the transfer function in Eq. (10-249) by cascade decomposition.

10-10-3 Parallel Decomposition
W hen the denom inator o f  the transfer function is in  factored fo rm , the ưansíer function 
may be expanded by partia l-fraction  expansion. The resulting state diagram  w il l  consist o f  
s im ple first- o r second-order systems connected in  paralle l, w hich leads to  the state 
equations in D C F or JCF, the la tter in  the case o f  m u ltip le -o rde r eigenvalues.

C onsider that a second-order system is represented by the transfer function

>-(■!) QU)
ư (s)  ( i  +  a , ) ( i  +  a2 )

(10-252)

where Q(s) is a po lynom ia l o f  order less than 2, and ŨI and Ỡ2 are real and distinct. 
A lthough, ana lytica lly, Oi and fl2 may be com plex, in  practice, com plex numbers are 
d iff ic u lt  to  im plem ent on a computer. Eq. (10-253) is expansion by partia l fractions:

y(s) _
ư ( s ) ' S + Ơ]

K i
(10-253)

where K] and K 2 are real constants.
The state diagram o f the system is drawn by the para lle l com bination o f  the state 

diagrams o f  each o f  the first-o rder terms in  Eq, (10-253), as shown in  F ig . 10-20. The 
dynam ic equations o f  the system are

dxỊ (0

dí

dX2Ìt)
dr

- ứ ]  0

0 -02

Xì{t)

^2 (0
«(r)

y ( ( )  =  l / r ,  K2]M'Ì

Thus, the State equations are o f the DCF.

(10-255)

10-20 State diagram o f the transfer function o f Eq. (10-252) by parallel decomposition.



The conclusion is that, fo r  transfer functions w ith  d is tinc t poles, pa ra lle l decomposi 
tio n  will lead to  the D C F  fo r  the state equations. For transfer functions w ith  m ultip le-orde: 
eigenvalues, para lle l decom position to  a state diagram  w ith  a m in im u m  number o: 
integrators w il l  lead to  the JCF state equations. The fo llo w in g  exam ple w i l l  c la r ify  th il 
point.

► EXAMPLE 10-10-2 Consider the following ưansfer function and its  pa rtia l- fra c tion  expansion:

y ( i)  _  2í 2 + 6 í  +  5 _  I _  1 1

U is )  ~  ( 5 +  l} “ ( i  +  2 )  "  ( j +  +  1 +  2

Note that the ưansíer function is of the third order, and, although the total order of the terms OD the
right-hand side o f Eq. (10-256) is four, only three integrators should be used in the state diagram,
which is drawn as shown in Fig. 10-21. The minimum number o f three integrators is used, w itfi one 
integrator being shared by two channels. The state equations o f the system are written dừectly from 
Fig. 10-21,

dX i i t )
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dt

d x i i t )

d t

d x ỉ i t )

■ - 1 1  0 ■ '■ÍI (O' '0

0 - 1 0 ^2(1) + 1

0 0 - 2 .^3(0. 1

u i t ) {10-257)

which is recognized to be the JCF.

Figure 10-21 State 
diagram o f the transfer 
function o f Eq. (10- 
256) by parallel 
decomposition.

10-11 CO N TRO LLA B IL ITY  OF CO NTRO L S Y S T E M S

The concepts o f  c o n tro lla b il ity  and o b s e rv a b ility , introduced first by Kalm an [3 ], p lay an 
im portant role in both theoretical and practica l aspects o f  modem  contro l. The conditions 
on c o n tro lla b ility  and observab ility  essentia lly govern the existence o f  a solu tion to an 
optim al con tro l problem . Th is  seems to  be the basic d ifference between op tim a l control 
theory and classical con tro l theory. In the classical contro l theory, the design techniques 
are dom inated by (ria l-and-error methods so that given a set o f  design specifications the 
designer at ihe outset does not know i f  any solu tion exists, o p lim a l contro l theory, on the
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Figure 10-22 (a) Control system with state feedback, (b) Control system with observer and stale 
feedback.

other hand, has crite ria  fo r determ in ing at the outset i f  the design solution exists fo r  the 
system parameters and design objectives.

We shall show that the cond ition  o f  co n tro lla b ility  o f a system is closely related to  the 
existence o f  solutions o f  state feedback fo r  assigning the values o f  the eigenvalues o f  the 
system a rb itra rily . The concept o f  observability  relates to the cond ition  o f  observing or 
estim ating the state variables from  the output variables, w h ich  are generally measurable.

The b lock  diagram shown in  Fig. 10-22 illustrates the m otivation behind investigating 
co n tro lla b ility  and observability. F igure 10-22ia) shows a system w ith  the process dynamics 
described by

rfx (f)
=  A x (r )  +  B u (0 (10-258)

The closed-loop system is form ed by feeding back (he state variables through a constant 
feedback gain m atrix  K . Thus, from  Fig. 10-22.

u ( /)  =  - K x ( / )  +  r ( i ) (10-259)

where K  is a p  y  n feedback m atrix  w ith  constant elements. The closed-loop system is thus 
described by

dxU)
dr

=  (A  -  B K )x ( r )  +  B r (0 (10-260)

Th is  problem  is also known as the po le -p lacem ent design through state feedback. The 
design objective in this case is to find  the feedback m atrix  K  such that the eigenvalues o f 
(A  -  B K ). o r o f  the c losed-loop system, are o f  certain prescribed values. The word pole 
refers here to  the poles o f  the ciosed-loop transfer function, w h ich  are the same as the 
eigenvalues o f  (A  — B K ).

W e shall show later that the existence o f  the solu tion to the pole-placem eni design w ith  
a rb itra rily  assigned pole values through state feedback is d irectly  based on the con tro lla 
b il ity  o f  the states o f  the system. The result is that i f  the sy.siem o f  Eq. (10-225) is 
conirollahle. then there ex ists  a cunslanl fec'dhack m a irix  K  lhal allows ĩhe eigenvalues 
o f{ X  -  B K ) 10 be arhiirarily assigned.

Once the closed-loop system is designed, the practical problems o f  im plem enting the 
feeding back o f  the state variables must be considered. There are tw o  problem s w ilh  
im plem enting state feedback contro l: F irst, the num b e ro f state variables may be excessive, 
w h ich  w il l  make the cost o f  sensing each o f  ihese stale variables fo r feedback proh ib itive . 
Second, not a ll the state variables are phys ica lly  accessible, and so it may be necessary to 
design and construct an observer that w il l  estimate ihe slate vector from  the output vector 
y {/). Fig. 10-22(b) shows the block diagram  o f a c losed-loop system w ith  an observer. The
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Conưol u(f) I------ 1 Stale x(/)

observed state vector ĩ ( í )  is used to  generate the contro l u ( i)  through ứie feedback matri 
K . The condition tha t such an observer can be designed fo r  the system  is called th 
observability o f  the system .

^  Figure 10-23 Linear time-invariant system.

10-11-1 General Concept of Controllability
The concept o f  co n ư o lla b ility  can be stated w ith  reference to  the b lock  diagram  o f  Fig. 10 
22(a). The process is sa id  to be com pletely controllable i f  every sta te  variable o f  thi 
process can be controlled to reach a certain objective in fin ite  tim e by som e unconsirainei 
contro l u(i), as shown in  F ig . 10-23. In tu itive ly , i t  is s im ple to  understand that, i f  any one 0 
the state variables is independent o f  the contro l u (0 , there w ou ld  be no way o f  d riv ing  thi; 
particu la r state variable to  a desired state in fin ite  tim e b y  means o f  a con tro l effort 
Therefore, th is particu la r state is said to  be uncontro llab le , and, as long  as there is at leas 
one uncontro llab le  state, the system is said to  be not com ple te ly  con tro llab le  or. simply 
uncontrollable.

As a sim ple example o f  an uncontro llab le system, Fig. 10-24 illustra tes the statt 
d iagram o f  a linear system w ith  tw o  state variables. Because the con tro l U (0  affects on lj 
the state X )(0 . the state X jit)  is uncontrollable. In  other words, i t  w ou ld  be im|x>ssible t< 
d rive X2(t) from  an in itia l state X2(io) to  a desired state X2Ìtf) in  fin ite  tim e in terva l I f -  lo b) 
the contro l U (/). Therefore, the entữe system is said to  be uncontro llab le .

The concept o f  c o n tro lla b ility  g iven here refers to the states and is sometimes referrec 
to  as s ta te  c o n tro lla b il ity . C o n tro lla b ility  can also be defined fo r  the outputs o f  the system 
so there is a d ifference between state c o n tro lla b ility  and output co n tro llab ility .

10-11-2 Definition of State Controllability
Consider that a linear tim e-invariant system is described by the fo llo w in g  dynamk 
equations;

^  =  A x (( )  +  B u ( /)  (10-261:
at

y ( r ) - C x ( i )  +  D u ( /)  (10-262;

where x ( i)  is the o X 1 stale vector, u ( /)  is the r  X I input vector, and y ( /)  is the/? X 1 outpul 
vector. A , B . c. and D  are coeffic ients o f  appropriate dimensions.

The sta le  x{t) is sa id  to be controllable a i I =  Iq i f  there ex ists  a piecew ise continuous
inpul u (0  that will drive the sta te to any fin a l sta le  x(tf) fo r  a fin ite  tim e {If -  to) > 0. /j

Figure 10-24 Stale diagram o f the syslem thal is nol state controllable.



every sta te \ { to )  o f  the system  is controllable in a fin ile  tim e interval, the system  is sa id  to 
be com pletely s ta te  controllable or, simply, coniroilahle.

The fo llo w in g  ứieorem shows that the condition o f  co n tro lia b iliiy  depends on the 
coe ffic ien t matrices A  and B  o f  the system. The theorem also gives one m ethod o f  testing 
fo r  stale con tro llab ility .

T h e o re m  10-1. For the system  described by the sta te  equation o f  Eq. ị 10-26 Ỉ ) to be 
com pletely state controllable, it is necessary and  sufficient that the follow ing n X nr 
controllability m atrix has a  rank o f  n:

S = [ b  A B  A ^B  ■■■ A " - ' b ] (10-263)

Because the m atrices  A  and  B  are involved, som etim es we say that the pair  (A , B ] is 
controllable, which implies that s  is o f  rank n.

The p roo f o f  this theorem is given in  any standard textbook on op tim a l contro l 
systems. The idea is to start w ith  the state-transition equation o f  Eq. (10-79) and then 
proceed to show that Eq. (10-263) must be satisfied in  order lhat a ll the states are accessible 
by the input.

A lthough  the c rite rion  o f  state c o n tro lla b ility  given in Theorem 10-1 is quite 
s tra ightforw ard, manually, i t  is not very easy to  test fo r  high-order systems and/or systems 
w ith  many inputs. I f  s  is nonsquare, we can fo rm  the m atrix SS', w h ich  is o X n\ then, i f  SS' 
is nonsingular, s has rank n.
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10-11-3 Alternate Tests on Controllability
There are several alternate methods o f  testing co n tro llab ility , and some o f  these may be 
more convenient to apply than the cond ition  in Eq. (10-263).

T he o re m  10-2. For a single-input, singk-ou tpu f ịSỈSO) system  described b \  the s ta te  
equation o f  Eq. ( 10-261) with r =  I, the pair [A . B ] is com pletely controllable i f  A  (Ifid B 
are in CCF or transform able into CCF by a  sim ilarily transformation.

The p ro o f o f  this theorem is straightforward, since it was established in Section 10-9 
that the CC F transform ation requires that the c o n tro lla b ility  m atrix  s  be nonsingular. 
Because the CC F transfonnation in  Seclion 10-9 was defined on ly  fo r  SISO systems, the 
theorem applies on ly  to  th is type o f  system.

T he o re m  10-3. For a system  described hv the Slale equation o f  Eq. (10-261), i f  A  is in 
D C F or JCF. the pa ir  [A . B ] is com pletely controllable i f  all the elem ents in the rows o /B  
that correspond to the last row o f  each Jordan block are iionzero.

The p ro o f o f  this theorem comes d irectly  fro m  the de fin ition  o f  con tro llab ility . Le i us 
assume that A  is diagonal and that it has d is tinc t eigenvalues. Then, the pa ir |A , B ] is 
contro llab le i f  B does not have any row  w ith  a ll zeros. The reason is that, i f  A  is diagonal, 
a ll ihe states are decoupled from  each other, and. i f  any row  o f  B contains a ll zero elements, 
the coưesponding state w ould not be accessed from  any o f  the inputs, and that state would 
be unconlrollable.

For a system in JCF. such as the A  and B matrices illus lra ted  in Eq. (10-264). fo r 
co n lro lla b ilily  on ly  the elements in the row  o f  B that correspond to  the lasl row  o f  the 
Jordan b lock cannot a ll be zeros. The elements in ihe other rows o f B need not all be
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nonzero, since the coưesponding states are s t i l l  coupled through the 1 s in  the Jordan bloc! 
o f  A .

r ^ i 1 0 0  ■ ■&11 b \20 Al 1 0
B = b ix b i20 0 0 &31 b n0 0 0 ^ 2 . bAX Ủ42.

Thus, the cond ition  o f  co n tro lla b ility  fo r the A  and B in  Eq. (10-264) is i»3 i 0. b ì2 Ỷ  ( 
ồ4 i ^ 0 ,  and ồ42 Ỷ  0'

► EXAMPLE 10-11-1 The following matrices are for a system with two identical eigenvalues, but the maưix A  is diagona

(10-265
A, 0
0 Ằ1

The system is uncontrollable, since the two state equations are dependent: that is. it would not b 
possible to control the states independently by the input. We can easily show that in this case s = 
[B AB ] is singular. *

EXAMPLE 10-11-2 Consider the system shown in Fig. 10-24, which was reasoned earlier to be unconưollable. Let u 
investigate the same system using the condition of Eq. (10-263). The state equations o f the system ai' 
written in the form o f Eq. (10-263) with

-2  1
0 -1

Thus, from Eq. (10-263), the conlrollability matrix is 

S =  [B  A B ] = 1 -2
0 0

which is singular, and the system is uncontrollable.

EXAMPLE 10-11-3 Consider that a third-order system has the coefficient malrices

'1 2 - 1 ' '0 ’
A  = 0 1 0 B = 0

1 - 4  3 1

The controllability matrix is

S = [ B  AB A ’ b ] =  

which is singular. Thus, ihe system is not controllable.

0 -1  - 4
0 Q 0
1 3 8



The eigenvalues o f A  are =  2, Ằ2 =  2. and Ả̂ 3 =  1. The JCF o f A  and B are obtained with the 
transformation x (i) =  T x(f), where

10-12 Observability of Linear Systems 719

A  =  T " ‘ A T  =

■ 1 0 0 '
T  = 0 0 1

- 1 1 2

'2  - •1 0 ' ■ 0 ■
0 ;2 0 B == T ' B  = -1
0 0 1 L 0

Because the last row o f B, which corresponds to the Jordan block for the eigenvalue X3, is zero, 
the transformed state variable XỊ (t) is uncontrollable. From the transformation matrix T  in Eq. (10-235). 
X2 =  X3 , which means that is unconưollable in the original system. It should be noted that the minus 
sign in  fron t o f  the 1 in  the Jordan b lo ck  does not a lte r ihe basic de fin ition  o f  the block.

2 O B S E R V A B IL IT Y  OF L IN EA R  S Y S T E M S

The concept o f  observability  was covered earlier in  Section 10-11 on c o n tro lla b ility  and 
observability . Essentially, a system  is com pletely observable i f  every sta te  variable o f  the 
system  affects som e o f  the outputs. In other words, it is often desirable to  obtain 
in fo rm a tion  on the state variables fro m  the measurements o f  the outputs and the inputs. 
I f  any one o f  the states cannot be observed fro m  the measurements o f  the outputs, the Slate 
is said to  be unobservable, and the system is not com plete ly observable or, simply, 
unobservable. F ig . 10-25 shows the state diagram  o f  a linear system in  w hich the state X2 is 
not connected to the output y (0  in  any way. Once we have measured >-(0. we can observe 
the state X ](0 , since X i(0  =  >i(0. However, the state X2 cannot be observed from  the 
in fo rm a tion  on >>(0. Thus, the system is unobservable.

Definition of Observability
Given a  linear time-invariant system  that is described by the dynam ic equations o f  
Eqs. (10-261) a nd  (10-262), the sta te  xUq) is sa id  to be observable i f  given any input u (/), 
there ex ists  a  fin ite  tim e l f>  fo such that the knowledge o f\i{ l) fo r  tQ < t<  tf. m atrices A , 
B , c ,  and  D ; and the output y{t) fo r  t Q < t <  i f  are sufficient to determ ine \(io)- I f  every 
state o f the system is observable for a finite tf, we say that the system is completely 
observable, or. simplv. observable.

The fo llo w in g  theorem shows that the cond ition  o f  observability  depends on the matrices 
A  and c  o f  the system. The theorem also gives one method o f  testing observability.

3

Figure 10-25 State diagram o f a system (hat is not observable
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■  T he o re m  10-4. For the system  described by Eqs. (10-261) a nd  (JO-262) to I 
com pletely observable, it is necessary a nd  sufficient tha t the fo llow ing  n  X np obsen  
ability m atrix has a rank o f  n:

c
C A
C A ^

C A " - '

(JO-27:

The condition is also referred to  as the pa ir  [A , C ] being observable. In particular, i f  th 
system  has only one output, c w a  1 X /7 row matrix-, \  is a n n  X n square m atrix . Then ih 
system  is com pletely observable i f  V  is nonsingular.

The p ro o f o f  th is theorem is not given here. I t  is based on the p rinc ip le  that Ec 
(10-272) must be satisfied so that x(io ) can be un ique ly  determ ined from  the output y (/ '

10-12-2 Alternate Tests on Observability

Just as w ith  co n tro lla b ility , there are several alternate methods o f  testing observability 
These are described in  the fo llo w in g  theorems.

■  T he o re m  10-5. For an SỈSO system , described by ihe dynam ic equations o f  Eqs. {Ì0 
261 ị and ( 10-262) \v i th r =  1 a n d p  =  1, the pa ir \ \ . C ]  is com pletely observable if  \  andi. 
are in O CF or transform able inio O CF by a sim ilarity transform ation.

The p ro o f o f  this theorem is S iraightforward, since i t  was established in  Section 10-Í 
that the O C F transform ation requires that the observab ility  m atrix  V  be nonsingular.

■  T h e o re m  10-6. For a  system  described h \  the dynam ic equations o f  Eqs. (10-261) ana 
(10-262), i f  A  is in D C F or JCF. the pa ir  (A . C | is co m p le leh  observable i fa lh fie  elements 
in the columns o f  c  thut correspomi lo the firs t row  o f  each Jordan block are nonzero.

Note that th is theorem is a dual o f  the test o f  co n tro lla b ility  g iven in Theorem 10*3. 
I f  the system has d is tinc t eigenvalues, A  is diagonal, then the cond ition  on observability  is 
thai none o f  the colum ns o f  c  can contain all zeros.

EXAMPLE 10-12-1 Consider the system shown in Fig. 10-25, which wasearlierdefinedtobeunobservable.Thedynamic 
equalions o f Ihe system are expressed in ihe forni o f Eqs. (10-261) and (10-262) with

- 2  0 3'
0 -1 B =

1 c  =  | l  0 |

Thus, the observability malrix is

c  ■ 1 0
CA - 2  0

which is singular. Thus, the pair [A . C] is unobservable. In faci. becauíỉe A is o f DCF and the 
second column o f c is zero, this means that the slate -V2(?) is unobsen-able. as conjectured from 
Fig. 10-24.



► 10-13 R E L A T IO N S H IP  A M O N G  C O N TRO LLA B IL ITY , O B S ER V A B IL IT Y ,
AND TRANSFER FUNCTIONS

In  the classical analysis o f  contro l systems, transfer functions are used fo r m odeling o f  
linear tim e-invariant systems. A lthough  c o n tro lla b ility  and observability  are concepts and 
tools o f  m odem  conưol theory, we shall show ứiat they are c losely related to  the properties 
o f  transfer functions.

