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Preface

Wireless networking is undergoing a transformation from what has
been primarily a medium for supporting voice traffic between telephones,
into what is increasingly becoming a medium for supporting traffic among
a variety of digital devices transmitting media of many types (voice,
data, images, video, etc.) Wireline networking underwent a similar
transformation in the 1990s, which led to an enormous build-up in the
capacity of such networks, primarily through the addition of new optical
fiber, switches and other infrastructure. Creating a similar build-up in
the capacity of wireless networks presents many challenges, including
notably the scarcity of two of the principal resources for providing high
capacity in wireless networks, namely power and bandwidth. Moreover,
the physical nature of wireless communication channels themselves, in-
volving such features as mobility, interference, and fading, adds to the
challenge of providing high-quality multimedia communications to large
groups of users.

A principal way of enabling the advanced services required of wire-
less networks is to add intelligence throughout the network in order to
exploit increases in processing power afforded by Moore’s Law type im-
provements in microelectronics. One way of doing this is through the
introduction of advanced signal processing at the node level of the net-
work, in order to mitigate the impairments of the wireless channel and to
exploit the diversity opportunities provided by such channels. Multiuser
detection, which addresses issues of optimal signal reception in multiple-
access channels, is a major technique in this context. A very extensive
research effort has been devoted to the development of multiuser de-

Xv



xvi MULTIUSER DETECTION IN CROSS-LAYER DESIGN

tection algorithms over the past two decades!. This research has shown
that substantial performance gains can be realized in interference-limited
channels through the introduction of advanced signal processing.

Recent research activity in wireless networking has begun to focus on
the higher layers of the network, and on the special problems presented
at such layers by the particular properties of the wireless physical layer.
One of the key issues of this research is cross-layer design, which seeks to
enhance the capacity of wireless networks significantly through the joint
optimization of multiple layers in the network, primarily the physical
(PHY) and medium access control (MAC) layers. Although there are
advantages of such design in wireline networks as well, this approach is
particularly advantageous for wireless networks due to properties such
as mobility and interference that strongly affect performance and design
of higher layer protocols. This monograph is concerned with this issue
of cross-layer design in wireless networks, and more particularly with
the impact of node-level multiuser detection on such design. This is
currently a very active research area, and the intention of this work is to
provide an introduction to this area, and to present some of the principal
methods developed and results obtained to date.

This work is intended for engineers, researchers and students with
some prior exposure to the field of communication networks. Although
the book is largely self-contained and presents necessary background
on wireless networking and multiuser detection, it is not intended to
provide a complete treatment of these subjects. However, an extensive
bibliography is included to direct the reader to additional details on
these subjects as desired.

LAn account of some of this work can be found in the recent book, Wireless Communication
Systems: Advanced Technigues for Signal Reception, by Xiaodong Wang and H. Vincent
Poor (Prentice-Hall: Upper Saddle River, N.J, 2004).
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Chapter 1

MULTIUSER DETECTION FOR WIRELESS
NETWORKS

1. Future Generation Wireless Networks

Future generations of wireless networks will enable heterogeneous ser-
vices with a variety of data rates that may even reach up to the order of a
gigabit per second. One of the strongest motivations for supporting traf-
fic heterogeneity and high speed data rates is the enormous popularity
and societal impact of wireline Internet enabled applications. Since the
appearance of the desktop computer, two separate evolutionary paths
have been emerging: on one hand the laptop and palmtop have become
extremely popular as their users enjoy the freedom of being untethered,
but on the other hand, the advantages of networking have become in-
creasingly important as users want to maintain connectivity [Goodman,
2000]. Wireless Internet is the answer to merging these seemingly dis-
parate requirements. Indeed, the convergence of computing and wireless
communications, in the form of smart phones and similar devices, is
the leading trend in these fields. Furthermore, wireless data services
are becoming increasingly popular worldwide, with the current reported
number of subscribers for third generation (3G) cellular services increas-
ing from 70 million in September 2003, to over 128 million at the end
of July 2004 (www.3gtoday.com). Moreover, more than 7 million world-
wide subscribers to WiMax wireless broadband services are expected by
2009 (www.wi-fitechnology.com).

For the North American market, WiFi hotspots are becoming wide-
spread, while 3G cellular networks are just now being deployed and are
available only for a few regions. A recently emerging trend for commer-
cial data services is to integrate cellular and WiFi, with companies in
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North America [Brewin, 2004] and Japan leading the way by launching
converged WiFi/cellular handhelds and bundled data services.

To support the widespread use of high speed wireless data services for
future generation wireless networks, a key element is to reduce the cost
of wireless transmission in terms of the actual price per Mbyte, as well
as in terms of the amount of required transmission power.

In the following, we will summarize several network solutions that
have been proposed to support wireless data services, and we will discuss
how the cost of data transmission is influenced by each of these network
designs.

1.1  Third Generation (3G) Cellular Networks

The third generation cellular networks currently being deployed are
required to provide ubiquitous coverage for heterogeneous applications
with varied quality of service (QoS) requirements (Fig. 1.1). This implies
that 3G networks must support high data rate traffic in a highly bursty
environment.

The wireless technology of choice for implementing 3G systems is code
division multiple access (CDMA) due to its soft capacity characteriza-
tion, which allows a graceful degradation of the network performance
as demand increases, and due to its robustness to inter-cell interference
which supports the powerful anytime/anywhere principle. Moreover, the
nature of the CDMA air interface promotes statistical multiplexing of
streams with varied bit error rates and delay requirements.

Both ¢dma2000 (www.tiaonline.org), developed primarily in North
America, and wideband CDMA (WCDMA) [Holma and Toskala, 2002],
developed primarily in Europe and Asia (www.3gpp.org), focus on pro-
viding high data rates to mobile users. The standard requirements spec-
ify a data rate of 384 Kb/s for outdoor devices moving at high speeds,
and 2 Mbps for devices moving at pedestrian speeds. However, in re-
ality, the achieved transmission rates depend on the prevalent channel
conditions, and consequently, a rate adaptation technique is used. Many
times, the high data rates are achieved at the expense of high power con-
sumption and high costs for users. To reduce these transmission costs,
3G networks’ capacity enhancements rely primarily on sophisticated re-
source management techniques, without imposing any improvements in
the receiver design. As we will see in this book, multiuser receivers have
the potential to increase the network capacity dramatically, thus having
a significant impact on the effective price of wireless data.
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Figure 1.1. Heterogeneous applications and ubiquitous coverage in third generation
cellular networks

1.2  Wireless Application Protocol (WAP)

One industry solution to provide low cost wireless Internet access to
mobile users with cell phones concentrates on building a “cell phone
centric Internet” using WAP (wireless application protocol). WAP is
intended to be used for networks of handheld digital wireless devices
such as mobile phones, pagers, two-way radios, and smart phones, and
is suitable for basic applications such as accessing weather forecasts and
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stock quotes, messaging, personal information management, financial
services and location based services.

WAP uses high compression for data and improves the cell phone user
interface using the WML (Wireless Markup Language) to display text
and icons on a cell phone’s screen. Despite the advantage of providing
an immediate solution for the wireless Internet, it has an inherent, very
significant, disadvantage: the “cell phone centric Internet” is not the
real World Wide Web; its content is subject to the availability of wireless
Internet Web pages for the desired targeted sites. Most of the “cell phone
centric Internet” is constructed and managed by the cellular operating
companies.

Thus, WAP provides only a partial and interim solution for data wire-
less networks. While it is useful in a transitional phase, next generation
wireless networks must commit to genuine information connectivity.

1.3 Network Costs for Data Transmission

Although at first glance 3G networks seem to be on the right track for
providing ubiquitous connectivity, the price per Mbyte may be too high
for the successful proliferation of Internet services on such networks. The
cost per Mbyte is influenced by the overall cost of the system (Csystem)-
For uniform coverage with QoS guarantees, a general system cost formula
[Zander, 2001] can be expressed as

Csystem ~ CNAP ~ CKUSCTBUSETAS€7“U’iC€f(Q>3 (11>

where Nap is the number of access points (base stations) required to
provide services and c is a proportionality constant. The effective band-
width Byser required per user with K. subscribers over a service area
Aservice must be scaled by an overprovisioning factor f(Q) for QoS de-
livery to high rate data users.

The factor f(Q) can be greatly reduced by efficient access control al-
gorithms relying on statistical traffic multiplexing. It is also immediately
apparent from (1.1) that, for a fixed number of users, the system cost is
strongly influenced by the effective bandwidths of the users, for a given
service coverage area.

It is evident that reducing the effective bandwidth for high rate users
will result in a cost reduction for Internet services. While the WAP
solution is based on decreasing the bandwidth requirement for the ap-
plications (basic applications and higher compression), improvements
for third generation cellular technology can be achieved using multiuser
receivers for CDMA systems. As we will see in the next section, the ca-
pacity improvements achieved by multiuser detectors come at the cost of
significant implementation complexity. This complexity has prevented
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the use of such receivers in previous cellular systems, which were primar-
ily designed for voice telephony. However, with the emergence of new
high speed applications and the rapid increase in the processing speeds
of low power, low cost digital signal processing (DSP) devices and inte-
grated circuits, multiuser detection should become an attractive choice
for next generation wireless networks.

1.4 Wireless Networks for Unlicensed Bands:
WiFi, WiMax, HomeRF, Bluetooth and
Infostations

The deployment of wireless data networks in unlicensed bands is ideal
for data users who can freely use the spectrum without the need to
obtain a license for it. Operating in unlicensed bands can significantly
reduce the cost of wireless data, by reducing the implementation price
floor related to spectrum acquisition.

In response to different application requirements, several types of net-
works have emerged in the unlicensed spectrum, such as WiFi, WiMax,
HomeRF, Bluetooth, and infostations. In general, all these networks
are based either on a star configuration, i.e., there is an access point to
which all portable terminals transmit in a single-hop fashion, or they use
a peer-to-peer topology that facilitates the deployment of on-the-fly ad
hoc networks with multi-hop transmissions!. In this section, we discuss
some of the key technologies in this category.

WiFi

While high data rate adoption is trailing for 3G cellular networks
in North America, the use of wireless local area networks (LANs) for
nomadic computing is growing dramatically. Because of this increasing
popularity of local network wireless access, hot spot access points are
becoming available to users in a variety of commercial areas such as
airports, hotel lobbies, coffee shops, book shops, etc.

Wireless LANs are intended for low mobility and stationary users,
and have a relatively small coverage area (e.g., a room, a floor, etc.)
The name WiFi stands for “wireless fidelity” (similar to HiFi for “high
fidelity” in audio systems), and it refers to the fact that wireless LANs
were originally targeted primarily at office use requiring high quality
transmission.

LAd hoc networks will be discussed in more detail in Section 1.5.
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Commercially available wireless LANs (WLANSs) are based on the
IEEE 802.11 family of wireless Ethernet standards, which has several
different variants:

# [EEE 802.11a radios transmit at 5 GHz and send data up to 54 Mbps
using OFDM (Orthogonal Frequency Division Multiplexing);

s IEEE 802.11b radios transmit at 2.4 GHz and send data up to 11
Mbps using direct sequence spread spectrum modulation;

» [EEE 802.11g is an extension to IEEE 802.11b , with enhanced data
rate transmission of up to 54 Mbps within the 2.4 GHz band using
OFDM technology.

IEEE 802.11g maintains backward compatibility with IEEE 802.11b at
11 Mbps, while IEEE 802.11a is not interoperable with either IEEE
802.11b or IEEE 802.11g systems.

Wireless LANs can be configured either in a star topology with one
access point and portable units transmitting to the access point, or in
a peer-to-peer architecture. The latter option is not widely used and
appears to have relatively poor performance [Xu and Saadawi, 2001].

Wireless Metropolitan Area Networks

Although IEEE 802.11 based wireless network implementations are
very popular for wireless LAN access, a wider area network implemen-
tation such as a MAN (Metropolitan Area Network) is difficult to im-
plement with this technology, since IEEE 802.11 has performance lim-
itations for large numbers of users with high bandwidth requirements.
In addition, interference is often a significant problem in IEEE 802.11
networks if deployed for large coverage areas, due to the fact that they
operate in unlicensed bands.

A solution for wireless MAN implementation is the recently pro-
posed IEEE 802.16 family of standards [IEEE 802.16 Working Group,
2004] which offers a high speed/capacity, low cost, and scalable solu-
tion for fiber optic backbone extention. IEEE 802.16 supports point-
to-multipoint architectures in the 10-66 GHz range, with data rates up
to 120 Mbps. At these frequencies, transmission requires a direct line
of sight between the transmitter and receiver. However, non-line-of-site
access provisioning at lower frequencies has been proposed in a recent
version of the standard: IEEE 802.16a, which also includes support for
a mesh architecture, and which operates in both licensed and unlicensed
bands between 2GHz and 11GHz, using OFDM.

The IEEE 802.16 [IEEE 802.16 Working Group, 2004] family of stan-
dards has a series of very desirable properties such as: support for mul-
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tiple services simultaneously with QoS provisioning, bandwidth on de-
mand with spectrum efficient MAC design, and link adaptation (adap-
tive modulation and coding). The standard also supports the use of
adaptive antennas and space-time coding for physical layer performance
enhancement.

The technology integrates well with IEEE 802.11 wireless LANs and
thus may be used in the future for linking 802.11 hot spots to the Internet
via a wireless broadband connection. Moreover, it is a good candidate for
home wireless broadband access. At this stage of development, the tech-
nology is still too expensive for consumers, but the prices are expected
to fall dramatically as major industry players support the new technol-
ogy. The forum that promotes and supports brodband wireless access
networks based on the 802.16 standard is the WiMax forum [WiMax,
2004].

HomeRF

As opposed to the WiFi technology, which was originally oriented to-
wards the corporate user, HomeRF technology aims to provide a cheaper
and lower quality (lower data speeds) wireless network technology in
the home network environment. Home networks are envisioned to con-
nect PCs, PDAs, laptops, cordless phones, smart appliances, etc., in
and around the home. Home networks were promoted by the HomeRF
working group which ceased activity in January 2003, after finalizing a
standard called Shared Wireless Access Protocol (SWAP).

SWAP is a hybrid standard that supports both voice and data, and
interoperates with both the PSTN (Public Switched Telephone Network)
and the Internet. The voice support is based on the Digital Enhanced
Cordless Telecommunications (DECT) standard, while the data sup-
port relies on the IEEE 802.11 wireless Ethernet specification. SWAP
supports streaming services (voice and video) via a centralized network
controller, as well as ad hoc peer-to-peer transmission for data services.
SWAP devices use frequency hopping spread spectrum technology with
50 hops per second and transmit at about 1 Mb/s. Some manufacturers
allow for an increase in the transmission speed up to 2 Mb/s when little
interference is present. The range of a HomeRF network covers a typical
home and backyard (about 75 to 125 feet). The future of such networks
is uncertain in view of the increasing popularity of WiFi systems for
home use.

Bluetooth

Bluetooth has primarily been proposed as a technology for cable re-
placement in personal area networks. It is a low cost, low power, short
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range wireless link intended as an alternative to I'DA (Infrared Data As-
sociation)[Infrared Data Association, 2004}, which is based on infrared
light pulses and consequently requires direct line of sight between trans-
mitter and receiver.

The Bluetooth standard allows small, inexpensive radio chips (un-
der $5) to be integrated into many electronic devices (e.g., computers,
printers, mobile phones, etc.). Devices that are Bluetooth enabled de-
tect each other independently (without any user intervention) and form
a pico-network, within a typical range of 10 meters (using 1 mW of
transmit power). The piconet is a star network, with one node acting
as master controlling the transmission of the others. The master node
synchronizes and schedules the transmissions for all the other nodes.
Similar to HomeRF and WiFi, Bluetooth operates in the 2.4 GHz unli-
censed band. The physical layer interface is based on frequency hopping
spread spectrum, and it supports one data channel at 721 Kb/s and up
to three voice channels at 56 Kb/s. Since the standard provides only for
low rate transmission and supports only very short range transmissions,
Bluetooth is not a technology replacement for either WiFi or HomeRF
for wireless LAN implementation.

Infostations

As a hybrid architecture between cellular networks and wireless LANS,
the infostation paradigm [Frenkiel and Imielinski, 1996, Frenkiel et al.,
2000], abandons the anytime/anywhere requirement, replacing it with a
more affordable “many-time/many-where” philosophy, and promises to
deliver data inexpensively (“free bits”) for high data rate users. This
network concept can reduce the cost of providing high-rate data by de-
creasing the effective bandwidth allocated for high rate users, as a result
of using only very good channels in the proximity of access points. Un-
like WiFi, HomeRF, and Bluetooth, the infostation concept is not yet
implemented in a commercially available system.

The conceptually simple idea behind infostations is based on the well
known fact that optimal use of a collection of channels is achieved by
waterfilling solutions, in which more power is transmitted on the better
channels [Cover and Thomas, 1991}, as opposed to transmitting more
power when the channel is worse, as is the case for 3G systems. For
time-varying fading channels, the optimality of waterfilling in time was
verified in [Goldsmith and Varaiya, 1997], and this result can also be
extrapolated to channels whose quality variations are due to distance
based path loss. Infostations are systems designed to optimize through-
put, without the constraint of anytime/anywhere coverage, and thus will
have pockets of very high rate coverage and large areas without any ser-
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vice. An infostation is a source of information providing low power, very
high data rate Internet access to portable devices in a limited surround-
ing area, similar to a hot spot in a WiFi network.

An example of a potential infostation location is in an airport: an in-
fostation can be located for example at an X-ray machine in an airport
security area, so that useful information such as maps and attractions
at the flight destination point, or recent e-mails and faxes, can be down-
loaded to a laptop computer that passes through the machine. Similarly,
an infostation can be placed in a jetway corridor, and data generated
during the flight can be uploaded, and pertinent local information, such
as weather and traffic reports can be downloaded on arrival at an airport
after a flight.

The airport example is characteristic of the categories of traffic that
can be supported by infostations. Obviously, real time applications can-
not be accomodated, and even for delay tolerant services there are several
technical challenges that must be overcome. The restricted range of an
infostation introduces problems of its own: a portable terminal may be
in the range of an infostation for only a few seconds, which may not be
enough for completion of a transfer. With very high-speed radios, the
bottleneck in information transfer in this architecture would be the or-
ganization and transfer of the information from the Internet to the infos-
tation in a timely manner. It is likely that infostations would be located
in a cellular service area, which may support the infostation network by
providing location updates to the backbone wireline network, which in
turn will select the next infostation to receive the requested information
for resuming file transfer (Fig. 1.2 [Goodman, 2000]). The coopera-
tion between these two heterogeneous networks, as well as the perfor-
mance of such two-tier systems [Kishore et al., 2003, Ortigoza-Guerrero
and Aghavami, 2000] offer several challenging technical problems still
requiring solutions. To help relieve the problems associated with the
information transfer it is very likely that local and general interest in-
formation would be cached at the infostation site. Examples of location
dependent information are local area maps, restaurant locations, traffic
and weather reports, etc. General interest information might include
stock quotes, electronic news, and popular music recordings.

The implementation of infostations can be built upon the current com-
mercially available short range technologies such as IEEE 802.11 wireless
LANs [Crow et al., 1997], the Bluetooth technology [Bhagwat, 2001],
or the emerging ultrawideband (UWB) technology [Win and Scholtz,
2000]. The characterization and modeling of the channels for such short
range communication scenarios is an active area of research [Domaze-
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Figure 1.2.  Illustration of the infostation concept

tovic et al., 2002], as are a number of other aspects of the infostation
councept.

1.5 Ad Hoc Networks

An even more forward-looking solution for next generation wireless
networks, which completely reverses the cellular model, is the ad hoc
network architecture.

An ad hoc network is defined as a collection of wireless terminals that
self-configure to form a network without relying on a pre-existing in-
frastructure. Cost reduction in such networks is achieved by lowering
the system price floor related to the infrastructure costs (base stations
and auctioned spectrum), and also by their inherent multi-hop capacity
increase potential. More specifically, ad hoc networks allow for peer-to-
peer communication, as well as multihop connections, which have been
shown to improve performance in both cellular (multihop routing to the
base station)[Jabbari and Zadeh, 2001] and ad hoc network settings.
As such, it has been shown that the coverage and capacity of ad hoc
networks (measured in bit-meters/sec) increases with the increase in the
number of users N. Several studies in the literature have been dedicated
to quantify this capacity increase under various scenarios (see for exam-
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ple [Shepard, 1995, Gupta and Kumar, 2000, Toumpis and Goldsmith,
2001, Grossglauser and Tse, 2002, Perevalov and Blum, 2003, Comaniciu
and Poor, 2004c, Gupta and Kumar, 2003, Bansal and Liu, 2003]. Early
work of [Gupta and Kumar, 2000] has shown that a capacity increase
in the order of O(v/N) is achieved for random access, two dimensional
fixed ad hoc networks. While this is a rather pessimistic result since
the per node throughput will decrease as O(1/v/N), several papers in
the literature have shown that some form of multiuser diversity may be
exploited in ad hoc networks to increase capacity. In [Grossglauser and
Tse, 2002, Gupta and Das, 2001, Perevalov and Blum, 2003, Bansal and
Liu, 2003] mobility of the nodes is exploited to improve the capacity
at the expense of very large to moderate transmission delays. In [Co-
maniciu and Poor, 2004¢, Gupta and Kumar, 2003], signal processing
based solutions for improved spectral efficiency are used to increase the
network performance. As we will discuss in more detail later on in the
book, the work in [Comaniciu and Poor, 2004c] shows significant user
capacity increase for given network delay constraints in CDMA ad hoc
networks using multiuser receivers.

An information theoretic result in [Gupta and Kumar, 2003] shows
that a capacity in the order of O(N) may be achieved for certain classes
of networks, and gives a constructive example of achieving O(N) ca-
pacity for an ad hoc network using a multiple transmit-receive antenna
architecture.

The impact of all these studies is that if signal processing?, com-
bined with smart resource management techniques (e.g. power control,
scheduling and routing) can drive the ad hoc network capacity close to
O(N), then each new user can support itself and the spectrum becomes
essentially free. While this represents only a theoretical performance
benchmark, it provides a strong economic motivation for investigation
of high capacity ad hoc networks as possible future generation wireless
data network solutions.

Although, by definition, ad hoc networks do not require any backbone
infrastructure, they may potentially benefit from establishing a node
hierarchy, which can improve their performance. However, in contrast
with the cellular scenario, such a hierarchy is not a design requirement
for ad hoc networks.

The lack of infrastructure in ad hoc networks requires new technolo-
gies for mobility management, service discovery and energy efficient in-

2In this book, our focus is on signal processing in the form of multiuser detection.
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Figure 1.3. Ad hoc network illustration

formation routing, and poses design challenges at all layers of the pro-
tocol stack.

Ad hoc networks have the advantage of low cost deployment and they
can be easily tailored for specific applications. They are suitable for a
large array of applications [Goldsmith and Wicker, 2002] such as data
networks, home networks [Lansford et al., 2000], device networks (Blue-
tooth [Bhagwat, 2001]), sensor networks [Akyildiz et al., 2002], etc. A
large range of application-dependent network requirements must be met
regardless of the network topology, the link quality at each local node
and the node traffic. Moreover, the nodes usually have stringent energy
constraints as well. Significant research has been directed towards im-
plementing application-dependent QoS requirements in variable network
conditions, and has specifically addressed power control, coding, adap-
tive techniques at the link layer, scheduling at the MAC (medium access
control) layer and energy and delay constrained routing at the network
layer. Although most of this research has concentrated on the layered
protocol approach and has proposed adaptive and distributed techniques
for the particularly considered layer, recent work shows that significant
performance improvement can be achieved by considering cross-layer
design in ad hoc networks (e.g. [Bertocehi et al., 2003, Cruz and San-
thanam, 2003, Goldsmith and Wicker, 2002, Jabbari et al., 2002a]).

The use of a DS-CDMA (direct sequence CDMA) air interface for ad
hoc network implementation would have many desirable advantages such
as high capacity, low probability of intercept and robust performance in
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narrowband interference (particularly attractive for unlicenced bands)
and fading. As will become clear in the next section, the use of multiuser
receivers may be especially beneficial for CDMA ad hoc networks for
which tight power control may be difficult to implement. Further, the
use of CDMA transmitter optimization could also alleviate the near/far
problem and consequently, significantly increase the network capacity.

1.6 Cross-Layer Design

To summarize the above, several diverse solutions have been proposed
for next generation wireless networks. A question that remains to be an-
swered is: should fourth generation (4G) networks be application-specific
or should they be designed to be flexible enough so that they will be able
to support a large array of applications? Most of the network architec-
tures that we have presented in Section 1.4 are application specific, and
provide support for limited mobility. The infostation paradigm extends
the mobility support by conceptually implementing a wireless LAN with
roaming. Also, mobility extensions for WiMax are under consideration
in the IEEE 802.16¢ version for the MAN standard.

Nevertheless, some of the data networks discussed previously are not
suitable for real time applications with mobility (e.g. emergency com-
munications and real-time interactive services such as interactive video
and browsing, or voice calls). Most probably, these services will still be
deployed in cellular type networks, or maybe in ad hoc networks, or a
combination between the two architectures (e.g. [Jabbari et al., 2002b}).
While radio resource management remains a key component in such net-
works, further significant performance gains may be obtained in CDMA
based networks by employing multiuser receivers.

In this book, we focus on the current design approaches and state-of-
the art analytical tools for wireless CDMA networks that use multiuser
detection in cross-layer design; that is, design that simultaneously con-
siders the requirements of multiple network layers.

Cross-layer design has recently captured the interest of the research
community due to its possible performance advantages over the tradi-
tional layered network design approach. To ensure QoS delivery, adapt-
ability to channel transmission conditions should be implemented at all
layers of the protocol stack. A key question that arises is whether this
adaptability should be implemented at each layer independently (Fig.
1.4), preserving the classical modular design approach of the Open Sys-
tems Interconnect {OSI) model, or the optimization should be jointly
implemented over multiple layers of the protocol stack (Fig. 1.5).

This question has stirred some debate over the advantages and dis-
advantages of cross-layer design. The advantages of using a modular
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Figure 1.4. Adaptation at local layers in the OSI model

approach are increased flexibility in upgrading certain layers, easy de-
bugging, and low complexity. These are key properties that should be
preserved in a cross-layer design approach, to ensure that the short term
gains in performance and capacity can be transformed into long term
gains [Kawadia and Kumar, 2003], while considering cost, maintainabil-
ity and standardization [Shakkottai et al., 2003].

The advantages of a cross-layer design approach are direct conse-
quences of the nature of the wireless link itself. The wireless link charac-
teristics affect all levels of the network protocol stack, and therefore all
layers must be responsive to changing channel conditions. Furthermore,
tight coupling between protocols at different layers exists.

For example, at the physical layer, receiver filters can be dynamically
adjusted to respond to interference changes; at the link layer, power,
rate and coding can be adapted, again affecting the interference level;
at the MAC layer, adaptive scheduling can be implemented based on
the current level of interference and on the current link quality; adap-
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Figure 1.5. Cross-layer adaptation

tive routing (for ad hoc networks) or soft handoff (in cellular systems)
can be implemented in response to the current interference level and
distribution in the network; at the application layer, soft QoS can be de-
fined, where the application QoS requirements are dynamically adjusted
depending again on the current interference levels.

All the above adaptation protocols react to, and have an impact on,
the interference level and distribution in the network. As a consequence,
for efficient design, the adaptation protocols at each layer should not be
independently developed, but rather should be designed in an integrated
way, such that the interdependencies between layers can be exploited.
Some extensively studied, classical examples of cases in which integration
of different adaptation techniques at different layers is crucial for the
performance of wireless networks, include the interaction between source
and channel coding (e.g. [Aazhang et al., 1998]), and the interaction
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between data link layer protocols and the transport control protocol
(TCP) (e.g. [Kostic, 2001], [Harris et al., 2001]).

More recently, cross-layer design optimization of resource manage-
ment algorithms has been proposed for various network scenarios and
considering various performance measures (see for example [Alonso and
Agusti, 2004, Cruz and Santhanam, 2003, ElBatt and Ephremides, 2004,
Jabbari et al., 2002a, Jung and Vaidya, 2002, Radunovic and Boudec,
2002, Radunovic and Boudec, 2004] and the references therein). For
ad hoc networks, energy efficient routing implies tight interdependencies
among all layers of the protocol stack [Bertocchi et al., 2003, Cruz and
Santhanam, 2003, Goldsmith and Wicker, 2002, Jabbari et al., 2002a).

The development of cross-layer protocols enhances the network’s abil-
ity to adapt: performance information can be exchanged among layers
for an optimal response to degrading transmission conditions. The inte-
grated adaptive protocol must still have an hierarchical structure, since
network variations take place on different time scales: for example, vari-
ations in the achieved link signal-to-interference ratio (SIR) are very
fast, on the order of microseconds for high speed mobility, while varia-
tions in users’ traffic are much slower, on the order of tens to hundreds
of seconds [Goldsmith and Wicker, 2002]. The rate of adaptation for a
protocol is determined by its location in the protocol stack. However,
information exchange between layers and joint optimization may greatly
improve the system performance.

Fundamental questions that must be answered in cross-layer design
are: what information should be exchanged among layers, and how
should such information be factored into each layer’s performance adap-
tation algorithm [Goldsmith and Wicker, 2002]? In this book, we address
these questions in the context of integrating the network and physical
layer performance in wireless networks using multiuser receivers. We
begin, in the following section, with an introduction to basic principles
and results for multiuser detection, and with a general discussion of the
tradeoffs involved in choosing the “right” receiver for next generation
wireless networks.

2. Introduction to Multiuser Receivers:
Pros and Cons

In CDMA systems, the notion of capacity is directly related to the
QoS perceived by the users. In general, a certain bit error rate (BER)
target is required, which is application specific (e.g. 1073 for voice users,
and 107 or better for data applications). The achieved BER is directly
related to the level of interference in the system, which thus dictates
the system capacity. It immediately follows that any improvement in
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the management and suppression of interference, greatly impacts the
system capacity.

Matched filter (MF) receivers, in combination with tight power control
and powerful coding have been shown to have reasonably good perfor-
mance for second generation CDMA systems supporting only voice users.
Indeed, under a white Gaussian noise model for the multiple-access in-
terference (MAI), the matched filter receiver is optimal. However, this
model is not accurate for wireless data systems, especially when the
traffic is characterized by high burstiness as is the case with multimedia
traffic. The structure of MAI can be exploited to build better receivers,
which leads to the development of multiuser detectors. Better interfer-
ence management will also certainly increase spectral efficiency, which
of course is a desirable feature for all wireless networks.

In what follows, we address the following question: is multiuser detec-
tion (MUD) the right solution for future generation wireless networks?
In order to answer this question, we start with several more basic ques-
tions: Why is multiuser detection superior to conventional, matched
filter detection? What is the performance/complexity tradeoff for var-
ious MUD schemes? And, do we still need power control if multiuser
receivers are used?

2.1 Performance of Matched Filter Receivers

Consider a single cell synchronous DS-CDMA system with K active
users. The received signal at the base station in such a system can be
expressed as [Verdd, 1998]

K
r(t) = 3 Agbise(t) + nt), (1.2)
k=1

where Ag, by, sp(t) are the received signal amplitude, the transmitted
symbol and the signature waveform, respectively, of user k, and n(¢)
is an additive white Gaussian noise (AWGN) process with power spec-
tral density o?. For simplicity, we assume throughout that the symbols
{br} take binary +1 values, although other cases are readily treated.
When the symbols are taken to be random, we assume that they are
independent, taking the values +1 equiprobably.

For random signature sequences , the signature waveform s (t) can
be written as

AT
1
si(t) = —= > sij pr.(t — jTe + T.), (1.3)
VN =
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where N is the spreading gain, sg;, K = 1,...,K, j = 1,..., N are
independent equiprobable +1 random variables, T, is the chip duration
and pr, is the deterministic chip waveform, assumed to have unit energy.
The vector sg = [8k1, Ska, ..., Sgn] s the signature sequence of user k,
and N is the spreading gain. The normalized cross-correlation between
two users’ signature waveforms over the bit duration 73 can be defined
as

Ty
pro= [ s (14)
0
Equation (1.4) is equivalent to
N
Pkt = Z SknStn = S{Sg. (1.5)
n=1

For random signature sequences, it can be shown that E{py(} = 0, and
E{pi[} =1/N [Verdd, 1998].

Although a synchronous CDMA system is harder to implement in
practice for the reverse link of a cellular system than for the forward
link (it requires access to a common clock or closed-loop timing con-
trol), it is usually the model considered in theoretical analyses. This
is due to the fact that the insights gained using a simplified analysis
can be, in general, easily extended for a one shot analysis approach
for asynchronous systems. In an asynchronous system, because of the
time offsets among the reception of users’ signals, one must take into
account the fact that users transmit a frame or a stream of bits: by =
[be[—M],...,be[0],..., b[M]]. If we consider a one shot approach for
detection, then for the symbol b;[0] of user k (the user of interest), an
interfering user £ would affect the desired user partly by transmiting bit
be[—1] and partly by transmiting bit b,[0] (Fig. 1.6).

To characterize the influence of user £ on user &, equivalent virtual in-
terfering users can be defined, having signature waveforms corresponding
to the left (sh(¢)) and right (s}(¢)) signature waveform of user ¢:

1 -
Slg(t): \/ESZ(t'i‘Tb Tf)a OStSTZ : (16)
Oa STKStSTba
L st —7), <7 <t<T
sp(t) = (1—6¢) ol thsmstsT , (1.7)
0, 0<t <7y

where 7, is the time offset of user j relative to user k, and 6y is the
partial energy of the £ interfering signal over the left overlapping bit.
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Figure 1.6. Asynchronous CDMA: basic model

Thus, a two-user asynchronous system can be viewed as a three-user syn-
chronous system, and by generalization, a K user asynchronous system
is equivalent to a synchronous one with 2K — 1 users.

Due to this equivalence, many theoretical results developed for syn-
chronous users can be readily adopted for asynchronous systems. With
this in mind, in what follows we focus our presentation on synchronous
systems, as described by (1.2).

The general multiuser detection problem is to determine the transmit-
ted symbols for all users, given the received signal r(¢). In [Verddy, 1986]
it was shown that the appropriately sampled outputs of filters matched
to the various users’ signature waveforms form a sufficient statistic for
this decision problem. Given a symbol duration 7}, these matched filter
outputs are given by

Ty
yk:/ rt)s(t)dt, k=1,... K. (1.8)
0

For the conventional matched filter detector, the decision is made by
quantifying these outputs directly as

(;k:sgn(yk), k=1,...,K. (1.9)

where sgn(-) denotes the algebraic sign of its argument.

Equation (1.9) represents the optimal decision for detection in the
presence of white Gaussian noise only, under both maximum likelihood
(ML) and maximum a posteriori probability (MAP). In a multiuser set-
ting, the matched filter outputs also contain multiple access interference
(MAI) components which are not white Gaussian random variables. The
output of the matched filter for user k can be expressed as
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K

= Apby + Agby + ng , 1.10
Yk kVk g;pk,f {92 : k ( )
desired signal | . Gaussian noise
MAI

where ny = fOTb n(t)sp(t)de.

To illustrate the performance of the matched filter we consider a sim-
ple two-user example (K = 2) with p1o = p21 = p. Without loss of
generality, consider the bit error rate for user 1, which can be expressed
as

;nf = P(?)l # bl) = %P(yl < O!bl = +1)+%P(y1 > Oibl = —1).
P+ P-
By symmetry, Pt = P~, and thus, P/ = PT = P~. We derive P~ as
follows

P~ =1P(y1 > 0by =-1,bp =+1)+1P(y; > 0lby = —1,bo = —1) =
= %P(?’Ll > Ay — Aop) + %P(nl > Ay + Agp).

Since the signature waveforms are normalized, n; ~ N (0, o). Hence
the probability of error for the conventional matched filter receiver is
given by

pmf = %Q <A1 —UA2|P|> N %Q <A1 +UA2/0[> ’ (1.11)

where Q(z) = \/-% [ e 24t,
Since Q(.) is monotonically decreasing, an upper bound on the prob-
ability of error is given by

P <Q <LAQ@> ) (1.12)

a

The bound is smaller than 1/2 if %"f < ﬁ, which is called the “open eye”

condition (the interferer is not dominant). If the interferer is dominant,
the conventional receiver exhibits the near/far problem: the error prob-
ability is not monotonic with the noise power, and a powerful interferer
can completely obscure the reception of a less powerful user.

From the network performance point of view, the achievable power
efficiency (the required signal to noise ratio for a given BER target) is
of special interest. This can be best illustrated by using power tradeoff
region diagrams, which represent the set of required signal to noise ratios
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(SNRs) {A4%/0% A3/0?,..., A% /o?}, such that m}?kaU < ¢, where P{

is the error probability of user k, and ( is a target bit error rate.

In Fig. 1.7 two-user power tradeoff regions are depicted for the
matched filter receiver for different values of the cross-correlation co-
efficient between the users’ signature sequences, and for a bit error rate
requirement of ¢ = 1073, The upper bound in performance is achieved
when the signature sequences are orthogonal, which is equivalent to the
case of a single user in additive white Gaussian noise. For fixed cross-
correlation, the best performance is obtained for equal powers. Note
that, as the cross-correlation increases, the sensitivity to imbalances in
the received powers increases as well, and also higher energies are re-
quired, even for the case of perfect power control (4; = A4j).
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Figure 1.7. Power tradeoff regions for two users employing matched filter receivers
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In early work on multiuser detection [Verdi, 1986], the near/far prob-
lem was shown to be a consequence of the inability of the matched filter
to exploit the structure of the MAI, and not to be associated with CDMA
in general. An optimal multiuser detector was proposed based on the
maximum likelihood detection of the transmitted symbols.

Before analyzing this optimal receiver, we define some performance
measures frequently used to quantify the performance of multiuser de-
tectors.

For a given multiuser detector and background noise level o, the ef-
fective energy of user k, eg(c), is the energy that user & would require
to achieve the same bit error rate Py(o), in an equivalent single user
Gaussian channel with the same noise level:

Pi(o) = O <M> . (1.13)

The multiuser efficiency represents the ratio between the effective and
actual energies, ex(o) /A%, and quantifies the performance loss due to
other users in the channel. The asymptotic multiuser efficiency measures
the slope with which Py.(o) goes to zero in the high SNR (signal to noise
ratio) region:

e = lim (o) /4. (1.14)

The near/far resistance represents the minimal multiuser efficiency, min-
imized over the received energies of all the other users:

me = _inf g (1.15)

2.2 Multiuser Detectors

An optimum detection rule can be based on maximum likelihood de-
tection of the transmitted symbols. Let y = [y1,¥2,...,¥K]? be the
vector of matched filter outputs, where y is defined as in (1.10). The
vector y can be expressed as

y =RAb +n, (1.16)
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where R is the normalized cross-correlation matrix, with 1's on the
main diagonal, and entries Ry, = pre, n is a Gaussian noise vector
with zero mean and covariance matrix equal to ¢?R, and b is the
vector of information symbols. The matrix A is a diagonal matrix:
A= dz’ag[Al, e ,AK}.

The likelihood function of y given b is given by

(y|b) = _%<y - R‘Ab)T(UQR)_l(y — RAD)
PWYIb) = exp (2m)K/2g|R|1/2 ;

where |R/| denotes the determinant of R. The maximum likelihood sym-
bol decisions are thus determined as b = arg mte)xx Q(b), with

Q(b) = 2bTAy — b7Hb; H = ARA. (1.17)

The above maximization problem is a combinatorial optimization prob-
lem which is known to be NP-hard: its computational complexity in-
creases exponentially with the number of users in the system3. This
O(2%) implementation complexity required by the optimal detector makes
it impractical for real systems. The optimal detector represents, how-
ever, a basis for comparison for other, suboptimal, receivers.

In Fig. 1.8, the power-tradeoff regions for optimal multiuser detection
receivers are shown for the same bit error rate probability target of 1073
that was used to illustrate the matched filter case. We notice a very
significant performance improvement compared with the matched filter
case. Further, an interesting observation is that equal powers are detri-
mental for the optimum receiver, especially for high cross-correlation
values. An intuitive explanation for this is that the receiver can better
separate very similar users (with highly correlated sequences) if they are
at least received with very different powers.

Although equal power control is not appropriate for this receiver, a
minimal transmitted power solution can be achieved by implementing
unequal power control. For example, for p = 0.95, equal power control
leads to a requirement of (18,18) dB for the users, while the minimal
power solution requires only (10,15) dB or (15,10) dB. It can thus
be concluded that power control still helps to improve the system per-
formance, even for the optimal receiver case. The difference from the

3Note however that, it was shown independentely in [Ulukus and Yates, 1998c] and
[Ephremides and Sankaran, 1998] that, for synchronous systems and a specific choice of the
signature sequences (i.e., having negative cross-correlations), an optimal multiuser detector
can be implemented with polynomial complexity, O(K?3). Also, it has been shown in [Schlegel
and Grant, 2000] that, optimal multiuser detection for users with equal cross-correlations has
a complexity of O(K log(K)).
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Figure 1.8. Power tradeofl regions for two users employing optimal multiuser detec-
tion

conventional power control for matched filter systems is that, in this
case, unequal power targets are used. The fact that the users can be
treated interchangeably renders more potential gains for multicell sys-
tems: a user further away from the base station may be allocated the
lowest received power, thus reducing the interference perceived by the
neighboring cells. A more detailed discussion on this topic will follow in
Chapter 3.

Numerous suboptimal approaches to multiuser detection have been
proposed, to trade off performance and complexity. The most widely
studied solutions can be classified into two categories: linear and non-
linear multiuser detectors. For linear multiuser receivers, a linear trans-
formation is applied to the vector of matched filter outputs, and a new,
better decoupled, set of decision variables is produced, which can then
be quantized to produce symbol decisions. The two most important lin-
ear receivers are the decorrelating detector [3] and the linear minimum
mean-square error (LMMSE) detector {4]. Non-linear detection, also
called subtractive detection, is based on estimating the interference and
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removing it from the signal before detection. Examples of non-linear
receivers are the succesive interference cancellation (SIC)[5, 6] and the
parallel interference cancellation (PIC) receivers [7, 8]. This multiuser
receiver classification is summarized in Fig. 1.9.

Multiuser
Receivers
\ [ ]
Optimal )
Maximum Likelihood Receiver Suboptimal
[ ]
Linear Non-linear
—_
[ [ 1
Parallel Successive
) Interference Interference
Decorrelator MMSE Cangcellation Cancellation
{PIC) (SIC)

Figure 1.9. A classification of multiuser receivers

In the linear receiver category, the decorrelator [Lupas and Verdd,
1989} completely eliminates the multiple access interference by orthogo-
nalizing the users. Starting from (1.16), if the linear transformation R™!
is applied to the outputs of the matched filters, the resulting decision
vector is given by

=R !'y=Ab+R!n (1.18)

From (1.18) it can be immediately inferred that each component of the
decision vector y? is interference free. On the other hand, the back-
ground noise can be enhanced by the transformation R™!. The use
of this detector requires that the set of signature sequences be linearly
independent. Two advantages of the decorrelator are that it does not
require knowledge of the received amplitudes, and it affords a decentral-
ized implementation. Indeed, the output decision variable, y for the
k" user can be expressed as:

K K
ve=> Riw=> Ryy'si=y"5
/=1 =1
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where RU is the (k, €)™ element of matrix R™!, and §; = Zg 1 Rk /St
Thus, the decorrelator can be implemented as a modlﬁed matched filter
(see Fig. 1.10) of the form

~ Ty
bj, = sgn {/ y(t>'§k(t)dt} : (1.19)
0
where §;(t) = Ze 1 usé( ).
X
™ el 1 sen() b
Matcllfd Filter H )
§
1
JMatclied Filter . AN » son( ) . ZA
n % : SR b,
w(t) 2
R
L
Matched Filter—> gen(.) 53
53 :
e
yDMatched Filter AN e § .
A s | by

Figure 1.10. Decorrelator implemented as a modified matched filter receiver

The decorrelating receiver is optimal (in the maximum-likelihood sense)
when the amplitudes of the signals are not known. In this case, the decor-
relating detector is obtained through joint maximum likelihood estima-
tion of the transmitted symbols and amplitudes. Also, the decorrelating
receiver achieves maximal near/far resistance: 7 = 1/ R;,k' The prob-
ability of error achieved by an arbitrary user k using the decorrelator is
given by

Ay

04 /R];F &
In contrast with the decorrelator, which is optimized to suppress the

intereference, and the matched filter, which is optimized for noise sup-
pression, the LMMSE receiver [Madhow and Honig, 1994] takes into

Pi=0Q (1.20)
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account the relative importance of both interference and background
noise. The linear transformation for the LMMSE detector is given by
the solution to the problem

in E{|b-Cy|’}= min t b — Cy)}, 1.21
oMin E{|b-Cyl*} = min trace{cov(b-Cy)},  (121)

where cov(b — Cy) = E{(b—Cy)(b— Cy)7}. It is easily seen that

C* = AR +0247%71 is the solution to (1.21), and thus the LMMSE
decisions are given by

by, = sgn (R + AT y), ). (1.22)

The covariance matrix cov({b — C*y) can be expressed as
cov(b—C*y) = [Ixxx + O'_2ARAJ_1 : (1.23)

and thus the achievable minimum mean square error is

MMSE = trace {cov(b — C"y)} = trace { Trxx + U_QARA]_l}
(1.24)
To illustrate the trade off between noise reduction and intererence
supression, we analyze the LMMSE receiver for the k™ user for two
limiting cases: no interferers, and no noise, respectively

s Nointerference: Suppose Ag # Oisfixedand 4, — 0,vi=1,..., K, [ #
. _o1_ A2
k; then the LMMSE receiver, ([R + 02A™?] 1)<mw — [W’ 0,..., 0},

becomes the matched filter receiver.

= No noise: Suppose ¢ — 0; then the LMMSE receiver becomes the
decorrelator

R+o%4791 - R7L

As a consequence of the fact that the LMMSE receiver becomes the
decorrelator when ¢ — 0, the LMMSE detector has the same asymp-
totic efficiency as the decorrelator. The exact error probability for the
LMMSE receiver is very difficult to compute. However, a useful approx-
imation for the bit error probability is [Poor and Verdu, 1997]

P o Q(+/SIRy), (1.25)

where STRj, is the signal-to-interference-plus-noise ratio of user k at the
output of the LMMSE transformation. Like (1.20), (1.25) depends on
the number of users.
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Note that, for a linear detector based on a transformation Cy, we can
write (Cy)x as clr, where ¢/ is an N x 1 vector, and where r is the
received vector:

K
= Agbisi + on. (1.26)
k=1
The vector ci can be interpreted as a set of filter coeflicients for detecting
user k's data. It is straightforward to show that the LMMSE filter

coefficients can be derived as
Ag 1
of = Tk 3l 1.27
byl (1.27)

and the corresponding SIR expression becomes
SIR]C = Aksk S ks (128)

where ¥ = 0%Igx + Zﬁiuﬂc A§SZSZT.

We can compare the linear multiuser receivers’ performance with that
of the matched filter and optimal receiver using the power tradeoff re-
gions. In Fig. 1.11, we compare the achievable power efficiency for both
the LMMSE and decorrelating receivers for a fixed BER requirement of
1073, To compute the power tradeoff regions for the LMMSE receiver,
we use the approximate BER formula (1.25).

Analyzing Fig. 1.11 we notice that the decorrelating and LMMSE
receivers have fairly close performance characteristics. However, the
LMMSE receiver generally outperforms the decorrelator*. The differ-
ence is pronounced when the correlation coefficient is high, since the
decorrelator’s noise enhancement is more significant in this case. In
terms of sensitivity to power control imbalances, the decorrelator is ob-
viously unaffected by the interferers’ powers. However, to achieve a
certain target SIR, a minimum transmitted power for the desired user is
necessary to surpass the enhanced noise power. Therefore, power con-
trol might be useful in systems using decorrelating receivers, in order
to preserve the terminal battery and to reduce the interference seen by
neighboring cells. The minimal power solution calls for equal received
powers for all users. For the LMMSE case, we can also notice (and this
will be proved in Chapter 3), that equalizing the received powers of all
users can improve the system performance.

The performance of the linear receivers should be compared with that
of the optimal receiver (Fig. 1.8) and the matched filter receiver (Fig.

4This is not uniformly the case however [Moustakides and Poor, 2001].
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Figure 1.11. Power tradeoff regions for two users employing the decorrclating (solid
line) and LMMSE (dash-dot line) reccivers.

1.7). Notice that the linear filters and the optimal receiver have very
similar performance for the equal received power case, which represents
the best case for the suboptimal receivers, but a worst for the optimal
receiver. However, a very significant gain in performance is achieved in
general compared with the matched filter case.

In terms of complexity, both the decorrelating and LMMSE receivers
require computing the inverse of a K x K matrix related to the cor-
relation matrix of the signature sequences, which can be achieved with
O(K?3) complexity. Using a direct implementation, this matrix inverse
must be computed each time a user changes activity (enters or exits
the system, goes on and off temporarily, etc.). To decrease the compu-
tational complexity, rank one updates, and order updates can be used
to compute the inverse of the correlation matrix or its Cholesky factor-
ization. Based on these techniques, detector update algorithms having
computational complexity of O(K?) have been proposed [Juntti, 1995].

Direct implementation of linear detectors requires knowledge of the
cross-correlation matrix R. This can be avoided if the filters are imple-



30 MULTIUSER DETECTION IN CROSS-LAYER DESIGN

mented adaptively, with as little knowledge as the timing of the desired
user. However, some adaptive implementations require the use of train-
ing sequences, which in turn represents a waste of system bandwidth. As
an alternative solution, blind adaptive algorithms have been proposed
that require only the knowledge of a desired user’s signature sequence
and its timing information. Note that this is the same amount of infor-
mation required for a matched filter implementation. This is particularly
attractive for ad hoc networks, in which information about network sig-
naling structure is inherently decentralized.

An additional advantage of an adaptive implementation in cellular
systems is that a linear adaptive LMMSE detector can supress other-cell
interference, in addition to the intra-cell interference. Furthermore, a co-
herent solution can constructively combine any multipath components
falling within the filter’s window span [Honig and Tsatsanis, 2000]. A
disadvantage is that blind algorithms usually work only for systems with
so-called short spreading codes, i.e., systems for which the same spread-
ing code is used during every symbol interval. This type of spreading
code is not used in existing 2G and 3G cellular telephony systems.

Because of the above mentioned advantages, considerable work has
been done on designing low complexity blind adaptive algorithms with
minimal performance loss compared to direct implementation. In prac-
tical systems, complexity, tracking and convergence for such algorithms
are important performance measures.

Among the most representative blind adaptive algorithms, we mention
the BADD (blind adaptive decorrelating detector) [Ulukus and Yates,
1998b], the MOE (minimum output energy) detector [Honig et al., 1995],
and subspace tracking methods [Wang and Poor, 1998]. This list is by no
means exhaustive; surveys of adaptive multiuser receivers can be found
in [Madhow, 2000], [Honig and Tsatsanis, 2000}, [Lim and Roy, 1998]
and [Wang and Poor, 2004].

The BADD receiver is based on a stochastic convergence to the decor-
relating receiver in the mean square sense. It requires knowledge only of
the signature sequence of the desired user and the variance of the addi-
tive white Gaussian noise. Its complexity is O(N) per iteration (Recall
that IV is the spreading gain). However, the performance of the de-
tector depends on the adaptation step size, and for a small achievable
mean-square error (MSE), the convergence rate is very slow.

The minimum output energy detector is an adaptive implementation
of the LMMSE receiver, based on the observation that the mean square
error is minimized when the variance at the output of the linear trans-
formation is minimized within an “anchor” constraint on the filter coeffi-
cients. The adaptive algorithm uses a constrained optimization approach
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and is very sensitive to possible desired-signal signature mismatch that
could occur as a result of multipath fading and timing errors. To avoid
complete cancellation of the desired signal, one solution proposed in
[Honig et al., 1995] is to switch to a decision directed mode before the
SIR is compromised. The implementation complexity of the MOE de-
tector depends on the update algorithm. For least-mean-squares (LMS)
updates the complexity is O(N) per iteration, while for recursive least
squares (RLS) updates, the complexity is O(N?) per iteration.

A more robust alternative to implementing blind LMMSE, as well as
decorrelating receivers, is based on subspace tracking [Wang and Poor,
1998]. Both the LMMSE receiver and the decorrelator can be expressed
in terms of signal subspace parameters which can then be tracked using
the PASTd [Yang, 1995] or other subspace tracking algorithms. This
approach also offers the capability of tracking the rank of the signal sub-
space, which is equivalent to tracking the number of active users. The
complexity of this approach is O(KN) per iteration, and it achieves
better performance compared to the MOE receiver. Simulation results
show slow convergence with random initialization; however, this can be
improved if an SVD (singular value decomposition) is used for initial-
ization.

To summarize the above discussion, although linear detection avoids
the exponential complexity of optimal multiuser detection, there are still
complexity issues associated with the implementation of linear multiuser
receivers. Of particular importance for future wireless networks are the
number of floating point operations (flops) and the required information
for filter computation and updates, as well as the rate of convergence to
the desired filter for the adaptive implementations. We summarize these
important properties for the linear receivers discussed above in Tables
1.1 and 1.2

Table 1.1. Linear Receivers: Information Requirements

Req. Inf. MF Dec. LMMSE Adapt. LMMSE/Dec. Blind LMMSE/Dec.
Code user v v v - Vv

Code interf. - v Vv - -

Timing user v v v/ vV V4

Timing interf. - Vv 4 - -

Rec. amplit. - - Vv - -

Noise level - - v - -/

Training seq. - -
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Table 1.2. Linear Receivers: Implementation Complexity

Dec. LMMSE LMMSE/Dec. updates Blind LMMSE/Dec.
O(K?) O(K?®) O(K?) O(N?)JO(KN)/O(N)

To achieve further complexity reduction, non-linear interference can-
cellation receivers have been proposed. Successive interference cancella-
tion (SIC) receivers are among the least complex of multiuser detectors.
At each stage of SIC, a single user is detected and removed from the
overall received signal, so that the users detected at later stages see re-
duced multiple access interference. The current user is detected using its
matched filter detector. Its signal is then respread and subtracted from
the next user’s received signal. The disadvantage of this scheme is that
it is very sensitive to decision errors in previous stages. If a signal can be
correctly reconstructed then it is completely removed from subsequent
stages, but if there is an error, the interference is doubled. To improve
SIC performance, the “hard” intermediate decisions can be replaced by
“soft” decisions. This can be achieved by replacing the sign function in
the matched filter receiver by a different nonlinearity. For example, a
good option is to use the hyperbolic tangent function scaled with the
SIR. This function is very similar to the sign function in the high SIR
regime but discounts the effect of unreliable decisions in the low SIR
regime. A simplified block diagram for an SIC detector is presented in
Fig. 1.12.