■  T h e o re m  10-7. Ỉ f0 ỉe  inpuf-ou tpu l transfer Junction o f  a  linear system  has po le-zero  
canceliarion. the system  w ill be unconlrollahle or unobservable, or both, depending on 
how the sta le  variables are defined. On the o ther hand, i f  the input-ou tpu t transfer 
function does not have pole-zero cancellation, the system can always be represented by 
dynam ic equations as a  com pletely controUahle and  observable system .

The p ro o f o f  th is theorem is not given here. The im portance o f  this theorem is ứiat, i f  a 
linear system is modeled by a transfer function  w ith  no po le -zero  cancella tion, then we are 
assured that it is a con tro llab le  and observable system, no m atter how the state-variable 
model is derived. Le t us a m p lify  this po in t fu rther by re fe rring  to  the fo llo w in g  SISO 
system.
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■ -1 0 0 0  ■
0 - 2 0 0
0 0 - 3 0
0 0 0 - 4

c  =  [ l  0 1 0 Ị D  =  0 (10-275)

Because A  is a diagonal m atrix, the co n tro lla b ility  and observability  conditions o f  the fou r 
states are determ ined by inspection, They are as fo llow s:

-vi: C ontro llab le  and observable (C and O)

X2 '. Conưollab le but unobservable (C but UO ) 

xy. Uncontro llab le  but observable (U C  but O)

.T4: U ncontro llab le and unobservable (U C  and UO )

The b lock  diagram o f  the system in Fig. 10-26 shows the D C F decomposition o f 
the system. C learly, the ưansíer function  o f  the con tro llab le  and observable sysiem 
should be

I i £ l .  
ơ ( í ) ' 5 +  1

(10-276)

whereas ửie transfer function  that corresponds to  the dynamics described in Eq. (10-275) is

(5 +  2)(5 +  3 )(j  +  4)^  =  c u . - A r ' B  =
(s+  n (5  +  2 ) ( i  +  3)(5 +  4)

(10-277)

w hich has three po le -zero  cancellations. Th is  sim ple-m inded example illustrates that a 
"m in im u m -o rd e r" transfer function w ithou t po le -zero  cancellation is the on ly  component 
that corresponds to  a system that is con tro llab le  and observable.
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Figure 10-26 Block diagram showing ihe controllable, uncontrollable, observable, and unobservable 
components o f the system described in Eq. (10-275).

EXAMPLE 10-13-1 Let us consider die transfer function

which is a reduced form o f Eq. (10-277). Eq. (10-278) is decomposed into CCF and OCF as follows: 

CCF.

c  =  ị l  1] (10-279)
0 1 '0

- 2  - 3
B =

1

Betause the CCF transformation can be made, the pair [A . B] o f the CCF is conữollable. 
The obser\ability matrix is

c 1 1
CA - 2  - 2

which IS singular, and ihe pair (A. C l of the CCF is unobservable.
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c = [ 0  1 | Í 10-28U

Because the OCF transformation can be made, the pair [A. C] o f the OCF i.s observable. However, the 
controllability matrix is

0 - 2 ' B = 1
1 - 3 1

1 -2
1 - 2

(10-282)

which is singular, and the pair [A. B] o f die OCF is uncontrollable.
The conclusion that can be drawn from this example is that, given a system that is modeled by 

transfer function, the conưollability and observability conditions o f the system depend on how the 
state variables are defined.

► 10-U IN V A R IA N T  T H EO R EM S  ON C O N TRO LLA B IL ITY  AN D  O B S E R V A B IL IT Y

We now investigate the effects o f  ihe s im ila rity  transform ations on c o n tro lla b ility  and 
observability . The effects o f  co n ư o lla b ility  and observab ility  due to  state feedback w il l  be 
investigated.

■  T heo rem  10-8. Invariant theorem  on sim ilarity  transfonnaiions: Consider the 
system  described by the dynam ic equations o f  Eqs. lW -261) and  (10-262). The 
similarity transform ation  x(r) — P x ( / j,  where p  is nonsingular, transform s the dvnam ic  
equations to

^  =  Ã iĩ ( ( )  +  B u ( i)  (10-283)
ai

ỹ (0  =  C x (/)  +  D u (r)  (10-284)

A  =  P - 'A P  B  =  p - 'B  (10-285)

The controllability o f  [A .  B ]ứ í ií /  the ohservahililv o f  [ a .  c ] a r e  not affected by the 
transform ation.

In  other words, co n lro lla b ility  and observability  are presen’ed through s im ila r 
transform ations. The theorem is easily proven by showing that the ranks o f  s and s 
and the ranks o f  V  and V  are identica l, where s and V  are the co n tro lla b ility  and 
observability  matrices, respectively, o f the transform ed system.

T he o re m  10-9. Theorem on controllability o f  closed-ioop system s with sta le fee d 
back: I f  the open-loop system

=  A x ( / ) - I - B u f / }  (10-286)
di

is com pletely controllable, then the cỉosecỉ-loop system  obiainecl through sta te  feedback.

u ( f)  =  r i / j  -  K x ( r )  (10-287)
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so tha t the sta le  equation becomes 

dx{t)
=  (A  -  B K )x ( / )  +  B r { r ) (1 0 -288 )

is also com pletely controllable. On the other hand, i / [A ,  B ] is uncontrollable, then there is 
no  K  that w ill m a ke the pair  [A  -  B K , B j controllable. In o ther words, i f  an open-loop 
system  is uncontrollable, it cannot be m ade controllable through s ta te  feedback.

P ro o f: The co n tro lla b ility  o f  [A , B ] im p lies  that there exists a conưol u { /)  over the time 
in terva l [?0. tf] such that the  in it ia i s ta te x(/o) is driven  to  the fina l state %Uf) over the finite 
tim e in terva l tf  -  ÍQ. We can w rite  Eq. (10-252) as

r ( i )  =  u { /)  +  K x ( r )  (10-289)

w hich is the con tro l o f  the c losed-loop system. Thus, i f  u (0  exists that can drive  x(/o) to any 
x{tf) in  fin ite  tim e, then we cannot find  an input r ( 0  that w il l  do the same to  \ ( t ) .  because 
otherw ise we can set u (/)  as in  Eq. (10-287) to  con tro l the open-loop system.

■  T h e o re m  10-10. Theorem on observability o f  chsed -loop  system s with s ta te feed 
back: I f  an open-loop system  is controllable and  observable, then sta te  fee d b a ck  o f  the 
fo rm o fE q . (10-287) could destroy observabiiity. In other words, the observability o f  open- 
loop and  closed-loop system s due lo sta te  feedback  is unrelated.

The fo llo w in g  exam ple illustrates the re la tion between observab ility  and state 
feedback.

EXAMPLE 10-14-1 Le t the coe ffic ien t m atrices o f  a linear system be

0 I 
- 2  - 3

c = | l  2 ]

We can show that the pa ir [A . B] is con tro llab le  and [A , C ] is  observable. 
Le t Ihe state feedback be defined as

u{t) =  r ( ỉ )  -  Kx(0
where

K = [ f c ,  k ^ \

Then the closed-loop system is described by the state equation 

d%(t)

- k \  1 -  k2 
- 2 ~ k ,  - 3 - 2 2

=  ( A - B K )x ( i )  +  Br(0  

A - B K  =

The observab ility  m atrix  o f  ihe closed-loop system is

v  = c 1 2
C (A  -  B K ) - k i  - 4  - 3 k 2  - 5

(10-293)

(10-294 )
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The determinant o f V  is

|V| =  6/t| - 3 * 2  +  3 (10-296)

Thus, i f  k\ and ẢT2 are chosen so that [V| =  0, the closed-loop system would be uncontrollable.

15 C A SE  STUD Y ; M A G N ET IC - BA LL  S U S P E N S IO N  S Y S T E M

A s a case study to  illustra te some o f  the m ateria l presented in  th is chapter, let us consider 
the m agnetic-ball suspension system shown in  F ig. 10-27. The objective o f the system is to 
regulate the cuưent o f  the electromagnet so that the ba ll w i l l  be suspended at a fixed 
distance from  the end o f  the magnet. The dynam ic equations o f  the system are

(10-297)

at
(10-298)

where Eq, (10-262) is nonlinear. The system variables and parameters are as fo llow s;

v (r) =  input voltage (V )

/■(r) =  w ind ing  current (A )

R =  w ind ing  resistance =  i n  

M  =  ba ll mass =  1.0 kg

The state variables are defined as

x(t) =  ba ll pos ition (m )

k =  p roportional constant =  1.0

L  =  w ind ing  inductance =  0.01 H

g =  g rav ita tional acceleration =  32.2m/sec^

(10-299)

( R L
--------- o

c

)

Electromagnet

Figure 10-27 Ball-iuspension system.
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dx\{!)
dt

d x i(t)
dt

d x ijt)
dt

=  X 2 (0

k  4 ( ‘)
M x i w

(10-301

(10-302

(10-30C

These nonlinear state equations are linearized about the e q u ilib r iu m  point. .T | ( 0  =  x(i) =
0.5 m, using the method described in  Section 4-9. A f te r  substitu ting the parameter values 
the linearized equations are w ritten

A x (r)  =  A * A x (0  +  B *A v (0 (10-303

where A x (/)  denotes the state vector, and A v (/)  is the inpu l vollage o f  the linearized system 
The coe ffic ient matrices are

(10-304.

A l l  the com putations done in the fo llo w in g  section can be carried out w ith  tht 
M A T L A B  Toolbox appearing later in  th is chapter. To show the analytica l method, we carr^ 
ou i the steps o f  the derivations as fo llow s.

0 1 0 ■ 0  ■
A ‘ = 64.4 0 - 1 6 B ' - 0

0 0 -1 0 0 100

The Characteristic Equation

Í  - i 0
- 6 4 .4  s 16

0 0  i+ iO O
=  r '  +  lO O i- -  64.45 -  6440 =  0 (10-305;

E igenva lues: The eigenvalues o f  A ‘ , o r the roots o f  the characteristic equation, are 

i - = - 1 0 0  5 - - 8 . 0 2 5  8.025

T he  State-Transition Matrix: The state-transition m atrix  o f  A '  is

(10-306;

/ s - 1  0 - K

-6 4 .4 Í  16

\ 0 0  . Ĩ+ 1 0 0 /

/ s(.v+ 1 0 0 ) Í  +  100 - 1 6
1

64.4(a +  100) 5(.T+100) -1 6 5
{ s+  [00)(,v + 8.02i>)(5- 8.025)

V 0 0 , r  -  64.4
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B y perform ing the partia l-frac tion  expansion and caư ying  ou t the inverse Laplace 

transform , the state-transition m a u ix  is

ộ { t)  =
'0 0 - -0 .0 0 1 6 ' 0.5 -0 .0 6 2 0 .0 1 0 8 ’

0 0 0.16 -4 .0 1 2 0.5 -0 .0 8 7

0 0 I 0 0 0

■ 0.5 0.062 -0 .0 0 9 2 '

h 4.012 0.5 -0 .0 7 4 ^8,025/

0 0 0

(10-308)

Because the last term  in  Eq. (10-308) has a positive exponent, the response o f  ậ i t) increases 
w ith  t im e , an d  the sys te m  is un s ta b le . T h is  is e xp e c te d , s in ce  w ith o u t  c o n tro l,  th e  Steel b a ll 

w ou ld  be attracted by the magnet u n t i l  i t  h its the bottom  o f  the magnet.

T ra n s fe r  F u n c tio n : Le t us define the ba ll position x ( 0  as the ou tpu t > (0 ; then, given the 
inpu t, v (0 , the inpu t-ou tpu t transfer func tion  o f  the system is

^  =  C - ( i I - A * ) - 'B >  =  | l  0 0 ] ( i I - A * ) -  

-1 6 0 0
(10-309)

{ s+  1 0 0 )(i +  8 . 0 2 5 ) ( j - 8.025) 

C o n tro lla b il ity :  The c o n tro lla b ility  m atrix  is

S =  iB *  A 'B *  A *2 B *1  =
0  0  -1 ,6 0 0
0  -1 ,6 0 0  160.000 (10-310)

100 - 10,000 1,000.000

Because the rank o f s  is 3. the system is com plete ly controllable.

O b s e rv a b ility : The observab ility  o f  the system depends on w hich variable is defined at 
the output. For state-feedback contro l, w h ich  w il l  be discussed la te r in  Chapter 10, the fu ll 
con tro lle r requires feeding back a ll three state variables. X ] ,  X 2, and X 3 . However, fo r 
reasons o f  economy, we may w ant to  feed back o n ly  one o f  the three state variables. To 
make the problem  more general, we may want to  investigate w h ich  state, i f  chosen as the 
output, w ou ld  render the system unobservable.

1. y (0  =  ba ll position =  Ar(0; c *  =  [1 0  0] 
The observab ility  m atrix  is

c *  ■ 1 0 0
v  = C ‘ A * 0 1 0

C *A *2 64.4 0 - 1 6
(10-311)

w h ich  has a rank o f  3. Thus, the sysiem is com plete ly observable.

2. v (0  -  a ll ve loc ity  =  d x ự )/d t:  C ’ =  [0 Ì 0)
The observability  m a irix  is

c *  ■ 0 1 0
V - C ‘ A * 64.4 0 - 1 6

C *A *2 0  64.4 1600
(10-312)

w hich has a rank o f  3. Thus, the system is com plete ly observable.
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3. y{i) =  w ind ing  current =  i{t): c *  =  [0  0  1] 

The observab ility  m a trix  is

c *  ■ ’ 0 0 1
C * A ‘ 0 0 -1 0 0

C * A ‘ 2 0 0 -1 0 .0 0 0
(10-313)

w h ich  has a rank o f  1. Thus, the system is unobservable. The physical interpreta
tion  o f  this result is that, i f  we choose the cuưent /(0  as the measurable output, we 
w ou ld  not be able to  reconstruct the state variables from  the measured in form ation.

The interested reader can enter the data o f  th is system in to  any available com puter program 
and ve rify  the results obtained.

► 10-16 ST A T E-FEED B A C K  CO NTROL

A  m a jo rity  o f  the design techniques in  m odem  contro l theory is based on the state-feedback 
configuration. That is, instead o f  using contro llers w ilh  fixed configurations in  the forward 
or feedback path, contro l is achieved by feeding back the state variables through real 
constant gains. The b lock diagram  o f  a system w ith  state-feedback contro l is shown in 
F ig. 9-2(c). A  more detailed b lock  diagram is shown in  Fig. 10-28.

We can show that the P ID  con tro l and the tachomeier-feedback conưol discussed 
earlier are a ll special cases o f  the state-feedback con tro l scheme. In  the case o f  tachometer- 
feedback con tro l, le t us consider the second-order prototype system described in Eq. 
(5-87). The process is decomposed by d irect decom position and is represented by the state 
diagram o f F ig. 10-29(a). I f  the states X i( f )  and X2(/)  are phys ica lly  accessible, these 
variables may be fed back through constant real gains - k i  and -A t2, respectively, to  form  
the contro l « (/). as shown in F ig . 10-29(b). The transfer function  o f  the system w ith  state 
feedback is

(10-314)

Figure 10-28 Block d ia g ra m  o f a control system with state feedback.
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Figure 10-29 Conưol o f a second-order system by state feedback.

For com parison purposes, we display the transfer functions o f  the systems w ith  tachometer 
feedback and w ith  PD contro l as fo llow s:

Tachom eter feedback;

(10-315)

(p ị {K p  +  Kps)

R(s) +  {2Ịu) + KdojI)s  +  cưịKp
(10-316)

Thus, tachometer feedback is equivalent to state feedback i ỉ  k\ = ùjị and k2 =  
Com paring Eq. (10-314) w ith  Eq. (10-316), we see that the characteristic equation o f  the 
system w ith  state feedback w ould be identica l to that o f  the system w ith  PD contro l i f  
k\ =  (õịKp  and Ế2 =  (ưịKo- However, the numerators o f  the tw o  transfer functions are 
different.

The systems w ith  zero reference input, r(i) =  0. are com m only known as regu la to rs . 
W hen r(t) = 0, the contro l ob jective is to  drive  any a rb itrary in itia l conditions o f  the system 
to  zero in  some prescribed manner, fo r  example, “ as q u ick ly  as possib le ." Then a second- 
order system w ith  PD contro l is the same as state-feedback control.

I t  should be emphasized that the comparisons just made are a ll fo r second-order 
systems. For higher-order systems, the PD contro l and tachometer-feedback contro l are 
equivalent to feeding back on ly  the state variables A'l and -v->. w h ile  state-feedback control 
feed s b ack  all th e  Slate variab les.

Because PI contro l increases the order o f  the system by one. it cannot be made 
equivalent lo  state feedback through constant gains. We show in Section 10-18 that i f  we 
com bine state feedback w ith  integral com rol we can again realize PI control in the sense o f 
siate-feedback control.
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W hen roo t lo c i are u tilize d  fo r  the design o f  contro l systems, the general approach m ay be 
described as that o f  pole placem en t; the poles here re fe r to  that o f  the c losed-loop iransfei 
function , w hich are also the roots o f  the characteristic equation. K n o w in g  the relation 
between the closed-loop poles and the system perform ance, we can e ffec tive ly  c a n y  out the 
design by specify ing the location o f  these poles.

The design methods discussed in  the preceding sections are a ll characterized by the 
property that the poles are selected based on w hat can be achieved w ith  the fixed-conưolle r 
configuration and the physica l range o f  the con tro lle r parameters. A  natural question would 
be: Under w hat condition can the poles be p laced  arb itrarily! T h is  is an en tire ly  new 
design philosophy and freedom  that apparently can be achieved o n ly  under certain 
conditions.

W hen we have a con tro lled  process o f  the th ird  o rde r o r  h igher, the PD, PI, single- 
stage phase-lead, and phase-lag con tro lle rs  w ou ld  no t be able to  co n tro l independently 
a ll the poles o f  the system, because there are o n ly  tw o  free parameters in  each o f  these 
con tro lle rs .

To investigate the cond ition  required fo r a rb itrary pole placem ent in  an nth-order 
system, let us consider that the process is described by the fo llo w in g  state equation;
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dx{t)
=  A x ( i)  +  B u { /) (10-317)

where x ( /)  is an n X 1 state vector, and « {/) is die scalar contro l. The state-feedback 
con tro l is

« {/) =  - K x ( r ) + r ( f ) (10-318)

where K  is  the 1 X rt feedback m atrix  w ith  constant-gain elements. B y  substitu ting Eq. (10- 
318) in to  Eq. (10-317), the c losed-loop system is represented by the state equation

dx{l)
dt

=  ( A - B K ) x ( r )  +  B r ( 0 (10-319)

I t  w i l l  be shown in the fo llo w in g  that i f  the pa ir [A , B ] is com plete ly con tro llab le , then a 
m atrix  K  exisis tha l can give an a rb itrary set o f  eigenvalues o f  (A  -  B K ) ;  that is, the n roots 
o f  the characteristic equation

Ị í l  -  A  +  B K | =  0 (10-320)

can be a rb itra rily  placed. To show thal this is true, that i f  a system is com plete ly 
con tro llab le , i t  can always be represented in  the con tro llab le  canonical fo rm  (CCF): 
that is, in Eq. (10-317).

• 0 1 0 0 • •O ’
0 0 1 0 0

A  = B  -

0 0 0 1 0

. - « 0 - a \ -« 2 . 1 .