An exact evaluation of the bit error rate of the SIC receiver is very
difficult. Usually, the performance is measured using simulations, or
is computed using approximations. A commonly used approximation
assumes that the system performance is equivalent to that of a single
user matched filter with a supplementary Gaussian noise source having
zero mean and variance 1/N for each interferer [Verdd, 1998]. Conse-
quently, the probability of error for user k can be approximated using
the following recursive formula:

<$m%Q< Ak ). (1.29)

2 1 k=1 492 4 K 2pSIC
0%+ 5 2im1 Al N ek AT F

The expression in (1.29) enables the derivation of power tradeoff re-
gions for appropriate bit error rate targets.
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Figure 1.12.  SIC block diagram
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Figure 1.13. Power tradeoff regions for two users employing succesive interference
cancellation detector
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The power tradeoff regions are shown in Fig. 1.13 for a target bit-
error rate of 1073. We first notice an asymmetric performance for the
two users. This is an inherent property of the succesive interference
cancellation scheme: while the user decoded first is strongly affected by
the power of the interfering user (matched filter performance), the second
user might have performance close to the single user system. Note that,
in practical systems, the cancellation of the first user is not perfect, since
it is strongly affected by the bit error rate and by amplitude and phase
estimation errors. A more detailed discussion on this subject will follow
in Chapter 3.

Due to the asymmetry in BER performance, equal power control rep-
resents the worst case for systems using SIC receivers. Nevertheless,
SIC systems can benefit from unequal power control, such that users re-
ceived with higher powers can be detected first. Although this represents
a straightforward solution for the detection order, it completely neglects
the effect of correlations between users. A better solution is to detect
the users in the decreasing order of their energies at the output of the
matched filter receivers [Patel and Holtzman, 1994a]. A more detailed
discussion of the detection order for power controlled SIC receivers will
follow in Chapter 3. Comparing Figs. 1.13, 1.11 and 1.7, we can see that
SIC receivers (especially used in conjuction with unequal power control)
outperform the matched filter receiver but have worse performance than
that of the linear receivers. On the other hand, the reduction in com-
plexity is substantial compared with their linear conterparts, although
there is a penalty in increased detection delay. The implementation com-
plexity and the detection delay for the SIC receiver grow linearly with
the number of users. To reduce the detection delay, parallel cancellation
(PIC) can be implemented, which detects all the users in parallel, then
reconstructs the interference and subtracts it from the useful signal. A
comparison between SIC and PIC receivers can be found in [Patel and
Holtzman, 1994b).

To improve the performance of PIC, multiple stages can be imple-
mented, which successively refine the estimates of the interfering symbols
for progressively better cancellation. However, multistage PIC cannot
guarantee improvements in performance with an increase in the number
of stages, since incorrect decisions lead to further performance degrada-
tion. A solution to this problem has been proposed in [Divsalar et al.,
1998]: only a partial cancellation of the MAI is implemented at each
stage, with a weighting factor selected according to the level of confi-
dence for the estimators.

Although parallel interference cancellers have lower detection delay
than SIC receivers, they have a higher complexity than does SIC. How-
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ever, if parallelism is exploited, the time complexity of PIC can be greatly
reduced and the number of operations per processor become significantly
less than that for SIC.

On a final note, we mention that blind successive interference cancel-
lation receivers have been recently proposed [Samardzija et al., 2002],
which require only the knowledge of the desired users’ signature se-
quences, timing and power. As in the case of blind linear receivers,
the approach here uses the sample covariance matrix of the received sig-
nal vector. Based on a maximum mean energy (MME) criterion, dom-
inant interference components from the received signal are successively
removed in a blind manner.

More sophisticated iterative multiuser detectors can be developed by
exploiting structure in the symbol vector, improved either through prior
information or through error control coding. Such detectors can span the
performance gap between linear and optimal multiuser receivers, while
maintaining relatively low complexity [Poor, 2004].

2.3 Performance of Blind Receivers

In this section, we discuss the performance of blind and group-blind
multiuser receivers. Group-blind multiuser receivers are hybrid receivers
built using knowledge of the spreading sequences for only a subset of
the users in the system. A group-blind linear multiuser receiver zero-
forces the interference caused by the known users, and suppresses the
interference caused by the unknown ones using an MMSE criterion.

In what folows, we will summarize the performance analysis results
presented in [Zhang and Wang, 2002b] for networks using blind LMMSE
receivers. The analysis in [Zhang and Wang, 2002b] assumes that deter-
ministic codes are used, and the receivers are estimated from the received
signal samples. The number of received signal samples required for filter
estimation is denoted by T.

For blind receivers, an estimate of the filter vector Ci for an arbitrary
user k is obtained from the received signals {r[n]}I_; (r[n] is the n'* re-
ceived signal vector in a sequence of T samples used for estimation, with
the received vector being defined as in (1.26)), such that the estimation
error can be denoted as

ACk :6k — Cg, (130)

and it is characterized by a covariance matrix C..

The estimation error Acy, as well as its covariance matrix, depend
on the actual implementation of the blind receiver. In [Hgst-Madsen
and Wang, 2002] and [Zhang and Wang, 2002b], two different imple-
mentations are considered: the direct matrix inversion (DMI), and the
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subspace approach [Wang and Poor, 1998]. It can be shown that the
exact linear MMSE receiver can be computed as

¢, =Clsy (1.31)

= U,A; UL s, (1.32)

where C, is the covariance matrix of the received vector, and U,A;1UT
is the singular value decomposition of the covariance matrix C,. Based

n (1.31), the DMI method replaces the exact covariance matrix of the
received vector by

T
—~ 1 -
C,= T Zr{n]r[n} , (1.33)
n=1
such that )
¢, =C, sg. (1.34)

For the subspace method, the eigencomponents of the exact covaria-
tion matrix (Us and Aj) are replaced in (1.32) by the ones computed

using CT, U and As, such that
Cr = ﬁsl/is_lﬁfsk. (1.35)

If the number of samples used for filter estimation is large, it has
been shown that for a fixed number of users and fixed spreading gain,
the output SIR for the blind LMMSE receiver can be approximated as

P, T 2
SIRN (&) = ’“(Ck k) (1.36)
o+ FG+8e+E)
where
K
Go=_ PulcEse)? +o?[ekl?,
£=2
K+1
G = N ct sy,
9 K
<2 = —-N ZP£2(CkSg) CZ Sy,
=1
and N_K
C3 - _ 7-0—27
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with

B ck sk/a for DMI
"l oo skU A—I(As - O'QIKX}()~2U?SIC, for subspace.

More information is available for constructing the filter coefficients for
the group-blind receiver: the signature sequences of K users are assumed
to be known, while those of the remaining K — K users are unknown.
It is assumed that S has full column rank, where the columns of S are
the K known signature sequences. Denoting by &; the unit vectors in
IRE . it can be shown that the filter vector for an arbitrary user k can

bl

be computed as
- 1 AT s (2T ~—1~T\ "L
¢, =U,A, U.8 (STUSAS 0! s) & (1.37)
Using the following partitioning and notation,

Wy Py ]

T -1y17q —
sTU,A;TUTS = [ o

E=P ' R+PH)TPTIRTP

(where R = 87S, P = diag{P, ,.., Pk}, and ¥y has dimension K x
K), it was shown in [Hgst-Madsen and Wang, 2002] that the SIR. for the
group-blind receiver, can be approximated as

SIRN (&) = fk“{s’“)z (1.38)
o+ E(G+E+EG)
where
K-K
¢ = Z PR+3(CASI(4_]) +02’|Ck“2
=1
K-K,__
G = N [‘1’111}1,1
o K=K
5 P2 TR [Wa — U0 1 W o ]k
k=1
and N K
G = o* U BV ]
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3. Multiuser Detection for Next Generation
Wireless Networks

As we have previously discussed in Section 1, future generation wire-
less networks face the challenge of providing low cost, high data rate
transmission for a diverse population of users with a wide range of QoS
specifications. While the emerging third generation standards have been
successful in increasing the data transmission rate, this is still achieved
at the expense of increased energy consumption and high bandwidth de-
mands. One possible technique for increasing wireless network efficiency
and consequently for decreasing the total system cost for providing high
data rate services is to use multiuser receivers. So why have commercial
systems not yet adopted this powerful technique? The short answer is
implementation complexity. Furthermore, the performance advantages
of multiuser receivers are reduced by their sensitivity to imperfections
in channel tracking (tracking errors in frequency, phase, and timing).

As we will discuss in later chapters in the book, it has been shown
that, although both linear and interference cancelling receivers are af-
fected by imperfections in channel estimation, they still preserve their
performance advantages over the matched filter receiver. We will specif-
ically discuss in Chapter 3 the impact of imperfect channel estimation
on system capacity for systems using linear receivers and for those using
a combination of linear receivers and successive interference cancellation
schemes (groupwise successive interference cancellation). The impact
of imperfect amplitude and phase estimation for successive interference
cancellation receivers will also be examined in Chapter 3.

In terms of implementation complexity, successive interference cancel-
lation receivers are the least costly to implement but also have the dis-
advantage of long detection delays. For large numbers of users this may
be unacceptable, especially for delay sensitive applications. Although
linear receivers are more costly to implement, they are superior to inter-
ference cancellers in terms of combating the multiple access interference.
The tradeoffs between implementation costs and performance must be
balanced carefully when choosing a particular receiver over another.

Several studies have focussed on comparisons among these subop-
timal receivers, under various conditions. For example, comparisons
among SIC, partial PIC, decorrelating and LMMSE detectors are pre-
sented in [Buehrer et al., 1996] for various conditions such as perfect
power control (equal received powers for all users), single path Rayleigh
fading and twopath frequency selective Rayleigh fading. The results in
[Buehrer et al., 1996] show that, for perfect power control, the partial
PIC has the best performance, while the LMMSE and the decorrela-
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tor perform similarly. For Rayleigh fading channels, the linear receivers
have a performance advantage, and the performance gap increases for
the two-path channel. The performance of PIC and decorrelating re-
ceivers is also compared in [Juntti et al., 1997], where a BPSK (binary
phase-shift keying) CDMA system operating over a multipath Rayleigh
fading channel is considered, together with decision directed channel
estimation. Simulation results in this paper indicate that with low to
moderate signal-to-noise ratio, PIC outperforms the decorrelator. The
decorrelator is only superior to PIC under severe near-far scenarios at
high SNR.

Performance comparisons between SIC and PIC receivers have been
presented in [Buehrer et al., 1996] and [Patel and Holtzman, 1994b].
The general observation is that perfect power control with equal pow-
ers benefits PIC receivers while significantly reducing the performance
of SIC. As we will see later in this book, optimal SIC performance is
achieved using unequal power control. This result is also suggested by
the power-tradeoff regions of the SIC receiver shown in Section 2.

Due to their reduced implementation complexity, interference cancel-
lation receivers are currently preferred for implementation in cellular
wireless networks. Several companies, such as Fujitsu, NTT DoCoMo
and NEC, have built suboptimal reduced complexity multiuser receivers,
based on either successive interference cancellation, or parallel interfer-
ence cancellation [Ephremides et al., 2000]. Capacity improvements on
the order of 100% compared with systems using conventional receivers
have been reported, when no intercell interference is present. For the
multicell case, the capacity was improved 1.3 times compared with the
conventional receiver case.

The performance of PIC receivers can be improved by cascading sev-
eral detection stages as in [Xu et al., 2002], where a real-time prototype
VLSI implementation of the multistage PIC algorithm is presented.

Important progress has also been made in implementing both linear
multiuser detectors and interference cancellation receivers using software
radio technology based on a combination of DSP and FPGA (field pro-
grammable gate array) devices [Seskar and Mandayam, 1999a, Seskar
and Mandayam, 1999b]. Software radios can be used to provide recon-
figurable radio architectures for diverse QoS guarantees. A combination
of receiver flexibility and integrated resource management may offer the
widest range of QoS guarantees in wireless networks.

While DSP implementation is currently too power-inefficient to be

used in mobiles, rapid advances in DSP and CMOS (Complementary
Metal-Oxide Semiconductor) technologies will most likely make possible
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the use of multiuser receivers for mobile terminals in next generation
wireless networks.

4. Multi-Rate Multiuser Detection

One of the requirements for the next generation wireless networks is to
integrate a wide range of applications, requiring a correspondingly wide
range of transmission rates. To implement multirate communications in
CDMA systems, several strategies have been proposed, such as

1 Fixed processing gain, variable chip rate [Wu and Geraniotis, 1994],
[Wyrwas et al., 1992];

2 Fixed chip rate, variable spreading gain [Ottosson and Svensson,
1995], [Wu and Geraniotis, 1994], [Wyrwas et al., 1992];

3 Multicode (MC) [Chih-Lin and Gitlin, 1995] [Ottosson and Svensson,
1995);

4 Multi-modulation [Ottosson and Svensson, 1995].

The fixed processing gain, variable chip rate strategy introduces signif-
icant implementation complexity issues such as the need for synchroniza-
tion of the receiver to its particular code rate and the need for additional
frequency planning due to the unequal bandwidth spreading for differ-
ent users. For that reason, the other three strategies are preferred, with
the most popular choices being the fixed chip rate variable processing
gain scheme and the multicode scheme. The two preferred implementa-
tions have similar performance, with a slight advantage for the multicode
method [Ottosson and Svensson, 1995], [Yao et al., 2004], and outper-
form the multi-modulation scheme, which suffers from a severe near/far
problem [Ottosson and Svensson, 1995]. The multi-modulation access
strategy employs an M-ary QAM (quadrature amplitude modulation)
scheme and varies the modulation level, M to accommodate multiple
bit rates. Different modulation schemes require different transmission
powers; hence the occurrence of the near/far problem in such systems.

In the multicode access strategy, all users multiplex their information
symbols onto multiple low rate signature waveforms. One advantage of
this scheme is that all the users have the same processing gain, and thus
it may be easier to construct signature sequences with good crosscor-
relation properties. However, this access scheme yields a high peak-to-
average power ratio for high rate users, since the sum of many parallel
channels gives rise to large amplitude variations. As a consequence, the
multicode access strategy requires more costly power amplifiers.
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The fixed chip rate, variable spreading gain (VSG) scheme performs
similarly to the multicode method for both AWGN (additive white Gaus-
sian noise) and multipath fading channels. For very high rate users only
a small spreading gain is used, making this technique more susceptible
to intersymbol interference and sensitive to external interference from
neighboring cells [Ottosson and Svensson, 1995]. Three different detec-
tion strategies for variable spreading gain systems have been proposed:
the low rate detector (LRD), the high rate detector (HRD), and group-
wise successive interference cancellation (GSIC). Due to similarities be-
tween the LRD and HRD, we first focus our discussion on these two
schemes. To explain the conceptual differences between the LRD and
HRD, we consider a simple two-user system, in which one user transmits
with a high rate (user 2), equal to M times the rate of the lower rate user

(user 1). As a consequence, in user 1’s bit interval of width Tb(l), user 2

transmits A bits, each within a bit interval of width Tb(z) = Tb(l)/.M (see
Fig. 1.14). In the example shown in Fig. 1.14, user 1 transmits bit 1
while user 2 transmits a succession of bits: {1,1,—1,1}. These bits mod-
ulate a spreading sequence of length Ny = M N,. In the example from
Fig. 1.15, Ny =6, N; = 24 and M = 4. In the LRD case, the detector
operates at a lower bit rate and therefore, a decoding delay of M bits
is incurred for the high rate user. To implement an LRD, an equivalent
system is considered in which each high rate user is equivalent to M
virtual low rate users, which have expanded signature sequences. The
expanded signature sequences §g> for virtual user 4, i =1, 2,..., M, are
constructed by zero padding the original signature sequence for trans-
mitted bit 4, to form an extended signature sequence of length M N,.
For the considered example:

sV =11,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
5% =10,0,0,0,0,0,1,1,-1,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0]T;
5% =10,0,0,0,0,0,0,0,0,0,0,0,1,1,—1,1,1,—1,0,0,0,0,0,0]T;

3 =10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,~1,1, 1, -1].

Therefore, the equivalent LRD implementation is a simple multiuser
detector implementation for a system with K = K1+ M K> virtual users
(K1 is the number of low rate users and Kj is the number of high rate
users).

An alternate implementation of multirate multiuser detectors is the
HRD, which operates at the higher transmission rate, and therefore out-
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Figure 1.14. Bit transmission for multirate systems
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Figure 1.15. Virtual user equivalence in LRD multirate systems

puts bit decisions for the high rate users every Tb(2) time units. The
advantage of the HRD is that no bit delays are incurred for the high
rate users. As we will see momentarily, this comes at the expense of
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worse performance for the low rate users. As we can see from Fig. 1.16,
the effective signature sequence for the low rate user is reduced to a
truncated signature sequence which varies periodically, with period M.
For the considered example, the signature sequence of the low rate user
is split into four truncated signature sequences: s7 = [s{;,8{,,873,8] ],
with

sT,=1[1,1,1,1,1,-1];
sty =[-1,1,-1,1,-1,1];
sty =1[1,-1,1,-1,-1,-1];

sTy={1,-1,1,1,-1,-1].

To detect a low rate user, maximal ratio combining is used to combine
the outputs of the M subintervals.

*
tuncated signature sequence: 5y »
low rate user L e :

-

[T ] R N
L] UL

high rate user 2
hit 1 bit 2 bit 3 bit 4
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detection window:
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Figure 1.16. HRD for multirate systems

Peformance analyses of LRD and HRD as well as comparisons between
the two techniques have been reported for both the decorrelator [Saquib
et al., 1999] and the LMMSE [Ge and Ma, 1998] detectors.

As an alternate implementation, groupwise multiuser detection [Wijk
et al., 1995] has recently emerged as an appealing solution for multirate
multiuser detection. In GSIC systems, users are grouped according to
their transmission rates and are detected in groups, while the interfer-
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ence among groups is successively cancelled (see Fig. 1.17). In Fig.
1.17 a block diagram of GSIC is presented. Given the received signal
r(t), the users in the first detection group are detected and their bits are
estimated as Bl. Then, based on the detected bits and the estimated
amplitude and phase for all class 1 users, their signals are reconstructed
and subtracted from the received signal 7(t), such that, ideally, the class
1 users’ interference is completely cancelled. This process continues until
the last group of users is detected. A natural detection order has been
proposed in the literature [Wijting et al., 1999], which considers the de-
tection of the high rate users first. These high rate users are expected
to cause more interference due to high power requirements, and in turn,
to be less sensitive to the low power users’ interference.

Within a group, any type of detector can be implemented, although
the simplest, most common choice is to use matched filter receivers.
Performance comparisons with various other detectors (e.g. the decor-
relator, parallel interference cancellers (PIC) detectors) have been pre-
sented in [Juntti, 1998b] and [Juntti, 1998a] using simulations. More
recently, performance analysis for power controlled GSIC systems have
been presented in [Kim and Bambos, 2001] for a perfect cancellation sce-
nario, and in [Comaniciu and Poor, 2003b] for the imperfect cancellation
case. Further discussion regarding the characterization of the capacity
of systems using GSIC will follow in Chapter 3.

GSIC systems have the advantages of a relatively simple implemen-
tation and good performance, but they have been shown to be quite
sensitive to channel estimation errors and they also yield detection de-
lays that increase with an increase in the number of detection groups.

o

Detection group 1 b

n

Detection group 2 b,

+

&’ Detection group J '—‘ bAJ

Figure 1.17. Groupwise successive interference cancellation
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5. Information Theoretic Aspects: Spectral
Efficiency

While the discussion on the performance of multiuser detection thus
far has focussed on performance metrics such as the bit error rate and
other measures derived from it, a more fundamental approach is to con-
sider the performance from an information theoretic point of view. In
a CDMA system with K users using signature sequences of length N
chips, the fundamental figure of merit is the spectral efficiency, which
is defined as the total number of bits per chip that can be transmit-
ted reliably. Further, in a CDMA system, approximating its bandwidth
as the chip rate, the spectral efficiency can be essentially measured in
bits per second per hertz (bits/s/Hz). The most comprehensive treat-
ment of the performance of multiuser detectors in this context is due to
[Verdd and Shamai, 1999] where the focus is on systems that use random
spreading sequences. The reasoning for this particular choice of signa-
ture sequences is that it accurately models second and third generation
CDMA cellular systems that use pseudonoise sequences that span sev-
eral symbol intervals. Additionally, the spectral efficiency obtained by
averaging out the random signature sequences serves as a lower bound on
the optimal spectral efficiency achievable with deterministically chosen
signature sequences.

Before we summarize the results on the spectral efficiency of the var-
ious multiuser receivers, it is of interest to consider the following two
cases for the purposes of benchmarking the spectral efficiency perfor-
mance. First, consider a system where there is no spreading imposed and
the users are jointly detected in the presence of additive white Gaussian
noise with power spectral density N,/2. The maximal spectral efficiency
7™ in such a system can be shown to satisfy the following equation

Ey 1 B\ By
ns { 0 [ ns 77y Y
n <N0> 2log <1+2n <N0> No) , (1.39)

where the spectral efficiency is shown as an explicit function of the ratio
of the energy per bit E to N,. It can be verified that the solution to
the above equation is positive if and only if % > log,2 = —1.6dB.
If we now consider a system with spreading and further impose that
the system be synchronous with orthogonal signature waveforms of chip
length N being employed by the K users, then the spectral efficiency

7ot can be shown to be

orth { 26\ _ I ns [ TD
(%) =5 (%) i
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where it is necessary that K’ < N. When K = N it is seen that or-
thogonal multiple access achieves the same spectral efficiency as an un-
constrained multiple access system with no spreading for equal rate and
equal power users. It is also well known that when K > N, it is still
possible to find spreading codes that incur no loss in spectral efficiency
relative to the case of no spreading. These signature sequences are re-
ferred to as Welch-bound-equality (WBE) sequences [Rupf and Massey,
1994).

In the case of random spreading sequences, the spectral efficiency is
a random variable itself. Using an asymptotic (large N and K with
K/N fixed) analysis, [Verdd and Shamai, 1999] shows the convergence
of these random spectral efficiencies to deterministic quantities for the
cases of the following receivers: the matched filter receiver, the optimal
multiuser receiver, the decorrelator and the LMMSE receiver. Letting
8= 11\% denote the number of users per dimension and

N (e e AR

the spectral efficiencies in each of the above cases is given as follows.

s For the single-user matched filter receiver, the spectral efficiency,
n™f, converges almost surely as K — oo to

. B8 SNR
1 omf 2 o +— .
el 2 log <1 1+ SNR ﬁ) (1.41)

s For 8 > 0, the optimal spectral efficiency, n°P!, converges almost
surely as K — oo to

lim n°?t = gbgO+SNR—iwaRﬁ0 (1.42)

K-
1
+§bgG+SNRB—%FwNRBO

_ loge
8 SNR

F(SNR, )

» For 8 < 1, the spectral efficiency, n9°°, of the decorrelator converges
in the mean-square sense as K — 00 to

1m1ﬁ“:§kgu+SNRu—ﬁ» (1.43)

K—oo
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m For § > 0, the spectral efficiency, n™"*¢, of the LMMSE receiver
converges in the mean-square sense as K — oo to

lim 7™ = glog (1 + SNR — lef(SNRvﬁ)> (1.44)

K—oo

In the above expressions, SNR denotes the ratio of the energy per
transmitted N chips to the height of the noise power spectral density
N,/2, and in each case is given as SNR = 2N £y 21 with 7) being the appro-
priate achievable rate for each receiver. Flgure 1.18 shows the spectral
efficiencies of the various receivers under the large K analysis as a func-
tion of the ratio }N{ for % = 10dB. Tt is observed that at large values

of %, the optimal receiver does begin to approach the spectral efficiency
of the case of no spreading, but the linear multiuser receivers experience
a loss in spectral efficiency beyond an optimal value of % This leads
to the interesting question regarding the optimal trade-off between cod-
ing and spreading in a CDMA system. For the optimal receiver and the
matched filter reciever, it is seen that the spectral efficiency is maximized
by letting % — 00. Thus for these receivers, the coding-spreading trade-
off favors coding, and it is best to use these receivers in systems with
low rate error-correcting codes with minimal spreading (see also [Hui,
1984]). For large values of K, for the decorrelator, the optimal choice
of % ranges from 0 to 1 thereby suggesting a larger spreading factor in
contrast to the optimal and matched filter receivers. In Fig. 1.19, the
spectral efficiency with the optimal choice of K is shown for the various

receivers as a function of #L It is observed that for the decorrelator, the
spectral efficiency is hlgher than that of the matched filter receiver for

52 > 5.2dB and, unlike the matched filter, the spectral efficiency grows
Wlthout bound. For the case of the LMMSE receiver, for low values of
N , the optimal £ % is very large indicating that the spectral efficiency is
the same as that of the matched filter receiver. As pointed out in [Verdu
and Shamai, 1999], the optimal % reaches a value of 1 at % = 4dB and

a minimum value of 0.75 at % = 10dB.

For low % systems such as are encountered in typical cellular CDMA
settings, both the decorrelator and the LMMSE receiver provide com-
parable spectral efficiencies relative to the case of orthogonal signatures.
The spectral efficiencies of the above multiuser receivers has also been
considered for frequency flat fading channels in [Shamai and Verdu, 2001]
in conjunction with power control strategies based on variants of water-
pouring optimization. Significant gains in the spectral efficiencies can be
realized using optimal as well as suboptimal power control algorithms
for the matched filter, the LMMSE receiver and the optimal receiver,
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Figure 1.18. Spectral efficiencies for % = 10dB (reprinted with permission from
[Verdu and Shamai, 1999})

thereby motivating the need for integrating power control (cross-layer
design) with multiuser detection.

6. Multiuser Detection in Cross-Layer Design:
Introductory Remarks and Book Outline

This first chapter of the book has been dedicated to the review of var-
ious wireless network architectures, and to the presentation and com-
parison of different multiuser receivers. While the early research on
multiuser detection was focused on showing its superiority in adverse
near/far conditions, recently the focus has shifted to studying its perfor-
mance in power controlled wireless networks, and furthermore, to under-
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Figure 1.19. Spectral efficiency for optimal K/N (reprinted with permission from
[Verdi and Shamai, 1999])

standing its interactions with upper layer protocols in cross-layer design.
In Chapter 2 of the book, we briefly present several resource allocation
techniques for QoS provisioning in wireless networks and we discuss in
more detail their cross-layer interactions with multiuser receivers.

QoS guarantees for various applications can only be achieved if QoS
support is provided at all layers of the protocol stack, i.e., network adap-
tation to changes in the achieved QoS must be hierarchically imple-
mented across all layers. We have already noted that the interactions
between different layers can be modeled by an exchange of pertinent
information between layers. A certain level of abstraction for the per-
formance of various layers can greatly simplify cross-layer design. More-
over, such abstraction can make it easier to determine what information
should be exchanged between layers, and how this information should
be used by the adaptation protocols to optimize the overall network
performance. Chapter 3 of the book presents such an abstraction of
the physical layer, by discussing the user capacity of power controlled
wireless networks using multiuser receivers for several implementation
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scenarios and different network architectures, including cellular and ad
hoc networks. Based on the results in this chapter, integrated admission
control is also discussed in detail for both cellular and ad hoc networks
in Chapter 4.

Finally, general perspectives on integrated design in wireless networks
using multiuser receivers are presented in Chapter 5.