(1 0 -3 2 1 )
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T h e  feed b ack  g a in  m a ư ix  K  is e x p re sse d  as

K  =  [k i k i  ■■■ 

w h e re  kx,  k 2 .............. Ar„ a re  rea l co n s ta n ts . T hen ,

(10-322)

0 0 0
- a ữ - k \  - ữ | - / c 2 - 0 2 - k ì

1
- a „ _ i  - k „

(10-323)

T h e  e ig e n v a lu e s  o f  A  -  B K  are  th en  fo u n d  fro m  th e  ch a ra c te r is tic  eq u a tio n

| i l  — (A — BK)| — ỉ" +  (on-l +  ’ +  (fln-2  ̂+  ■ ■ ■ +  («0 + ^ l )  “  0

(10-324) 
C lea rly , th e  e ig e n v a lu e s  c an  be a rb itra r ily  a ss ig n ed , b ecau se  th e  feed b ack  g a in s  Ẩ:I, Ấ:2 . • • • 
k „  are isolated in each coeffic ien t o f  the characteristic equation. In tu itive ly , i t  m ak es  sense 
th a t a  sy stem  m u st b e  c o n tro lla b le  fo r  th e  p o le s  to  b e  p laced  a rb itra rily . I f  o n e  o r m o re  s ta te  
v a r iab le s  a re  u n c o n ư o lla b le , th en  th e  p o le s  a sso c ia ted  w ith  th e se  s ta te  va riab le s  a re  a lso  
u n c o n tro lla b le  a n d  can n o t be m o v ed  a s  d e s ired . T h e  fo llo w in g  ex am p le  illu s tra te s  the 
d e s ig n  o f  a co n tro l sy s te m  w ith  s ta te  feed b ack .

EXAMPLE 10-17-1 C onsider the magnetic-ball suspension system analyzed in Section 10-15. This is a typical regulator 
system for w hich the control problem is to m aintain (he ball at ils equilibrium position. It is shown in 
Section 10-15 that the system without control is unstable.

The linearized state model of the magnelic-ball system is represented by the state equation

d ầ \ { t )
A 'A x (i) +  B ’ Av(f)

where Ax(f) denotes the linearized state vector, and Av(0 is the linearized input voltage. The 
coefficient matrices are

■ 0  1 0 ■ ■ 0  ■
A* = 64.4 0 - 1 6 B ' = 0

0  0 - 1 0 0 100

The eigenvalues o f A* are 5 =  -1 0 0 .  -8 .0 2 5 . and 8,025, Thus, the system without feedback control is 
unstable.

Let us give the following design specifications:

1. The system must be stable.

2. For any initial disturbance on the position o f Ihe ball from its equilibrium  position, the ball 
musi return to the equilibrium position with zero steady-state error.

3. The lim e response should settle to within 5%  o f the initial disturbance in not more than
0.5 sec.

4. The control is to be realized by state feedback

Ai’(r) =  -K Ax(n  =  - l k i  h  kĩ \^x(t )  (10-327)

where kị .  Aj. and k} are real constants.
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■OX')

Figure 10-30 (a) State diagram  of magnetic-ball-suspension system, (b) State diagram  o f magnelic- 
ball-suspension system with state feedback.

A  state diagram of the "open-loop” ball-suspension system is shown in Fig. 10-30(a), and the 
same o f the “closed-loop” system with state feedback is shown in Fig. 10-30(b).

We must seleci the desired location o f the eigenvalues o f ( i l  -  A ’ +  B 'K ) so that requirement 3 
in the preceding list on the tim e response is satisfied. W ithout entirely resorting to trial and error, we 
can Stan w ith  ihe fo llo w in g  decisions:

1. The system dynam ics should be conưoHed by two dominant roots.

2. To achieve a relatively fast response, the Iwo dominant roots should be complex.

3. The damping that is controlled by the real parts o f the complex roots should be adequate, 
and the imaginary parts should be high enough for the ưansieni to die out sufficiently fast-

After a few trial-and-eưor runs, using the A C SY S/M A TLA B tool, we found that the fo llow in g  
characteristic equation roots should satisfy the design requirements:

J =  - 2 0  s = - 6  +  ;4 .9  s = - 6  -  J4.9

The coưesponding characteristic equation is

+ 3 2 s ^  +  3 0 0 i + 1200  =  0  (10 -328 )

The characteristic equation o f the closed-loop system with state feedback is written

|,5l -  A ’ + B  K1 =

- 1 0

16

5 +  ]00 +  100/t3

- 6 4 .4  Í  

\00ki I00it2

ìQ0{ki +  ì ) s ^ - { 6 4 .4 + ] 6 0 0 k 2 ) ĩ -  lóOOẨTi -  6440(,fe3 -  I) =  0

(10-329)
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-1.5

>'max = 1,03

s
'  max = 0 06 sec
y ‘L x  =  -0-02

\
7 ' „ „  = (3.76 sec

0 0.4 0.8 1.2 1.6 2.0

Time (sec)

Figure 10-31 Output response o f m agnetic-ball-suspension system with state feedback, subject to 
in itial condition v{0) =  .Yi(0) =  1.

w hich can also be obtained directly from Fig. 10-30(b) using the SFG gain form ula. Equa
ting like coefficients o f Eqs. (10-328) and (10-329), we get the follow ing simuUaneous equations:

100(-t3 +  l)  =  32 

- 6 4 .4  -  1600ẩ:2 =  300 (10-330)

-I600Ì.-1 -6 4 4 0 (* 3  +  1) =  1200

Solving the last three equations, and being assured ứiai the solutions exist and are unique, we get the 
feedback-gain matrix

K  =  [kị k2 *3] =  [ -2 .0 3 8  -0 .2 2 7 7 5  -0 ,6 8 ]  (10-331)

Fig. 10.31 shows the output response >'(i) when the system is subject to the initial condition

x(0) = (10-331)

EXAMPLE 10-17-2 In this exam ple, we shall design a state-feedback control for the second-order sun-seeker 
system  treated in Exam ple 4-11-2 and throughout C hapter 9. The C C F slate diagram  o f  the 
process w ith / l  =  1 is shown in Fig. 10-32(a). The problem  involves the design of a siate-feedback 
conưol with

The state equations are represented in veclor-matrix form as

A x(r) +  B y,(0

(10-332)

(10-333)

0 I '0 '
0 -2 5

B =
1

(10-334 )
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o --------

Figure 10-32 (a) State diagram o f second-order sun-seeker system, (b) State diagram  of 
second-order sun-seeker system with state feedback.

The output equation is 

where

e„(t) =  C x(/) 

c = ll 01

(10-335)

(10-336)

The design objectives are as follows:

1. The steady-state error due to  a step function input should equal 0.

2. With the state-feedback control, the unil-step response should have minimum overshoot, 
rise time, and settling time.

The transfer function o f (he system with state feedback is written 

0 ^ _  25002500
Q r i s ) ~  s^ +  {25 +  k 2 )s +  ki

(10-337)

Thus, for a step input, if the output has zero steady-state error, the constant terms in Ihe 
num erator and denom inator m ust be e qual to each Olher— that is. k ị  =  2500. This m ean s that, w hile  
the system is completely conirollabJe, we cannot arbiưarily assign ưie tw o roots o f the characteristic 
equation, which is now

I^ + (2 5 + * 2 ) 1 +  2500 =  0 (10-338)

In other words, only one o f ihe roots o f  Eq. (10-338) can be arbiưarily assigned. The problem is 
solved using ACSYS. A fter a few irial-and-error runs, we found out that the m aximum overshciou rise 
time, and settling tim e are all at a  minimum w hen k i  =  75. The Iwo roots are J  =  - 5 0  and -5 0 .  The 
attributes o f the unit-step response are

maximum overshoot =  0%  f, =  0,06717 sec r, =  0,09467 sec 

The state-feedback gain matrix is

K  =  [2500 7 5 | (10-339)

The lesson that we learned from this illustrative example is ửiat state-feedback conưol generally 
produces a system lhat is type 0. For the system to track a  step input without s teady-state error, which 
requires a  type 1 or higher-type sysiem, the feedback gain A| o f the system in ih e C C F s u te  diagram



cannot be assigned arbitrarily. This means that, for an «th-order system, only n -  1 roots o f the 
characteristic equation can be placed arbiưarily.
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► 10-18 STATE FEEDBACK WITH INTEGRAL CONTROL
T h e  s ta te - fe e d b a c k  c o n tro l s tru c tu re d  in  th e  p re c e d in g  se c tio n  h a s  o n e  d e f ic ie n c y  in  th a t 
i t  d o e s  n o t im p ro v e  th e  ty p e  o f  th e  sy s tem . A s  a  re su lt,  th e  s ta te - fe e d b a c k  c o n tro l w ith  
c o n s ta n t-g a in  fe e d b a c k  is g e n e ra lly  u se fu l o n ly  fo r  re g u la to r  sy s te m s  fo r  w h ic h  th e  
sy s te m  d o e s  n o t tra c k  in p u ts , i f  a ll th e  ro o ts  o f  th e  c h a ra c te r is tic  e q u a tio n  a re  to  b e  p la c e d  
a t w ill.

In  g en e ra l,  m o st co n tro l sy s tem s  m u st track  inpu ts. O n e  so lu tio n  to  th is  p ro b lem  is to  
in tro d u ce  in teg ra l c o n tro l, ju s t  a s  w ith  PI c o n ư o lle r , to g e th e r  w ith  th e  c o n s tan t-g a in  sta te  
feed b ack . T h e  b lo ck  d ia g ra m  o f  a  sy stem  w ith  c o n s tan t-g a in  s ta te  feed b ack  a n d  in teg ra l 
co n tro l feed b ack  o f  th e  o u tp u t is sh o w n  in  F ig, 10-33. T h e  sy stem  is a lso  su b jec t to  a  n o ise  
in p u t n ịt) .  F o r  a  S IS O  sy stem , the in teg ra l co n tro l ad d s  o ne  in te g ra to r  to  th e  sy s tem . A s 
sh o w n  in F ig . 10-33, the o u tp u t o f  th e  (n  +  l ) s t  in te g ra to r  is  d e s ig n a te d  a s  x „ + |.  T h e  
d y n am ic  e q u a tio n s  o f  th e  sy s tem  in  F ig . 10-33  a re  w ritten  as

=  A x (f) +  B u ( i)  +  E n (()
a t

dx„+ x{t)

d t

y { t)  =  C x [ t ) + D u { i )

(1 0 -3 4 0 )

(1 0 -3 4 1 )

(1 0 -3 4 2 )

w h ere  x (r) is th e  «  X 1 s ta te  vec to r; u (t)  a n d  y { t)  a re  th e  s c a la r  a c tu a tin g  s ig n a l and  o u tpu t, 
re sp ec tiv e ly ; r ( i)  is the  s ca la r re fe ren ce  in p u t; and  n ( t)  is  th e  sc a la r  d is tu rb a n c e  inpu t. T h e  
co e ffic ien t m a trice s  are  rep re sen ted  by  A , B , c, D  a nd  E , w ith  a p p ro p ria te  d im en s io n s . T he 
a c tu a tin g  s igna l u{t)  is re la ted  to  th e  s ta te  va riab le s  th ro u g h  co n s ta n t-s ta te  a n d  in teg ra l 
feed b ack .

(1 0 -3 4 3 )

Figure 10-33 Block diagram of a control system with stale feedback and integral outpui feedback.
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w h ere

K  =  [Ẳ, k2 h  k„] (10 -344 )

w ith  c o n s ta n t rea l g a in  e le m e n ts , a n d  k „ ^ i  is th e  s c a la r  in te g ra l-fe e d b a c k  g a in .
S u b s titu tin g  E q . (1 0 -3 4 3 )  in to  E q . (1 0 -3 4 0 )  a n d  c o m b in in g  w ith  E q . (1 0 -3 4 1 ) , the 

n  +  1 s ta te  e q u a tio n s  o f  th e  o v e ra ll  sy s te m  w ith  c o n s ta n t-g a in  a n d  in te g ra l feed b ack  
a re  w ritten

^ = ( A - B K ) x ( , )  + (10-345)

x ( /)  =

dxj r )

d t

dx„ + \{t)
(n  +  1) X 1 (10 -346)

A  =
A 0
-c 0

(»  +  l )  X 1

Ẽ  =

- k„ ^„+ i] l x ( / i + l )  

[ ( « + l ) x  1]

(10-347)

(10 -348)

(10 -349)

S u b s titu tin g  Eq. (1 0 -3 4 3 )  in to  E q . (1 0 -3 4 2 ), the  o u tp u t eq u a tio n  o f  th e  ov e ra ll system  
is w ritten

y ( / ) - C x ( r ) (10 -350)

C = [ C ~ D K  D K ]  [ l x ( » + l ) ] (10 -351)

T h e  d e s ig n  o b je c tiv e s  a re  as follow s:

I .  T h e  s te a d y -s ta te  v a lu e  o f  th e  o u tp u t v ( 0  fo llo w s a s tep -fu n c tio n  in p u t w ith  zero 
e ư o r :  th a t is.

-  lim  e ( i )  =  0 (10 -352)

2. T h e  /7 +  1 e ig en v a lu es  o f  (A  -  B  K ]_are  p laced  a t d e s irab le  lo ca tio n s. F o r  th e  last 
co n d itio n  to  be  p o ss ib le , th e  p a ir  [A , B ) m u st be c o m p le te ly  c o n tro llab le .

T h e  fo llo w in g  e x a m p le  illu s tra te s  the ap p lica tio n s  o f  s ta te -fe e d b a c k  w ith  in teg ra l 
co n tro l.



iXAMPLE 10-18-1 We have shown in Example 10 -l7 -2 tha t,w ithconstan t-gainstate-feedbackconưol,thesecond-order 
sun-seeker system can have only one o f its two roots placed at w ill for the system to ưack  a step input 
without steady-state error. Now let us consider ihe sam e second-order sun-seeker system in Example 
10-17-2, except that an integral conưol is added to the forward path. The state d iagram  o f the overall 
system  is shown in Fig. 10-34. The coefficient matrices are
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'0  r B -
0

0  - 2 5 1
c =  [2500 0] Z) =  0 (10-353)

From Eq. (10-347),

A =
0 I 0 

0 - 2 5  0
-2 5 0 0  0 0

B =

We can show ứiat the pair [A, B] is com pletely coỊỊự ollab le. Thus, the eigenvalues o f ( i l  -  A +  B K) 
can be arbitrariiy placed. Substituting A, B, and K  in the characteristic equation o f ihe closed-loop 
system  w ith Slate and integral feedb ack , w e  have

- 1 0

| i I - A  +  B K |=  kị s  +  25 +  k 2 k i 

-2 5 0 0  0

=  s^ +  {25 +  +  k iS  +  2500*3 =  0

(10-355)

which can also be found from Fig. 10-34 using the SFG gain formula.
The design objectives are as follows:

1. The steady-state output must follow a step function input wiửi zero error.

2. The rise lime and settling time must be less than 0.05 sec.

3. The maximum overshoot of the unit-step response m ust be less than 5%.

Because all three roots o f the characteristic equation can be placed arbiưarily, it is not realistic to 
require m inim um  rise and settling times, as in Example 10-17-2.

Again, to realize a fast rise tim e and settling time, the roots o f the characteristic equation should 
be placed far to the left in Ihe 5-plane, and the natural frequency should be high. Keep in mind that 
roo ts  w ith  la rge  m agnitudes w i ll  lea d to h ig h  ga ins f o r  the Slate-feedback m a tr ix .

The ACSYS/MATLAB software was used to carry out the design. After a few ưial-and-error 
runs, the design specifications can be satisfied by placing the roots at

Í  =  -2 0 0  - 5 0  +  ;5 0  and - 5 0  -  j50  

T he desired characteristic equation is

5-’ +  3 0 0 r  +  25. OOOj +  1.0 0 0 .0 0 0  =  0  (10-356)

Figure 10-34 Sun-seeker system with stale feedback and integral control in Example 10-18-1



i i  = 2 5 ,0 0 0  *2 =  275 and * 3 = 4 0 0  

The attributes o f the unit-step response are as follows:
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Equaling like coefficients o f Eqs. (10-355) and (10-356), we get

tr =  0.03247 sec 

=  0.04667 sec

N otice that the high feedback gain of k], which is due to the large values o f the roots selected  may 
pose physical problems; if  so, the design specifications may have to  be revised. M

► EXAMPLE 10-18-2 In this example we illusưate the application o f state-feedback with integral conơol to  a  system wiủi a 
disturbance input.

C onsider a dc-m otor conữol system that is described by ưie following state equations:

+  (10-357)
a t J  J  J

=  Í10-358)
a t L L L

where

ia{t) =  aim ature current. A 

e j t )  =  annature applied voltage. V 

ùj(i) =  m otor velocity, rad /sec

B =  viscous-friction coefficient o f m otor and load =  0 

J  — mom ent o f inertia o f m otor and load =  0.02 N -m/rad/sec- 

K, =  m otor torque constant — 1 N -m /A  

Ki, =  m otor back-enư  constant =  1 v /rad/sec 

T i  =  constanc loadtorqueim agnitude not known). N-m 

L  -  armature inductance =  0-005 H 

R  =  armature resistance =  IQ  

The output equation is

y{0 =  C xir) =  [ l  Ojx(f) (10-359)

The design problem is to find the control uU) =  €aU) through state feedback and integral conưol such
that

1 . H m i o ( / ) = 0  and Hm =  0 (10-360J

2. [iin co(i) =  s tep in p u tr(i)  =  u ,(f) (10-361)

3 . The e igen va lu es o f  the c lo sed - io o p  system  w ith state feedb ack  and in tegral c o n ơ o l are at J
=  -300 . -1 0  +  y io . and -1 0  - ý io .

Let the state variables be defined as .Yjii) =  w f/)and.T :(/) =  The Slate equations in Eqs. (10-357) 
and (10-358) are written in vector-matrix form:
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where n il)  =  TiMsU).

• B K, '
J J 0 50

Kb
. L

R
L .

-2 0 0 - 2 0 0

0 ' 0  ■
1

. 1 .
200

• 1 ' - 5 0
J

. 0 . 0

From Eq. (10-347), 

Ã
A 0

- c  0

0 50 0

-200  -200  0 

- 1 0  0
. - 5 0 '

c  =  (C 0] =  [1 0  0] E  =
E
n 0
u

0
T he control is given by 

where

K  =  l*l *2 *3]

Fig. 10-35 shows the state diagram  o f the overall designed system. 
The coefiiciem matrix of the closed-loop system is

A - B K  =

0 50 0

-200 -  200iti -200 -  2OOA2 -2Q0ky

(10-365)

(10-368)

Figure 10-35 DC -m otor control system  with Slate feedb ack  and integral control and disiiirbance  
torque in Example 10-I8'2.



|s l  -  Ã  +  B K | =  s’ +  200(1 +  Ì 2)s^ +  10,000(1 +  * 1 )s -  10 ,0 0 0 13  = 0  (10-371

which is more easily determ ined by applying ihe gain form ula o f SFG to Fig. 10-35.
For the three roots assigned, ưie last equation m ust equal

s ’ +  320i^ +  6 ,200s +  60 ,000  =  0 (10-372

Equating the like coefficients o f Eqs. (10-371) and (10-372), we get

=  - 0 .3 8  k2 =  0 .6 fc3 =  - 6 .0

Applying the SFG gain fonnula  to Fig. 10-35 between the inputs r (0  and n (0  and the states ajff) and 
4 (0 .  we have
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The characteristic equation is

n ( s ) 1

J j K i
JL

where A,.(ỉ) is the characteristic polynomial given in Eq. (10-372).

Figure 10-36 Time responses o f  dc-m oto r control system with Slate feedback and in tegra l conưol 
and disturbance lorque in Example 10-18-2.



A pplying the final-value theorem to the last equation, the steady-state values o f the state 
variables are found to be
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a» (0 ' . 0 K i' Tl 1
~  5 - 0 M s ) . 1 B 1 Tl

Thus, the m otor velocity (o(l) will approach the constant reference input step function rịl) =  u,U) as I 
approaches infinity, independent o f the disturbance torque Ti. Substituting Uie system param eters into 
Eq. (10-373), we gel

1 - 5 0 ( i  +  320 )j 60 ,000
■  Ac(j) 6200j  +  6 0 ,000 1,200s

Fig. 10-36 shows the tim e responses o f  a>(I) and iaU) when Tl  =  I and Tl  =  0. The reference input is a 
unit-step function.