Chapter 2

INTEGRATED RADIO RESOURCE
ALLOCATION

1. Introduction to Radio Resource Allocation

A common characteristic of multiple access wireless communication
systems is that their capacity is limited by interference. As a result, ad-
mission of a new user into such a system results in more interference to
the existing users and a consequent degradation in their signal quality.
When the number of active users in the network reaches a certain value,
the quality of transmission can become unacceptably low due to inter-
ference, implying that additional users cannot be admitted immediately
if a certain Quality of Service (QoS) is required. Further, an inherent
characteristic of wireless channels is the variation encountered in space,
time and frequency due to mobility and to propagation effects encoun-
tered by radio waves. The propagation effects are usually classified into
two categories: small-scale fluctuations due to scattering, and large-scale
fluctuations due to shadowing. The traditional treatment of resource al-
location in wireless systems is based on signal quality measurements that
are averaged over time scales where small-scale fluctuations become in-
significant. As a result, most approaches to understanding and designing
resource allocation strategies take into consideration primarily path loss
models and occasionally slowly varying large-scale fading effects due to
shadowing.

Radio resource management is the collective term used to classify sys-
tem level strategies for managing the physical layer of wireless networks,
including transmitter power control, channel allocation and handoff. It
is an important component necessary to sustain any wireless network
of multiple users. One lesson of the cellular telephone success story is

o1
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that effective radio resource management is essential to promote system
quality and efficiency, and it will be increasingly important in enabling
the wireless data networks of the future. The simplest abstraction of
radio resource management is the need to enable the following five re-
quirements necessary for a wireless network:

s Power Control: power control is used to provide every user with a
transmitter power level necessary to achieve a certain required level of
signal quality at the receiver. The measure of signal quality depends
on the nature of the wireless application and also on the time scale
used in measuring such signal quality.

= Base Station Assignment (cellular networks): base station as-
signment is necessary to provide every mobile user with a receiver or
access point to which it can connect. The strategies used to enable
this are also often referred to as handoffs and may in general enable
connectivity for a given user to more than one access point.

» Routing (ad hoc networks): Routing protocols are implemented in
ad hoc networks in order to establish multi-hop transmission paths
between any source-destination pair of nodes.

s Channel Assignment: Channel assignment is used to provide every
user with a radio channel on which it can transmit. The channel
assigned to transmitter/receiver pairs may be defined by frequency or
time slots as in frequency-division multiple-access (FDMA) and time-
division multiple-access (TDMA) systems, respectively, or signature
sequences as in the case of CDMA systems.

s Admission Control: Admission control is necessary to regulate the
entry of new users into the network in order to preserve the QoS of
existing users and also to guarantee required signal quality for new
users.

In all the above cases, the commonly considered metrics of signal
quality include the signal-to-interference ratio (SIR), the bit-error rate
(BER) and the frame-error rate (FER). The performance of radio re-
source management strategies is usually characterized by measures such
as the probability of dropping existing users, the probability of blocking
new users, the delay in handoffs, the frequency of handoffs and the re-
sulting multiuser capacity of the wireless network under various strate-
gies. There have been considerable developments in the area of radio
resource management [Zander and Kim, 2001] focussing historically on
voice services and more recently on a variety of wireless data applica-
tions. These techniques range in character from static to dynamic as well
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as from centralized to distributed resource allocation. Earlier approaches
to radio resource allocation considered admission control, channel alloca-
tion, power control and handoffs [Zander, 1992b, Hong and Rappaport,
1986, Vijayan and Holtzman, 1993, Sivarajan et al., 1989] as problems
distinct from each other, while later efforts integrated these problems
with a unified perspective [Chuah et al., 1995]. More recent work on
resource allocation for wireless data has focussed on using approaches
from microeconomics and game theory to model and design efficient net-
works [Goodman and Mandayam, 2000, Saraydar et al., 2002, Meshkati
et al., 2003].

As we will see in the following sections of this chapter, multiuser re-
ceivers have a great impact on the design and performance of all resource
management techniques. For example, consider the soft handoff problem
for CDMA cellular networks. We know that soft handoff is necessary in
CDMA cellular systems primarily because of MAL If either SIC or MUD
is used in these networks the effect of MAI is reduced, and as a conse-
quence, the coverage (or range) of each cell is effectively increased, thus
reducing the requirements on soft-handoff. Additionally, when we inte-
grate SIC with power control, the cancellation order of users typically
suggests ordering of powers in each cell in such a manner that it reduces
other-cell interference. This again results in relaxing the requirements
for soft-handoff.

Specific examples of integration of different resource management
techniques with multiuser detection will be presented shortly. We start
our discussion with a brief introduction to power control.

2. Power Control

In a mobile communication network, users are subject to a time vary-
ing radio channel that results in fluctuations of their received signals. In
addition, a major problem in multiuser systems is the near/far effect, by
which a nearby interferer can disrupt the reception (at a fixed receiver)
of a highly attenuated desired signal. Both of these effects call for mobile
devices to control their transmitter powers so that the received signal
quality is acceptable. Additionally, the dynamic range and sensitivity of
electronic components such as amplifiers in transceiver circuits requires
power control to enable smooth transition in signal strengths for high
fidelity operation. Power control algorithms developed in the literature
usually require knowledge or estimates of some measure of signal quality
such as the SIR, received signal power, or the bit or frame error rate, and
sometimes knowledge of the channel gains. All of these quantities vary in
time due to the fluctuations inherent in mobile channels. Power control
algorithms come in many varieties, and may be classified according to
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the nature of implementation as centralized or distributed, synchronous
or asynchronous, iterative or non-iterative, and deterministic or stochas-
tic.

The earliest works on power control considered algorithms that were
non-iterative, synchronized and centralized [Aein, 1973, Nettleton and
Alavi, 1983, Zander, 1992b, Grandhi et al., 1993]. These works identi-
fied the power control problem as an eigenvalue problem for nonnegative
matrices. The power control problem is typically considered in a static
(snapshot) setting where the radio link of every mobile user to its des-
tination receiver (for cellular systems this may be the base station) is
completely characterized by a deterministic channel gain.

The simplest and most tractable measure of signal quality is the SIR.
For a cellular system, for any user k, the SIR ~;; at base station j is
given by

Prh;
Vi = K 2 50 (21)
ZZzl,Z#k pehej + a;
where hy; is the link gain from user & to base station j, p = (p1,p2, . - . ,pK)T

is the vector of transmitted powers of the K users in the system and 032. is
the background noise variance seen at receiver j. The QoS requirement
for acceptable signal reception is specified by means of a target SIR +*
as v > ~*. If it is required that all the K users be received at the base
station 7 with SIRs above the target, then the system of inequalities

Yej = v, Vk =1,..., K can be written as a matrix inequality:
(I-F)p=n, (2.2)
where I is the identity matrix and F is a normalized link gain matrix
such that
F 0, k=14, (2.3)
= * h .
M vl kAL
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Here, the vector n = 7*(%, coey Eﬁ‘—), and the inequality in (2.2) is taken
componentwise. The target SIR ~* is said to be feasible if there exists
a nonnegative power vector p = (p1,p2,... ,pK)T such that vz; > v~
for all k. Using the theory of nonnegative matrices, it can be shown
that the SIR target v* is achievable if the Perron-Frobenius (largest)
eigenvalue, er, of the matrix F is less than one. The eigenvalue er is a
measure of system load and resource consumption and it plays a central
role in radio resource management issues related to power control and
admission control.

For example, in the noiseless case (7 = 0) it can be shown that at all
links the maximum achievable target SIR ~* is equal to the reciprocal of
the dominant eigenvalue of the matrix F/v*. This fact forms the basis
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for SIR balancing power control algorithms {Zander, 1992b] that aim to
maximize the minimum SIR at all links in the system. Further, when
there is noise in the system, the above quantity represents an upper
bound on the maximum feasible balanced SIR, level.

Centralized power control schemes that solve for a power vector satis-
fying (2.2) require a centralized mechanism where the link gain matrix H
needs to be known. Distributed power control algorithms are more desir-
able in that they are more practical in a time varying environment and
also avoid the heavy signaling required for centralized control. Several
distributed power control algorithms that rely only on local measure-
ments for each mobile user have been proposed, including the works of
[Zander, 1992a, Foschini and Miljanic, 1993]. In the simplest abstraction
of such algorithms, the power update for user % is given as

g = o, (2.4)
(n)
ke

. ) is the correspond-
ing transmit power. The convergence of these algorithms in each specific
case can be shown using standard techniques from numerical linear alge-
bra under the assumption that the link gain matrix remains unchanged
during the iterations. A unified framework developed in [Yates, 1995]
views distributed power control algorithms as iterations of the form

p"Y = 1(pM), (2.5)

where 7"V is the SIR of user k at iteration n and p](cn

where the iterative mapping I(-) is referred to as the interference func-
tion. It has been shown that any power control algorithm of the form
(2.5) will converge to the unique feasible (if it exists) solution of (2.2)
as long as the interference function is standard, i.e., if it satisfies the
following properties:

w Positivity : I(p) > 0
= Monotonicity : p > p’ = I(p) > I(p)
m Scalability : Va > 1, al(p) > I{ap)

Distributed algorithms for power control have also been considered
from several other aspects such as integration with base station assign-
ment [Yates and Huang, 1995, Hanly, 1995], using BER as a metric
[Kumar et al., 1995] and integration with multiuser receivers [Kumar
and Holtzman, 1995, Ulukus and Yates, 1998a]. The topic of integrating
power control with multiuser receivers and with admission control will
be discussed at length in the remaining sections of this chapter.
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The above developments relate primarily to static power control where
the link gain matrix is fixed in a snapshot analysis. In reality, these
channel gains vary even though signal quality measurements are obtained
by averaging over several observations. Analysis of the dynamic behavior
of power control can be found in [Ulukus and Yates, 1998d] and [Zander
and Kim, 2001]. In practical systems such as 2G and 3G implemetations
of CDMA, extensive link information is not readily available for power
control updates, and the exchange between the base station and the
mobile is limited to qualititative and quantized information. Typically
this exchange is limited to 1-bit feedback commands from the receiver
to the transmitter to either increase or decrease the transmit power in
fixed increments. This scenario can be modelled as a stochastic non-
linear feedback control system and an analysis of the same is considered
in [Song et al., 2001].

More recent work on power control for wireless data has focussed on
using approaches from microeconomics in which the QoS of heteroge-
neous data users is captured by means of utility functions. Distributed
power control algorithms are then analyzed using the framework of game
theory [Goodman and Mandayam, 2000, Saraydar et al., 2002, MacKen-
zie and Wicker, 2001, Xiao et al., 2001, Meshkati et al., 2003]. The issue
of cross-layer design in the context of power control interactions with
radio link and transport layer data retransmission protocols has been
considered in [Song and Mandayam, 2001] using a hierarchical control
theoretic approach for modeling and analysis.

3. Integrated Power Control and Multiuser
Detection

As seen in the previous sections, both multiuser detection and power
control are primarily techniques that are used to combat the near/far
problem while implicitly allowing a graceful degradation of performance
with an increase in system load. While multiuser detection may be
viewed as a purely physical layer design strategy, power control is often
considered to be a system level control technique. In keeping with the
cross-layer design paradigm considered in this book, an interesting ques-
tion to ask is what performance gains may be had if these two techniques
are integrated. The first attempts at answering this question were con-
sidered in [Kumar and Holtzman, 1995] and independently in [Ulukus
and Yates, 1998a]. The basic premise of the integrated approach is to
consider a strategy that controls both the transmitter powers and re-
ceiver filters of the users in an iterative and distributed manner. Given
a QoS requirement specified in terms of a target received SIR for each
of the users, the receiver filters are first updated to suppress the inter-
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ference optimally, followed by assignment of transmitter powers to each
of the users in a manner that causes the least interference to others.

Here, we will present the basic principles for integrating power control
and multiuser receivers for a cellular setting, although the integration
technique can be applied to any wireless network with fixed access points.
Later in the book, we will discuss the integration of power control and
multiuser detection in ad hoc wireless networks.

Consider a multicell synchronous CDMA system with K users. Gen-
eralizing equation (1.26), the baseband received signal vector, ry € RY,
at the assigned base station of user £ can be written as

K
re =Y /i hrebese + m, (2.6)
=1

where s, € R” is the spreading signature sequence of user ¢, hyg is the
link gain of user ¢ to the assigned base station of user k and p, is the
transmit power of user £. n is a zero mean Gaussian random vector with
covariance matrix o?I. If a linear receiver filter ¢ is applied for user k
at its assigned base station, then the receiver filter output is given by

K
Yp = Ciry = Z VP hiebe(cEse) + cin, (2.7)
=1

where ckT,n is a zero mean Gaussian random variable with variance
azcgck. The corresponding SIR of user & can be written as

prhir(cisy)?

> hupe(cise)® + o (cfex)?
2k

SIRy = (2.8)

The simplest integrated power control and multiuser detection algorithm
seeks to find a set of optimal powers p = (p1,p2,...,pK)! and a set
of receive filters c1,co,...,cx such that each user k achieves its QoS
requirement of SIRy > v;, where v; is the required SIR target of user
k,k=1,2,..., K. Formally, the integrated power control and multiuser
detection problem can be stated as

K
min 2.9
i ;pk (2.9)
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subject to the constraints that for each user k =1,..., K:
. > hwapi(cse)® + o (el ex)
Vi 4k
Dk —= 2.10)
hkk (C?Sg)z (
e =2 0
Cr, € IRN

It can be seen that the solution to the above problem remains the same
if the set of constraints in (2.10) are rewritten as

> hwepe(ctse)® + o*(cier)

v .tk
> —% min 2.11
Pe = hik c €RY (CZWS/C)2 ( )
pr = 0

Observing that the optimization in (2.9) is over the power vector only
and that the inner optimization in (2.11) is over each user’s filter coef-
ficients for a fixed set of powers, a distributed and iterative integrated
power control and multiuser detection algorithm can be realized as fol-
lows.

For a fixed set of powers, solving the filter optimization in (2.11) for
each user, it was shown in [Ulukus and Yates, 1998a] that the filter for
user k is given by

VP S5 sk, (2.12)

cf=— Y5
k 1 +ka£Elzlsk

where the V x N matrix Xy is given by

3 = Zpghkgsgsg + 0’21. (2.13)
1#k

Note that the receiver filter ¢} is the same as the LMMSE receiver filter
derived in (1.27). Thus, iterating on the filter coefficients for a given set
of powers results in a receive filter vector that maximizes the SIR for
each user. In order to iterate on the powers, given the set of receivers,
the transmit power for each user should be chosen to meet the constraint
in (2.11) with equality. Thus, we can chose the set of powers to be

Z hupg(C%Sg)Q + UQ(Czck)

Vi . 0k
pr = —% min Jhk=1,... K. 2.14
Pk hik cx € RV (cgsk)Q ( )
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The power vector updates given a set of filter coefficients can now be

written as
p"tt =1(p™), (2.15)

where I(p) = [I;(p), ..., Ix(p)]T, with

Z hiepe(ex se)® + o’ cx)
% . Utk
—%  min , k
hkk ck €ERV (CkTS]C)2

=1,...,K.

(2.16)
The interference function I(p) given above is a standard interference
function in that it satisfies the conditions of positivity, monotonicity
and scalability outlined in Section 2. Thus the power control algorithm
in (2.14) can be shown to converge to a unique feasible (if it exists)
solution where p = I(p). The filter coefficients then converge to the
corresponding LMMSE receiver.

In terms of implementing the above iterative power control and mul-
tiuser detection algorithm, each user & implements a two-stage iteration
as follows. At iteration n+1, the LMMSE filter for user & is constructed
by using the power vector p(n) corresponding to the n'? iteration. Then,
the power vector is updated using the set of new filter coefficients ob-
tained at the (n + 1)t iteration. If the SIR targets are feasible, then
starting from any initial power vector and filter coefficients, this itera-
tive procedure will converge to the unique minimal power fixed point.
It may seem that the value of this algorithm is limited in practice since
the implementation for user k requires knowledge of all the other trans-
mitter powers and the link gains to obtain 23 and hence ¢f. However,
several simple estimation procedures have been proposed in [Ulukus and
Yates, 1998a] to estimate 3y, where user k requires only the knowledge
of its own link gain hgg. The availability of such link gain information is
in fact fairly standard in several practical systems where the downlink
information is used to infer the uplink gains and vice versa. An alterna-
tive approach to arrive at the same solution for integrated power control
and multiuser detection is to use measurements of the mean square error
in updating the filter coefficients [Kumar and Holtzman, 1995].

As an illustration of the performance gains obtained by integrating
power control with multiuser detection, we present results (adapted with
permission from [Ulukus and Yates, 1998a]) for a multicell CDMA sys-
tem with 25 base stations that are uniformly spaced over a square grid of
5km x 5km. K users each using a random signature sequence of length
N = 150 are independently and uniformly distributed on this grid. The
link gains in the system are chosen to be inversely proportional to the
fourth power of the distance between the transmitter and the receiver.

Li(p) =
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total transmitter power (log scale)
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Figure 2.1. Performance gains of integrated power control and multiuser detection
(reprinted with permission from [Ulukus and Yates, 1998a))

(This is a reasonable approximation to path loss in terrestrial cellular
systems.) Figure 2.1 shows the total transmit power in the uplink as a
function of the number of iterations of the integrated power control and
multiuser detection algorithm for the cases of K = 250,500, and 1000
users. The performance of the conventional matched filter receiver with



Integrated Radio Resource Allocation 61

power control is also shown for reference. Aside from power savings ob-
viously observed, it can also be seen that for the case of K = 1000 users,
the integrated approach converts an infeasible system (as evidenced by
the unbounded increase of the total power for the conventional matched
filter receiver) into a feasible one. Thus this approach increases system
capacity by allowing individual users to use higher SIR targets (and
corresponding data rates). Alternatively, the network capacity can be
increased by supporting more users at a fixed target SIR.

While the earliest work [Kumar and Holtzman, 1995, Ulukus and
Yates, 1998a] on integrating power control with multiuser detection de-
scribed above focussed primarily on linear multiuser receivers for single-
rate systems, there has been considerable progress in exploring various
aspects of such an integrated approach to power control. These range
from using reduced complexity [Wang et al., 2001] and pilot based es-
timation [Almutairi et al., 2000] procedures for various power control
parameters to multirate multiuser systems [Saquib et al., 2000, Kim
and Bambos, 2001] to integrating power control with non-linear inter-
ference suppression techniques [Shum and Cheng, 2000, Varanasi and
Das, 2002, Berggren and Slimane, 2002, Andrews and Meng, 2003, Shu
and Niu, 2003] and also evaluating such an integrated approach for the
forward link [Xiao and Honig, 2002].

An issue of paramount importance in all of the above approaches
is the performance of integrated power control algorithms in practice
where there is a lack of ideal knowledge of various user parameters. The
stochastic power control approach first broached in [Ulukus and Yates,
1998d] for conventional matched filters has been reconsidered notably
in the context of multiuser detection for multirate systems in [Saquib
et al., 2000] and for multicell systems in [Varanasi and Das, 2002]. The
integrated approach in asynchronous multirate systems with linear re-
ceivers is similar in philosophy to that described for single-rate systems
with the difference being the use of appropriate sliding windows and
appropriate sampling intervals to distinguish classes of users with dif-
ferent rates. The work in [Saquib et al., 2000] considers a family of
BER objectives and proposes stochastic algorithms for decorrelating re-
ceivers in which the feasibility of power control is shown to be related
to the condition that the users in the system have non-zero asymptotic
efficiencies. Linear and decision-feedback based non-linear multiuser de-
tectors are integrated with stochastic power control for use in a multicell
CDMA system in [Varanasi and Das, 2002], where for a feasible system,
the power control algorithms are shown to converge in the mean-square
sense to the minimal power solution.
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As we noted in Chapter 1, non-linear interference suppression schemes
such as successive interference cancellation [Patel and Holtzman, 1994a]
are being employed in integration with power control in emerging wire-
less data systems such as 3G and beyond. An interesting issue that
arises in this context is the desired ordering of users for cancellation in
the SIC scheme. If the total transmit power realized after power control
is used as a measure of performance, then in single-rate systems, under
identical cancellation errors, the detection order is not important. How-
ever, for multirate systems [Shum and Cheng, 2000] showed that under
perfect cancellation, ranking users in descending order of link gains min-
imizes the total transmission power regardless of the different target SIR
settings for users with different rates. This result also holds in certain
cases when the cancellation is imperfect [Agrawal et al., 2004]. Inte-
grated power control with groupwise serial multiuser detection, which is
typically employed in multirate systems using a variable spreading fac-
tor, has also been considered in [Kim and Bambos, 2001] where an active
link protection algorithm is used along with distributed power control.
Optimal power control for groupwise successive interference cancellation
systems with LMMSE receivers for in-group detection, and imperfect
interference cancellation among groups, has been recently proposed in
[Comaniciu and Poor, 2003b]. More recent approaches to the study and
design of integrated power control and multiuser detection involve for-
mulating and analyzing distributed algorithms for these in the setting
of a noncooperative game [Meshkati et al., 2003].

4. Access Control, Power Control and Multiuser
Detection

We have seen in the previous section that performance gains can be
achieved in a cellular system by joint receiver optimization and power
control. Another possible dimension to be added is to exploit also the
traffic burstiness! by appropriately designing the MAC. An integrated
access control, power control and multiuser optimization algorithm pro-
posed in [Comaniciu and Mandayam, 2002] adjusts to changes in the
interference levels and stucture by both optimizing the physical layer
(dynamically adjusting the transmission powers and the receiver filters)
and the MAC scheduling. In this algorithm, the MAC layer appropri-
ately schedules the delay insensitive traffic to take advantage of periods
of low real-time traffic activity, while physical layer adjustments lead

Tt is a well known fact that taking advantage of traffic burstiness can significantly improve
system capacity [Viterbi, 1995].
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to increased network capacity. In what follows, this algorithm will be
illustrated for a voice and data CDMA system, for which users’ QoS
requirements are specified in terms of SIR targets and delay constraints.
The MAC algorithm guarantees that the voice users’ delay requirements
are met, by always giving priority to the voice traffic. At the physical
layer, the target SIRs are guaranteed if the power control feasibility con-
dition holds, i.e., there exists a positive power vector assignment such
that all users can meet their target SIRs.

The design of such an integrated algorithm imposes several challenges:

m Real-time burst activity prediction:

Real-time changes in traffic activity require frequent updates of linear
multiuser receiver filter coefficients, thus significantly increasing the
implementation complexity. As a performance/complexity tradeoft,
an alternate implementation is considered in which only data users
employ multiuser detectors, while voice users (real-time users) employ
matched filters. In order to further decrease complexity, only the
signature sequences for the data users are considered for the update
of the data users’ filters, while the voice interference is approximated
as background noise. This implementation is termed a partial hybrid
system (H — MMSEW®), to differentiate it from the case in which
all users make use of multiuser receivers, termed uniform LMMSE
(U—-MMSE).

Real-time burst activity prediction is more difficult for the uniform
multiuser detector scenario since the access control needs exact knowl-
edge of all users’ signature sequences whenever any user changes ac-
tivity. For the partial hybrid system, only the change in the interfer-
ence power needs to be known for residual capacity updates, and thus
a simple prediction algorithm similar to one proposed in [Comaniciu
and Mandayam, 2000] can be used.

» Optimization of filter coefficients:

Every time the interference pattern changes, the multiuser receivers
must be re-optimized. Although not specifically addressed in [Co-
maniciu and Mandayam, 2002], complexity reduction at this step can
be achieved if decorrelating receivers are employed for the partial hy-
brid system, since the decorrelator filter coefficients do not depend
on the white noise level, and thus need not be updated when the
real-time interference changes.
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m Spectrally efficient data scheduling:
For both implementation scenarios (H—MMSE® and U~ MM SE),
data is scheduled according to the residual capacity determined from
the power control feasibility condition, in a round robin fashion.

While delay guarantees for both voice and data users are implemented
by the MAC scheduling procedure with the support of the admission
control?, the total capacity available for users is limited by the power
control feasiblity condition, which for a heterogeneous (voice and data)
network can be derived as follows.

Power Control Feasibility Condition for Heterogeneous Net-
works

Assuming a network of K, voice users transmitting at rate R, and Ky
data users transmitting at a rate Ry = MR,, where M > 1 is an inte-
ger, the general expression for the SIR achieved at the output of a linear
multiuser detector with coefficients ¢, for an arbitrary user & is given as:

SIR, =
prhx(cisy)? (2.17)
Ky+K) Ky ’ ’
> hipilers)? + D hupelcis o) + 0P (cfer)
G=Ky 1,5k =1

where K, represents the number of virtual data users in the system. For
the uniform LMMSE approach, K} = MKy, s, € {—=1/V/Ng, 0,1/ N}
with j = Ky +1,... K, + Kjj, and the receiver filter vector for the
kth data user is ¢; € RM. As above, ¢? denotes the background
noise level. For the partial hybrid LMMSE approach, K/, = Ky, sg» =
sj € {=1/V/Ng, 1/v/Ni}V4, and ¢, € RY¢. Since the partial hybrid
LMMSE system operates at the high rate MR,, we define {s}}(™),
m=1,2,...,M, to be the truncated voice signature sequence of length
Ny, corresponding to the current data bit interval m. For notational
simplicity, the superscript m will be suppressed in what follows, so
that s} € {=1/VNy, 1/ N WNe, ¢ = 1,...,K,, represents the trun-
cated voice signature sequence for the current data bit interval. In re-
ality, the truncated voice signature sequence differs from one data bit

2The admission control limits the number of users admitted in the system, such that, given
the scheduling algorithm, the delay requircments for all users can be met, while maintaining
the interference level within a tolerable range.
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interval to another, with a periodicity of M data bit intervals. For
the uniform LMMSE scenario, s; = s;. For both scenarios, #; and Ay,
j=K,+1,....Ky+Kgand £ =1,...,K,, represent the link gains for
data and voice, respectively.

Expression (2.17) can be particularized for voice users, so that the
filter coefficients represent the desired user’s spreading sequence. For
random spreading sequences with data users’ sequences normalized with
1/+/Ny and voice sequences normalized with 1/1/N,, the SIR for voice
user k can be expressed as

h
SIR, = kp’“K — . (2.18)
‘L)‘I' d
Z hipi+ 5 D upe+ o’
Vi=1,5#k é’ Ky+1

The SIR expression for the partial hybrid LMMSE case can be sim-
plified via the following proposition. The proof is omitted here and can
be found in [Comaniciu and Mandayam, 2002].

Proposition 2.1. Consider a partial hybrid multiuser detector CDMA
system, where data and voice users have different transmission rates, re-
flected in different spreading gains Ny and N, respectively (N, = M Ny ),
the data users employ multiuser receivers built using only knowledge of
data signature sequences, and the voice users use conventional receivers.

Then, for any data filter vector cx, any truncated voice signature
sequence {s}‘}m), { = 1,....K,, and any data bit decoding interval
m=1,...,M, we have

E { (c{{s;}w))?} = NLUE{(cfck)}.