19 MATLAB TOOLS AND CASE STUDIES
In  th is  sec tio n  w e  p re se n t a  M A T L A B  to o l to  so lv e  m o st p ro b lem s a d d re sse d  in  th is  
ch ap te r. T h e  re a d e r  is  e n c o u ra g e d  to  ap p ly  th is  to o l to  a ll th e  p ro b le m s iden tified  b y  a 
M A T L A B  T o o lb o x  in  th e  le ft m arg in  o f  th e  tex t th ro u g h o u t th is  chap ter. W e use 
M A T L A B 's  S y m b o lic  Tool to  so lv e  so m e  o f  th e  in itia l p ro b le m s in  th is  c h a p te r  inv o lv in g  
in v e rse  L ap lace  tran s fo n n a tio n s . W e w ill a lso  u se  M A T L A B  to  co n v e rt f ro m  tra n sfe r  
fu n c tio n s  to  s ta te -sp a c e  rep re sen ta tio n . T h e se  p ro g ra m s a llo w  th e  u se r  to  c o n d u c t th e  
fo llo w in g  tasks:

• E n te r  th e  s ta te  m a trices .

• F in d  th e  sy s te m ’s ch a ra c te r is tic  p o ly n o m ia l,  e ig en v a lu es , and  e ig en v ec to rs .

• F in d  th e  s im ila rity  f fan sfo rm a tio n  m a trice s .

• E x a m in e  th e  sy s te m  c o n tro lla b ility  a n d  o b se rv ab ility  p ro p e rtie s .

• O b ta in  the s tep , im p u lse , and  na tu ra l (re sp o n se  to  in itia l co n d itio n s) re sp o n ses , as 
w ell as th e  tim e  re sp o n se  to  any  fu n c tio n  o f  tim e.

• U se  M A T L A B  S y m b o lic  T oo l to  find  th e  s ta te -tran s itio n  m a tr ix  u sin g  th e  in v erse  
L ap lace  co m m an d .

• C o n v e rt a  tra n sfe r  fu n c tio n  to  s ta te -sp a c e  fo rm  o r  v ice  versa .

To b e tte r  i llu s tra te  how  to  u se  th e  so ftw are , le t u s  g o  th ro u g h  so m e  o f  th e  s tep s  invo lved  in 
so lv in g  e a r lie r  e x am p les  in  th is  chap ter.

1 Description and Use of the State-Space Analysis Tool

T h e  S ta te -S p ace  A n a ly sis  T oo l (s ta te to o l) co n s is ts  o f  a n u m b e r o f  m -file s  an d  G U Is fo r  the 
an a ly s is  o f  s ta te -sp ace  sy stem s. T h e  s ta te to o l c a n  be  in v o k ed  fro m  th e  A u to m a tic  C o n tro l 
S y s tem s  lau n ch  a p p le t (A C S Y S ) by  c lic k in g  on  th e  ap p ro p ria te  b u tto n . You w ill then  
see  th e  w indow  p ic tu red  in  F ig, 10-37. W e use  th e  ex am p le  in S ec tio n  10-16  an d  E x am p les  
10-5-1 and  10-5-2 to  d e sc rib e  how  to  u se  th e  s ta te lo o l.
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( S ’ - I n l  x |

Calculate/Display Time Response Accessories

> S ta te  Space Tool

p  Block Diagra

d x ( t )  _ 

d t

y ( t )  =

A * ■ (> )+ B u { t )

c ^ ( i ) + D u ( t )

Enter coefficient Matrices, 
eg. For a 3x3 identity matrix enter [1 0 0;0 1 ữ;0 01 ]

[1;0;1]isa3x1 column [1 0 0] is a 1x3 row.

[0,1 ,ữ;64.4,0,-16;0.0,-10ũ]

[0;0;100]

[1 .0 .0]

Intltial Conditions

R eset

C lose W indow

Figure lD-37 The State-Space 
Analysis window.

F irs t c o n s id e r  the e x a m p le  in S ec tio n  10-14, To e n te r  th e  fo llo w in g  co effic ien t 
m atrices .

0  1 0 0
X  = 6 4 .4  0 - ] 6 B ’ = 0

0  0 - 1 0 0 100
C ’ =  [1 0  0] (1 0 -3 7 8 )



e n te r  th e  v a lu es  in  th e  ap p ro p ria te  e d it  b o x es . N o te  th a t th e  d e fa u lt v a lu e  o f  in itia l 
c o n d itio n s  is se t to  ze ro  and  y o u  d o  n o t have  to  ad ju s t it fo r  th is  e x am p le . F o llo w  the 
in s tru c tio n s  on  th e  sc reen  ve ry  carefu lly . T h e  e le m e n ts  in  th e  ro w  o f  a  m a trix  m ay  be 
sep a ra te d  by  a sp ace  o r  a  co m m a, w h ile  th e  ro w s th em se lv es  m u st be s ep a ra ted  b y  a 
sem ico lo n . F o r  e x am p le , to  e n te r  m a tr ix  A , e n te r  [0 ,1 ,0 ;6 4 .4 .0 ,-1 6 ;0 .0 .-1 0 0 ]  in  th e  A  ed it 
b o x , a n d  to  e n te r  m a trix  B . e n te r  [0 ;0 ;1 0 0 ] in  th e  B  e d it  b ox , as sh o w n  in  F ig . 10-38 . In  th is  
c a se , th e  D  m a trix  is se t to  ze ro  (d e fau lt v a lu e). To find  th e  ch a ra c te r is tic  E q . (1 0 -2 7 0 ),
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■ i n l x ị

Caiculate/Display Time RespOTise Accessories

d x ự )

d t A * ( f j + B u ( t )

y ( . t )  = c ^ ( 0 + D

- Inpijt Module-

Enter coelficient Matrices, 
eg. For a  3x3 identity matrix en ter [1 0 0,0 1 0;O 01  ]

[1 ;0;1 ] is a 3x1 column (1 0 0] is a 1 x3 row .

1 [0.1,0:64.4,0,-16:0,0.-100]

B

1 [0;0;1001

c

1 H.O.O]

D

1 0

Intitial Conditions

1 ^
r -  B uttons------------------------------------------------------------------

R eset

C lose W in d o w

Figure 10-38 Inputing values in the
Statc-Space window.
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The A matrix is: 

Am at =

0
64.4000

0

1.0000
0
0

0
■16.0000

- 100.0000

Characteristic polynomial: 

ans -

s'‘3+100*s''2-2265873562520787/35184372088832*s-6440  

Eigenvalues o f A = diagonal canonical form of A is:

Abar =

8.0250 0 0
0 -8 .0 2 5 0  Ữ
0  0  - 1 00 .0000

Eigenvectors are

T =

0.1237 -0.1237 -0.0016
0.9923 0.9923 0.1590

0 0 0.9873

Figure 10-39 The MATLAB command window display after clicking the “ Eigenvals & vects o f A" 
button.

e ig en v a lu es , and  e ig en v ec to rs , ch o o se  the “ E ig en v a ls  &  v ec ts  o f  A”  o p tio n  fro m  the 
C a lc u la te /D isp la y  m en u . T h e  d e ta ile d  so lu tio n  w ill b e  d isp lay ed  on  th e  M A TLA B  
c o m m a n d  w indow . T h e  A  m a trix , e ig en v a lu es  o f  A , a n d  e ig en v ec to rs  o f  A  are  show n 
in  F ig . 10-39 . N o te  th a t th e  m a tr ix  re p re se n ta tio n  o f  th e  e ig en v a lu es  c o rre sp o n d s  to  the 
d iag o n a l c a n o n ic a l fo rm  (D C F ) o f  A , w h ile  m a tr ix  T . re p re se n tin g  th e  e ig en v ec to rs , is the 
D C F  tran sfo rm a tio n  m a tr ix  d is c u s se d  in  S ec tio n  10-9-4, To find  th e  s ta te - tra n s itio n  m atrix  
0 ( i ) .  y o u  m u s t u se  th e  tfsy m  to o l, w h ich  w ill b e  d isc u sse d  in  S ec tio n  10-19-2 .

T h e  ch o ic e  o f  th e  c  in  E q . (1 0 -3 7 6 ) m ak es  th e  b a ll p o s itio n  th e  o u tp u t >•{/) fo r input 
v(/). T h e n  th e  in p u t-o u tp u t t ra n s fe r  f tin c tio n  o f  th e  sy stem  can  be  o b ta in ed  by  choosing  
th e  ' ‘S ta te -S p ace  C a lc u la tio n s”  o p tio n . T h e  final o u tp u t ap p ea rin g  in  th e  M A TLA B  
c o m m a n d  w indow  is  th e  t ra n s fe r  fu n c tio n  in  b o th  p o ly n o m ia l and  fa c to re d  fo rm s, as 
sh o w n  in  F ig . 10-40 . A s you  c a n  see . th e re  is a  s m all e rro r  d u e  to  n u m erica l s im u la tio n . You 
m ay  se t th e  sm a ll te rm s  to  ze ro  in  th e  re su ltin g  tra n sfe r  fu n c tio n  to  ge t E q . (10 -309).

C lic k  th e  “ C o n tro lla b ili ty ” an d  “ O b se rv a b ili ty ”  m en u  o p tio n s  to  d e te rm in e  w h eth er 
th e  sy stem  is  c o n tro lla b le  o r  o b se rv ab le . N o te  th e se  o p tio n s  a re  on ly  en a b le d  a f te r  p ressing  
th e  “ S ta te -S p ace  C a lc u la tio n s” b u tto n . A fte r  c lick in g  th e  “ C o n tro lla b ili ty "  b u tto n , you 
ge t th e  M A T L A B  co m m an d  w in d o w  d isp lay , sh o w n  in  F ig. 10-41. T h e  s  m a tr ix  in  th is  case  
is the  sam e  as E q . (1 0 -3 1 0 ) w ith  th e  ra n k  o f  3. A s a re su lt, th e  sy s te m  is co m p le te ly  
co n tro llab le . T h e  p ro g ra m  a lso  p ro v id es  the M  a n d  p m a tr ic e s  and  th e  sy s tem  c o n ư o lla -  
b ility  can o n ica l fo rm  (C C F ) rep re se n ta tio n  a s  defin ed  in S ec tio n  10-9.
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Xl x2 x3
Xl 0 1 0
x2 64.4 0 -16
x3 0 0 -100

State-space m odel is:

ul
X l  0
x2 0
x3 100

x1 x2 x3 
y1 1 0 0

U l
y1 0

Continuous-time m odel. 
Characteristic polynomial:

an s =

s''3+100‘ s'‘2-2265873562520787/35184372088832*s -  6440 

Equivalent transfer-function m odel is:

Transfer function:
4.263e -  014 s'^2 + 8 .5 2 7 e-0 1 4  s -  1600

s^3 + 100s''2 -  64.4s -  6440 

Pole, zero form:

Zero/pole/gain:
4.2633e -  014 (s-t-1.937e008Ks -  1.937e008)

(s+100)(s+8.025Xs -  8.025)

Figure 10-40 The MATLAB command window after clicking ihe “ State-Space Calculations" 
button.
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The Controllibility matrix [B AB A‘'2B ...] is =

Sm at =

0 0 -1 6 0 0
0 -1 6 0 0  160000

100 -10000 1000000

The system  is therefore controllable, rank of s  matrix is =

ranks =

3

Mmat =

-6 4 .4 0 0 0  100.0000 1.0000
100.0000 1.0000 0

1.0000 0 0

The controllability canonical form (CCFI transformation matrix Is:

Ptran =

-1 6 0 0  0 0
0 -1 6 0 0  0

-6 4 4 0  0 100

The transformed matrices using CCP are:

Abar =

1.0e+003 *

0 0.0010 0
0 0 0.0010

6.4400 0.0644 -0 .1 0 0 0

Bbar -

0
0
1

Cbar =

-1 6 0 0  0 0 

Dbar =

0

Figure 10-41 The MATLAB command window after clicking the “ Controllability" button.
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The observability matrix {transpose:[C CA CA''2 ...1) is =

Vmat =

1.0000 0 0
0 1.0000 0

64.4000 0 -16.0000

The system  is therefore observable, rank o f V matrix is =

rankv -

3

Mmat -

-64.4000 100.0000 1.0000
100.0000 1.0000 0

1.0000 0 0

The observability canonical form (OCF) transformation matrix is:

Qtran =

0 0 1.0000
0  1.0000  * 100.0000

-0.0625 6.2500 -e^s.oooo

The transformed matrices using OCF are:

Abar =

1.0e+003 *

0.0000 -0.0000 6.4400
0.0010 -0.0000 0.0644

0 0.0010 -0.1000

Bbar -

-1600
0
0

Cbar -

Figure 10-42 The MATLAB command window after clicking the "O bservability” button.

O n ce  you  ch o o se  th e  “ O b se rv a b ility ”  o p tio n , th e  sy stem  o b se rv ab ility  is asse ssed  in 
th e  M A T L A B  co m m an d  w indow , as show n  in  F ig . 10-42. T h e  sy s te m  is  c o m p le te ly  
ob se rv ab le , s in ce  th e  V  m atrix  has a  ran k  o f  3 . N o te  th e  V  m a trix  in  F ig . 10-42 is th e  sam e 
a s  in  E q . (1 0 -311). T h e  p ro g ram  a lso  p ro v id es  th e  M  and  Q  m a trice s  and  th e  sy stem
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o b se rv a b ility  c a n o n ic a l fo rm  (O C F ) re p re se n ta tio n  a s  defin ed  in  S e c tio n  10-9. A s an 
e x e rc ise , th e  u se r  is  u rg e d  to  re p ro d u c e  E qs. (1 0 -3 1 2 ) a n d  (1 0 -3 1 3 )  u s in g  th is  so ftw are .

Y ou m ay  o b ta in  th e  o u tp u t )>(/) n a tu ra l t im e  re sp o n se  ( re sp o n se  to  in itia l co n d itio n s 
o n ly ) , th e  s te p  re sp o n se , th e  im p u lse  re sp o n se , o r  th e  t im e  re sp o n se  to  a n y  o th e r  input 
fu n c tio n  by  c h o o s in g  th e  ap p ro p ria te  o p tio n  fro m  th e  T im e  R e sp o n se  m en u .

T h e  s ta te to o l p ro g ra m  m a y  b e  u sed  o n  all th e  e x a m p le s  id e n tif ie d  b y  a  M A TLA B  
T o o lb o x  in  th e  le f t m a rg in  o f  th e  te x t th ro u g h o u t th is  c h ap te r, e x c e p t p ro b le m s  invo lv ing  
in v e rse  L a p la c e  tran s fo rm a tio n s  a n d  c lo se d -fo rm  so lu tio n s . T o  ad d re ss  ứ ie  ana ly tica l 
so lu tio n s , w e  n e e d  to  u se  th e  tfsy m  to o l, w h ich  re q u ire s  th e  S y m b o lic  T oo l o f  M A TLA B .

10-19-2 Description and Use of tfsym for State-Space Applications
Y ou m ay  ru n  th e  T ra n s fe r  F u n c tio n  S y m b o lic  T oo l b y  c lic k in g  th e  ' ‘T ra n s fe r  F unction  
S y m b o lic ”  b u tto n  in  th e  A C S Y S  w indow . Y ou sh o u ld  g e t ứ ie  w in d o w  in  F ig . 10-43. For

I -  Enter Trarisfer Function; -

Enter the Numerator and Denomirwtor o f the fransfer function 
usHTg a vector o f polynorwal coefficieris, or tiie  numeratcjr w  
denominator o f the transfer function in symbolic form 
complex variable 's'. Enter any symboic variables in the box 
labeled 'Enter Symbolic V aríaúes.' 
ex; For numerator ( s ^  + 3*kp*s +10*2): 

enter 11, 3*kp, ki^2r in th e  Numeralor box 
and i(p ki' inữie symtolic variables text box. 

ex: The following are ail ecluivalent:
'(s''2 + 7‘ s + 12)’
'[1712]' 

and '(s+4)‘ (s+3)’ .

Enter Symbolic Variables I

Numerator

[1]

Denominator

Invwse L^jlace  Transform

Figure 10-43 The Transfer Funciion Symbolic window.
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Enter the Coefficient Matrices (empty matrices will give error)

E.g. For a 2x2 identity matrix type in: (1 0; Ữ1 ]
[1 ; 0 ; 1 ] is a 3x1 column vector a [1 0 1 ] is a 1 x3 row  
vector

A =  J0,1 .0;64.4,0,-16;0,0.-100)

B =  J0;0;100l

c =  | 1 ,0 , 0 1

ICs: r

State Space

Figure 10-44 Inputting values into the Transfer Function Symbolic window.

th is  e x am p le  w e  w ill u se  the S ta te -S p ace  m ode . C h o o se  the a p p ro p ria te  o p tio n  from  the 
d ro p -d o w n  m enu  a s  show n  in  F ig. 10-43.

L e t u s  co n tin u e  o u r so lu tio n  to  th e  e x a m p le  in S ec tio n  10-16. F ig. 10-44 show s the 
in p u t o f  th e  m a trice s  fo r  th is  e x am p le  in to  the s ta te -sp ace  w indow . T h e  in p u t and  o u tpu t 
d isp lay s  in th e  M A T L A B  co m m an d  w indow  are  se lec tiv e ly  show n in F ig . 10-45. N o te  tha t 
a t first g lan ce  the ( i l - A ) " '  an d  ậ (t}  m a trice s  m ay  ap p e a r  d iffe ren t fro m  E qs. (1 0 -3 6 6 ) and  
(1 0 -3 6 7 ). H ow ever, a f te r  m in o r  m a n ip u la tio n s , y o u  m ay  be ab le  to  v erify  th a t they  a re  the 
sam e . T h is  d iffe ren ce  in rep re sen ta tio n  is b e c a u se  o f  M A T L A B  sy m b o lic  app roach . 
You m ay  fu rth e r sim p lify  these  m a trice s  b y  u sin g  the -“s im p le "  co m m an d  in  the M A T L A B  
c o m m a n d  w indow . F o r ex am p le , to  s im p lify  ệ i t ) .  type  ’‘s im p le ip h i)"  in the  
M A T L A B  co m m an d  w indow , I f  the  d e s ire d  fo rm a t has not b een  a ch iev ed , you  m ay  
have  reach ed  th e  so ftw are  lim it.
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Enter A  = (0 1 0;64.4 0-16;0 0 -1001

Asym  =

0 1.0000 0
64.4000 0 -16.0000

0 0  - 100.0000

Determ inant o f (s*i-A ) is;

detSIA =

s''3+100*s '‘2-322/5*s-6440

the eigenvalues o f  A  are:

e igA  =

- 100.0000
8.0250

-8 .0250

Inverse o f  |s*l-A ) is:

[ s 5
(5 — : —

5 s • 322 

322

2
5 s - 322

3 2
5 s + 500 s - 322 s - 32200

2
5 s  ■ 322

0 .

3 2
5 s + 500 s - 322 s - 32200

ransition m atrix  o f  A:
40 2000

%2 . 1/322 % 1 ........... exp {-100 t ) ....... .............. %1 + ------------ '
24839 3999079 24839

s + 100 

40

1/5 %1 , 

0 ,

4000
I 1-100 t ) ------------ %2 + 8/24839 %1

1/2 1/2
1 : = 1610 sinh (1/5 1610

1/2

exp (-100 t) 

t)

%2 : = cosh (1/5 1610 t) 

Transfer function  between u(t) and y(t) is:

8000

3 2
5 s + 500 s - 322 s ■ 32200

Figure 10-45 Selective display of the MATLAB command window for the tfsym tool.
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► 10-20 S U M M A R Y

This chapter w as devoted to the state-variable analysis o f linear systems. The fundamentals on state 
variables and state equations were introduced in Chapters 2 and 3, and formal discussions on these 
subjects were covered in this chapter. Specifically, the staie-transition matrix and state-transition 
equations were introduced and the relationship between the state equations and ưansfer functions was 
established. Given the transfer function o f a linear system, the state equations o f the system can be 
obtained by decomposition o f the transfer function. Given the state equations and the output 
equations, the transfer function can be determ ined either analytically or directly from the state 
diagram.

Characteristic equations and eigenvalues were defined in terms of the state equations and the 
transfer function. Eigenvectors o f A  were also defined for distinct and m ultiple-order eigenvalues. 
Sim ilarity transformations to controllability canonical form (CCF), observability canonical form 
(OCF), diagonal canonical form (DCF), and Jordan canonical form (JCF) were discussed. State 
conưollability and observability o f linear time-invariant systems were defined and illustrated, and a 
final example, on the m agnetic-ball-suspension system, sum m anzed the im portant elem ents o f the 
Slaie-variable analysis o f linear systems.

The MATLAB software tools statetool, tfsym, and tfcal were described in the last section. The 
program functionality was discussed with two examples. Together these tools can solve most o f the 
hom ework problems and examples in this chapter.

REVIEW QUESTIONS
1. W hat are the components o f the dynamic equations o f a linear system?

2. Given the state equations o f a linear system as

^  =  A x(/) +  B u(0  
at

give two expressions of the state-ưansition m atrix ộ{t) in terms o f A.

3. List the properties o f the state-transition matrix ệ(t).

4. Given the state equations as in Review Question 2, write the state-transition equation.

5. List the advantages of expressing a linear system in the controllability canonical form (CCF). 
Give an example o f A  and B in CCF.

6. Given the state equations as in Review Q uestion 2, give the conditions for A and B to be 
ưansíorm able into CCF.

7. Express the characteristic equation in terms o f the matrix A.

8. List the three m ethods o f decomposition of a transfer function.

9. W hat special forms will the state equations be in if the transfer funclion is decomposed by direct 
decomposition?

10. W hat special form will the state equations be in if  ihe ưansíer function is decomposed by 
parallel decomposition?

11. W hat is the advantage of using cascade decomposition?

12. State the relationship between the CCF and controllability.

13. For controllability, does the magnitude o f the inputs have to be finite?

14. Give the condition o f controllabilily in terms o f the matrices A and B.

15. W hat is the motivation behind the concept o f observability?

16. Give the condition o f observability in terms o f the mairices A and c .
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17. W hat can be said about the conưollability and observability conditions if  the transfer functior 
has po le-zero  cancellation?

18. Slate the relationship between OCF and observability.

Answers to Ihese review questions can be found on this book’s companion Web site: 
www.wiley.com/college/golnaraghi.
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10-1. The following diifereniial equations represent linear lime-invariant systems. Write the 
dynamic equations (state equations and output equalions) in vector-matrix form.

10-2. The following transfer functions show linear time-invariant systems. W rite the dynamic 
equations (state equations and output equations) in vector-matrix form.

(a) C { i ) = -
s^ +  ĩ s  +  2

° (* )  =  ? T T f o r r ĩ ĩ 7 T 6

. , j ' +  115- +  35J +  250

10-3. Repeat Problem 10-2 by using MATLAB.

10-4. W rite the state equations for the block diagrams o f the syslems shown in Fig. lOP-4.

http://www.wiley.com/college/golnaraghi
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Ì Ố - .

10-5. By use o f Eq, (10-58), show that

ậ{t)  =  I +  A / +  ^  ‘ ‘

10-6. The state equations o f a linear lime-invariant system are represented by 

! ! ^  =  A x ( , )  +  B u „ )

Find the state-transition matrix 0(/), the characteristic equation, and the eigenvalues of A for the 
following cases:

(a) A =
0 1 ■ 

- 2  - 1 B =
0
1

r
0

(b) A =

(c) A =
- 3  0 

1 0 - 3
B = 0 ’

] (d) A =

0 1 
- 4  - 5

3 0
0  - 3



754 Chapter 10. State Variable Analysis 

(e) A  =

(g) A =

0  2
-2  0

' - 1  0  0 ' 0 '
B =

0
1 (f) A  = 0  - 2  1 B - Ỉ
1 0  0 - 2 0

- 5  1 0
0 - 5  1
0 0 - 5

10*7. Find 4Kl) and the characteristic equation o f  the slate variables in Probiem  1 0 ^  usÌDg a 
com puter program.

10-8. Find ihe state-ưansition equation of each o f the systems described in Problem 10-6 for /  >  0. 
Assume that xiO) is the inilia] state vector, and ửte com ponenu o f ưie input vector o ( ; I are all unii-siep 
functions.

10-9. Find out if  the m aưices given in the following can be staie-ưansition mairices. [Hint; check 
the properties o f </>(/).]

1 - e - '  0
1 f - '

le-'-^ r e - ^ / 2  
0 re-'-'
0 0

10-10. Find Che tim e response o f the following systems:

0 1 1 f x i l  f o '
- 2  - 3

Xi - 1  - 0 . 5 ' X\ 0 .5 '
u  v = [ l  Oj •II

.^2 1 0 X2j 0 .-^2,

10-11. Given a system described by the dynamic equations:

=  A x li) -  B«(f) v(f) =  C x iri

■ 0 1 0  ■ 0 '
A = 0 0 1 B 0

-1 - 2 - 3 1

A = -1 1 ■ B ^
0 ' c =

0 - 1 1

0 1 0 ■ 0 ’
(c) A = 0 0 1 B = 0

0 - 1 -■> 1

c = ;i 0 0]

c = '1 1 0'

(1) Find the eigenvaJues o f A- Use ứie ACSY’S com puter program to check ihe answen.
You may get the characteristic equation and solve for the roots usins tfs \m  or tea] components
o f ACSYS.

(2) Find the cransfer-function relation between X iil  and

(3) Find the ưansíer function y(j)

10-12. Given ứie dynamic equations o f a time-invariant SNStem; 

dxir
di

=  A x 'f  -  Bh</i v in  =  Cx f
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0  1 0 ' 0 '
A = 0 0  1 B = 0

- 1  - 2  - 3 1
c = [l 1 0]

Find the matrices AI and Bi so that the state equations are written a 

^  =  A]X(i) +  BiH(f)

x{t)  =

x \{ t)

y{t]

d yjt)
dt

lQ-13. Given the dynamic equations 

d \{ t)
= A x(f) +  Bu(r) y{t)  =  Cx(i)

0 2 0 
] 2 0 

-1 0 1

0  2 0 
1 2 0 

-1 1 1

- 2  1 0
0 - 2  0 

-1  - 2  - 3

- 1  1 0
0 -1 1

I ] 
- 2  - 3

c = [l 0 1] 

c = [l 0 I]

: =  [] 0 Oj

C = [ 1  0  1]

c = [l 0]

Find the ưansíom iation x(i) =  Px(f) that transforms the stale equations into the controllability 
canonical form (CCF).

10-14. For the systems described in  Problem 10-13. find the transformation x(;) =  Q x(f) so that the 
state equaiions are transformed into the observability canonical form (OCF).

10-15. Forthe system sdescribed in Problem 10-13. find the transformation x(/J =  T x (0  so thal ihe 
Slate equations are transformed into the d iagonal canonical form (DCF) if A has distinct eigenvalues 
and Jordan canonical form (JCF) if A has at leasl one m ultiple-order eigenvalue.

10-16. Consider the following transfer functions. Transform the stale equations inio the controlla
bility canonical form (CCF) and obbcrvibility canonical form (OCF).

j -  -  1 . 2 5 + 1

10-17. The state equation o f a linear system is described by 

dr
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The coefficient matrices are given as follows. Explain why the state equations cannot 
ưansform eđ into the controllability canonical form (CCF).

(c ) A  =

- 2  0
0 -1 (b ) A  =

(d ) A  =

10-18. Check the conưolibility  o f Che fallowing systems:

(a)

(b)

2 
0 
0

•il - 1  0 X] i

•*2. 0 - 2 5

•Tl - 1  0  ■ X] '2

.•^2. 0  - 2 Xt 0

■-1 1 0 ■ '4
(c) -̂ I = 0 - 1 0 X2 + 0

•*2 0 0 - 2 . 3

‘ - 1  1 0  ■ •i| ’ 0 '
(d) = 0 - 1 0 X2 + 4

•^2. 0 0 - 2 3

X ] ' -2 1 0 0 0 ■ ' j i ' '0 r
x-> 0 -2 1 0 0 •Í2 0 0

(e) Ì3 = 0 0 -2 0 0 ■»■3 + 3 0
-Í4 0 0 0 - 5 1 Xi 0 0

,-̂ 5. 0 0 0 0 -5 . ’̂ 5. 2

'x \  ' ■-2 1 0 0 0  ■ -i| ’ ■4

X2 0 - 2 I 0 0 -f* 2
(f) -V3 = 0 0 - 2 0 0 -'■3 + 1 I,

■U 0 0 0 - 5 1 ■u 3

.^ 5 . 0 0 0 0 - 5 0

-1 0 0 ■ T

0 -1 0 B  = 2

0 0 -1 Ĩ

■-2 1 0 ■ r r

0 -2 0 0

-1 -2 -3

-1 0 •ti0 -2
-1 0 1 •T|0 -2

10-19. Check the observability o f the following sysiems: 

y =  [ l  3]

y = [0 1]

'2 1 0 
0  2 1 
0 0 2

'2  1 0 '
0 2 1
0 0 2

\() 1 3
>'2 0 2 4
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i l '
XI

Ì3 =

X i

,•^5.

'x \  '

h
X i -
X i

’2 1 0 0  0 
0 2 1 0  0 
0 0 2 0 0
0 0  0 - 3  I 
0 0  0 0  - 3

2 1 0  0  0  ■
0 2 1 0  0
0  0  2  0  0
0  0  0 - 3  1
0  0  0 0  - 3

y\ ' 1 1 1 0  0'
0  I 1 1 0

y\ 1 1 1 0 0
n . 0 1 1 0 0

10-20. The equations that describe the dynamics o f a  m otor control system are 

r „ ( i )  =  K i i M

A ( f )

ea{t) =  Kae{t)
dt

(a) Assign the state variables as X |(/) =  e„{t), X2(0 =  d en {t)/d t, and ^3 (0  =  4 (0 .  W rite the state 
equations in the form of

^  =  A *W  +  B9,{<)

W rite the output equation in the form >1(0  = C x (0 . where y (0  = dmit).

(b) Find the ưansíer function G(s) = & „(s ) /£ (s )  when ihe feedback path from 0 m (i) to £(s) is 
broken. Find the closed-loop transfer function M (s) =  &„(s)/& r(s).

10-21. Given the m aưix A o f a linear system  described by the state equation 

dx(r) _
dt

■ =  A x(f) +  B«(f)

■ 0 r
- 1  1D

■-1 0
0 - 2

0 1
1 0

(a) A =

(b) A =

(c) A =

Find the stale-transition matrix 0 (/)  using the following methods:

(1) Infinite-series expansion o f expressed in closed form

(2) The inverse Laplace transform o f ( j l  -  A )" '

10-22. The schematic diagram of a feedback conưol system using a dc m otor is shown in Fig. 1 OP-22. 
The torque developed by the m otor is T„(t) =  KiiaU), where K, is the torque constant.

The constants o f the system are

K s ^ l  R  =  2 Ĩ Ì  /Ỉ, = 0 . i a
/f* =  5 v /rad/sec A :,= 5 N -m /A  Z .„ ^ O H

•/m +  -/t =  0 .1 N-m-sec^ B„, s  0 N-m-sec

Assume lhat all the units are consistent so that no conversion is necessary.
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(a) Let the state variables be assigned as JTi =  9y and X2 =  dOy /d t. Let the output be y  =  ỚV W rite the 
state equations in vector-m aưix form. Show that the m aưices A and B are in CCF.

(b) Let 6r(t) be a unit-step function. Find x (0  in tenns o f x(0). the initial state. Use the Laplace 
transform table.

(c) Find the characteristic equation and the eigenvalues o f A.

(d) Comment on the purpose o f the feedback resistor

10-23. Repeat Problem 10-22 with the following system parameters:

Ks = \ K  =  9 R a = O . Ì Í Ì
R s = O .Ì Í Ì  Kb =  ì v /rad /s  A:, =  1 N-m/A
Lfl =  0 H Jm + JL =  0.01 N-m-sec^ N-m-sec

10-24. Consider that matrix A can be diagonalized. Show that e^ ' =  where p  ưaDsíorms
A into a diagonal m aưix, and P “ ‘A P =  D, where D  is a diagonal matrix.

10-25. Consider that matrix A can be ư ansíorm ed to the Jordan canonical form, c h e n ^  =  
where s  ưansíorm s A into a Jordan canonical form and J  is in a Jordan canonical form.

10-26. The block diagram o f a feedback conưol system is shown in Fig. lOP-26.

o V E{s) a:, + K2S 5 Y(s)
I " V j (í  + 4Xj  + 5)

OPEN-LOOP SYSTEM

Figure 10P-26

(a) Find the forward-path transfer function Y(,s)/E{s) and the c losed-loop u-ansfer function

(b) W rite the dynamic equations ii

dxU) .
dr

I the form of 

' =  Ax(f) +  B r(f) >•(/) =  Cx(f) +  D r(f)

Find A. B. c .  and D in terms o f the system parameters.



(c) Apply the final-value theorem  to find the steady-state value o f the output y(t)  when the input r(r) 
is a unit-step function. Assume that ihe ciosed-loop system is stable.

10-27. For the linear time-invariant system whose state equations have the coefficient matrices 
given by Eqs. (10-191) and (10-192) (CCF), show that
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adj(5l -  A}B =

and the characteristic equation o f A  is

j"  +  ữ n - i í" ” '  + ----- h a i 5  +  ao =  0

10-28. A  linear time-invariant system is described by the differential equation

(a) Let ihe state variables be defined as X\ =  y , X2  =  d y ịd t, and x-i =  d^yịd t^. W rite the state 
equations o f the system in vector-matrix form.

(b) Find the state-transiiion matrix ỘU) o f A.

(c) Let >-(0) =  1. dy(ữ)Ịd t =  0, ê y i ữ ) Ị d ^  =  0, and r (0  =  UsU). F ind the siate-transiiion equation of 
the system,

(d) Find the characteristic equation and the eigenvalues o f A.

10-29. A spring-mass-friction system is described by the following differential equation:

(a) Define the state variables as X](r) =  y (0  and;c2(/) =  d y (l)/d l. W rite the state equations in vector-
m atrix form. Find the state-transition matrix ộ ự )  o f A-

(b) Define the state variables as jCi(0 = y ( i )  and X2 (t) =  y(() +  dyU )/d l. W rite the state equations in 
vector-matrix form. Find the state-lransition m atrix 0 (0  of A.

(c) Show that the characteristic equations. | j l  -  A | =  0, for parts (a) and (b) are identical.

10-30. Given the stale equations chi{t)/dt =  A x(i). where Ơ and OJ are real numbers:

(a) Find the state transition matrix o f A.

(b) Find the eigenvalues o f A.

10-31. (a) Show that the inpul-output ưansfer functions o f the two systems shown in Fig. lOP-31 
are the same.

(b) W rite the dynamic equations of the system in Fig. 10P-31(a) as

d < t)
= A ix { r )  +  B |H i(0  .v ,(0  =  Cjx{f)

and those o f Ihe system in Fig- 10-3 Kb) as

^ ^  =  A2X{í )+ B 2 « 2 ( í ) >'2ừ ) =  C2X(f)al

d \{ t]  _

10-32. Draw the state diagrams for the following systems.

cl!
= A x(/) +  Bu(f)
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«1 I

Figure tOP-31

0- 3  2
- 1  0  1
- 2  - 3  - 4

(a) A =

(b) Same A  as in part (a), but with

0  1
1 0
1 0

ID-33. Draw state diagrams for the following ta n s fe r  functions by direct decomposition. Assign the
state variables from right 10  left for Xi, X2...........W rite the state equations from the state diagram and
show that the equations are in CCF.

^  + 8 .5 i2  + 2 0 .5 Í +  15

(c) G(s)

(d) G (j) =

5 (^ + 1 )
s is  +  2 ) { s + \0 )

_________ Ị_________
j ( i  +  5 )(j2  +  25 +  2)

10-34. Draw state diagrams for the systems described in Problem 10-33 by parallel decomposition. 
Make certain that Che state d iagram s contain a m inim um  num ber o f integrators. The constant branch 
gains must be real. W rite the state equations from the state diagram.

10-35. Draw the state diagrams for the system s described in Problem 10-33 by using cascade
decomposition. Assign the stale variables in ascending order from right to left. W riie the state 
equations from the state diagram.

10-36. The block diagram o f a feedback conưol system is shown in Fig. lOP-36.

(a) Draw a state d iagram  for ihe system by first decomposing G{s) by direct decomposition. A s s ip
the stale variables in ascending order, X ị,X 2 ........... from right to left. In addition to the state-variable-
related nodes, ứìe state diagram should contain nodes for R{s). E(s). and C(j).

(b) W rite the dynamic equations o f the system in vecior-matrix form.
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Figure 10P-36

(c) Find the state-transiiion equations o f the system using the state equations found in part (b). The 
initial state vector is x(0), and r (0  =  UsiO-

(d) Find the output y ự )  for /  >  0 with the initial stale x(0), and r(/)  =  UsU).

10-37. (a) Find the closed-loop transfer function Y{s)/R(s), and draw the stale diagram.
(b) Perform a direct decomposition to Y(s)/R(s), and draw the stale diagram.
(c) Assign the slate variables from right to left in ascending order, and write the state equations in 
vector-m atrix form.
(d) Find the staie-ưansirion equations o f the system using the state equations found in pan  (c). The 
initial state vector is x(0). and r (0  =  u /l) .
(e) Find the output yU) for / >  0 with the iniiial state x(0), and r(t) =  u,.(0-

10-38. The block diagram o f a linearized idie-speed engine-control system of an automobile 
is shown in Fig. I OP-38. (For a discussion on linearization o f nonlinear systems, refer to Section 4-9.) 
The system  is linearized aboul a nom inal operating point, so all the variables represent linear- 
perturbed quantities. The follow ing variables are defined; is the engine torque; To<
the constant load-disturbance torque; újự), the engine speed; u (0 . the input-voitage to  the 
throttle actuator: and a .  the throttle angle. The tim e delay in the engine model can be approxi
m ated by

Figure 10P-38

■ 1 + 0 .1 i

(a) Draw a state diagram for the system by decomposing each block individually. Assign ihe stale 
variables from righi 10 lefi in ascending order.

(b) Write the state equations from the slate diagram  obtained in part (a), in Ihe form of

^ = a x í Õ +  b [ ; '< ; \

(c) W rite y'(i) as a function of U(s) and Tp{s). Write il(.v) as a function of ơ(.v) and Ti,(s). 

10-39. The slate diagram o f a linear system is shown in Fig. IOP-39.
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(a) Assign state variables on the state d iap am  from right to left in ascending order. C reate additional 
artificial nodes if  necessary so that the state-variable nodes satisfy as "inpu t nodes" after the 
integrator branches are deleted.

(b) W rite the dynamic equations o f the system from the state diagram  in part (a).

Figure 10P-39

10-40. The block diagram  of a linear spacecraít-conưol system is shown in Fig. lOP-40.

(a) Determine the transfer function Y{s)/R(s).

(b) Find the characteristic equation and its roots o f the system. Show that the roots of the 
characteristic equaiion are not dependent on K.

(c) W hen =  I. draw a state diagram for the system by decomposing Y{s)/R{s), using a minimum 
num ber o f integrators.

(d) Repeal part (c) when K  =  4.

(e) Determine the values of K  that must be avoided if  the sysiem is to be boih state controllable and 
observable.

10-41. A considerable amount of effort is being spent by automobile manufacturers to meet the 
exhaust-emission-performance standard-! set by the government. M odem  automobile-power-plant 
systems consist o f an inlem al combustion engine that has an internal cleanup device called a  catalytic 
convener. Such a system requires control o f such variables as the engine a ir-fuel (A/F) ratio, ianition- 
spark timing, exhaust-gas recirculation, and injection air. The control-system  problem considered in 
this problem deals with the control o f the A /F ratio. In general, depending on fuel composition and 
Olher factors, a typical sioichiomelric A /F is 14.7; t. lhai is, 14.7 grams o f air to each gram of fuel. An 
A /F greater o r less than stoichiometry will cause high hydrocarbons, carbon monoxide, and nitrous 
oxides in the tailpipe emission. The control system shown in Fig. 1QP-41 is devised to conưot the a ir- 
fuel riilio so that a desired output is achieved for a given input command.
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The sensor senses the composition o f the exhausi-gas m ixture entering the catalytic converter. 
The elecưonic conưoller detects the difference or the error between the com m and and the error and 
com putes the control signal necessary to achieve the desired exhaust-gas composition. The output 
y(i) denotes the effective a ir-fuel ratio. The ưansíer function o f the engine is given by

where Td =  0,2 sec is the time delay and is approximated by

=  —  =

The gain o f the sensor is 1.0.
(a) Using the approximation for given, find the expression for Gp{s). Decompose Cp(s) by 
direct decomposition, and draw the state d iagram  w ith H(f) as the input and >-(0 as the output. Assign 
Slate variables from  right to le ft  in  a scen din g  order, and w rite the state equation s in vector-m atrix  
form.