As a consequence, the voice interference power for a given filter vector
cr € RY4, can be expressed as Niv(cfck)zlﬁ’l hepe. Hence, the SIR
expression for the k™ data user for the partial hybrid LMMSE system
case becomes

SIRy =

prhx(ctsg)?

o (2.19)

Z hip;(cis;)? ( Zhgpg-}—d) clep)

J=Ky+1j#k
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For both U = MMSE and H—MMSE®, the LMMSE filter coefficients
are computed as in [Verdd, 1998]:

o = —E syl (2.20)
1+ pesy, Ek s},
Ky+Kqg
where Ty, = 0 Igim+ Z hjpj g ] , Laim 1s the identity matrix of

dimension dim, with dim = N, x N,, for the uniform LMMSE case, and
dim = Ny x Ny for the partial hybrid LMMSE case, corresponding to
the length of the data users’ signature sequences (or extended signature
sequences for the uniform LMMSE case).

For the uniform LMMSE scenario 032 = o2, whereas for the partial
hybrid LMMSE approach 0.2 = o2 + 7 ZK“ hyp, where o2 is the
background noise level.

Denote the target SIR for a user k (voice or data) by 7;. Then, the
QoS requirements are SIRy > i, k =1 ... n,n=(K, + K}).

For the partial hybrid scenario, the system of equations expressing
the above conditions can be written as

’)’ 1 Kv Ky +Kd
-1
Jj=2 3 =K,+1
~ 1 Ky—1 Ky,+Ky
K
Pr, =7 |57 Z hipj + Z hjpj + o
hig, | No o 4,5 (2.21)

Y

P e (ensl) hspit

J=Ku+1,j#n
K,
+ (el e) 302 hape + 02(013%)]

Therefore, the power control feasibility condition is given by

(Idim - (A - B))p = UQU H (Idim - C)p = a_2u’ (222)
with
. T TK
B=d —— e, =2 cee, 2.
lag{va va 5 Nv y YKu+1s ’ ’)/n} ( 23)
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T_ |2 VK 'Y;Q.H(CIT(UHCKW—H) vi(cley)
' kg U hk, <CJT<@+1SKU+1)2hKU+1"." (cTsn)?hy
(2.24)
AT =a;, ag,..., ak, <1, an), (2.25)

where for z; ; = hy/h;, the rows of the matrix A can be written as

’yk[zlyk/Nm..., Zne/ Ny, fork——-l, ... Ky

a{ = (C_C;YSZ)_Z [11 (Ck Ck)Z1 ks Ny (Cgck)zlﬁ,kv (Cgsn)2zn,l(v+1,~~

oy (cfFsn)zup] , for k=K, +1,

(2.26)
The matrix C is similar to the matrix A except that it has zeros on the
main diagonal. To find a positive power vector solution, we note that the
matrix (Igim —C) is a nonnegative matrix, and by the Perron-Frobenius
theorem [Strang, 1988], it has exactly one positive eigenvalue \* for
which the corresponding eigenvector is positive (i.e., all components have
the same sign). Thus, the equalities A\p = (Igimy, — C)p = o?u hold for

A = A*. The condition A\* > 0 is equivalent to

Aman(C) < 1. (2.27)
The resulting power vector solution is given by
p = 0*(Igim — C) " tu. (2.28)

A similar result can be derived for the uniform LMMSE case. The
power control feasibility condition reduces to the same eigenvalue condi-
tion (2.27) for a different choice for the matrix C. If identical derivation
steps are applied, the system of equations that represents the SIR con-
ditions can be reduced to the same matrix equation (1.16), but with
different expressions for A, B and w:

B = diag {7, 75 - , 71}

ol = 7 g0 n
(cTs1)?h1’ (cfs0)?he’ 7 (cLsp)?hn
and
vy
al = T’” 5 [(cgsl)?zl,k, (c ZTSQ)QZM, - (c;‘fsn)2zn)k], (2.29)
(Cksk)
fork=1, ..., n.

Once we have derived the power control feasibility condition for dif-
ferent network scenarios, the integrated access control algorithm can be
summarized as follows.
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Integrated Access Control and Detection

At each time slot:
1 Predict the new voice interference structure and power.

2 Re-optimize the filter coefficients according to the new voice interfer-
ence structure (or interference power) using (2.20).

8 Recompute the Perron-Frobenius eigenvalue of the matriz C

4 If XN (C) < 1

Increment the number of data users granted access, and update the
powers and filter coefficients;

If power control is still feasible, schedule more data users for trans-
mission;
Else

Decrement the number of data users granted access and update pow-
ers and filter coefficients;

Repeat until power control is feasible.

A flowchart for the access control algorithm is presented in Fig. 2.2.
For implementing the access control, the base station (BS) maintains two
lists containing IDs for the active and inactive data users respectively.
At each time slot, when the voice activity changes may favor the increase
of the number of active data users, the data user selected for possible
transmission is the one that is at the head of the line in the inactive
data users list. Whenever the power control feasibility condition does
not hold, data users become successively inactive, starting with the head
of the line for the active list, until power control feasibility is satisfied.
The head of the line user is the oldest one in that particular list; when
a data user changes activity from inactive/active, its ID is attached at
the end of active/inactive list.

The implementation of the proposed access control algorithm differs
for the uplink and downlink, and also depends on the particular scenario.
Implementation issues are summarized in Table 2.1.

For both uplink and downlink scenarios, since the power update for all
users is given by (2.28) which depends on the filter coefficients and these
in turn depend on the choice of powers, the Perron-Frobenius eigenvalue
computation, as well as the power and filter updates must be done it-
eratively. Simulation results show a typically rapid convergence for the
iterative procedure (see Fig. 2.3).

The tradeoffs between the implementation complexity and perfor-
mance are illustrated in Figs. 2.4 and 2.5. Figure 2.4 illustrates the
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activity for slot » +1

At the end of time slot »:
predict changes in voice

!

69

pattem frar the voice users

Update filter coefficients and A _(C)
according to predicted interference

.

Select new data user Kto be
inactive in next slot;
update fllter coef. aNnd Amg(C)

Select new data user kfor
transmission in next slot;
update filker coef. and A, (C)

Figure 2.2.

Table 2.1.

Schedule user kfor
transmission
update lists in BS

Integrated access control and receiver adaptation flowchart

Implementation Issues Related to Uplink/Downlink

Filter updates

Feedback information
from base to mobile

Uniform
LMMSE
uplink

- both voice and data user filters
- requires knowledge of
active voice users’
signature sequences

change status bit for
data user that
changed activity

Uniform
LMMSE
downlink

-both voice and data user filters
- requires knowledge of
active voice users’
signature sequences

- signature sequences for voice
user that changed activity
- signature scquences for data
user that changed activity

Partial Hybrid
LMMSE
uplink

- only data user filters
- requires only knowledge
of voice interference power

change status bit for
data user that
changed activity

Partial Hybrid
LMMSE
downlink

- only data user filters
- requires only knowledge
of voice interference power

- total received voice power
- signature sequences for data
user that changed activity
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Figure 2.5, Simulated convergence of the Perron-Frobenius eigenvalue for the partial
hybrid LMMSE implementation

1200 T T
= H-MMSE® + access control |

H-MMSE® no access control |

1000f —~ U-MF + access control Ceed
U-MF no access controt e — oo
U~-MMSE + access control g

8001_~* ~ U-MMSE no access control . “

Total data throughput (Kb/s)->

600 "
. R o
200+ 2\//
E
0 ‘ ' ’
0 5 10 15 20 o |

Number of data users —>

Figure 2.4. Total data throughput capacity

total data throughput that can be accommodated by the system for
both LMMSE approaches and also for the uniform MF system. It can
be seen that employing access control improves the system capacity re-
gardless of the particular receiver structure. The best performance is
obtained, as expected, by the uniform LMMSE approach with access
control. However, it can be seen that the partial hybrid system, used in
conjunction with access control, has very good performance with sub-
stantial complexity reduction.
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Figure 2.5. Throughput per user for integrated access control and detection

The improved performance achieved by the access control comes with
a penalty in the data throughput per user, as seen in Fig. 2.5. This
throughput penalty arises as a consequence of the fact that in order to
increase the overall system utilization, more data users must be admitted
into the system so that the low real-time traffic activity can be fully
exploited. However, for the time slots in which the real-time traffic load
is high, only a few data users can be scheduled for transmission and
thus the average throughput per data user is reduced when the number
of admitted data users increases. In Fig. 2.5, the throughputs achieved
per data user are represented as multiples of the basic transmission rate
R (equal to the voice rate R,), and are seen to decrease as the number
of data users in the system increases.

All numerical values were obtained for N, = 128, Ny = 32, v, = 5,
vq = 10, Ts = 0.02s, 02 = 10717, and K, = 10. Power vector initial-
izations for received voice and data powers were 20 dB above the noise
floor, and perfect voice activity prediction was assumed for maximal gain
illustration. The matched filter performance was determined based on
results from [Comaniciu and Mandayam, 2000].

5. Traffic-Aided Multiuser Detection

In the previous section, we saw that access control can yield signif-
icant gains even for systems using multiuser detectors. The approach
in [Comaniciu and Mandayam, 2002] assumes that traffic activity can
be predicted, and this information can be used for data scheduling as
well as for receiver adaptation. While for the simplified partial hybrid
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Figure 2.6. Two stage multiuser detector (reprinted with permission from [Chen and
Tong, 2001})

approach, only the prediction of the aggregate interference power level is
required and an approach similar to that in [Comaniciu and Mandayam,
2000] can be used, the uniform multiuser detection receiver update re-
quires individual activity tracking for all users, which is more difficult to
achieve. In this section, we discuss the implementation of a traffic-aided
multiuser detection receiver, which dynamically updates the set of active
users used for constructing the multiuser detector. This implementation
has been proposed in [Chen and Tong, 2001] and it is based on a two
stage receiver, as seen in Fig. 2.6.

The second stage multiuser detector is simply a classical multiuser
detector when the knowledge of the set of active users is available. In
[Chen and Tong, 2001] a decorrelating receiver is considered for stage
two. To examine this problem, consider a system in which packets are
sent by multiple users in each of a succession of time slots. In order to
detect the set of users that are active in a given slot, an activity indicator
vk for the k' user is used for modeling the received signal v, in slot n:

K
yn(t) = Z’YSAv(lk)b%k)(t)sk + Zn(t)» t=1,...,71, (2'30)
k=1

where s, Ay(zk) and b%k) are respectively, the signature sequence, the
amplitude and the symbol for user k in time slot n, K is the total
number of users, T is the number of bits in a packet (i.e., the packet
length), and z,(t) is the background noise. The indicator ¥ is 1 if user
k is active in slot n, and 0 otherwise.

Given (2.30), the user identification problem becomes an estimation
problem for the binary random sequence v¥. Chen and Tong use a first
order approximation for the traffic burstiness, in which an individual
source is modeled as a two-state Markov chain with a state transition
matrix

(2.31)
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Figure 2.7. State tracker with matched filter receiver (reprinted with permission
from [Chen and Tong, 2001])

where pt¥) = P (75 = 1]v%¥_; =0), and ¢ =P (7773 =0ly*_, =1).

On defining the “hidden” state 'y, = (qf,}), ey 77(1]()), an optimal traf-
fic tracker can be developped by modeling the received vector using a
hidden Markov model (HMM). Since, the combined state variable Iy, is
a Markov sequence with state dimensionality 2%, the complexity grows
exponentially with the number of users and therefore suboptimal solu-
tions are preferable. The key to complexity reduction is the decoupling
of individual users’ state tracking. An important observation is that, al-
though performance loss is incurred by this suboptimal approach, good
performance can still be achieved since the required signal to noise ratio
for detection of the presence of a particular user is much less that the
one required for symbol detection for that user. The presence estimation
exploits the fact that ¥ remains constant for the entire duration of a
packet, which yields a form of diversity, and also the fact that traffic
prediction can improve the estimate of A/ﬁ .

A simple front end receiver based on matched filtering is proposed
in {Chen and Tong, 2001] (see Fig. 2.7). The simple matched filter is
selected for the first stage detector, due to its implementation simplicity,
and due to the fact that it does not impose any restrictions on the rank
of the cross-correlation matrix of all the spreading codes in the system.
In general, a full-rank condition might be too restrictive, since the total
number of users in the system is typically much higher than the number
of active users.

In what follows, we describe in more detail the implementation and
performance of the two-stage detector, using a matched filter front end
for activity detection. If the received signal is passed through a filter
matched to user &’s signal, the output is given by

® () = yE AP )+ S ppADbP () +20@), t=1,2,...,T,
el bk
(2.32)
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where I, is the set of all active users in time slot n, and pgs is the
correlation coefficient between the signature sequences of users k and
£. Assuming that z,(¢) is white and Gaussian with spectral height
o2, z8(1), 20 (2), ..., 2%)(T) is a sequence of independent zero mean
Gaussian random variables, each having variance o2.

In order to make the analysis tractable, a Gaussian approximation is
made for the second term in (2.32). An enhanced noise variable can be

defined as

My = > AP () + 20 1). (2.33)
{ely, b#k

Assuming zero-mean symbols, the variance of 2% (¢), is given by

ot=o+ Y pif[Agpf. (2.34)
teln t4k

The above defined variance cannot be computed due to the fact that
the active set of users is not known. Instead a predicted variance can be
defined, which takes advantage of the traffic statistics

Gi=c+ > (1-qY)p {Aﬁf)} S 0 [Aff)r
7 =157k Tno1 =0,k
(2.35)
Given the Gaussian approximation, and combining all the user-k matched
filter outputs in one packet into an observation vector w(k), v£ can be
estimated using the following hypothesis testing model:

. k) — ok
Hy:wl =2 N (2.36)
Hy : wit) = A0 1500,

In (2.36), b®) is the symbol vector of the packet for user k and z(* is
a Gaussian random vector with zero mean and covariance matrix O’,%I.
The above model implicitly assumes that the amplitude is constant for
all the symbols within a packet. To relax this condition and to deal
with the fact that the symbol vector is unknown, a uniformly most
powerful invariant (UMPI) test statistic is proposed. Although for the
given composite hypothesis testing problem, a uniformly most powerful
test does not exist, the invariance principle can be used to determine an
optimal UMPI test.

The first step is to determine whether or not the test problem is
invariant under a group of transformations. Once this invariant group of
transformations is obtained, a maximal invariant (MI) statistic is found,
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and the UMPI test is based on this statistic. For the given problem, the

test for v¥ can be abstracted as the following test concerning the mean

m of a Gaussian random vector w'¥), having covariance matrix equal to
2

oIk

lem::O

20 (2.37)

The above hypotheses can be shown to be invariant to any orthogonal
transformation, so that an MI statistic is given by

SIVTI = W<k)TW(k) (238)

This MI statistic has a chi-square distribution under hypothesis 1 and
noncentral chi-square distribution under hypothesis 2. Thus, a UMPI

test statistic is the maximum invariant itself: 7 (y,) = wh T (k)

Traffic predictability can improve the estimate for v*. In particular,
given that +* is a two-state Markov chain, T<k)(yn) satisfies an HMM,
and an HMM tracker can be used to determine v*, given 7 (y,) and
the state estimate from the previous slot. Chen and Tong compare the
performance of this traffic aided estimator with the one-shot UMPT test
which does not use any traflic information. The one-shot UMPI decision
is determined using a simple thresholding of the MI:

Hy
N (2.39)

>
Hy

T (y,)

In contrast, the HMM decision uses information about the past states,
as follows

Hy
Pf=1TW(y)... T®W () <

Pyl =0|T®) (y,) ... T®)(yy)) >
Hy

7. (2.40)

The thresholds n and 7 are selected so as to trade off the false alarm
probability and the probability of a miss. It is shown in [Chen and Tong,
2001] that, under the usual channel conditions, the penalty for a miss
detection is more severe than that for a false alarm, when a decorrelating
receiver is used in the second stage of the detector. It is also suggested
that an optimal threshold might be selected experimentally, due to the
high complexity of the analysis.
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Some numerical examples are presented in [Chen and Tong, 2001} to
illustrate the benefits of using traffic prediction in the receiver design.
Particularly, the focus is on comparing the performance of the one-shot
UMPI test with the HMM tracker which uses the previous state esti-
mates. For the numerical results, the state transition matrix is chosen

to be 0
G _ [ 0.99 0.01
@ [0.10 090 |° (241)

When a user is active, it will randomly generate a data packet with
BPSK modulation at the nt"* time slot. No power control is considered
and the amplitudes are fixed and equally spaced on a log scale in the
range of 20 dB. The packet length is assumed to be 128 bits with error
correcting capability for correcting up to 8 bit errors. The total number
of users is 20 and the spreading gain is 31. The signature sequences’
cross-correlation coefficients are in the range of -0.4839 to 0.3548 with a
bell-shaped histogram.

In Fig. 2.8 the detection performance for two approaches are com-
pared using receiver operating characteristic (ROC) curves. Unlike, the
traditional ROCs, these are “ergodic ROCs”, in the sense that the prob-
ability of false alarm and miss detection are computed by averaging over
time, instead of using a statistical average based on repeated sampling.
The performance of the hidden Markov model tracker is shown to be
superior to that of the one-shot approach, especially in the region of
interest (probability of detection close to 1).

In Fig. 2.9 the packet error probability is shown as a function of
the SNR, for several different approaches, including the HMM tracker,
the one-shot detector, the full model (in which no activity detection is
performed and all users are considered active at all times), the simple
matched filter receiver and the true model (perfect knowledge of activ-
ity is assumed). It can be seen that the HMM tracker has excellent
performance, very close to that resulting from use of the true model.

6. Medium Access Control for Multipacket
Reception Networks

Traditionally, in the layered model approach, the medium access con-
trol is designed without detailed knowledge of the underlying physical
layer, considering ouly simple collision models. In cross-layer design,
the performance of the physical layer influences the MAC design, and
in turn the access control may also have impact on the physical layer
performance, as we have already seen in the previous two sections.

In this section we review results on MAC protocols that exploit the
multipacket reception (MPR) capability of CDMA networks with mul-
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Figure 2.8. Ergodic receiver operating characteristics (ROCs) (reprinted with per-
mission from [Chen and Tong, 2001])
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Figure 2.9. Packet error probability (reprinted with permission from [Chen and
Tong, 2001])

tiuser receivers. In [Zhao and Tong, 2003, Zhao and Tong, 2004, Mergen
and Tong, 2001, Mergen and Tong, 2002] the physical layer performance
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is abstracted using an MPR matrix, which describes the MPR capability
of a node. For slotted networks, this MPR matrix was proposed in [Ghez
et al., 1988, Ghegz et al., 1989] and is defined as

Rl,O Rl,l
R = ngo Rgﬁl Rg’g s (2.42)

where R;; is the conditional probability that j packets are correctly
received, given that i packets are transmitted.

This MPR matrix is general enough to model the performance of dif-
ferent packet reception scenarios, ranging from the traditional collision
channel Ry, to the strongest MPR capability Ry, for which all trans-
mitted packets can be correctly received:

0 1 . .
Ro={ 1 0 0 ..]J. (2.43)
0 1 . ..
Ri={ 0 0 1 ..]J. (2.44)

The focus of [Zhao and Tong, 2003, Zhao and Tong, 2004, Mergen and
Tong, 2001, Mergen and Tong, 2002] is not on defining the MPR matrix
for given physical layer characteristics, but on building efficient MAC
protocols for a given MPR matrix model. The role of the MAC is to
regulate the transmission of packets such that the network throughput is
maximized. This can be achieved by allowing only an optimal subset of
users to access the channel. The difficulty comes from the fact that, while
the target number of users to access the channel can be computed, the
exact number of users having packets to transmit is a random variable.
The solution is to dynamically change the subset of active users, based on
throughput performance. While this is a general access problem studied
also for classical collision channels, even the simplest access protocol,
such as slotted ALOHA [Bertsekas and Gallager, 1992], will need to be
adapted to the MPR model [Ghez et al., 1988], and its performance will
certainly benefit from better physical layer reception capabilities.

More sophisticated MAC algorithms for general MPR, channels for cel-
lular networks were analyzed in [Zhao and Tong, 2003, Zhao and Tong,
2004]. In [Zhao and Tong, 2003] the Multi-Queue Service Room (MQSR)
protocol was proposed. In this protocol, the users that are allowed to ac-
cess the system are first admitted into the so-called service room. These
users will then be further scheduled for transmission dynamically, based
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Figure 2.10. Throughput comparisons (reprinted with permission from [Tong et al.,
2001))

on resource availability. In order to dynamically adjust the number of
transmitting users, the service room is further divided into the access
room and the waiting room. Only the users in the access room are ac-
tually allowed to transmit. If too many users are currently in the access
room, some of them are pushed back into the waiting room. Conversely,
more users can be allowed in the access room if more resource become
available. This protocol involves a high computational cost, resulting
from the need to update the joint distribution for all users’ states. A
simpler protocol, the dynamic queue protocol, is proposed in [Zhao and
Tong, 2004], and is based on splitting the transmission time into time
periods. The current time period is used for transmission of packets gen-
erated in the previous period. The optimal access set for a time period is
determined by minimizing the length of the transmission period, given
the probability that a user has a packet, and given the MPR matrix
model.

Performance comparisons for the above two protocols with the slotted
ALOHA protocol for channels with or wihout MPR capability, and with
a simple urn scheme for collision channels are presented in Fig. 2.10
for 10 users in the network and for probability p that a user generates
a packet within a given time slot interval. The urn protocol randomly
picks a subset of users to access the channel such that the probability
that there is one active user in the set is maximized.
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From Fig. 2.10, we can make several observations:

1 The MPR. capability greatly increases the network throughput, even
for simple MAC protocols such as slotted ALOHA;

2 Better MAC protocols are more efficient even for simple collision
channels; and

3 The network performance benefits from improvements at both the
physical layer and the MAC layer.

We also note that this approach permits a certain design separation
at different layers for cellular systems. The only information shared
between the layers is the MPR matrix.

Things become more complicated for ad hoc networks, since not all
the nodes have the same intended receiver and the access control per-
formance is strongly inter-related with the routing protocol as well. The
solution proposed in [Mergen and Tong, 2001, Mergen and Tong, 2002]
decomposes the network into independent clusters, each containing a
single receiver and its associated transmitters. This reduces the prob-
lem essentially to the cellular case, and therefore the previous MAC
results can be applied directly. An extension to the dynamic queue pro-
tocol for ad hoc networks was proposed in [Mergen and Tong, 2001].
Here, a protocol based on receiver controlled transmissions (RCTs) is
analyzed. Receiver controlled transmission is a combination of schedul-
ing and random access. In the scheduling part, disjoint receiver nodes
(not interfering with each other) and their neighborhoods are selected
for transmission in the next m slots. This is achieved by symmetrically
covering the network (a simple Manhattan network model is considered)
with various tilings. The nodes in the center of each tile are selected
as receivers and then the tilings are shifted so that the network goes
through (2r? + 2r + 1) states (r is the transmission radius), such that
all nodes can be selected as receiver nodes. The network stays in each
state for m slots. For each state, each receiver node chooses a subset of
transmitters in its neighborhood from which it will receive packets in the
next contention period. Since the number of transmitters holding pack-
ets is random, a dynamic queue protocol can be applied to this scenario
as well. The neighborhood dimension and the transmission period for a
given configuration (m) can be optimized as a function of the traffic load
in the network. It can be seen that, although a minimum transmission
radius is recommended for collisions channels, for a better MPR capabil-
ity of the nodes, a higher connectivity radius results in higher network
throughput. Another approach for access control in ad hoc networks
was proposed in [Mergen and Tong, 2002], and is based on randomly
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decomposing the network into clusters, based on an a priori selection
of seeds for all nodes, under the assumption that each node knows the
network topology up to two-hop distances and also all the seeds for up
to second order neighbors. After decomposing the network, perfect local
scheduling/polling is applied for managing the transmissions in a given
neighborhood.

A similar approach for designing MAC in ad hoc networks (using cell
splitting and MPR channel models) is presented in [Rodoplu and Meng,
2000]. Here it is also assumed that the transmission is time duplexed,
and therefore a transmission schedule must be assigned to every cell.
The network is divided into blocks, and each block is divided into cells.
The assigned duplex schedule is designed such that nodes that fall within
different cells can communicate with each other and with cells in adja-
cent blocks (all blocks have the same duplex schedule). It is assumed
that nodes in the same cell will use a separate range of channels, since
they would have the same duplex schedule. Signature sequence assign-
ment to improve the network performance is also discussed in [Rodoplu
and Meng, 2000]. Two types of interference may affect the network per-
formance: multiple access interference and co-channel interference. To
reduce the interference, the sequences are dynamically assigned as the
users enter different blocks and different cells within the blocks. Simi-
larly to the cellular concept, they are reused in blocks that are sufficiently
far apart.

It it shown in [Rodoplu and Meng, 2000] that the proposed MAC
protocol benefits from the MPR capability of multiuser detectors, and
outperforms the commonly used 1-persistent CSMA (carrier sense mul-
tiple access) MAC protocol.

7. Routing and Multiuser Detection in Ad Hoc
Networks

Routing in ad hoc networks has traditionally been studied as a means
of providing multi-hop connections from any source node to its selected
destination. On the other hand, more recent research treats routing as
a resource allocation problem and shows that it influences both the en-
ergy consumption in the network, and the interference level, and thus
strongly inter-relates with the performance of different protocols at dif-
ferent layers of the protocol stack. A very important QoS measure that
is particularly influenced by routing is energy consumption. The con-
cept of “energy aware routing” has recently been proposed for ad hoc
networks, and routing protocols that minimize the energy consumption
in the network have been developed. In this section, we focus on work
related to performance enhancement by integration of routing and mul-
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tiuser detection [Cai et al., 2002] and by integration of routing, multiuser
detection and power control [Comaniciu and Poor, 2004b).

In [Cai et al., 2002], the authors propose routing protocols that min-
imize the average transmission power in a synchronous network using
blind LMMSE receivers. The proposed routing protocols minimize a
routing cost, based on a link cost measure that represents the average
power consumption for that particular link. To derive this link cost mea-
sure, it is assumed that the nodes transmit with fixed powers and use
blind LMMSE receivers and error correcting codes. For data services
an ARQ (automatic repeat request) type protocol is also implemented,
which allows for retransmissions of incorrectly received packets.

Based on the observation that the output of a linear MMSE receiver
is well approximated by a Gaussian random variable [Poor and Verdd,
1997], the bit error rate of an LMMSE receiver can be approximately
expressed as

P, ~ Q(VSIR), (2.45)

where SIR is determined from (1.36), and Q(z) = \/-12—7 [ exp (—%) dt.

If data is organized into packets of length L, and a code capable of
correcting up to t errors per packet is used, the packet error probability
can be expressed as

P, = ZL: < f ) Pi(1 - PB)ti. (2.46)

i=t+1

Consequently, for a transmission power of Py for node &, and an av-
erage power consumption from transmitting a data packet of a Py (a is
a network parameter), the average transmission power consumption for
a transmission from & to a node j can be derived to be

Osz
P, = =B (2.47)
where P, is the error probability on the given link. We note that the
link costs (2.47) are usually not symmetric, i.e., the link cost for (k, j)
is generally different from the cost for (j, k).

For real time services, no retransmission is possible, and therefore the
links selected for transmission must be reliable links, i.e., if the required
BER is P,¢q, they must meet the condition

t

Q(VSIR) < Preg + I
The protocol proposed by [Cai et al., 2002], known as MATPR (min-
imum average transmission power routing), can be implemented to be

(2.48)
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either reactive or proactive. In proactive mode, each terminal main-
tains a routing table so that a route can be used immediately when a
packet needs to be forwarded. In reactive mode, a route discovery pro-
cess is initiated only on demand, and no routing table is maintained.
Faster forwarding is achieved for proactive schemes at the expense of
larger overhead for network updates. If the updates are infrequent, the
proactive schemes are recommended.