(b) Assuming that the controller is a simple amplifier with a gain o f 1, i.e., u(t) = e(t). find the 
characteristic equation and its roots o f the closed-loop system.

Figure 10P-41

10-42. Repeat Problem 10-41 when the time delay o f the automobile engine is approximated a 

1 - W 3
l+ ịT d S  +  ự y -

Td = 0 .2  sec

10-43. The schematic d iagram  in Fig. lOP-43 shows a  permanent-magnet dc-motor-control system 
with a viscous-inertia damper. The system can be used for the conlrol o f the printwheel o f an 
electronic word processor. A m echanical dam per such as the viscous-inertia type is sometimes used 
in practice as a simple and economical way of stabilizing a control system. The damping effect is 
achieved by a  rotor suspended in a viscous fluid. The differential and algebraic equations that describe 
the dynamics o f the system are as follows;

e(t) = K,[0Jr{t) - Ks =  1 v/rad/sec

e J t )  =  K eit) =  R M t }  +  ^h{l) ^ = 1 0

Kb =  0 .0706 v/rad/sec

T ^ ự )  =  -  o,D(r)] J  = Jl, +  J„ =  0 . \o i -

T J t ) = K , U t ) K, =  lOoz-in./A

f(D[a>m(t) -  w o (0 ] = Jf( =  0.05oz-in.-sec-

/?„ =  l a Kd =  1 oz-in,-sec
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CONTROLLER-
AMPUFIER

Viscous-inenia damper

Hd

J fO b

CONTROLLER-
AMFtlFIER

Figure 10P-43

(a) Let the state variables be defined as.X |(0 =  co„(t) and.TiiO =  iOod)- W rite the state equations for 
the open-loop sysiem wilh e(l) as Ihe input. {Open-loop refers lo the feedback path from cu„ to e  being 
open.)

(b) Draw the state diagram for the overall system using die state equations found in p an  (a) and
e(f) =  K ,\ojM )  -  w j i ) ] .

(c) Derive ihe open-loop ưansíe r function n ,„ ( i ) /£ ( i )  and die closed-loop ưansfer function

10*44. Determine the state controllabilit) o f the s js tem  shown in Fig. lOP-44.

(a) « =  1. A =  2. c =  2. and d  = ].

(b) Are there any nonzero values for a. h. c. and d  such that the system is uncontrollable?

Figure 10P-44

10-45. Determine the conirollabilitv of the following systems:

' - 1 0 0 ■ T
(a) A = 0 -1 0 B = 1

0 0 -1 1

■ -I 0 0 ■ 1 ■
(b) A = Í) - 2 (Ì B - 1

() 0 - 3 1

10-46. Determine the conirollabilit) and obser\ab ilit\ o f the ssstem  shovMi in FÌ2 . lOP-46 b \ the 
following method^.;
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(a ) Conditions on Ihe A, B. c , and D  maưices

(b) Conditions on the po le-zero  cancellation o f  the transfer functions

Figure 10P-46

10-47. The transfer function o f  a  linear control system is

m .I 'M  s +  a
R ịs) “  jS +  7j2 +  14j +  8

(a) Detem úne the value(s) o f a  so thal the system is either unconừollabie or unobservable.

(b) W ith the value(s) o f a  found in part (a), define the state variables so that one o f them is 
unconưollable.

(c) W ith the value(s) o f  a  found in part (a), define the state variables so that one o f them is 
unobservable.

10-48. Consider the system described by the state equation 

^  =  A «(r) +  B «(0

Find the region in the a -b  plane such that the system is com pletely controllable.

lQ-49. Determine the condition on b], i>2. Cl, and C2  so  that the following system is completely
conưoílable and observable.

d x ji)  
dt 

A  =

= A x(r) +  B«(/) y{t) =  Cx(f)

1 l l  „
0  1

c  =  [rfi d 2 ]

10-50. The schematic diagram o f Fig. lOP-50 represents a control system whose purpose is to hold 
the level o f the liquid in the lank at a desired level. The liquid level is conưolled by a floal whose 
position h ịi) is monitored. The input signal o f the open-loop system is eU)- The system parameters 
and equations are as follows:

M otor resistance =  10 n
Torque constant Kị -  10 oz-in./A
B ack-em f constant Kf, =  0.0706 v/rad/sec 
Load inertia Ji. =  10 oz-in.-sec^
Amplifier gain Ka =  50

M otor inductance La =  0  H
Rotor inertia J„, =  0-005 oz-in.-sec^
G ea rra iio w  =  /V,W: = 1/100
Load and m otor friction =  negligible
Area of tank A  = 5 0  ft-
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ea{t) =  Raiail) +  

T , „ U ) ^ K i U t ) ^ { j ^  +  n^JL)
àừ>„ịr)

dt

dt

ey{t) =  ne„[i)

The num ber o f valves connected to the tank from the reservoir is =  10. All the valves have the 
same characteristics and are controlled simultaneously by 9y. The equations that govern the volume 
o f flow are as follows:

qi{t) =  KiNOyii) K / =  lOft^/sec-rad

q A t)  =  K M O
volume o f tank

h { t ) = -
;a o f tank

A :„ -5 0 f l2 /s e c

(a) Define the state variables as -Yi(/) =  l i ị i ) ,  X2U ) =  dmU). and X jiO  =  d6 ,„(. i) /d i. W rite  Che Slate 
equations o f the system in the form o f d x ( t ) /d t  = A x(i) +  Be,(0- Draw a  state diagram for the system.

(b) Find the characteristic equation and the eigenvalues o f the A matrix found in p an  (a).

(c) Show that (he open-loop system is completely controllable; that is, the pair [A. BJ is conưollable.

(d) For reasons o f economy, only one o f the three state variables is measured and fed back for control 
purposes. The output equation is V =  Cx. where c  can be one of the following forms: 
( 1 ) C = [ 1  0  0 ] ( 2 ) C  =  [ 0  1 0 ] ( 3 ) C  =  [ 0  0  1]
Deiermine which case (or cases) corresponds to a com pletely observable system.

10-51. The "broom-balancing" conữol system described in Problem 4-21 has the following parameters;
M f t = l k g  Mr =  IOkg z .=  lm  f  =  32 ,2fl/sec- 

The small-signal linearized slate equation model of the system is 
Ax(f) =  A ‘Ax(f) +  B*A r(0

where
0 1 0 0 ' r 0

A ‘ =
25.92 0 0 0 R ' — -0 ,0 7 3 2

0 0 0 1
u  —

0
- 2 .3 6 0 0 0 0.0976

(a) Find the characteristic equation o f A ’ and its roots.

(b) Determine the controllability of |A ’, B ']-

(c) For reason of economy, only one o f the state variables is to be measured for feedback.
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^y{ t )  =  C *Ax(/)
The output equation is written 

where
(1) c* = ( 1 0 0 0] (2) c- = [0 1 0 0]
( 3 ) C * = : ( 0  0 1 0] ( 4 ;C *  =  [o  0 0 1]

D etennine which C ' conesponds to an observable system.

10-52. The double-invened pendulum shown in Fig. lOP-52 is approximately m odeled by the 
following linear state equation:

dx(t) 
dt

where

^ =  A x(r) +  Bu(i)

*(0 =

0 1 0 0 0 0 ' ■ 0 ■
16 0 - 8 0 0 0 - 1
0

- 1 6
0
0

0
16

1
0

0
0

0
0

B = 0
0

0 0 0 0 0 1 0
0 0 0 0 0 0 1

D eterm ine the conưollability of the states.

10-53. The block diagram  of a simplified control system for the large space telescope (LST) is 
shown in Fig. lOP-53. For simulation and control purposes, model the system by state equations and 
by a state diagram.

l.ommancl
K, K ^*K , 1

KfS*K, ' 1 ^

Conưol moment Vehicle
gyrodynamics dynamics Vehicle

—

Figure 10P-53
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(a ) Draw a  state diagram  for the system and write the state equations in vector-m am x form. T he state 
diagram  should contain a m inim um  num ber o f state variables, so it would be helpful ư the transfer 
function o f the system is written first.

(b ) Find the characteristic equation o f the system.

10-54. The state diagram  shown in Fig. lOP-54 represents tw o subsystem s connected in cascade.

-2  -3

Figure 10P-54

(a) Determine the conưo]]ability and observability o f the system.

(b) C onsider that output feedback is applied by feeding back >2 to U2 , that is, U2 =  - k \ 2 ~ w here ̂  is a 
real constant. Determine how the value o f  k  affects the controllability and observability o f  ứie system. 

10-55. G iven the system
dx{t) 

di
where

0  1

i = A x ( / )  +  B«{r) > (0  =  Cx(/)

c = [l 11
- 1  - 3

B  =

(a) Determine the state conữollability and observability o f the system.

(b) Let u(i) =  -K x (r ) ,  where K  =  [ẢT|Ả:2], and k \  and k 2  are real constants. D etennine if  and how 
controllability and observability o f the closed-loop system are affected by the elem ents o f K. 

10-56. The torque equation for part (a) o f Problem 10-21 is

/ - ^ = K r d m  +  T A m

where Kpd\ =  1 and J  =  \.  Define the state variables as X| =  Ớ and X2 =  dB/dt. Find the stale- 
ưansition matrix 4>{t) using any available com puter program.

10-57. Starting with the state equation d x ( t) ld t  =  A x(0  +  BỚ, obtained in Problem  10-22, use 
ACSYS/MATLAB or any other available com puter program to do the foUowing;

(a) Find the state-ưansition matrix o f A , ộ(t).

(b) Find the characteristic equation o f A.

(c) Find the eigenvalues o f A.

(d) Com pute and plot the unit-step response o f y(t) =  9y{t) for 3 seconds. Set all the initial condilions

10-58. The block diagram  o f a conữol system w ith stale feedback is shown in Fig. I OP-58. Find ihe 
real feedback gains A:i, At2, and k-i so that:
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The steady-state error e„  [e{t) is ứie error signal] due to a step input is zero.
The complex roots o f the characteristic equation are at - 1  +  ý and - 1  -  J.

Find the  third root. Can all three roots be arbitrarily assign ed  w h ile  s lill m eeting ih e  Steady-Slate 

requirem ent?

10-59. The block diagram of a conưol system with state feedback is shown in Fig, 10P-59(a). The 
feedback gains k , .  * 2, and k i  are real constants.

Figure 10P-59

(a) Find the values o f the feedback gains so thal:

T he steady-state eư o r [eU) is the eư o r signal] due to a step input is zero.
The characteristic equation roots are at - 1  +ý. - 1  -  and -1 0 .

(b) Instead o f using state feedback, a series controller is implemented, as shown in Fig. 10P-59(b). 
F ind the transfer function o f the controller G,.(s) in terms o f /Tị, k i, and k-i found in part (a) and the 
other system parameters.

10-60. Problem 9-39 has revealed that it is impossible to stabilize the broom-balancing control 
system described in Problems 4-21 and 10-51 with a  series PD conưoller. C onsider that the system is 
now controlled by state feedback with A r(0  =  -K x ( 0 .  where

K - Ị A : ,  k2 k i  U ]

(a) Find the feedback gains * 1 , * 2, k i ,  and * 4  so that the eigenvalues o f A ' -  B 'K  are at - 1  - 1  -
j ,  - 1 0 ,  and -1 0 .  Compute and plot the responses o f Ax2(/). A-XjiO. and A.V4(/) for the initial
condition. Aa:,(0) =  0.1. Aớ(0) =  0.1, and all Olher initial conditions are zero.

(b) Repeat part (a) for the eigenvalues at - 2  +  j l ,  - 2  -  j l .  - 2 0 ,  and - 2 0 .  Comment on the 
difference between the two systems.

10-61. The linearized state equations of the ball-suspension control system described in 
Problem 4-57 are expressed as

Ax(f) =  A-Ax(f) +  B-Ai(f)
where

0 1 0 0 ■ ■ 0 ■
115.2 -0 ,0 5 -1 8 .6 0

B- =
- 6 .5 5

0 0 0 1 0
- 3 7 .2 0 37.2 -0 .1 -6 .5 5
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Let the control cuireni Ai(/) be derived from ứie state feedback Ai(/) =  -K A x (0 .  where

K = [ 4 |  k2 k ĩ  ^4 ]

(a) Find the elements o f K  so that the eigenvalues o f A ’ -  B ’K  are at - 1  + 7 . -  I - 7 . - 1 0 .  and -  iO.

(b) Ploi Ihe responses o f A.Yi(0 =  Ayi( 0  (magnet displacem ent) and Ả X ìd )  -  \ V 2ÌI) (ball 
displacem eni) with (he initial condition

Ax(0) =

(c) Repeat part (b) with the initial condition

Ax(0) =

Comment on the responses o f the c losed-loop system with the two sets o f inilial conditions used in ib) 
and (c).

10-62. The temperaiure -V(/) in the electric furnace shown in Fig. lOP-62 is described by ihe 
differenlial equation

M ' )
dl

= -2 x { t)  +  u{t) +  n{t)

where u{t) is the control signal, and H(/) the constant disturbance of unknown m agnitude due to heal 
loss. Il is desired that the temperature x{t)  follows a reference inpul r  lhat is a constant.
(a) Design a conưol system with state and iniegral conirol so that the following specifications are 
satisfied;

lim x{t) =  r  =  constanl 

The eigenvalues o f the closed-loop system arc al —10 and —10.
Plo( th e re sp o n seso f.r(O fo rf > 0  will>f =  1 and«(/)  =  - 1 .  and then w ilh r  =  I and « (0  =  0. all with 
-t(0) =  0.

(b) Design a PI controller so (hat

£(.ĩ} -  R{s) -  X{s)

where Rịs) = R/.s.
Find /ip  and K/ so that the characteristic equation roots are at —10 and -  10. Plot the responses of-V(0 
for f >  0 with r  =  I and « (0  =  - 1 .  and then with r  =  I and «(/) =  0. all .v(0) =  0.

Figure 10P-62
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10-63. The transfer function o f a system is given by

10
G { s ) = j

-  i s + l ) { s  +  2) {s + 3)

Find the slate-space model o f the system if:

Xị = y  
X2 = X \
X3 =X2
Design a state control feedback u =  - K x  so that the closcd-loop poles are located at 
5 = - 2  +  J2y/3. s ^ - 2 -  j l \ / 3 ,  and Ỉ  =  - 1 0

10-64. Fig. 1 OP-64 shows an inverted pendulum on a moving platform.
Assuming M  =  2 k g ,  m  =  0.5 kg, and /  =  1 m.

(a ) Find ih e  state-space model o f  the system i f  X\ =  6,X2 =  6,x-i =  x , x i  =  X, y i  =  X\ =  9, and
y 2 = x i = x

(b) Design a state feedback control with gain - K  so that the closed-loop poles are located at
s =  - 4  + 4 j . s  =  - 4 - 4 j . s  =  210, and 5 =  210

Figure 10P-64

10-65. Consider the following state-space equalion of a system;

0 1 
- 6  - 5

(a) Design a state feedback controller so that;

(i) The damping ratio is < =  0.707.

(ii) Peak tim e o f Ihe unit-step response is 3 sec.

(b) Use MATLAB to plot the step response o f the system and show how your design meets the 
specificalion in part (a).

10-66. Consider the following state-space equation o f a system:

X ]' 1 - 2  - 2 ' X \ ' '2 '

Ì2 0 - 1  1 x-> + Õ
.•^3. I 0 - 1 / 3 . 1

(a) Design a state feedback controller so that:
(i) Settling time is less than 5 sec (1%  settling time).

(ii) Overshoot is less than 10%.

(b) Use MATLAB to verify your design.
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10-67. Fia. lOP-67 shows an RLC cữcuiL

(a l Find die state equation for the circuit w hen »10 is an input. ỉ'(;l is an outpui. and capacitor \o liage 
and the inductor curreni are the state variables.

(b i Find the condition ứiat the system is controllable.

<c) Find ihe condition that the system  is obsenable .

id i  Repeal pans (a), (b). and (C) when itM is an input, ihe voliaae o f the /?; is o u tp u t and capacitor 
\ o ltaee and the inductor currem  are ihe state variables.

Figure 10P-67
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Conversion factors
mechanical system properties and. 151 
ửiennal system properties and. 179 

Comer frequency, 37 
Comer plots. See Bode plots 
Coulomb friction, 150. 158 

coefficient 150
steady-state errors and, 273-274 

Critical point. 432. 434 
Cross-section view

brushless PM dc molor, 201 
hot oil forging in quenching vat, 238 
iron core PM dc motor, 200 
moving-coil PM dc motor. 201 
surface-wound PM dc motor. 200 

Current, units for, 172 
Current Law. 165 
Cutoff rate, 413
Cylindrical container, fluid flow into. 182 

D
Damping ralio/dampÌQg factor (prototype 

second-order system), 277-278 
Damping term. 315. 499 
Dashpot. far viscous friction, 149, 150 
dB (decibels). 26. 32, 33, 452 
dc motor model (virtual experiments). See aha 

Robotic arm 
amplifier in. 340 
interfacing and, 340 
open-loop sine input and. 347-350 
open-loop speed, 345-347 
position control and. 352-354 
position sensor/speed sensor in. 339-340 
simulation and, 345-354 
speed conưol and. 350-352 
system paramelers, 339 

dc (direct-current) motors. 198-205- See also 
Permanent-magnei dc motors 

armature-controlled. 222. 289-293, 338- 
339. 358-359 

operational principles of. 199 
bun-seeker control system and. 218. 220 
torque production in. 199 

dc signals, 191
dc-motor contra! systems, 12-13. 245. 246.

247. 248 
block diagram, 105. 203

with inlegraJ conưoller, 738-740 
with nonzero initia l condiiions. SFG of, 203 
wiửí potentiometers, 192 
problems/exercises for, 137 
with ưansfer functions and amplifier 

characteristics, 105 
Dead zone

amplifier w ith. 272 
gear trains and, 164 
Simulink Library Browser and. 349 

Decades. 34
Decibels (dBj. 26. 32. 33. 452 
Decompositions (o f uansfer funccions), 678, 

707-714 
cascade. 712-713 
direct. 707-712 
parallel. 713-714 

Delay lime. 257. 283-285. 488 
Derivative conưol, 176, 496. See also PID 

conưollers 
Design aspects o f root loci. 385-393 
Design projecis. See also Conlrol system 

design
quarler<ar model. 357-367 
robotic arm. 354-357 

Diagonal canonical form (DCF). 704-705 
Diagrams. See also Block diagrams: Free- 

body diagrams; Modeling; Signal-fiow 
graphs 

Bode, 77-78 
gear trains. 162 
motor-load system, 232 
Nyquist. 29 
op-amps. 173
rotary incremental encoder, 196 
rotational mechanical system. 159 
state. 133. 673. 676-681 
state-flow. 138. 145. 231. 234 
sun-seeker control system. 218 

Differential equations, 49-52
characteristic equations from, 695-696 
first-order. 50
high-order, Slate equations and, 691-693 
integro-. 49
linear ordinary, 49, 62-67 
nonlinear, 49 
for pendulum. 49 
problems/exercises for. 94 
RC circuit and. 171-172 
RLC network and, 49 
second-order, 49 
state diagrams from. 67S-679 

Differentiation (theorem). 54. 56 
Digital autopilot, for guided missile conưol. 14 
Digital conừol systems, 14 
Dirac della function. 68 
Direct decomposition. 707-712

10 CCF. 708-709 
10 OCF, 709-712 

Direct-current motors. See dc motors 
Discrete-data conưol systems. 14 
Displacement. 148. See also Translational 

motion 
angular, 157 

Distance (symbol/units), 151 
Distributed mass systems, 148
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Disturbance, 105 
heat loss. 104
multi-input systems (block diagram) with.