For data services, the main implementation of a proactive protocol
can be summarized as follows. Each terminal & should determine the
average SIR with which each of its neighbors can be received. Nodes are
considered to be neighbors if their received SIRs at the selected node
permit demodulation. The packet error rate of each link destined to & is
then determined, and this information will be broadcast periodically by
k. Also, each node computes link costs (2.47) for all outgoing links, and
a local link cost table is established to record the link costs. Periodically
all nodes must broadcast their local link cost table to the network, so
that every node can have an accurate global link cost table. Based on
these cost tables, minimum average transmission power routes can be
determined using Dijkstra’s algorithm [Bertsekas and Gallager, 1992].

A similar approach is used for real time services, except that only
reliable links are considered for the routing process, and a link cost is
defined as the transmission power for the transmitting node.

For reactive protocols, each node will determine the neighbors’ SIRs
and compute the packet error rate of each link destined to it as before,
but without broadcasting any information. When a node A attempts to
discover a route to B, A broadcasts a route request packet which includes
its transmission power and other routing information. If another node
receives the packet, it will compute the average transmission power cost
using its own transmission power, and also the packet error rate for the
corresponding link. Then, the computed link cost and its transmission
power are included in the packet and broadcast again. The process is
repeated until the route request packet arrives at the destination node,
which may receive multiple route request packets, and chooses the route
with minimum cost. The destination node will then send a route reply
packet to node A including the selected route list. When A receives
the reply packet the data communication can begin, using the selected
route.

Similarly, a reactive routing protocol can be implemented for real time
services with the amendment that all the links selected for the route must
be reliable. Thus, if another node receives a packet intended for route
discovery, it will include its own information in the packet, only if its
link to the source node is reliable.
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In [Cai et al., 2002], the performance of the MATPR protocol was
compared against the traditional shortest hop distance routing, and it
was shown that significant power consumption savings can be achieved
with MATPR.

While the results in [Cai et al., 2002] are obtained for fixed transmis-
sion powers for all nodes, in [Comaniciu and Poor, 2003c, Comaniciu and
Poor, 2004b] it is shown that significant energy gain can be obtained if
a joint power control and routing algorithm is implemented in networks
using linear receivers.

In [Comaniciu and Poor, 2003c, Comaniciu and Poor, 2004b], joint
power control, distributed power control and routing for CDMA ad hoc
networks is proposed. Each node k can adjust its transmission power
level (Pg), such that all transmissions originating at that node would
meet their target SIRs. An ad hoc network consisting of K nodes is
considered in the analysis. It is assumed that each node generates traffic
to be transmitted towards a randomly chosen destination node. If traffic
is relayed by a particular node, the transmissions for different sessions
at that node are time multiplexed.

In order to characterize the data QoS measure, a data transmission
model similar to that in [Goodman and Mandayam, 2000] is used. Data
is transmitted in packets of length L, and a packet received in error
is retransmitted until correctly received. Assuming that all the errors
can be detected and that a packet is not relayed to its next destination
node until it is correctly received from its previous transmission link, the
utility per link of an arbitrary terminal & can be measured in the num-
ber of information bits correctly received per Joule of energy expended
[Goodman and Mandayam, 2000],

mRP (k)
U, = IB, (2.49)
where 150(%) is the approximate probability of correct reception of a
packet [Goodman and Mandayam, 2000}, v, is the target SIR, m is the
number of information bits within a packet, R is the transmission rate
for terminal k£, R = W/N, and W is the system bandwidth. As before,
N is the spreading gain.

For a particular example of a Gaussian channel with frequency shift
keying (FSK) modulation, P,(vx) was selected in [Goodman and Man-
dayam, 2000] to be

Pu(w) = (1-2BER)Y, (2.50)

where BERy, = 0.5exp{—;/2). The approximation in (2.50) was used
instead of P.(vx) = (1 — BER;)™, which is the probability of correct
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reception, in order to avoid the degenerate solution for which maximum
utility is obtained for p = 0 (i.e., when the power is turned off). Based
on the definition in (2.50), the authors in [Goodman and Mandayam,
2000] showed that maximizing the utility leads to the following condition,
which gives an optimal target SIR ~*:

P, e(7") 5
SR o0, k=12, ..., K=yl By, 9.51
If we define the link QoS measure for terminal & to be the energy con-
sumed for the correct transmission of an information bit, El’f:

& 1

Eb :ﬁk,

(2.52)

then the energy per bit transmission for a particular link can be mini-
mized by using the least amount of power that ensures the target SIR
~* on that particular link.

Taking into account the above considerations, we express the link QoS
requirement for an arbitrary link (k,j), k,7 =1,2,..., K as

SIRy. ) > 7", Y(k,j) € Sy, (2.53)

where S is the set of active links for the current routing configuration
r, obtained using the routing protocol. The joint optimization problem
at the network level can then be formulated as

minimize 5K | P
subject to
SIR(k]) >, V(ka]) € Sg (254)
F >0
andr € 7T,

where T is the set of all possible routes. From (2.54) we can see that the
optimal power allocation depends on the current route selection. On the
other hand, for a given power allocation, efficient routing may reduce
the interference, thus further decreasing the required energy-per-bit.

Power Control Issues

In a cellular setting, a minimal power transmission solution is achieved
when all links achieve their target SIRs with equality. For an ad hoc net-
work, implementation complexity constraints restrict the power control
to adapt power levels for each node, and not for each active link. If mul-
tiple active transmission links start at node &k (Fig. 2.11), then the worst
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link must meet the target SIR with equality. If we denote the set of all
outgoing links from node k by 57, then the minimal power transmission
conditions become

min SIR; =~", vk=1,2,.., K. (2.55)

JES]

Figure 2.11.  Multiple transmissions from node k

The achievable SIR for an arbitrary active link (k,7) € S? can be
expressed as

e,y (cEsi)? Py

)

> by (cfs)? P+ o*(cfer)?
01,07k 0]

where A ;) is the link gain for link (k,j), c is the filter vector for

transmissions from node k, s; is the signature sequence for node k, and

o? is the background noise level. ¢ can be selected to be any linear

receiver, but for the numerical results discussed below, an LMMSE filter

is considered, which has the property of maximizing the SIR.
Condition (2.55) can then be expressed as

Ry (cTsg)? P
() 5t) = (2.57)

min
(h9)<5E - Te )2 2T \2
hie.gy(Ckse)"Fr + o(cp cp)
L=1,0£k L]
From (2.57), the powers can be selected as

. K

v T \2 20T \2
P, = max ————— hie jy(cise)“Pr+ 0*(cy, c)
(k)€ hie,j)(cf se)? ezl,%;,z;éj )
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= max Iy j(p), (2.58)
where p? = [P, P, ..., Px].

Similarly to the cellular case, it can easily be shown that I(kyj)(p) is
a standard interference function, and also T'(p) = max ;) Ik 5 (P) is a
standard interference function. Thus, for a feasible system, an iterative
power control algorithm based on

Pin+1)=T(px), k=1, 2,..., K, (2.59)

converges to a minimal power solution [Yates, 1995], for both synchronous
and asynchronous power updates. Since all the information required for
the power updates can be estimated locally, the power control algorithm
can be implemented distributively (see also [Ulukus and Yates, 1998a]).

Joint Power Control and Routing

The performance in this setting can be further improved by optimally
choosing the routes as well. Finding the optimal routes to minimize
the total transmission power over all possible configurations is an NP-
hard problem. In [Comaniciu and Poor, 2003¢], a suboptimal solution is
proposed, based on power control, iterative power control and routing,
which is shown to converge rapidly to a local minimum energy solution.
Dijkstra’s algorithm [Bertsekas and Gallager, 1992] with associated costs
for the links is used for finding minimal energy routes. The cost for an
arbitrary link (k, 5) is determined as

P, it SRy ;) > 4

Cost(k,j) = { ~ if SIR ) < 0" (2.60)

In order to estimate costs for links that are not currently active, the
achievable SIRs for all links must be estimated. This requires that each
node k updates a routing table which should contain the estimated link
gains toward all the other nodes, A ), 7 = 1,2,..., K, j # k, the trans-
mitted powers of all nodes, P;, 7 = 1,2,..., K, and the extended esti-
mated interference at all the other nodes, defined as

K
Ik, 5} = Z h(&j)(C{Sg)QPg-{-h(k’j)(C;{Skfpk, i=1,2,.. K, j#i.
0=1,04k 0]
(2.61)
Hence, the estimated SIR for link (k, 7) can be expressed as
o hop s T 2P
STRy, ;) = CHICL (2.62)

<1~(1€7j) - h(k,j)<cgsk)2pk> +0?(ct ck)
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We note that the achievable SIR on any potential link (currently active
or not) depends only on the current distribution of nodes, and on the
current power assignment, and does not depend on the current assigned
routes, and consequently does not change for new route assignments.
This property is a result of the fact that multiple sessions are time-
multiplexed at a node, and are all transmitted with the same power.

Initial distribution
of powers and routes

update routes

Figure 2.12.  Joint power control and routing algorithm

Starting from an initial distribution of powers and routes, and as-
suming that the system is feasible for the initial configuration, the joint
power control and routing algorithm is summarized in Fig. 2.12. It
was proved in {Comaniciu and Poor, 2004b] that the joint power control
and routing algorithm converges to a locally minimal transmitted power
solution. The achieved local minimum depends on the initial network
configuration chosen.

For initialization of the joint protocol, an algorithm similar to that
proposed in [Cai et al., 2002] is used: an initial distribution of powers
is selected, then routes are determined by assigning link costs equal
to the link utility (2.49), without imposing any SIR constraint. This
initialization permits us to quantify the energy improvements of the joint
optimization versus the initial starting point (with fixed and randomly
chosen powers).

As a final observation, we mention that the solution can be improved
with little increase in complexity if the algorithm is run several times
using different random power initializations, and the best energy solution
over all runs is determined.
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Simulation results illustrate the performance of the joint protocol for
an ad hoc network with 30 nodes, uniformly distributed over a square
area of 200 x 200 meters. The spreading gain was seletected to be N =
32, the optimal target SIR was determined to be v* ~ 12.5, and the
noise level was set to 02 = 10713, which corresponds approximately to
the thermal noise power for a bandwidth of 1 MHz. Random initial
transmission powers were selected, approximately 70 dB above the noise
floor.

Figure 2.13 shows the initial distribution of powers, as well as the
optimal power distribution after convergence.

%107 Initial distribution of powers
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(a)

%108 Final distribution of powers

Figure 2.13. Distribution of powers versus node number: (a) initially, (b) aftcr con-
vergence
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Figures 2.14 and 2.15 illustrate the performance of the proposed joint
optimization algorithm. In Fig. 2.14, it can be seen that the total trans-
mitted power in the network progressively decreases as the proposed

algorithm iteratively optimizes power and routes.

The values in Fig.

2.14 represent the total transmitted power obtained over a sequence of
iterations: [power control, routing, power control, routing, power con-

trol].

7.8

Total transmitted power

®

Iterations

Figure 2.14. Total transmission power

In Fig. 2.15, the achieved energy-per-bit is compared for the same
experiment with the initial energy value (without power control). It
can be seen that substantial improvements are achieved by the proposed
joint optimization algorithm (approximately one order of magnitude).

-3
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w107

initialization

25 3 35 4
Iterations

Figure 2.15. Total energy consumption
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As a final observation, we can see that, at the end of each iteration
pair [routing, power control], the energy is further minimized. However,
after new routes are selected, the powers are not yet optimized, so it
is possible that previous routes might have better energy-per-bit per-
formance (for the same power allocation, higher SIRs may improve the
energy consumption).

8. Admission Control: General Framework

The role of the admission control is to restrict the number of users in
the system so that QoS specifications for all users in the network can be
met. In general, network and physical layer QoS requirements may be
conflicting. For example, reducing the call blocking probabilities at the
network layer results in admitting more users into the network, which
consequently increases the level of interference in the system, and may
lead to a degradation in the achieved physical layer QoS (SIR and packet
access delay). Another way to reduce the call blocking probabilities,
while preserving the requested QoS for the physical layer, is to queue
incoming call requests, which will lead to an increased call connection
delay. All these tradeoffs must be considered carefully when designing
call admission control.

Counsidering a network with J classes of users, the interplay between
physical and network layer QoS constraints can be illustrated by using
an equivalent queueing system, as in Fig. 2.16 [Comaniciu and Poor,
2003a). The average connection delays and the blocking probabilities
can be derived using a queueing analysis. The service rate for each
queue is varied by the admission control such that physical layer QoS
requirements (SIR) can be met.

The classical approaches for admission control can be classified into
three categories: the complete sharing policy, the threshold policy, and
the optimal, state dependent, policy.

The complete sharing policy accepts new users into the network when-
ever the SIR condition can be met for all users, including the new call
requesting connection. No preference is given to different classes of users.
As a consequence, this policy cannot control the blocking probability or
average call connection delay. The obtained performance is simply char-
acterized by the statistical properties of the traffic. On the other hand,
a threshold policy may be designed to accommodate performance con-
straints for different classes of users. Consider, for example, a network
with two classes of users. Each incoming call request is buffered and
the queues are served according to the admission control strategy, which
means K servers are allocated for class 1, and K5 servers are allocated
for class 2. The network performance is given by the performance of two
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m) 1

Power Control
Feasibility

Figure 2.16. Equivalent queueing system (reprinted with permission from [Comani-
ciu and Poor, 2003a])

M/M/K;/B(i) queues, i = 1, 2, where B(4) is the buffer length for queue
i. Note that the threshold can be determined such that blocking prob-
abilities for one of the queues can be met. Also, blocking probabilities
and delays cannot be optimized independently in this admission policy,
since they are inter-related, and are determined by the performance of
the equivalent M/M/K;/B(i) queue.

The third option for admission control design is to change dynamically
the resource allocation for different classes of users depending on the
current state of the network. This state must be defined so as to reflect
the current QoS in the network. A new call is admitted depending on the
current state and on the next state to which the network will transition
when the call is admitted. This new state must meet QoS specifications
for all users. The admission control policy may be optimized with respect
to QoS specifications. More details on how this admission control policy
can be implemented in a network using multiuser receivers will follow in
Chapter 4.
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Regardless of which of these three strategies is used, the admission
control has the role of managing the available physical resources among
different classes of users, so that network QoS requirements can be met.
This pool of resources is given by the physical layer capacity, which is
determined such that SIR constraints for all users can be met. This
means that the first step in designing admission control is to understand
the physical layer performance. In the next chapter, we will discuss
the capacity of power controlled networks using multiuser receivers, and
then we will resume our discussion of admission control in Chapter 4.



Chapter 3

ASYMPTOTIC CAPACITY FOR
WIRELESS NETWORKS
WITH MULTIUSER RECEIVERS

Much of the previous work on multiuser detectors has focused on
their ability to combat the near/far effect by rejecting the worst case
interference. However, as we have seen in the previous chapter, the
performance of systems using multiuser receivers can be significantly
improved if used in conjunction with power control. Power control is
only one of the available resource management tools that provide flexible
QoS to different users in a network. QoS requirements can be supported
at all layers of the protocol stack, and the system capacity characterizes
all resources that are available to users, such that QoS specifications
are met. Characterizing the network capacity for a system that uses
multiuser receivers is difficult due to the fact that the SIR performance
of such systems depends on the particular realization of the signature
sequences for the users currently in the system. Moreover, the resource
allocation problems encountered at higher networking layers have close
interactions with the physical layer for such systems, and thus are more
difficult to understand.

In this context, a breakthrough network capacity analysis has been
proposed in [Tse and Hanly, 1999], for asymptotically large networks.
In this work it was shown that, in a large system (large number of users
and large number of degrees of freedom), a decoupling of the interference
is possible for various linear receivers, such as the decorrelator and the
LMMSE detector. Thus, each interferer can be characterized by a level
of effective interference, and will occupy a certain effective bandwidth.
Hence, the network capacity can be defined as a sum of these effective
bandwidths. The work in [Tse and Hanly, 1999] serves as a foundation
for characterizing the network performance for different types of net-
works (cellular and ad hoc networks), and has been extended to account

95
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for various scenarios {e.g. random and optimal sequences, multiple rate
transmission, and combinations of linear receivers with SIC). In this
chapter, we will describe this asymptotic approach to characterizing the
network capacity for power controlled systems using multiuser receivers.

1. Effective Bandwidths and Capacity for Linear
Receivers in Cellular Networks

1.1 General Formulation for Synchronous
Networks

We define the network user capacity to be the number of users that
can be supported for a given QoS requirement. The analysis in [T'se and
Hanly, 1999] assumes random, normalized spreading sequences, modeled

as

1
S = —(Sk1, k25 -+ -, SEN ), 3.1
k \/N( k1ySk2 kN) ( )

where the si;’s are iid (independently identically distributed) random
variables with zero means and unit variances. While in practice it is
common to choose s; € {—1,1}, the analysis in [Tse and Hanly, 1999]
allows for a more general model, with the mild restriction that E{sgj} <
co. Although the sequences are randomly chosen, it is assumed that they
can be acquired by the receiver in a timely manner, i.e., any changes in
the sequences occur much more slowly than the time scale required for
aquisition.

The system model is restricted to a single power-controlled, syn-
chronous cell, and the QoS measure is the achievable SIR. The capacity
analysis has also been extended to consider the asynchronous transmis-
sion case [Kiran and Tse, 2000], which we will also discuss later on in
this chapter.

We begin our discussion with the case of linear MMSE receivers; then
we will compare these results with analogous results for the decorrelator
and the matched filter receiver.

The main result in [Tse and Hanly, 1999] is based on properties of
the limiting eigenvalue distribution for large matrices with random ele-
ments. More specifically, it has been shown in [Silverstein and Bai, 1995]
that the empirical distribution of the eigenvalues for random matrices
converges to a nonrandom distribution, in the limit, as the matrix dimen-
sions increase without bound. As a consequence, even though for finite
systems the achievable SIR is a random variable depending on the cur-
rent assigned signature sequences (which are random), [Tse and Hanly,
1999] have shown that, in the limit, the SIR converges to a deterministic
value.
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This result is summarized in the following theorem given in [T'se and
Hanly, 1999], for a power controlled, single cell synchronous CDMA
system, in which an arbitrary user k is received with power Py.
Theorem 3.1. Let v, (N) be the random SIR of the LMMSE receiver
for user k, when the spreading gain in N. Then, yx(N) converges to vj
in probability as N — oo and o = -[—]\(, is fized, where vy}, is the unique
solution to the equation

P
* , 3.2
Tk = T aEp{I(P, Py} (3.2)
where PP
I(P,Py,~}) = ——Fb 3.3
( k ’Yk) j2) +P'y; ( )

Ep{.} denotes the expectation with respect to the limiting empirical dis-
tribution of the received powers.

Heuristically, Theorem 3.1 says that, for a large system, the achievable
SIR for user k can be expressed as

- L . (3.4)

o? + % Z I(Pjapkvp}/z)
J=t, j#i

The proof of Theorem 3.1 is based on applying random matrix results
to the covariance matrix of the interference, and can be found in [Tse
and Hanly, 1999].

Note that the above result should not be interpreted as stating that
the interference is additive accross users, since the term I(.) depends on
the SIR, which in turn depends on the interference created by all users in
the system. Nevertheless, Theorem 3.1 represents a powerful and simple
analytical tool for power controlled networks using LMMSE receivers. In
general, when only a verification is needed that user k meets its target
SIR (yr), it suffices to check that

Py
K
o2+ J—l'v Z I(Pj,Pk,’yT)
J=1, j#k
The term I(P;, Py, yr) can be interpreted as the effective interference of
user j on user k at a target SIR of vp.
Although no general explicit solution exists for the achievable SIR in
(3.5), for the special case of equal powers, a closed form solution is given
by

> 7. (3.5)
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V=l - + = (3.6)

l-—a)P 1 (1-a)?P? (1+a)P 1
+ +
202 2 404 202 4

The above closed form solution for the achievable SIR has also been
obtained independently in [Verdd and Shamai, 1997].

Based on (3.6), we can compare the asymptotic theoretical results for
equal power networks, with simulation results for finite networks (finite
number of users and finite spreading gain). In Fig. 3.1, we reproduce
simulation results from [Tse and Hanly, 1999].
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Figure 8.1. Finite network simulations (reprinted with permission from [Tse and
Hanly, 1999])

Note that, as the spreading gain increases, the spread around the the-
oretical values becomes narrower (= 1 — 2 dB). However, for fixed
processing gain, the spread is large for a large number of users in the
network. As a consequence, we can say that the asymptotic analysis is
a very good match for finite networks using large spreading gains and
carrying relatively light loads. In general, the asymptotic SIR value is a
very good approximation to the achievable mean SIR for finite networks,
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but its variance increases with decreasing spreading gain, which makes
high-rate networks more susceptible to modelling errors.

A more accurate performance analysis would be based on character-
izing the outage probability in the network (i.e., the probability that
the achieved SIR is below the target). In order to compute the outage
probability, we would need to know the actual SIR distribution at the
output of the receiver. This is often very difficult to characterize. In
[Honig and Veerakachen, 1996], the SIR distribution was characterized
using simulation results, while more recent work [Kim and Honig, 1998]
and [Tse and Zeitouni, 2000] assume a Gaussian distribution for the
output SIR, based on the central limit theorem, and derive closed form
expressions for the SIR variance. It was shown in [Tse and Zeitouni,
2000] that the standard deviation for the SIR distribution decreases as
1/v/N. The same result can be proved for the decorrelator. Simulation
results show very good agreement for the standard deviation approxi-
mation, but an overly pessimistic result for computing the 1% outage
probability, which implies that the Gaussian approximation is not very
accurate for predicting the tail of the SIR distribution. A more accurate
approximation, which assumes that the SIR has a beta distribution, has
been proposed independently for the decorrelator in [Tse and Zeitouni,
2000] and [Miiller et al., 1997]. The SIR for the decorrelator exhibits
similar convergence properties towards a deterministic constant as that
of the LMMSE receiver in the asymptotic case. Asymptotic convergence
properties for the decorrelator are summarized in the following theorem
from [Tse and Hanly, 1999]:

Theorem 3.2. Let v, (N) be the random SIR of the decorrelator receiver
for user k, when the spreading gain is N. Then, vi(N) converges to ~;
in probability as N — oo with o = % fized, where ; is given by
X Be(l-a) a <1,
Vi = { o

0 a>1. (3.7)

To better characterize the system performance, the notions of effec-
tive interference and effective bandwidth were introduced in [Hanly and
Tse, 1999]. The effective interference represents the effective level of in-
terference that can be ascribed to a user for its successful demodulation.
The effective bandwidth of user & (ex) can be defined such that all users
can meet their SIR requirements if and only if the sum of their effective
bandwidths is less than the spreading gain of the system, i.e.,

K

> e <N (3.8)

k=1
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By analyzing the SIR expression in (3.7) we note that the effective
interference seen by user k is equal to Py /~; and does not depend on the
interferers’ powers. In Fig. 3.2 a comparison of the effective interference
for the linear MMSE, the decorrelator and the matched filter receivers
is presented [Hanly and Tse, 1999, Tse and Hanly, 1999].
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Figure 3.2. Effective interference for linear receivers

From (3.7), it is straightforward to show that the SIR target 7 for
an arbitrary user k can be met if

a <1, (3.9)
and
’YWQ
P, > . (3.10)
l—«

Consequently, we can see from (3.8) and (3.9) that the effective band-
width of the decorrelator is limited to egqe. = 1, irrespective of the powers
of the interferers.

It can be conjectured that better capacity performance can be achieved
by the linear MMSE receiver, due to its property of maximizing the SIR.
In what follows, we confirm this conjecture by presenting capacity results
for power controlled networks using linear MMSE receivers. The main
result in [Tse and Hanly, 1999] for characterizing the network capacity
is based on SIR feasibility condition as follows.
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Theorem 3.3. The SIR requirements (v*) for all users in the network
can be satisfied when N — oc with o = -]I\% fized, if and only if

14+ ~*

i

Furthermore, the minimal power solution is achieved when the received
powers for all users are

(3.11)

* 2

. ol
Primse(7*) = —L- 2. (3.12)
1- oz-—7——1+7*

It can readily be seen from (3.8) and (3.11) that the effective bandwith
for the LMMSE receiver is epmmse = ﬂ:% For comparison purposes, we
also derive the effective bandwidth for the matched filter receiver to be
ems = 7". A comparison of the effective bandwidths for the three linear

receivers is given in Fig. 3.3.
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Figure 3.3. Effective bandwiths for linear receivers
General capacity results can be obtained for all three receivers when
J classes of users are present in the network, having different SIR re-

quirements, ~;, 7 = 1,..., J. The simplest case is the matched filter
receiver, for which the capacity region is given as

J
Zajpyj <1 (313)
i=1
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K
where o; = T+ If a maximum transmission power P, is imposed for an
arbitrary class i, the capacity region becomes

J ’\‘0'2
S oy < min {1— i } (3.14)
= 1<1<J Pi

For the decorrelator, (3.9) can be straightforwardly extended for the
multi-class case, with or without power constraints as

J
> oy <, (3.15)
=1
or
J ‘0'2
> a; < min [1 - %_—} , (3.16)
_ 1<i<J P;
J=1
respectively.

Finally, for the LMMSE receiver, for large networks, —-7- is constant,
and therefore the required received power for an arbltrary class i can be
specified as

2
. Vio .
Pmmse(z) = 7 ,i=1,2,..., J (3.17)
1=2 ajljm-

Consequently, the network capacity region becomes

J
i
a; <1, 3.18

and if power constraints are imposed:

J
Y ajm 2 < min {1— i } (3.19)
4y sy P;

1.2 Partial Hybrid Networks

The capacity advantage of multiuser receivers is evident from Figs.
3.2 and 3.3. However, this advantage comes at the price of higher imple-
mentation complexity. This disadvantage becomes more significant for
multimedia networks supporting bursty traffic, which requires frequent
filter coefficient updates, thus substantially increasing the implementa-
tion complexity. One possible approach to overcome this disadvantage is
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to use simple matched filter receivers for real-time streams that require
on-line filter adaptation and detection and are less sensitive to detection
errors (voice traffic is a good example). On the other hand, data users
would greatly benefit from using more advanced receivers. Further com-
plexity reduction can be achieved if the real-time users are perceived by
the data users’ receivers as background noise. This reduces the update
frequency for the data users’ receivers as well, and it is thus suitable for
simple access control design. Some advantages of the partial hybrid re-
ceivers have already been discussed in Chapter 2 in the context of MAC
design. Such mixed receivers networks (partial hybrid systems) are an-
alyzed in [Comaniciu, 2002], and the corresponding capacity results are
presented in the following paragraphs.

To evaluate the asymptotic capacity, the effects of data on voice per-
formance, as well as the effects of voice on data performance should be
determined. The bidimensional asymptotic capacity is obtained as a re-
sult of the intersection of two QoS requirements for the system: the SIR
target guarantee for voice and the SIR target guarantee for data.

It can be shown that, to meet their target SIRs (v} and v}, respec-
tively), all voice users and all data users must transmit with the equal
powers P, and Py, respectively. Denoting as « the ratio of the data
power to the voice users’ power, the following feasibility theorems for
voice and data, respectively, hold.

Theorem 3.4. In a« CDMA system in which voice users employ matched
filters and data users have LMMSE receivers, denoting o, = K, /N and
aqg = K4/N as the number of voice users and data users per dimension,
and vy and vy} as the target SIR requirements for voice and data, respec-
tively, a distribution of received powers exists such that the target SIRs
for oll voice users are met, if and only if

Yol + Ky < 1. (3.20)

Moreover, if (3.20) holds, the minimum voice power solution is given
by
Vo’
1 =5 [aw + ko]’

P —inf{P: SIR,(P) > v} = (3.21)

where SIR,, represents the achieved SIR for all voice users.