115-117 
noise and. 10-11 

Disturbance input, system with. 260
Dist I. 487
Disturbance vector, 682 
Disturbance-open loop response. 289 
Divider, voliage. 171-172 
Dominant poles/zeros of ữansíer functions, 

311-314 
Dominant roots. 301
Double-tank liquid-level system. 186-187. 242 
Drive-by-wire technology. 3 
Driver assist systems, 3 
Dry friction, rolling, 150-151 
Dual-channel incremental encoder, 197-198 

one cycle of output signals of, 198 
signals, in quadrature, 196, 197 

Dynamic equations. 682 
Dynamic systems, 147. See also  Elecưical 

systems; Fluid systems; Mechanical 
systems; Modeling; Pneumalic systems; 
Thermal systems 

wiih ưansponaiion lag. 205-207

Eigenvalues, 697 
Eigenvectors, 697-698 

generalized, 698-699 
Electric circuit representation, of 

pKrtentiomeler, 190 
Electric friction, 204. See also Back emf 
Elecuic train control (block diagram). 138 
Eleclrical circuits, 235 
Electrical elements 

active, 172-177 
passive, 165 

Electrical networks 
examples. 165-172 
modeling of. 165-172 
problems, SFGs and. 141-142 
state equations of, 167. 168-169 
state variable analysis of, 134 

Electrical schematics. RLC network, 166 
Electrical systems. See also Operational 

amplifiers
equivalents, fluid systems and. 215-216 
equivalents, mechanical systems and, 215 
equivalents, ihennal systems and. 216 
modeling of. 165-172 
Op-amps. 172-177 
properties, 172 
simple, 165-172 

Electrical time constant, amplifier-motor 
system and. 217, 294 

Eleciro-hydraulic valve, four-way, 606-611 
Electromechanital systems. 235-236. 289 
Electromechanical transducer. 189. See also 

Potenliomeiers 
Electromolive force. See Back emf 
Elementary heal transfer properties. 177-180 

capacitance and, 177 
rectangular objeci and. 180 
references for, 224

Encirclemenls 
defined, 428 
number of, 429 

Enclosures 
defined. 428 
number of. 429 

Encoders, 189. See also Sensors 
incremental, 195-198 
sensors and, 189 

Energy (units/symbols) 
elecưìcal system, 172 
heat stored, 179, 189 
rotational mechanical system, 159 

Engine, turboprop, 135
signals of. coupling between. 143, 144 

Equatíon of state, 182. See also Stale equations 
Error, quanlization, 273 
Eưor constants, 265. See also Steady-state 

errors 
Error signal, 108 
Estimator. 489 
Euhler formula, 17
Evans, w. R„ 372, 377. See also Rooi-locus 

lechiiique 
Experimeot control window, 342 
Experiment menu. 342 
Experiments. See also dc molor model 

1; Speed Control, 350-352 
2: Position Control. 352-354 
3: Open-Loop Speed. 345-347 
4: Open-Loop sine Input. 347-350 
5: Con&ol System Design, 355-356 

External disturbance, lỡ -] l

Feedback. 8-11, 105. See also State feedback 
bandwidth and. 11, 15 
frequency responses and, 11 
impedance and, 11 
negative, 8 
noise and. 10-] I 
overall gain and, 8-9 
positive, 109 
stability and, 9-10, 15 
transient responses and, 11 

Feedback compensation. 489, 490 
Feedback control systems (closed-loop conlrol 

systems), 7, 108-109. See also Linear 
conưol systems 

block diagram of, 109, 136-137 
classifications of. 11-14 
conditions for. 108 
contiguration. 8
frequency response of. 410-412 
gain-phase characteristics of. 412 
linear V. nonlinear, 11-12 
with noise signal. 10 
nonunity. 258. 265-272 
open-loop control systems V., 7 
with PD controller. 314-316. 493 
SFG of. 124 
state. 715. 728-729 
time-invariant I’- time-varying, 12-14 
torque-angle curve of. 273 
with two feedback loops. 9 
unity, 260-261

Feedback controller, minor-loop. 601-604 
Feedback loops 

negative. 109 
positive, 109 
unity. 109

Feedback-patfi transfer function manúu of 
muldvariable feedback coaool system. 676 

Feedforward compensation. 490-491 
Feedforward com^nsators. sun-seeker system 

and. 589-590 
Feedforward controllers, 588-590 
Fin posiiions, of aircraft. See  Position-conirol 

system
Final-value theorem. 55-56 
Firei-order differential equadoDS. 50 
Fifst-order linear system. 62 
First-order op-amp configurations. 174-177 
Fiist-order prototype systems. 63-64 

time constant and, 274 
time response of, 274-275 
unil-step response of, 274 

Fixed-configuraQOD desigD, 489. See also 
Compensatíon 

Flow rate 
fluid volume, 185 
heat. 177. 178, 179 
mass, 181. 182, 184. 185, 187. 189 
volume. 181, 182. 189 

Flows, laminar. 184, 185 
Fluid capacitance. 181, Ỉ82 
Fluid continuity equation, 181 
Ruid forced through friciionless pipe. 184 
Fluid inductance. 184 
Fluid ineftance, 1&4
Fluid systems. 180-189. See also  Pneumatic 

systems
electricaJ equivalents for, 215-216 
incompressible, 181 
parameters in. 180-181 
properties. 180-189 
references, 224 

Fluid viscosity, 185 
Huid volume flow rate, 18S 
Fluid-boundary heal convection. 178 
Fly-by-wire conưol system, 216 
Force (symbol/uniis), 151 
Force-mass system, 149 
Force-spring system, 149 
Forward compensators, sun-seeker system 

and. 589-590 
Forward conưoilers, 588-590 
Forward path, 122 
Forward-path gain, 122 
Forward-path ưansíer function

Bode plots of. in ihird-order sun-seeker 
control system, 552 

pole added to, 305-307. 424-^26 
of second-order aircraft attitude conữol 

system, 498 
(hird-order syslem with, 425 
unii-slep responses of second-order system 

with, 423 
zero added to, 309-311.418-424 

Forward-path Wansfer function matrix, of 
muitivariable feedback conirol system.
676



ly elecưo-hydraulic valve. 606-611 
voitage/main spool displacemeni 

aiionship in. 610-611 
ilized flow equations for. 608-610 
valve schematic in. 608 
e equation and. 607-608 
Igular valve-pon georaeựy in, 609 
Cage valve block diagram. 611 
dy diagrams (FBDs) 
n-balancing system. 233 
ical d rcu iis (exercise), 235. 236 
scale, 251
cd pendulum on can. 227, 228 
spring-damper system. 154 
spring-friclion system. 151 
■-load system. 160 
on’s law o f motion and, 148 
anal system. 158. 159 
•-supported pendulum and. 209 
exercise. 226
F spring-mass system, 156 
cy
:rossover. 453 
-crossover, 451 
cy response function. 26 
cy responses, 487 
)sed-loop systems. 410-412 
ack and. 11
esponses/Nyquisl plots, correlation 
ong. 450-451
cy-domain analysis, 409-486 
of, 410
sQcy response o f closed-loop systems. 
y A i l
iv ity  studies and. 470-472 
domain analysis V.. 409 
er function and. 409-410 
cy-domain design 
ency-domain characteristics in. 492 
conưoller and. 586-588 

Dntrollers and. 49 6^9 7 . 503-511 
rmance specifications, 487. 488 
-lag controllers and. 563-566. 569-

-lead comrollers and. 535-537, 543- 
Ì. 551-554
ntrollers and. 514-516. 526-528 
ỉero-cancellation and. 580-581 
d-order aircraft attitude control 
lem. 503-505, 520-523 
order aircraft altitude control system, 
5-511.526-528, 531-532 
order sun-seeker control system and. 
1-554
domain design V',. 488. 492 
cy-domain plois. 26-48 
uter-aided construction of. 26-27 
sms/exercises for. 93-94 
cy-domain specifications. 412-413 
vidih. 412^13 
r rate. 413
ant frequency H>. 412. 41 3^1 6 
ant peak 412. 41 3^1 6 
. See also Mass-spring-friction system 
)inb. 150. 158. 273-274 
ic. 204

gear train with. ] 63 
rolling diy. 150-151 
fo r rotational motion. 158-159 
siatic. 150. 158
fo r ưanslaiional motion. 149-150 
VIMOUS, 149-150. 158 

Functions (o f complex varidjle). 19-26. See 
also Poles: Transfer funciions; Zeros 

analytic. 20 
frequency response, 26 
single-valued. 19 
singularities of. 20

G
G{s)

trequency response function of, 26 
polar plo'is of, 27-32 
polar representalion of, 22-24 

G ism s)
addition o f poles to, 385-387 
addilion o f zeros to. 387-393 
Nyquist criterion and. 434-435 

C(i)-plane. 19
G2is)H2{s), 394, 396, 399. 400 
Gain crossover, 453 
Gain formula. 124-127 

block diagrams and. 128-129 
output nodes/noninput nodes and, 127-128 
SFGs and. 124-128 
simplified. 129 

Gain margin (GM). 46. 86. 451^53.
487. 488 

on Bode plot. 456 
definicion of. 451-452 
o f nonminimum-phase systems, 452-453 
physical significance of, 452 

Cain and Phase Calculator, 350 
Gain-crossover frequency. 453 
Gain-crossovcr point. 46. 47 
Gain-phase characteristics

o f feedback coQtrol system. 412 
o f ideal low-pass filter. 411 

Gain-pha-se plots 
o f aircraft posilion-conưol system. 468 
o f Us). 462 

Gains. 109
Gas flow, into rig id container system. 187-188 
Gas law. perfect. 183. 187 
Gas systems. See Pneumaiic systems 
Gear backlash. 164. 216, 340. 368 
Gear trains, 162-164 

backlash in, 164, 216. 340. 368 
dead zone in. 164 
diagram. 162 
w iih friction/inertia. 163 
moior-load system and, 230 

Generalized eigenvectors. 698-699 
Grain scale. 251. 252 
Guided missile 

attitude conưol of. 232-233 
conlrol, digital autopilot for, 14

H
Hardware in the loop simulation. 2 
Heal conduction flow, one-direciional, 178 
Heal convection. See Convection

Heal exchanger system, 239, 250 
Heal flow raă. 177. 178, 179 
Heal loss, 104
Heal radiatíon system, with directly opposite 

ideal radiators, 179 
Heat ưansíer problem, between fluid/insulaied 

solid object. 180 
Heat transfer properties (elementaiy), 

177-180 
capacitance and, 177 
rectangular object and. 180 
references for. 224 

Heating system (block diagram). 104 
High-order differential equations, state 

equations V., 691-693 
High-pass filter charactenstics. o f PD 

conưollers. 496, 497 
Horsepower (hp). 204
H urw iu  criterion. See Routh-Hurwitz crilerion
Hybrid powertrains, 3-4
Hydraulic capacitance (symbol/units),

189
Hydraulic conưol system. 6 0 5 -ÍI7 . See also 

Robot-ami-joinl system 
applicMions. 613-617 
double-acting single rod actuator in,

605-606
four-way eiecưo-hydraulic valve in,

606-611 
modeling. 612-613
p coniròílers for. 617-621 
PD conưollers for, 621-626 
PI conưollers for, 626-628 
PID conưollers for. 628-630 
roiationai system and, 615-616 
ưanslational motion and. 613-615 
variable load and. 616-617 

Hydraulic diameter. 185 
Hydraulic generator system. 240-241 
Hydraulic resistance (symbol/units), 189 
Hydraulic servomoter, 242

I
Ideal gas. air as, 215
Ideal linear actuators. 606, 612. 613. 618
Ideal low-pass filler. 411
Ideal op-amp. 173
Ideal radiators, heat radiation system and. 179 
Idealized models, linear feedback control 

systems as. 11 
Idie-speed conirol system. 5 

auiomobile. 4. 239-240 
block diagram. 5 
closed-loop. 7 
open-loop. 7 

ilaplace command. S3
Imaginary axis, interseciion o f root loci with. 

380. 382
Imaginary component, o f complex variable, 

18
Impedance, feedback and. 11 
Impulse response. 67-69 
Incompressible fluid systems, 181-187 

inductance and. 184 
open-top cylindrical container and. 182 
resislance and. 184-185



Incremental encoders. 195-198. See also 
Encoders; Sensors 

dual-channei. 196-198 
linear, 196 
rotary. 196
single-channel. 196. 197 

Inductance. See also RLC network 
fluid, 184
incompressible fluids and. !84 
units for. 172 

Inductors. 165 
Inertance, fluid. 184 
Inertia, 157. See also Load inertia 

gear train w ith. 163 
symbol/units, 159 

In itial states, 51 
Initial-value theorem. 55. 56 
Input node. 121 
Input vector, 682
Input voltage/main spool dispỉacemeni

relationship (four-way valve). 610-611 
Inpuis. 2, 104
Insignificant poles, steady-state response. 

313-314
Insulated solid objecưfluid, heat ưansler 

problem between. 180 
Integral controllers. 176. See also PI 

controllers; PID controllers 
dc-motor control system with. 738-740 
state feedback with. 735-741 
sun-seeker system and, 737-738 

Integration (theorem). 55. 56
s and.

677
Integrator output magniiude. 177 
Integrodifferenciai equation. 49 
Intelligent systems. 2 

in automobiles, 3-4 
Interfacing, dc motor model and. 340 
Intersect o f asymptotes. 379. 381 
Intersection, o f root loci with imaginary axis. 

380. 382
Invariance properties, o f similarity 

trdnsformationi. 700-701 
Invariant theorems, on controllability/ 

observability. 723-725 
Inventory-control system, 103 
Inverse Laplace transform, 54 

M ATLAB and. 64 
by partial-fraction expanbion. 57-62 
problems/exercises for. 97-99 

Inverted pendulum, on can. 227-228 
Inverting op-amp configuration. 175 
Invening op-amp irunsfer functions, 175-176 
Iron-core PM dc moiors, 199-200 
Isentropic process, 184 
Isobaric process, 183 
Isoihennal pniccsi. 183 
Isovolumetrit process. 183

J
(>n y, 34-36
Jerk function. 256
Jordan biock>., 7(J6
Jordan canonical iorm (JCF). 706
Junciion points, 5cr Nodes

K =  ±  X  points, on root loci. 377-378. 381 
K =  ũ points, on roQt loci. 377-378. 381 
K  values on TQOI loci, calculation of. 382 
Kalman. E.. 714 
Kkchoff's laws. 147, 165

L
Us) plot

Bode plot and. 457 
gain-phase plot and. 462 
Nyquisi criterion and. 434-^35 
Nyquist plot and. 444-449 
poleb added to. 445-448 
zeros added to. 448-449 

Laminar flows, equations o f resistance for.
]84. 185 

Laplace operator. 52
Lajslace transform. 52-57. See also Inverse 

Laplace transform 
definition of. 52-53 
features of, 52
linear ordinary differential equations and.

52. 62-67 
M ATLAB and, 53 
one-sided. 52-53 
problems/exercises for. 94-97 
references for. 92 
ứieorems of. 54-57 

Laplace transform table. 53. 54. 57. 62. 65. 97, 
276. 295. 298. 758 

Laser printers. 289 
Lead screw, 161 
Lead-lag controller. 574-576 
Lever

gear train and, 162 
thermal. 237, 238 
thronle. 242 

Lever arm (ball and beam system), 228. 483, 
665

Library Browser. Simulink. 349
Light source íroiar>' incremental encoder), 196
Linear actuators

force balance equation for. 612 
modeling. 605-606. 612-613 

Linear control systems. ! 1-12- See aha 
Nonlinear coinro! systems 

block diagram of, 109 
characteristic equation of. 71. 74 
as idealized models. 11 
maihematical foundations for. 16-90 
nonlinear control sysiems r.. 11-12. 15 
observability of. 714, 715. 719-725 
roiar>'-io-linear motion conưol systems, 161 
stability of. 72-73 

Linear incremental encoder. 196 
Linear motion potemiomeier. 189. 190 
Linear ordinary differential equations. 49 

firsi-order protoivpe systems and. 63-64 
Laplace iransform and. 52. 62-67 
procedure for >.olving. 62 
Ucond-order protoispe systems and. 64-67 

Linear spring. 149
Lineiir variable differential tran^fo^Der 

(LVDT). 359. 360 
Linearizalion lo f nonlinear systems). 206-213

state space approach and. 207-213 
Taylor series and. 207. 208 

Liquid-level system 
double-tank. 186-187 
single-iank. 185-186 

Load menia. 160.244.246.247.290.344.765 
armature-conưolled de mmor and. 289.338 
priniwheels and. 599
variable, posilion-conưol system and 599 

Load torque. 4. 5 
Loop gain. 122 
Loop Method. 165
Loops. 122. 123. See also Feedback loops 

noniouching. 122 
phase-locked. 245 

Low-pass filler, idea], 411 
Low-time-constani properties. 198 
Lumped mass models. 148 
LVDT (linear variable differendal 

ưansíormer), 359. 360

M
Magnetic-bail-suspension system. 211-213. 

725-728 
state feedback and. 73Ì-733 

Magnification 1-. normalized frequency, o f 
prototype second-order system. 415 

Magnitude phase, 9
Magnitude-phase plane, constani-.w loci ứ).

4 6 3^7 0  
Magnitude-phase plot, 26. 44—46 

gain-crossover point and. 47 
phase-crossover point and. 47 
stability analysis with. 462—163 

Main spool displacemenừinpui voltage
relationship (four-way valve). 610-611 

Manipulation rules/algebra, fo r SFGs. 123- 
124

Marginally stable/unstable. 76 
Mason, s. J.. 119- See also Gajn formula; 

Signal-flow graphi
Mass

consen’aiion of. 181. Ì82. 185. 188. 626 
defined. 148
distributed mass systems. 148 
lumped inas.s models, 148 
in polytropic process. 183 
symbol/units, 151 

Mass flov. rate. 181. 182. 184. 185. 187 
symbol/units. 189 
volume flow rate V., 182 

Mass-spring-friciion system. 151-153. 224 
block diagrams. 152. 153. 155. 156 
FBD of. 151 
SFG. 155

Mathematical equalions. block diaframs and. 
109-1n

Mathemalical foundations (for linear conưol 
systems). 16-90 

Mathemaiical modeling. See Modeling 
M ATLAB. See also Toolboxes 

aircraft amiude-conirol system and. 632- 
644

block diagrams/SFOs and. 129-132 
-bode" funciion. 33. 41. 43 
complex variables and. 25



pment/availability of. 488 
icy-domain plots and. 26 
: Laplace u-ansfoim and. 64 
e transforms and, 53 
ils" function, 45
II diagram and. 29 
-fraction expansion and. 58-61 
gain margins and. 46 
ne and, 288 
. 2
Ỉ time and. 288
)esign Tool. 363, 366,367.371,634. 
636. 638. 642 

y tools. 85-90
ỉker contra! system and, 645-647 
lie  Tool. 53. 64. 83. 84, 741, 748 
ool. 54. 77. 84-85. 86. 744. 748-750,

:sponse and, 67 
ipulse response and, 69 
y-control system and. 259 
}le-gain models and. 21

liability, 702
ck-paih transfer function matrix, 676 
d-path ttansfer function mairix. 676 
■ansition matrix. 684-686 
mauix representation o f state 
Itions. 682-684 
gebra. 16
novershoot, 256-257. 280-283, 487, 

:al systems
sion between translaiional/rotational
ions in. 161
:a] equivalents. 215
ains. 162-164
,ng of. 148-164
n’s second law o f motion and. 147.

156. 157. 184 
nal motion in. 157-160 
Is/units/conversion factors. 151 
tional mocion in, 148-157 
:aJ lime constant, moior-load system 
217. 294 

ians. 2S8
set. o f variables. 51 
1 -phasc transfer functions, 47-48 
St criterion for. 435-437. 440-444 
op feedback controller. 601-604 
:tive filter, 603-604 
edback and. 601-602 
sker system and. 603-604 
leter-feedback control and. 601-602 
irameỉer'. window. 362 

See also Block diagrams; dc motor 
lei; Signal-flow graphs 
lators, 289
:al elements (active). 172-177 
:al elements (passive). 165 
:al networks. 165-172 
:al systems. 165-177 
ystems. 180-189 
ilic control system. 612-6I3 
actuaiors. 605-606. 612-613 
nical systems. 148-164

o f PM dc motors, 201-205 
references, 224 
tachometers, 195 
thermal syscems. 177-180 

Modulus, bulk. 182 
Moment equation. 158. 210 
Morning sickness. 9-10 
Motion

Newton’s second law of. 147.148. 156.157, 
184

rotational. 157-161 
ơanslatíonal, 148-157. 161 

Motion equaiions, o f aircraft, 229-230 
Motor blocks. SIMLab. 344 
Motor elecữic-time constant, 290, 359 
Motor-conưol system 

open-loop. 244
with tachometer feedback, 102 
torque-angle curve of, 273 

Moior-load system. 159-160 
gear train and. 230 
schematic diagram of, 232 

Motor-mechanical time constant, 291 
Motors. See also dc motors 

ac, 12. 193. 198
servomotors. 13. 198. 242, 328. 331. 477 
voice-coil. 247 

Moveabie-plate capacity. 235, 236 
Moving-coil PM dc motors. 200-201 
M,. See Resonant peak M ,
Mulli-input systems wiứi disturbance (block 

diagram). 115-117 
Multipte-order poles. 59-60 
Multiple-pararaeter variation. See Root 

contours
Multiplication by a constant (theorem), 54. 56 
Multistage phase-lead conưoller. 555. See also 

Two-stage phase-lead controller 
Muliivariabie feedback conưol system 

block diagram of. 675 
feedback-path transfer function matrix of. 

676
forward-path ưansíer function maưix of. 

676
Multivariable systems, 4, 71-72 

block diagrams of. Ỉ17-118. 674-676 
transfer functions of. 4. 71-72. 117-118. 

673-674

N
Natural undamped frequency. 278-280
Negative feedback. 8
Negative feedback loop, 109
Net masb flow rate, control volume and, 181
Newton's second law o f motion. 147, 148. 156.

157. 184 
Nichols chan. 44. 463-Ì70

o f aircraft posiiion-conirol system. 468 
nonunily feedback control systems and. 

469470 
"n ichols" tunciion, 45 
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systems
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Nonlinear differential equations, 49 
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584
Notch filters, 576-588 
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Nyquist plots 

advantages of. 455 
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system 
One-to-one mapping. 19 
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model). 221 
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systems), 5-7. 109. Sfe also Feedback 
conưol systems 

Open-loop motor-control system, 244 
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347-350
Open-loop speed (virtual experiment), 345- 
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Operational amplifiers (op-amps), 172-177 
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exercises, 236-237 
first-order. 174-177 
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inpul-output relationship for. 173 
issues with. 173 
PD conưoller and, 493 
phase-lead contfoller and. 543 
PI controller and. 512-513 
realization, o f transfer function, 176-177 
schematic diagram of. 173 
and sums/differences o f signals. 173-174 
ư ansíer functions, invening, 175-176 
uses for. 172-173, 177 
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Output equations, 51-52

state diagrams from, 680-681 
Outpm nodes. 121 
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Output sensor, 108 
Output vector, 682 
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state variables V.. 51 
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p (proponional) controllers. 617-621 
Fade approximation, 206 
Parabolic-funciion input, 256 

sleady-slate error and, 263-264. 268 
Parallel ilecomposition. 713-714 
Paraineier variations, sensitivity to, 487 
Partial-fraction expansion
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364-365 

Path gain. 122 
PaihsT 122
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PD (proportional-derivative) controllers. 314- 

316
as anticipatory control, 496 
Bode plot and. 497 
design principle of, 496 
design with, 492-511 
disadvantage of, 496
feedback control system with, 314-316,493 
frequency-domain interpretation of, 496- 

497,503-511 
high-pass filter characteristics of, 496. 497 
op-amp circuit realization of. 493 
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and, 498-505 
summary effeccs of, 497 
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and. 506-511 
time-domain interpretation of. 494—496, 

498-505 
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differential equation for. 49 
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spring-supported, 209-211 

Perfect gas law. 183, 187 
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brushless, 201 
classifications of, 199-20] 
control system. 763-764 
iron-core. 199-200 
modeling of. 201-205 
moving-coil, 200-201 
surface-wound, 200 
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on Bode plot. 456 
definition of. 453 

Phase-crossover frequency. 451 
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Phase-lag controller, 533. 561-574 

Bode diagram of. 565 
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Bode diagram of. 515 
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implementation of. 176-177 
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Proper ưansfer functions. 71 
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open-loop base excilalion, 22) 
parameter values, 357
passive suspension and, 364-365
2-IX)F. 220, 221, 358

Rack and pinion. 161 
Radiation. 179 
Ramp function. 255 
Ramp-function input, 255-256 
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time-domain design, 498-503. 516-520 

Second-order differential equations. 49 
Second-order linear system. 62 
Second-order prototype function. 61 
Second-order prototype systems. 64-67 

BW  and, 416-^18
damping ratio/damping factor and, 277-278 
delay lime/rise time and. 283-285 
magnification V. normalized frequency of. 

415
maximum overshoot and. 280-283 
natural undamped frequency and. 278-280 
with PI conưoller. 511-512 
resonant peak/resonant frequency. 413-416 
settling time and. 285-288 
iransient response of. 275-288 
unii-siep responses of. 276 

Second-order system, 49
with forA-ard-path ưansíer function, unit- 

step responds of. 423 
Sensing devices o f control systems (block 

diagramj. 107 
Sensitivity

conưol systems and, 9-10 
to parameter varialions. 487 
bpẽed-conưol system and, 585-586 
studies, in frequency domain. 470-472 
ứiird-order sun-seeker system and. 559-561 

Sensitivity function. 9-10. 470, 471.472. 474. 
559

Sensors. 104,107, 189-195. Encoders
encoders and. 189 
output. 108

potennometers. 189-iy4 
m rotary incremenul encoder. 196 
lachometers. 194-195 

Series compensation, 489. 490 
SerieS'feedback compensanon. 4Ẵ9. 490 
Servomechanisms. 289 
Servomoiors. 13. 198. 242. 328. 331. 477 
Sealing time. 257. 285-288. 4«7. 488 
Shift in time (Iheorem). 55. 56 
SI units. See Units/symbols 
Signal-flow graphs (SFGs). 119-129. Seeaiso 

State diagrams 
algebra/manipulation rules fix. 123-124 
block diagram, of control system. 129 
block diagrams V.. 119. 125 
of dc-moior system Aith DonzCTO ứútiai 

conditions. 203 
electric nerworic problenis and. 141-142 
elements of. 119-120 
o f feedback conlroi system. 124 
gain formula and. 124—128 
mass-spring-&iclion system. 155 
M ATLAB tools aod. 129-132 
problems/exercises for. 138-146 
properties of. 120 
references for. 133. 134 
RLC network. 166 
rotational system. 160 
Slate diagrams and. 673. 676 
step-by-step construction. 12] 
sums/differences o f signaJs in. 173-174 
terminology for. 121-122 

Signals
dual-channe] encoder, in quadrature. 196. 

197
sums/differences, op-amps a D Ì 173-174 
suppressed-cairier-modulaied, 193-194 
tesu for time-domain analysis. 254-256 

Similarii)' ưansíormations. 699-706 
CCF and, 692. 701-703 
DCF and, 704-705 
invariance propenies of. 700-701 
JCF and. 706 
OCF and 703-704 

SIMLab. 223 
experiment cooưo) \kindow. 342 
Experiment menu. 342 
motorblocks. adjustable parameiers for. 344 
Speed Conưol Simulink model. 343 

Simple pole, 20 
1 / ( 1 3 9  

Simple zero. 1 + > T . 37-38 
Simplified gain formula. 129. See also Gaui 

formula
Simulation, vim ia l experiments and. 345-354.

See also dc motor 
Simulink 

Library Brottier. 349 
rote of. 2
Speed Conơol Simulink model. 343 
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Stiffness. See Spring constant 
Sum and difference (theorem). 54, 56 
Sums/differences o f signals. 173-174 
Sun-seeker conưol system. 217-220,

548-554
ACSYS/MATLAB tools and. 645-647 
block diagram of, 220. 537 
BcxJe plots Qf fonvard-paih transfer function 

of. 552
Bode plots o f phase-lead conưoller in.

552
compensated. 557, 568 
coordinate system of, 218, 219 
d cm o to rin . 218, 220 
error discriminator of. 218-219 
feedforward compensators and, 589-590 
forward compensators and, 589-590 
frequency-domain design, 551-554 
integral controller and. 737-738 
lead-lag coniraller and. 574-576 
minor-loop feedback conưoller and. 603- 

604
phase-lag controller and, 566-574 
phase-lead conưoller and, 537-554 
robust conưoliers and. 591-599 
root contours of, 540. 541. 570 
root loci of. 567 
schematic diagram of, 218 
sensitivity considerations. 559-561 
servoamplifier of, 218. 220 
state feedback and. 733-735 
lachometer of, 218, 220 
Ihird-order, 548-554 
lime-domain design, 548-551 
two-stage phase-lead conưoller and, 556- 

559
uncompensated, 557. 568 
unit-slep responses of. 538, 551. 560, 568 

Sun-Iracking control sysiems. 4-5 
Superposition principle, i 1.71. 73. 115, 173.

176, 222. 291.358, 674 
Suppressed-cairier-modulated signal. 193- 

194
Surface-wound PM dc motors, 200



Symbolic Tool time response of. 300-304 2-2-1, 29
M ATLAB. 53. 64, 83. 84. 741, 748 time-domain design, 506-508. 529-530 2-2-2, 33
Transfer Function. 54, 77, 84-85. 86. 744, transient response of. 301 2-2-3. 42

748, 750, 754 unit-step responses of. 303 2-2-4. 43
Symbols. See Unils/symbols Third-order system, with fonvard-paih uansfer 2-2-5, 45
Symmeưy o f root loci. 378 function 2-2-6. 46
Syslem with disturbance input, 260 magnificalion of. 425 2-4-1, 54
System error, 258. See also Steady-stale errors unil-step responses of. 42S 2-5-1. 58

Throtlle angle, 5 2-5-2, 60
T Throttle lever. 242 2-6-1,64
Tachometer constant, 195 Time constant, 63, 171, 188 2-6-2, 67
Tachomecer-feedback control. 601-602 electrical, amplifier-motor system and. 217. 2-7-1. 69
Tachometers, 194-195 294 2-13-1. 80

modeling of. 195 low-lime-constant properties and, 198 2-13-2, 83
posilion-control system with. 195 mechanical, motor-Ioad system and. 217, 3-3-1, 130-131
sun-seeker control system and, 218. 220 294 3-3-2, 132
tfansfer function of, 195 motor elecuic, 290, 359 4-1-1. 153-154
velocily-control system wilh, 194 motor-mechanical, 291 4-2-1. 167-168

Tayior series. 17. 182 o f pneumalic system, 214-215 4-2-2. 169-170
liberalized flow equations and, 608 prototype first-order system and, 274 5-4-1, 259
linearization and, 207. 208 symbol/unil for, 180. 189 5-4-2, 265-266

Temperature, symbol/units for, 179, 189 uansient response and. 320 5-4-3. 271-272
Temperature control, o f air-flow syscem. 243- Time delays. See also Delay time 5-6-1,277

244 Bode plots and, 42-43. 458-459 5-6-2, 288
Ten-lum rotary potenliometer, 189, 190 systems with, 205-207 5-8-1,296
Testing methods Time responses, 64, 67, 253 5-8-2, 300

continuous data systems, 253-254 5-8-3. 303
fo r observability, 720 o f prototype firsl-order system, 274-275 5-9-1, 306

tfcal (Transfer Function Calculator), 86, 741, test signals for, 254-256 5-9-2, 308
751 o f Ihird-order anitude-control system, 300- 5 -9-3 ! 311

tfrouth (Routh-Hurwilz Stability Routine), 77, 304 5 - n - l ,  316
86-90 to unit-ramp input. 298-300 5-11-2, 319

tfsym (Transfer Funciion Symbolic Tool), 54. Time-delay function, approximation of. 206 7-3-1. 380
77. 84-85, 86. 744, 748-750, 754 Time-domain analysis. 253-336 7-3-2. 384

Theorems o f aircraft position-conlrol system, 293-304 7-4-1,387
complex convolution. 56, 57 frequency-domain analysis V.. 409 7-4-2, 389
complex shifting, 56 parabolic-function input and, 256 7-4-3. 391
on controHability/observability, 723-725 ramp-function inpuc and. 255-256 7-5-1. 395
differentiation, 54. 56 step-funclion input and. 255 7-5-2, 397
final-value, 55-56 lest signals and, 254-256 7-5-3, 400
initíal-value. 55, 56 unic-slep response and, 256-257 8-2-1.414-415
inlegralion, 55, 56 Time-domain design 8-2-2,417
o f Laplace ưansíorm, 54-57 frequency-domain design V., 488, 492 8-3-1,422

PD conứollers and. 494-496. 498-505 8-3-2. 424
real convolution, 56. 57 performance specifications. 487, 488 8-3-3, 424
shift in time. 55. 56 phase-lag controller and. 561-563.566-569 8-4-1, 426
sum and difference, 54, 56 (3hase-lead controller and, 534-535, 537- 8-8-1^ 441

Thermal expansion coefficient, 182 543, 548-554 8-8-2. 442
Thermal lever, 237. 238 PI conưollers and. 513-514, 516-520. 523- 8-8-3. 443
Thennal resistance, 178 528 8-9-1, 448
Thermal systems. 177-180 second-order aircraft attitude control 8-10-1.449

conduction in. 178 system. 498-503,516-520 8-11-1.457
convection in. 178-179 speed-conưol system and, 584 9-2-1.498
elecoical equivalents for, 216 third-order aircraft altitude control system. 9-2-2, 502
propenies. 179 506-508. 529-530 9-2-3. 502-503
radiation in. 179 third-order sun-seekerconưol system, 548- 9-2-4. 503

Third-order attitude-control system (aircraft). 551 9-2-5. 506
300-304. See also Attitude-control time-domain characterisiics in, 492 9-2-6, 510
system Time-invariant feedback control systems. [2 - 9-2-7.511

frequency-domain design. 509-511. 526- 13 9-3-1,519
528.531-532 Time-varying feedback conlrol systems. 12- 9-3-2. 520

PD conlroller and, 506-511 13 9-3-3. 522
PI controller and, 523-528 Timing bell, over pulley, 161, 162 9-3-4. 527
PID controller and. 529-532 Toolboxes. See also MATLAB 9-4-1.529
root loci of. 302 2-1-1. 21 9-5-1.539
sieady-staie response of, 304 2-1-2. 25 9-5-2. 340
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vehicle and, 227 
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!ear. See Gear trains 
Function Calculator (tfcal), 86. 741.

Function Symboiic Tool (tfsym), 54. 
84-85, 86. 744. 748-750. 754 
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neristic equations from. 696 
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Ipositions of. 678. 707-714 
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ỉqualions I'.. 693-695 
variable analysis and, 673-674 
homelers. 195 
H responses. 253. 254. 487

feedback and. 11
of prototype second-order system. 275-288 
o f ihird-order atiitude-control system, 301 
time constant and, 320 

Translational mechanical system propenies. 
151

Translational motion, 148-157 
acceleration and. 148 
displacement and. 148 
force-mass system. 149 
friction for. 149-150 
hydraulic control system and, 613-615 
rotational motion, conversion between. 161 
velocity and. 148 

Transportation lags, dynamic systems with.
205-207 

Turboprop engine. 135 
signals of, coupling between, 143. 144 

Turbulent resistance. 185 
Tutorial, ploning, 647-648 
Two degrees o f freedom (2-DOF) 

quarter-car model. 220, 221. 358 
spring-mass system. 156 

Two-stage phase-lead controller. 555-559 
Two-tank system. See Double-tank liquid- 

level system

u
u  tube manometer. 240 
Uncompensated phase-iag system 

Bode ploi of. 571 
root loci of. 564 

Uncompensaied sun-seeker system 
Bode plots of. 557 
unit-siep responses of. 568 

Unit impulse response. 68. 69. See also Dirac 
delta function 

Unit-ramp input. 298-300 
attirude-conirol system and. 299 
time responses to. 298-300 

Units/symbols 
acceleration. 151 
anguiar acceleration. 159 
angular displacement, 159 
angular velocity, 159 
Bmish. 148. 204
capacitance (electrical systemj. 172 
capacitance (fluid/pneumalic system), 189 
capacitance (hydraulic). 189 
capacitance (thermal system), 179 
charge. 172 
distance. 151
eleciricai system propenies. 172 
energy (eiectrical system). 172 
energy theac stored). 179. 189 
energy (rotational mechanical sysiem 

propenyi. 159 
force. 151 
heal flow rate. 179 
inductance. 172 
inertia. 159 
mass. 151
mas-, fiov. raie. 189 
power. 172
resistance (elcclrical system). Ì72 
resistance (hydraulic). 189

resistance (thennal system). 179 
spring constant. 151, 159 
temperature. 179. 189 
ứiermal system properties. 179 
time constant. 180, 189 
torque. 159
translational mechanical system propenies. 

151
veiociry, 151
viscous friction coefficieni. 159 
voluge. 172 
volume flow rate, 189 

Unit-step responses
o f artimde-conưol system, 295. 501
delay lime and. 257
frequency responses/Nyquist plots.

correlation among, 450-451 
maximum overshooi and. 256-257. 280- 

283
posiiion-comrol system and, 294-297 
o f prototype firsl-order system, 274 
o f prototype second-order system. 276 
rise time and. 257
o f second-order system with fonvard-paih 

ưansíer function. 423 
settling time and. 257 
o f speed-control system. 585 
o f siin-seeker system. 538. 568 
o f third-order attitude-contro! system. 303 
o f third-order sun-seeker conưol system. 

551.560
time-domain specifications and. 256-257 

Unity feedback loop, 109 
Unity feedback systems 

poles added to forward-path ffansfer 
function. 305-307 

steady-state error and. 260-266 
Unstable. 76

Vanable load, hydraulic control system and. 
616-617

Vector-matrix representation, o f stale 
equaiioni;. 682-684 

Vehicle, w ith trailer. 227 
Vehicle suspension syMem. 225. 336 
Velocity 

anfular. 157. 159 
symbol/uniis. 151 
translational motion and. 148 

Velocity-control system 
M ATLAB and. 259 
with lachometer feedback. 194 

Vibration absorber, 234 
Virtual experirnenls. See dc motor model;

Experiments 
Virtual ground. 173 
Vinual Lab, 12. 223, 340-344 

Experiment menu for. 342 
Virtual proioiyping. 2 
Virtual shon. 173 
Viscous fnclion. 149-150. 158 

clashpol for. 14V, I5fl 
graphicai representiicion. 150 

Viscous friction toeftieiem. 151. 15'  ̂
Voice-toil mi'tor. 247



Voltage, units for, 172 
Voltage divider. 171-172 
Voltage law. 165-166, 170 
Volume, conservation of, 181 
Volume flow rale. 181 

mass flow rate V.. 182 
symboưunils, 189

w
Washing machine. 6
Water extraction, solar power and, 4-5, 6 
Word processor

posiiion-control system of. ) 36 
printwheel of. 197. 198

Zero initia l conditions, 70 
Zero-input response, 73 
Zero-input stability. 74-75 
Zero-pole-gain models. 21. See also Pole-zero 

configuration 
Zero-state response. 72 
Zeros

added to U s) plot. 4 4 8 ^ 9

closed-loop ưansfer funcaon anJ-
308-309 

definition of. 20
dominant, o f  iransfer íunctioTi'. 

31J-314
forward-path ưansíer function and.

309-311.418-124 
graphical representation Iif. -1 
at origin. 3-1-36 
quadratic. 39-11
simple. 1 + > T . 37-38 
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