Theorem 3.5. In a CDMA system in which voice users employ matched
filters and data users employ LMMSE receivers, denoting o, = K,/N
and ag = K4/N as the number of voice users and data users per dimen-
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sion, and v and 7 as the target SIR requirements for voice and data,
respectively, a distribution of received powers exists such that the target
SIRs for all data users are met, if and only if:

1+ 1
g <~ <1 - ——'y;ozv> . (3.22)
Yd K

Moreover, if (5.22) holds, then the minimum voice power solution is
given by:

) 2. %
Py =inf{Q: SIRg > 7j} = ———— 14— (3.23)
L= 2vgow — W{i‘)a_d

where ST Ry represents the achieved SIR for oll data users.

The proof for Theorem 3.5 relies on the following lemma, which makes
the results in [Tse and Hanly, 1999] directly applicable.

Lemma 3.1. In a partial hybrid multiuser detector CDMA system,
where data users employ multiuser receivers built using only knowledge
of data signature sequences, and voice users have conventional receivers,
we have
E{(cTs)?} = ¥E{(cTc)} for any data filter vector ¢ and any voice sig-
nature sequence s. It follows from Lemma 3.1, that such a partial hy-
brid multiuser detector CDMA system is equivalent from the data users’
performance point of view to an all data system employing multiuser de-
tectors, and operating with an enhanced noise power X2 = (02 + %P)
Based on the power control feasibility conditions in Theorems 3.4 and
3.5, the hybrid system capacity expression is thus given in the following
theorem.

Theorem 3.6. The bidimensional capacity of a CDMA system having
voice users employing matched filter receivers and data users employing
partial LMMSE receivers, is expressed as

(@, Ad), yoice and data system
(o, q) = (;{1;,0 \ voice only system (3.24)
(O,vl) ’ data only system

1 * 1 1/1
Ad:min{——’_—ji <1——'y§av) ,— <—*—av)}.
Ya K K\ Ty

Recall that the transmission powers for voice and data users are con-
strained to satisfy P; = xF,. The system performance will depend on

where
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the particular value of x chosen. While both voice and data users can be
constrained to transmit with minimal powers, this will further decrease
the system capacity. If both voice and data users are transmitting with
the minimal powers necessary to achieve their target SIRs, and given the
constraint that their ratio is equal to &, the system capacity becomes:

(av, AY),  voice and data system
(o, q) = <l. 0) , voice only system (3.25)
0,1), data only system

where

11 * - 1 . 1 1/1
Aj}:min{ *¥<1—ﬁ7—2>, +*7d <1——7§av>,—<——*—av>}.
K% Vg Yd Yd K K\

Figures 3.4 (a) and (b) illustrate the system capacity for two cases:
without power constraints and with power constraints. It can be seen
from these examples that the capacity is reduced if power constraints
are enforced.

Similar capacity derivations can be applied for the partial hybrid
decorrelator case, based on Lemma 3.1 and the results of [Tse and Hanly,
1999]. Asymptotic capacity results for the partial hybrid decorrelator
are summarized in the following paragraphs.

Lemma 3.2. The random SIR performance of an arbitrary data user in
an integrated CDMA system in which real-time traffic employs matched
filters and data users employ partial decorrelator receivers, converges as
Ky — 00, Kg—= 00, L — o0, and a = (Ky + Kg)/N = oy + oy, to v}
given by

Py(1 - ag)

. 2
02+ o, P, (3.26)

Y=

Theorem 3.7. The bidimensional capacity of a CDMA system having
voice users employing matched filter receivers and data users employing
partial decorrelating receivers, is given by

(aws Ad)y  yoice and data system
(o, ) = (%,0 , voice only system (3.27)
(0:)1) , data only system

. 1, 1/1
Ad:mm{<1——’ydav>,—(—*—av>}.
K £\

where
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Figure 3.4. Bidimensional capacity for the H — MMSE® system: (a) No power
constraints (b) Minimum power transmission for both voice and data and power ratio
fixed to &

The system capacity is illustrated in Fig. 3.5 (a) for different values of
K.
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Figure 3.5, Bidimensional capacity for the H—D'®) system: (a) No power constraints
(b) Minimum power transmission for both voice and data and power ratio fixed to s

If data power constraints apply (both voice and data users are con-
strained to transmit with minimal powers), the system capacity becomes:

(aw, A7), voice and data system
(ay, q) = ('y_l*’ O) . voice only system (3.28)
(O’Ul) : data only system
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Figure 3.6. Partial hybrid LMMSE and decorrelator: simulations and asymptotic
analysis

where

. 1 | 1 171
Ay = min <1 - /{%) —_— <1 - —750@) = <—* - av>
Vd KYg (1 — %) K K\ T

We note that the performance of the partial hybrid systems depends
on the particular value of x chosen. For a higher capacity, & can be
optimized as a function of the number of voice users currently in the
system. In Fig. 3.6 we present asymptotic and simulation results to
illustrate this for the partial hybrid LMMSE and partial hybrid decor-
relator systems. Simulation results are shown for finite systems: finite
number of users and finite spreading gains. No power constraints are
enforced. A spreading gain of 128 is used for both voice and data users,
data SIR targets are 10 and voice SIR targets are 5. The simulation
results are averaged over different signature sequence realizations. The
ratio k of data power to voice power is determined from the simulations.
The corresponding values are marked on the figure for the LMMSE case
and for the decorrelator case, in the order LMMSE/decorrelator.

As a first observation, we can see that the analytical results are very
close to the simulation results even for moderate spreading sequence
lengths and low numbers of users in the system. As expected, the ob-
tained power ratios from simulations are chosen such that the data pow-
ers predominate if more voice users are present in the system, and are
lower than voice powers if there are only a few voice users in the sys-



Asymptotic capacity for wireless networks with multiuser receivers 109

tem. Another interesting observation is that the LMMSE detector and
the decorrelator perform identically for the «, range considered in the
simulations. This is due to the fact that, for both cases, the capacity
is restricted by the voice power control feasibility condition for the pa-
rameter values chosen for simulation. This suggests that, if the partial
hybrid decorrelator is used in conjunction with access control, it would
give performance similar to that of the partial hybrid LMMSE with
a further reduction in complexity: filter coefficients do not depend on
changes in the noise level, which includes changes in voice interference
power. Recall that a joint access control algorithm for networks using
multiuser receivers has been discussed in detail in the previous chapter.

1.3 Optimal Signature Sequences

While the previous sections have considered the case in which normal-
ized, random signature sequences are assigned to users, the performance
can potentially be improved by optimizing the signature sequence selec-
tion as well. The QoS feasibility condition translates now into finding
signature sequences and allocating transmission powers for all users, such
that they will meet their target SIRs. In [Viswanath et al., 1999], the
capacity of such networks is investigated for optimal signature sequences
for all users. Two linear receivers are compared: the linear MMSE re-
ceiver, and the matched filter receiver.

A surprising result is demonstrated in [Viswanath et al., 1999]: while
the LMMSE receiver performance is asymptotically unchanged for op-
timal sequences compared to the random assignment case, the matched
filter receiver performs as well as the LMMSE receiver when optimal
signature sequences are assigned. This result holds for the case when
there are no power constraints. If power constraints are imposed, then
optimal signature assignment, corresponding to WBE (Welch-bound-
equality) sequences, gives better performance for both linear receivers
considered. Since the unconstrained power solution for both LMMSE
and matched filters using WBE sequences gives identical capacity as the
LMMSE with random sequences case, in what follows we present capac-
ity results and minimum power solutions for LMMSE and matched filter
(MF) receivers when power constraints are imposed [Viswanath et al.,
1999].

Theorem 3.8. K users, having an SIR requirement of v and using WBE
sequences, are admissible in o network using linear MMSE or matched
filter receivers if and only if

1 o?
K<N<1+—-:>, 3.29
ST F (3.29)
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where N is the spreading gain, and P, is the maximal transmitted power
constraint.

The minimal power solution corresponds to equal received powers for
all users:

Nyo? —
———— <P, k=1,... K 3.30
N1+~ -Ky~° (3:30)
For the power constrained case, again denoting @ = K/N, we can
compare the capacity in (3.29), with an equivalent formula for the case
of linear MMSE receivers using random sequences (derived in Section 1

of this chapter): oo < 1+ % —(1+4+7) 6%2. It can easily be seen that the
network with WBE sequences performs better than this random signa-
ture case, even for the LMMSE receiver, i.e., the use of WBE sequences
leads to a smaller power requirement for the same network capacity, or
conversely, for equal received powers it achieves a higher capacity.
More results for multi-class networks, a downlink analysis, as well as

detailed derivations and proofs can be found in [Viswanath et al., 1999].

Pk = -Popt -

1.4  Multipath Fading Channels

In a fast multipath fading environment, it is very likely that channel
estimates will not be perfect, and channel estimation errors will limit
the capacity gains obtained using multiuser detectors. A problem that
occurs in multipath channels is that the effective signature sequence of
a user is characterized by both energy and direction. As a consequence,
if the channel is not perfectly known, the effective signature sequence is
not known, and it cannot be cancelled by the multiuser receiver. While
solutions to this problem have been proposed in the literature, in which
the received signature sequence is estimated, and then the receiver is
built for the effective set of signature sequences in the network, the
estimation errors will clearly adversely impact the performance. Several
questions arise naturally in connection with such solutions. In particular,
if some measure of the channel estimation errors is available, how can
this be factored into the receiver design? And, how would such networks
perform?

Answers to these questions for asymptotically large networks using
linear multiuser receivers are provided in [Evans and Tse, 2000]. In
[Evans and Tse, 2000] the authors assume that any arbitrary user &’s
channel is not perfectly known; instead, it is statistically characterized
by first and second order moments: the average link gain |hy|?, and the
estimation error variance f,% This paper shows that the variance {,% does
not depend on the path index if the average power per path is the same
for all paths. The model assumes that intersymbol interference can be
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neglected (i.e., the delay spread of the channel is small compared to the
symbol duration), and that the time delays of the multipath components
are known, so that only the path gains need to be estimated.

An implicit assumption for the channel model is that it is conditioned
on the slower fading (free space path loss and shadow fading), which does
not affect the received power over the time scales of interest. The ef-
fects of slow fading are absorbed into the attenuated transmitted power,
defined for user k as

Po=2zPl k=1,2,..., K, (3.31)

where 2, is the path loss due to free space loss and shadow fading, Py, is
the transmitted power and K is the total number of users in the system.
For simplicity, the analysis in [Evans and Tse, 2000] assumes that the
average received powers of all paths of each user are the same, so that
for user k, the average received power of path [ (p,;) can be expressed

as _
Pry = % = Pyl (3.32)

where P, is the total average received power for user k, and L is the total
number of paths.

The analysis in [Evans and Tse, 2000] is decoupled into two parts ac-
cording to the receiver structure, which comprises a data estimator and
a channel estimator. The data estimator is a “one-shot” linear receiver
which accounts only for information from previously detected symbols
through the coupling with the channel estimator. The channel estima-
tor uses training symbols and it is shown that it can provide accurate
estimates, as long as its window length is at least equal to the number
of resolvable paths.

The main result for an LMMSE network is summarized as follows.

Theorem 3.9. The SIR achieved by an arbitrary user (say the k" one)
in an LMMSE network can be expressed as

P> fy hualva  Pilhul*ya

SIRy = = , 3.33
1+ Pp&lvg 1+ Pi&2vq (3.33)
where 7y s the unique fized point in (0, 00) that satisfies
1 & o
n=|t+ts Y L& k| (3.34)
J=Lj#k

with I3 (L,va, &, |hjl*) = (L = 1)I(& Py, va) + I(P(& + [hj*), va), and
I(p,v) = 1—_5)—%. Here, for j =1, 2, ..., K, |h;[* is the equivalent
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estimated average power gain for user j, defined as
L
Ryl? =Y hal?, (3.35)
=1

where ijl is the average link gain for the I** path of user j.

It can be seen that the overall effect of an interferer is equivalent to
L — 1 users with power 5,3Pk and one with power Zlel |2 Py + {%Pk.
When the channel is known perfectly, the interferer looks like a single in-
terferer with power Py Zlel |hi1|?, whereas as the uncertainty increases,
the interferer is perceived as L separate interferers each having reduced
power p/L. However, because of the convexity of the effective inter-
ference function, L low power interferers are more damaging than one
high power interferer (with the same total power), and this is the reason
why significant performance degradation occurs if channel estimates are
poor.

Similar capacity results are derived for the post-combining decorrelat-
ing receiver. This decorrelating receiver has two stages: the first stage
decorrelates the users by considering each path as a separate interferer;
the second stage combines the L outputs from different paths for the
same user. For this receiver, we have the following.

Theorem 3.10. The SIR for the decorrelator converges almost surely
to the value

PSS E g Py |hy|?
1Ry = Peiz| 2kll va _ Pelhal e (3.36)
14+ Pu&iva 1+ Peéiva
where )
_l—aL |, o
=3 —{a-+aLl_OL}, (3.37)

and |hi|? is from (3.35).

For comparisons purposes, results for networks using matched filter
receivers are also presented in [Evans and Tse, 2000].
Theorem 3.11. The SIR for the matched filter receiver converges al-
most surely to the value

Pl v Pl

SIR, = = , 3.38

1+ Pe&iva 1+ Pu&iva (3.38)
where vq is the unique fized point in (0,00) that satisfies
1 & -

vg = |o%+ ¥ > DLy P | (3.39)

=15k
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with If (L, &, h;*) = (L — DI(E Fy) + (P& + [hy]*)), and I(p) = p.
Again, |h;|* is defined as in (3.35).

As we mentioned previously, the above capacity results rely on average
link gain estimates, and on knowledge of channel estimation errors. In
[Evans and Tse, 2000], channel estimation is treated as a standard Gaus-
sian estimation problem, in which an LMMSE estimate of the channel
is obtained conditioned on knowledge of the transmitted symbols over
a training period. The length of the training period is characterixed by
the length of the estimation window 7, and characterizes the estimation
accuracy. It is shown in [Evans and Tse, 2000] that in the asymptotic
case, the channel estimation variance converges almost surely to a de-
terministic constant £2.

Theorem 3.12. The minimum square error for any path converges al-
most surely as N — oo (with o = K/N fized) to the constant
o7
= —= 3.40
¢ 14+PLy. ( )

where v, satisfies the equation

2 oL &
ve= |2+ ——L— (3.41)
T 1+ 2y
From (3.41), 7. can be written in closed form as
T—alL L (r —aL)? r+a L2]Y?
=— —— L — . 42
Te=Tor T T [ or Ve T (842)

We note that, as the window length increases, the contribution of the
interference to 7. becomes negligible and, in the limit, the variance is
well approximated by /7. Again, we note that as L increases, while 7
and the total power per user remain constant, each interferer is perceived
by the channel estimator as L low power interferers, and its performance
approaches the performance of a matched filter estimator. This corre-
sponds to the case in which only a priori statistics of the channel are
available.

While Theorem 3.12 was initially proved for long sequences (the sig-
nature sequences are independently chosen from symbol to symbol), the
proof was extended to the case of repeated sequences as well, under an
additional mild assumption that the data symbols have zero mean. Also,
it was shown that Theorem 3.12 holds even if the signature sequences
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along the different paths are shifted replicas of the same transmitted
sequence.

The final result in [Evans and Tse, 2000] couples the results obtained
for data and channel estimation in the following theorem for the linear
MMSE receiver, when |az|? is the received power of path [ of user k,
and the variance of the received power ¢? is given by Theorem 3.12.

Theorem 3.13. The SIR achieved by an arbitrary user (say the kth
one) in an LMMSE network can be expressed as:

SIR; = Z_l__lm. (3.43)
1 +fk’7d

where vq 1s the unique fized point in (0,00) that satisfies

2 52 o P !
:J+aL—1————+a/ d} . (344
Yd ( )Hggw o 1+mdg(p) p (3.44)

_#2
where g(p) = m(p — &%) Lexp <—*§fg—2>, p> &

It follows from Theorem 3.13 that the SIR is aymptotically chi-square
distributed with 2L degrees of freedom.

A similar coupling result is obtained for the matched filter receiver,
which shows that the SIR for the matched filter converges (in probabil-
ity) to

SIR, = M, (3.45)
1+ f}ﬂ’d
with v = [02 + ap] L.

No coupling result is required for the decorrelator, since its SIR is
independent of the interferers’ received powers.

The above results from [Evans and Tse, 2000] characterize the SIR
performance for linear receivers (LMMSE detector, decorrelator and
matched filter) in a multipath fading environment for arbitrary trans-
mission powers for the users. The questions to be answered next are:
how can the network capacity be optimized with respect to power se-
lection? And what would be the capacity of a multi-class network with
different SIR target requirements? These questions were addressed in
[Comaniciu and Poor, 2003a] for an LMMSE network with J classes of
users, having different target SIRs, 'y;, i=1,2,...,J.

The asymptotic network capacity can be derived building upon the
results presented in Theorem 3.9 for the SIR convergence. We can see
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that as K, N — oo, v4 approaches a constant for all users. If we impose
the condition that the achieved SIR should be 7 for all class j users,
j =1, 2, ..., J {(ie., the minimal power solution is achieved with
equality), and using the assumption that all users in the same class have
the same channel characteristics, it follows from (3.33) that all users in
the same class j must have equal attenuated transmitted powers:

% _ g
va(lhsP = E45)  valhyP(1—v77)
where v; = sz/|h]~|2.
Since the powers must be positive, and vy > 0, an immediate result

is that (1 — uﬂj) > 0, and the achievable SIR target must satisfy the
condition

Pj = i=1,2 ..., J, (3.46)

Vi<l j=1,2,..., J (3.47)

Denoting Q; = lﬁjPPj for the class j of users, and imposing that the
SIR bound should hold with equality (SIR; = v;), from (3.33) we can
express 7y as

_ G j=
Qi1 —vy; v 7))

Thus, for multiple classes of users, the following equality holds:

Ny = 1, 2,..., J (3.48)

v 7]
Vi, 5 =1, 2, A 3.49
G-~ Gy =) T = (3.49)

Expressing the SIR condition for an arbitrary user in class 1, it can
be shown that the feasibility condition can be expressed as

o ‘I‘Z% Dvyyi (1 =117)@1/vi +

. L\ -1
Ql(l + I/j)zé'l—:ml-

T—v;~* *
+ - SR, S— (3.50)
1+ (1 + ) s Q11 — )
Vi
Hence, the transmitting power for user 1 can be determined as
pro & , 3.51
1 2 ‘hl ‘2 ( )
where
o’
@ = (3.52)

(1 —v19y) <1 - ijl Qy [(L Dvjvg + —ll(_;%@})
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Since the transmitted power must be positive, and considering (3.47) and
(3.52), the system capacity is restricted by the power control feasibility
condition: ;
1+ vy
> oy [(L—Dyvs + L——J—) <1 (3.53)
— 1++47
j=1 J
The flat fading case can be obtained by setting L = 1.
The above derivation can be summarized via the following theorem.

Theorem 3.14. In an asymptotically large CDMA system (K; — oo,
N — oo with a; = K;/N constant, j = 1,...,J) operating with lin-
ear MMSE receivers in o multipath fading environment with imperfect
channel estimation, a minimal received power solution exists such that
all users achieve their target SIRs, if and only if

. 1
’Yj < V—j’
and
v (L+v)

L - Dyt +

J
> o
i=1

The minimal transmit power solution for a user in class i is given by

pt = v o’

1

vi(1+v;5)

L= Du~*
( 1)1/]7] + 1+'Y;

J
alhP1—vy)) (1= ey
j=1

For comparison purposes, the capacity regions for a multi-class net-
work using matched filter receivers are also derived in [Comaniciu and
Poor, 2003a], and are specified as a power control feasibility condition:

Lvj+1
Sy 1, (3.54)
1—- Vjej

The minimum transmit power solution for a user in class ¢ is shown to
be

t 1 61'0"2

i 1712 J Lyj+1Y"

2| hil (1 - ve;) (1 = Di=1, i Q€ 1—uje]>
In Fig. 3.7 we present asymptotic physical layer capacity comparisons

for LMMSE and matched filter systems, for a network with two classes
of users when L = {1, 3, 5}, and the target SIRs are v* = 5 for both
classes.
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Figure 3.7. Asymptotic capacity comparisons: MF versus LMMSE (reprinted with
permission from [Comaniciu and Poor, 2003a))

1.5 Multi-Rate Networks

As we discussed in Section 4 of Chapter 1, QoS support for heteroge-
neous services requires the implementation of multi-rate receivers. While
in Chapter 1 we have focused on describing possible implementations for
multi-rate multiuser receivers (LRD - low rate detector, HRD - high rate
detector, and GSIC - groupwise successive interference cancellation de-
tector), in this chapter we discuss the asymptotic capacity for power
controlled networks using these architectures. This section’s material is
based mainly on research described in [Yao et al., 2004] for multicode and
various LRD and HRD scenarios, and in [Comaniciu and Poor, 2003b],
which analyzes the capacity of multi-rate GSIC networks. Asymptotic
capacity comparisons among different multi-rate schemes have also been
presented in [Biglieri et al., 2000].

For simplicity, the analysis in [Yao et al., 2004] considers a two class
network: low rate and high rate, where the rate for the high rate class
is M times higher than the rate of the low rate class. It is assumed that
all the spreading sequences are randomly chosen and normalized.

We start our discussion with the simplest case, the multicode imple-
mentation, for which a high rate users is equivalent to M low rate virtual
users, and therefore the results in [Tse and Hanly, 1999] can be straight-
forwardly applied. It can thus be proven that the SIR of any user & in
the network converges to a deterministic value

Py

- . (3.55
% = T o [ 1P Fonr)dEe(p) + Men J1(P, Pevtydbi(p) %)
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where the interference function I(.) is defined as in (3.3), Fy(p) and
Fi(p) are the distributions of powers for the two classes of users (low,
rate and high rate, respectively), and ap = %g and oy = % represent
the number of users per dimension for the low rate class and the high
rate class, respectively.

We note that (3.55) holds for both high rate and low rate users, since
there is no difference between a physical and a virtual low rate user. If
the SIR requirements for the two classes of users are v}, and v/ for the
high and low rate class, respectively, and if maximal power constraints
P, and P; are imposed, the user capacity for multicode implementation
is given by the following SIR feasibility condition:

* * 2% 2 %
ap N +May Th <1-max { 7 , U_’yh} . (3.56)
1+ 1+ P, Py

Similar results for the multicode asymptotic capacity region have been
derived independently in [Guo and Aazhang, 1999, Guo, 1999]. The
multicode implementation is very simple, but has the disadvantage of
a high peak to average power ratio requirement. An alternate solution
for multi-rate implementation is to use variable spreading gain. As we
have seen in Chapter 1, two different implementations may be consid-
ered: the LRD (low rate detector) and the HRD (high rate detector).
For each scenario, two different signature sequence assignments for the
low rate users are discussed in [Yao et al., 2004]: general random codes
(GRCs), and random repetition codes (RRCs). The random repetition
codes are obtained by repeating the first subinterval sequence (corre-
sponding to a high rate code interval) for each of the subsequent M —1
intervals (the low rate sequence can be considered as a concatenation of
M subintervals, each of length equal to the spreading length of high rate
users). The random repetition codes have the advantage that they can
reduce the implementational complexity and they facilitate the adaptive
implementation for the LMMSE receiver.

We summarize the main results of [Yao et al., 2004] as follows.

Theorem 3.15. (HGRC): For an asymptotically large network, using
high rate detectors and general random codes, the output SIR for any
user k (low rate or high rate) can be approzimated by the solution to the
equation

Py

0? +ao [ I (P Pi, 3t ) dRo(p) + Man [ I(P, o, 7})dF (p)
(3.57)

Y =

and the user capacity region of this network is
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* 2, % 2. %
Vi o Tk

+ Mo <1-—-—max<{ —-,—= 5. 3.58
Lo /M 77 ey {<ﬂ Pk} (359

Theorem 3.16. (LGRC): For an asymptotically large network, using
low rate detectors and general random codes, the output SIR for any
user k (low rate or high rate) can be approzimated by the solution to the
equation

. B
T 52 g [1 (P, Py i) dFo(p) + Moy | 1(P, Py, v2)dFi(p)’
(3.59)
and the user capacity region of this network is
,\/* '7* O.Z,Y* 027*
ap—t— + Ma; —= §1—max{ _l,_—k}. (3.60)
R A B P, Py

Theorem 3.17. (HRRC): For an asymptotically large network, using
high rate detectors and random repetition codes, the output SIR for any
high rate user k can be approzimated by the solution to the equation

* Pk
Y = - )
o2+ap [1 (P, Py, %’%) dFy(p) + May [ I(P, Py, ~;)dFi(p)
(3.61)
while the output SIR for a low rate user is approrimated by
7* _ Pk
"7 024 Mag [ I(P, Py, ;) dFo(p) + Mo [ I(P, Py, v;)dFi(p)
(3.62)

The network capacity region is determined by

1 Mo 0
Qp, & EACY , & o - ~
{( 0 1) ( 0 1)’,72 1+7;‘L $(aO,Q1) +’Y;Lk/]\/[

g

o2 2
> max{_-—, _——}} , (3.63)
Py Piz(ag, a1)

1 1
where Aag,a1) = {(ao,al)lao <14 =, g <14 —,
i T

]\/[Oél % (274} ")/,*
maX{O,——L_Ma —71} (——L_Ma —Mﬁ <1y,

W (RS
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and where x(ag, a1) 18 the solution to the equation

1 _ Moy _ Mo
oo Ly

T = .
1 _ap _ Mo
Th x+1‘§‘ LR
Theorem 3.18. (LRRC) : For an asymptotically large network, using
low rate detectors and random repetition codes, the output SIR for any
high rate user k can be approzimated by the solution to the equation

v ea (M =)y + Mye 172
Ve = ] 3 (364)

M+ (M = 1)vk1 + Ve,2

where yp1 and Y2 are defined as

By
TRl =05 Mag [ I(P, Py, v,1) dFo(p) + Moy [ I(P, Py, yi1)dF1(p)’
(3.65)

and P
i (3.66)

Th2 =52 + May [ I(P, Py, yk2)dFi(p)

The output SIR for a low rate user k can expressed as a solution to

Py

= - :
MU o2 Mag [T (P, Py,v;) dFo(p) + Moy [ I(P, Py, ~;)dFi(p)
(3.67)

The above results give insights into the performance tradeoffs for dif-
ferent implementations for multi-rate systems. Asymptotically, the mul-
ticode network and the LRD for general random codes have the best
performance. The bidimensional user capacities for all of the scenarios
discussed above are compared in Fig. 3.8 for both the asymptotic limit
and finite networks (simulation results).

For these numerical results, the spreading gains were selected to be
128 and 32, respectively, and the target SIRs were chosen to be 1 dB
for the low rate users and 10 dB for the high rate users. The power
constraints impose that the SNR can be no more than 20 dB (resp. 30
dB) for low (resp. high) rate users. For finite networks, we can see
that the MC and LGRC still have the highest capacity, but it is lower
than the expected limit. This is due to the fluctuations in the achieved
output SIR as discussed also in [Tse and Hanly, 1999]. Determining
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Figure 8.8. Capacity for multi-rate networks (reprinted with permission from [Yao
et al., 2004])

the simulated capacity requires that all the users must meet their target
SIRs. This calls for capacity overprovisioning, so that we expect that the
simulated capacity will always be smaller than the theoretical asymptotic
prediction. Following the results in [Tse and Zeitouni, 2000], the SIR
can be characterized as being asymptotically Gaussian with mean ~+*
and variance & % + E{s};} = 3(v*)?|, where s1; is the first
P

element of user’s 1 signature sequence. It was verified in [Yao et al., 2004]
that, by applying the above distribution for the SIR in an MC system in
which all users have the same target SIR, very good agreement between
the simulation results and the adjusted theoretical limit is obtained.
This phenomenon supports the assumption that the mismatch between
asymptotic results and finite networks simulations is due to the fact
that the output SIR is a random variable for finite networks, rather
than being a deterministic constant.

As we have discussed in Chapter 1, an alternative to LRD and HRD
implementations is the GSIC system, in which the users are detected in
groups, and the interference between groups is cancelled using successive
interference cancellation.
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In [Comaniciu and Poor, 2003b}, optimal power allocation and capac-
ity regions of LMMSE GSIC systems in multipath fading channels are.
derived for asymptotically large systems. The analysis uses the same
model assumptions, and the same notations as in Section 1.4 of this
chapter. For GSIC, the impact of channel estimation errors is two-fold:
they impact the LMMSE receiver performance within a class of users
in the same detection group, and also they are strongly related to the
cancellation errors for the successive group interference cancellation.

Consider J classes of users, in which all users in a given class j have
the same transmission rates (same spreading gains) and the same SIR
targets, 7;. All users in the same class are detected within the same
group. The first detected group is selected according to a criterion such
as minimal received power. Then, the interference caused by the first
group is reconstructed and cancelled from the received signal. This is
done successively until the last group of users has been detected. For a
given detection order, we denote the groups as 1,2,...,.J, which repre-
sents the detection order.

The imperfect channel estimation yields an imperfect cancellation for
group j of users, resulting in a residual interference power ¢; 2221 Qj ks
where K is the number of users in class j, Q;x = P x|h;|? is the received
power of user k from class 7, and ¢; is the fractional error in canceling the
total interference power created by the j%* group. This result implicitly
assumes that the fractional error for canceling a group j user is the same
for all users in class j. Since the target bit-error rates are usually very
low, it can be assumed that the cancellation error is mostly determined
by the amplitude and phase estimation errors. Similarly to the approach
in [Andrews and Meng, 2003] we assume that the cancellation error (e)
for the successive interference cancellation, is approximately the same
as the total channel estimation standard deviation, £. Assuming further
that the multipath components are iid, and have estimation error vari-
ances of €2, the estimated cancellation error for an L path channel can
be approximated by:

e =+/LE% (3.68)
Based on the SIR expression for multipath fading channels (3.33), and
using the results in [Comaniciu and Poor, 2003a] for multiclass systems
using LMMSE receivers, it can be shown that, for a GSIC system, all
users within a detection group should have equal received powers. Since
each group of users is detected using LMMSE receivers, while the in-
terference created by other groups is perceived as white noise, it can be
shown that every group j of users can be approximated as an all LMMSE
system with enhanced noise ¥%:
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Sl=o +ZK1—61Q1+ZK1 Qz =02+ auQ+ Y Q-
I<j Z I>7 I<j [
(3.69)

with oy defined as oy = K /N;. This equivalence is based on the fact that
the receiver filter coefficients for group j users ignore the structure of the
interference from other groups, and thus any pair of filter coefficients and
signal signature sequences for users in other groups may be considered
to be independent.

Using (3.34), (3.48) and (3.69), and after straightforward algebraic
manipulation, we can derive the power control feasibility condition such
that the target SIR 77 can be met with equality for an arbitrary class j
of users:

Qj = QqualQl-i—anjAj +0jZOélQl +9j0'2, (3.70)
1<j 1>
where 0; = v7/(1—v577) >0, and Ay = (L—=1)vyv; + (1 +v5)7; /(L +77).
Given that target SIRs must be met for all users, the power control
feasibility can be expressed as a matrix equation condition

(I;xy — A)q = ¢’u, (3.71)
where q7 = [Q1,Qa, ..., Qs], ul =[01,0s, ...,0;], Iy« is the identity
matrix, and

a1 f1cn ... Bray
A— e1a18y  asAg v Bhayg . (3.72)
cionby e2o0f; ... aghy

The matrix A is a nonnegative matrix, but it is not necessarily irre-
ducible, since perfect cancellation of group 1 users results in a reducible
matrix. For a nonnegative, irreducible matrix, a positive vector solution
to (3.71) exists iff p(A) < 1, where p(A) is the spectral radius of A.
This is usually the practical case since perfect cancellation is difficult to
achieve in practice. Nevertheless, this result has been proven to hold
under more general circumstances [Agrawal et al., 2004] for a nonneg-
ative matrix and a positive noise vector term in the matrix condition,
provided that the power control feasibility condition can be expressed
in a standard form, using a standard interference function: q = i(q).
For the considered GSIC system, we can alternatively express the power
control feasibility condition as

q=1i(q); i(q) = Aq+c’u. (3.73)
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It is straightforward to show that function i(q) is a standard interference
function by verifying the three properties presented in [Yates, 1995]:,
positivity, monotonicity and scalability (see Section 2 in Chapter 2). It
can be shown that all three properties hold true if 8; > 0,vj =1, ..., J,
which holds if v < 1/v;,Vji=1, ..., J.

The main capacity result of [Comaniciu and Poor, 2003b] can be sum-
marized in the following theorem.

Theorem 3.19. In a groupwise successive interference cancellation sys-
temn with LMMSE receivers within a group, and operating under a mul-
tipath fading environment with imperfect channel estimation, a positive
power vector solution exists such that all users meet their target SIRs
v, if and only if
1
v; < ” and p(A) < 1. (3.74)
J
If (8.74) holds, then the optimal received power allocation for the groups
of users is given by
qx = (L7 — A) " tuo?, (3.75)
It was also proved in [Comaniciu and Poor, 2003b] that the received
power requirements for different groups can be derived using a recursive

formula. Denoting by @; the required received power for detection class
J, and using the notation I'; = (1 — «;A;)/b;, it can be shown that

Fj + €505

ip] = 2 3.76
QJ+1 T,o1 +ajes QJ ( )
or equivalently,
. T + €0
B o C L s , 3.77
< 11 + iy o (3.77)
2
. o
with G = i+ 6oy

J j—1
- jo Il _; ————
Z]_Q ! 1_1Ii+1 + Qi

The total received power requirements for all users, for a given detection
order, can then be express as

J
Qr =Y ;Q; = Qi(er +T1) — 0% (3.78)

=1

that is,
0'2 2
= —o”. 3.79
r T W o JUPNS . Tt et (3.79)
a1+ a1+ j=2 ) Hi=2 Fi+ai
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While the above results were derived for a given, arbitrary, detection
order, this can be optimized for a minimal received power solution. Using
a similar approach to that in [Shu and Niu, 2003], it can be shown that
the optimal detection order for GSIC is the same as for SIC systems,
i.e., groups must be detected in the ascending order of their cancellation
erTors.

An interesting observation is that this result is in contrast with the
popular recommendation of detecting higher rate users first. Although
the analysis in [Comaniciu and Poor, 2003b] considers only the impact of
the imperfect amplitude estimation on the cancellation errors, this model
can be extended to encompass other effects, such as the performance
differences between the asymptotic analysis and the practical finite case.
In this case, higher rate users (using lower spreading gains) may have a
higher cancellation error due to a higher achieved SIR variance relative
to the estimated average SIR for asymptotically large systems [Evans
and Tse, 2000].

Capacity regions for the general case of a GSIC system with J groups
can be defined in a generic form as

C:{(al,ag,... ,aJ)|'y;<1/1/j, Vi=1, ..., J, p(A)<1}. (3.80)

The computation of the maximal eigenvalue p(A) is not very complex
since A is a J x J matrix, where J is the number of groups, which is
usually a small number.

For the particular case of a GSIC system with two detection groups, an
explicit dependence between the number of users that can be supported
in each class can be obtained as

a1 + aghs + VA < 2, (3.81)

where A = (OélAl + QQAQ)Q + 4&1042(919261 - AlAg).
A similar capacity expression can be derived for GSIC with matched
filter receivers, namely

oA} + agAl + VA* < 2 (3.82)

with A* = (OJIAT + OKQA;)Q + dayoea (010261 — AIA;)

In Fig. 3.9 we compare the performance of the matched filter GSIC
and the LMMSE GSIC, for different channel estimation errors and for
required target SIRs of 10 for both classes. The estimated average link
gain |h;|?, j = 1,2 is 1, and the channel path length is L = 3. We notice
that both implementations are strongly affected by channel estimation
errors, but a very substantial performance gap exists in favor of the
LMMSE implementation. Also, in Fig. 3.10, the GSIC network capacity
is compared with an equivalent MC implementation for L = 3.
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1.6 Asynchronous Networks

Although synchronous transmission is often not a practical scenario,
the synchronous analysis is usually very useful as a performance bench-
mark for networks using linear multiuser receivers. In general, a syn-
chronous analysis can be extended to the asynchronous case by consider-
ing an equivalent synchronous system with more interferers having lower
powers. In [Kiran and Tse, 2000], the authors present a rigorous analysis
for the asymptotic performance of asynchronous networks with linear re-
ceivers using random spreading codes. They show that the matched filter
performance in the asynchronous case is the same as that achieved for
the synchronous case. They also show that, if the observation window is
infinite, the same is true for the decorrelator and the LMMSE detector.
However, for the “one-shot” detection approach, the achieved SIRs for
both the decorrelator and the LMMSE detector degrade for the asyn-
chronous case. Although exact capacity values are difficult to derive,
in [Kiran and Tse, 2000] the authors present very tight lower bounds
on the achievable SIR for both the decorrelator and the LMMSE detec-
tor in the asynchronous case, under the simplifying assumption that the
nodes are chip-synchronous. They also show by means of simulations
that the chip-synchronous scenario provides conservative estimates for a
truly asynchronous system.

In an asynchronous system, the various relative delays 73, are assumed
to be random. As a consequence, the SIR performance measure is also a
random variable depending on the random spreading sequences and on
the random delays. It is assumed that although the delays are random,
the receiver has acquired timing information for all users. Also, the un-
derlying assumption of the analysis in [Kiran and Tse, 2000] is that as
the system becomes asymptotically large, the empirical distributions of
powers and delays converge to fixed distributions F(P) and G(7), respec-
tively. For the LMMSE receiver, a tight lower bound for the achieved
SIR is proposed in [Kiran and Tse, 2000], under a symmetry assumption
for the relative delay distribution function G(r): G(7) =1 - G(1 - 7).
It is shown that the achievable SIR, v}, is lower bounded by 7, which
(for a given user k) is the solution of the fixed point equation

T T EpE{I(rP, Py i) + (1~ 7)P, B, 7))

(3.83)

with the standard interference function I(-) having the same expression
as for the synchronous case previously discussed. We note that for the
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asynchronous case, the effective interference created by any user [ in the
system on user k, is the sum of the corresponding effective interference
from the synchronous case for two partial symbols within the observation
window.

For equal received powers P and uniform delay distribution, the SIR
lower bound, ¥, can be expressed as

P
¥= . (3.84)
2 2aP _ In(i+5
o2 + 228 (1 ni5) )

Based on (3.84), a lower bound on the network capacity can be deter-
mined for the LMMSE case, when the maximal transmission power is
set to P:

D % 1 0-27*
a(P, Y )mmse = ; (1 - 1n<1+7*>> <1 - ) . (3.85)
7*

Further, the user capacity when no power constraints are imposed is

given by
1

a(7 )mmse = 5 (1 B ln(l—&-”y*)) : (386)
—
The capacity expression in (3.85) can be extended straightforwardly
to the case with J classes of users, having different SIR requirements 7,
ji=1, ..., J:

In(1 + ~* * 52
22 1- ( * ’Y]) Q5 mmse < min_ |1 - ’Y]— s (387)
i=1 Y 1<5<J P

where & mmse £ K;/N;. From (3.87), we can see that the effective
bandwidth for the asynchronous LMMSE network is

In(1+~;
ey =2 (1 - ——(—*—ﬁ> degrees of freedom per user. (3.88)

mmse
J

For the decorrelator, exact SIR convergence results are obtained in
[Kiran and Tse, 2000]:

J—————-kl 2 ) a<1/2
* 2 ’ ’
Ve = { o4 > 1/ ' (389)

Consequently, the network capacity and the effective bandwidth for
the decorrelator are given by
— 1 ~%c

CX(P,"Y*)dec < 5 - F s (390)
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Figure 8.11. Effective bandwidth comparisons

and
edec(¥") = 2. (3.91)

Therefore, the capacity results from the previous subsection can be ex-
tended straightforwardly to

Qdec < 1/2» (392)

when no power constraints are imposed.

In Fig. 3.11, we compare the effective bandwidths for the three dis-
cussed linear receivers - LMMSE detector, decorrelator, and matched
filter for both the synchronous and asynchronous cases.

From these results we can see that for small required SIRs, the matched
filter receiver has a lower effective bandwidth than the decorrelator,
whereas for large required SIRs, the decorrelator outperforms the matched
filter. The cross-over between these two regimes occurs at a higher value
for the required SIR in the asynchronous system than in the synchronous
system. We also note that there is a more significant performance im-
provement for the LMMSE receiver over the decorrelator in the asyn-
chronous case, compared with the synchronous case. This can be ex-
plained by the fact that the LMMSE receiver takes advantage of the
fact that the overlap of symbols is only partial and thus yields reduced
energy, while the decorrelator loses a full extra degree of freedom by
considering an additional interfering symbol per user.
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Performance can be improved for both the LMMSE receiver and the
decorrelator if a larger detection window is used. More specifically, it has
been shown [Kiran and Tse, 2000] that for a detection window length of
T symbols, the effective bandwidths for the LMMSE and the decorrela-
tor, respectively, are given by

N 1 * In(1 + ~*
i) = 3 [0 - 0 () #2200 oy
and
asy N T+1
edec (T”Y ) = T . (394)

It can easily be seen that as 1" — oo, the network performance for the
asynchronous case becomes identical to that for the synchronous case.

1.7 Imperfect Power Control

As we have seen up to this point, SIR is a key performance mea-
sure in wireless networks using linear multiuser receivers. However, our
previous discussions of network performance have assumed that perfect
power control is achievable, and thus the network capacity is determined
by the power control feasibility condition. A question that remains to be
addressed is: what happens in practice when power control loops yield
imperfect control of the received powers? For example, how robust is
the LMMSE receiver’s performance to imperfections in power control
and how can the network capacity be characterized under these con-
ditions? These questions have been addressed in [Zhang et al., 2001],
which showed that under some mild conditions on the distribution of
powers, the output multiple access interference is approximately Gaus-
sian, and thus the bit error rate is strongly related to the achievable
SIR!. In this case, the network capacity may be determined by imposing
an outage condition:

P(SIR < v*) < ¢, (3.95)

where v* is the target SIR and ¢ is the maximum allowable outage
probability.

In [Zhang et al., 2001], asymptotic Gaussianity of the MAT as K, N —
oo with @ = K/N fixed, has been proved for synchronous transmission
for two different scenarios:

1 The statistics of the output MAI are averaged over the signature
sequences:

l[Poor and Verdu, 1997] also shows similar results in the non-asymptotic case.
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For this case, the MAI is shown to be asymptotically Gaussian if the
empirical distribution function for the mean received powers {1, w2,

.., WK} converges weakly to a distribution function F),, and if the
second moments of the received powers are bounded.

2 The statistics of the output MAI are conditioned on the signature
sequences and powers:

For this case, the conditional distribution is shown to converge weakly
to the same Gaussian distribution for almost every realization of the
signatures and powers, if the joint empirical distribution function of
{Pip1, Popra, ..., Pxug} converges weakly to a distribution func-
tion Fp,,, and if the received powers Py are uniformly bounded from
above, while the mean powers are bounded from below by a positive
number.

Furthermore, it was shown that the variance of the distribution is not
affected by the fluctuations in the interferers’ powers. The SIR is proved
to converge as K, N — oo, with a = K/N fixed, to the solution to the
equation

o+« f()oo [(,LL, B, 'Yk)dFu(p‘) ‘

We note that power control is still needed to achieve the desired SIR
performance. Imperfect power control leads to a probabilistic guarantee
for the SIR as in (3.95). Based on outage probability requirements,
in [Zhang and Chong, 2000] the asymptotic capacity expression or a
network having LMMSE receivers was derived to be

(3.96)

Yk

_FMe) o
a(9) = T LT E T FE)

(3.97)

where 4 is the mean received power, and o2 is the noise power. Similar
convergence results for the MAI were proved for the asynchronous case,
under the assumption that the system is chip-synchronous and the off-
sets {m, ,72, ...,7x} have an empirical distribution which converges
weakly to a deterministic distribution function H,. The same conver-
gence results as for the synchronous case have been proved for both
unconditional and conditional MAI, if the empirical distribution func-
tion for the mean received powers {1, a2, ..., px} converges weakly to
a distribution function F),, and if the received powers Py are uniformly
bounded from above, while the mean powers are bounded from below
by a positive number.
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1.8 Blind and Group-Blind Multiuser Receivers

Our previous discussion on the performance of networks using linear
multiuser receivers assumes that all signature sequences in the network
are known by all users and are used to compute the filter coefficients.
In practice, this is a major disadvantage for the multiuser receivers’
implementation, and has been for a long time an obstacle to the adoption
of multiuser detection technology in current commercial networks. As
we have already mentioned in Chapter 1, a solution to this problem
is to implement blind multiuser receivers. In this section, we discuss
the capacity of synchronous, power controlled networks using blind and
group blind multiuser receivers. An introduction to the performance of
such blind receivers has been presented in Chapter 1.

Building upon results in [Tse and Hanly, 1999], which treats the “ex-
act LMMSE” case (LMMSE receivers built using knowledge of all codes
in the network), and [Hgst-Madsen and Wang, 2002], which quantifies
the SIR estimation error for blind LMMSE receivers, [Zhang and Wang,
2002Db] proposes a large system analysis in which the SIR performance
for networks using blind receivers is quantified. The analysis assumes
that binary random spreading is used, and that the spreading gain N,
the number of users K, and the number of received signal samples re-
quired for filter estimation, T, go to infinity, while the ratios ax = K/N
and ay = Y/N are fixed. It is also assumed that ax < 1 and ar is
“reasonably large”.

The main result of [Zhang and Wang, 2002b] reveals a saturation phe-
nomenon when blind receivers are used, such that the achievable SIR is
both interference limited and also estimation error limited. In the fol-
lowing paragraphs we will present the main results of [Zhang and Wang,
2002b] on network performance with blind and group-blind multiuser
receivers.

Following the analysis in [Host-Madsen and Wang, 2002], if we as-
sume that the spreading sequences are random, the output SIRs will be
random as well. However, it was shown in [Zhang and Wang, 2002b],
that the SIR can be well approximated by a deterministic constant for
asymptotically large systems. The analysis in [Zhang and Wang, 2002b]
assumes that the sequence of powers for all users is bounded above and
below by positive numbers and that the distribution of powers converges
weakly to a distribution function F,. The asymptotic SIR convergence
for the blind and group-blind receivers was shown in [Zhang and Wang,
2002b] based on results developed in [Tse and Hanly, 1999}, in which it
is shown that the SIR achieved per unit power for linear MMSE systems
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(7o) is the solution to the fixed-point equation:

1

o = . (3.98)
o2 + ax fooo ﬁi%dFu(u)

Asymptotic SIR results for the above blind receivers are summarized
in the following theorem [Zhang and Wang, 2002a, Zhang and Wang,
2002b]. (Recall that DMI refers to the direct matrix inversion method
of blind multiuser detection.)

Theorem 3.20. In the asymptotic regime, as N — oo, with ax = %,

ap = % and ay = % fized, for almost every realization of signature
sequences, the output SIR achieved by the blind linear MMSE receiver is
well approzimated as

Pyo
T+ 22 (1+Pio) Dy1
Pevo
SIRy, = T2l ar o (1-ar )L Pevo) subspace
Eio group-blind,

1+‘X;M [(Ql{_ak)"ﬂ;k(1"04K)](1+Pk’}’0) ?

(3.99)
where
5 = N0 — €1+ 0’e
FT ol + Pler + (1 - ag) oD
11—«
R 2 K
€1 = 0_121210 (70(0' ) - 0_2 > s
and ) .
d _ l-og
eo = lim — (’YO(U ) o* )
g2—0 d02

An important observation is that an SIR saturation phenomenon oc-
curs, such that, when the SNR increases (P, /0% — oc), the asymptotic
SIR for the three receivers approaches

o, DMI
{SIRk}p, /o200 = 4§ ar subspace (3.100)
o, group-blind.
K—0f

The above results indicate that the network capacity for a system using
blind receivers is both interference and estimation error limited. This
phenomenon is illustrated in Fig. 3.12, in which the dashed lines rep-
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Figure 8.12. Saturation phenomenon for blind LMMSE receivers (reprinted with
permission from [Zhang and Wang, 2002b])

resent {STRi}p, /o200, computed?® as in (3.100). The parameter values
for this example are N = 32, av = 10, and ax = 0.5.

As a final note, we compare the performance of the three blind receiver
implementations. It was shown in [Zhang and Wang, 2002b] that if
dr < 1, then the subspace receiver outperforms the DMI, and if d; > 1,
DMI performs better. Moreover, we can see that in the high SNR region,
the subspace receiver outperforms DMI, whereas in the low SNR region
(P, — 0), if 0? < 2, the subspace receiver is better, otherwise, the
DMI is better. As expected, since the group-blind receiver uses more
information than the subspace receiver, it will always perform better
than the latter one. On the other hand, it performs worse than DMI
when 6, > 1+ 1—?5;

2In this figure, the abbreviation SINR, refers to the SIR.
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2. Ad Hoc Networks

Due to the inherent nature of ad hoc network architectures, a major
problem in such networks is performance optimization of the air inter-
face, so as to ensure that all users receive their requested QoS, while
the network capacity is reasonably high. However, in general, if ran-
dom access is employed in ad hoc networks, the performance will be
strongly affected by collisions, and sophisticated medium access control
must be implemented. Even so, pessimistic capacity results for such net-
works can be obtained. In [Gupta and Kumar, 2000}, the authors study
the capacity of a fixed ad hoc network in which the nodes’ locations
are fixed but randomly distributed. They prove that, as the number of
nodes (K) per unit area increases, the achievable throughput between
any randomly selected source-destination pair is of order O(1/VK). A
capacity increase for such networks has been reported in [Grossglauser
and Tse, 2002], which shows that exploiting mobility can result in a
form of multiuser diversity and can improve the system capacity. The
authors of [Grossglauser and Tse, 2002] propose a two-hop transmission
strategy in which the traffic is first randomly spread (first hop) across
as many relay nodes as possible, and then it is delivered (second hop)
as soon as any of the relaying nodes is close to the destination. The
disadvantage of this scheme is that it involves large delays and therefore
it is not suitable for delay sensitive traflic. A capacity increase with
mobility has also been noticed in [Gupta and Das, 2001}, in which the
capacity is empirically determined for a different network model that
exploits spatial diversity.

In contrast with the previous approaches to characterize the capacity
of ad hoc networks, [Comaniciu and Poor, 2004c] shows that significant
capacity gains can be obtained in a CDMA ad hoc network using linear
multiuser receivers, even when tight delay and power requirements are
enforced. This result is a consequence of the inherent advantages of
CDMA (resistance to intereference and fading) and of multiuser receivers
(near/far resistance). The capacity analysis in [Comaniciu and Poor,
2004c] builds upon results in [Tse and Hanly, 1999], but considers multi-
hop transmissions and delay constraints.

The ad hoc network model considered in the analysis of [Comaniciu
and Poor, 2004c] consists of K mobile nodes having a uniform stationary
distribution over a square area of dimension b x b. All nodes use random
spreading codes and equal transmission powers, F;, and are assumed
to be active at any given time (worst case scenario). As in [Mostofa
et al., 2001], a transmitter-oriented protocol is considered, in which each
transmiting node has its own signature sequence. Although this imple-
mentation yields more complex receivers and longer aquisition times, it
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has very good capturing probabilities, allowing multiple packet recep-
tion at the same receiver node. To avoid collisions, multiple concurrent
transmissions from the same node are not allowed; instead, transmis-
sions from one node to multiple destination nodes are time multiplexed.
The analysis considers short range transmissions for the ad hoc network,
such that a free space propagation path loss model is suitable. The link
gain distribution is then derived using the free space propagation model,
and an approximate distribution function for the distance between any
two nodes [Miller, 2001], such that the link gain cumulative distribution
function is given by

Fr(h) = exp <—%>  h>0, (3.101)

where C = %/\2, k = 3.5 is a constant related to the distance distribu-
tion function [Miller, 2001], and A is the wavelength of the carrier.

Taking the derivative of (3.101) we obtain the probability density
function for the link gain:

fu(h) = % exp (—%) , h>0. (3.102)

Using (3.102) the mean link gain can be easily computed to be:
Ey =~ C [E1(6,C) — E1(63,C)] (3.103)

where E1(z) = [ L exp(—t)dt is the exponential integral.

The traffic can be transmitted directly between any two nodes, or
it can be relayed through intermediate nodes. It is assumed that the
end-to-end delay can be measured by the number of hops required for
a route to be completed. The quality of service requirements for the ad
hoc network are the bit error rate (mapped into an SIR requirement),
the average source-destination throughput (Ts-p), and the transmission
delay. Both the throughput and the delay are influenced by the maxi-
mal number of hops allowed for a connection and consequently, by the
network diameter D. The network diameter is defined as the longest
shortest path (measured in number of hops) between any source desti-
nation nodes in the network.

Using arguments similar to those in [Gupta and Kumar, 2000], a sim-
plified computation shows that, if the number of hops for a transmission
is D, then each node generates DI(K) traffic for other nodes, where
[(K) represents the traffic generation rate for a given node. Thus, the
total traffic in the network must meet the stability condition DI(K)K <
W/N, where W is the system bandwidth, and N is the spreading gain.
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This implies that the average source-destination throughput that can be
supported by the network must meet the condition

4%

Ts-p < ND (3.104)
In [Gupta and Kumar, 2000], it is argued that although (3.104) shows
that the throughput decreases with an increase in the number of hops
required, this does not account for the fact that if the range of a node in-
creases, more collisions occur and the throughput decreases. In contrast
to the model considered in [Gupta and Kumar, 2000], using a CDMA air
interface allows multiple packet reception without collisions, and thus,
a decrease of the network diameter D is obtained as a result of better
physical links, and thus directly translates into a throughput increase
for the network.

In terms of SIR requirements, a connection can be established between
two nodes if the SIR is greater than or equal to the target SIR . The
obtained SIR for a particular link is random due to the randomness of
the nodes’ positions.

The network capacity is defined to be the maximal number of nodes
that can be supported such that both the SIR constraints and the delay
constraints can be met for any arbitrary source-destination pair of nodes.
The delay constraints are mapped into a maximum network diameter
constraint D. Using geometric arguments, we will show that this further
translates into a link probability constraint p, which at the physical layer
represents the probability that a randomly chosen link is feasible. In
the following section, we characterize the ad hoc network asymptotic
capacity for the case in which the number of nodes and the spreading
gain increase without bound, while their ratio is fixed.

2.1 Asymptotic Capacity
Physical Layer Performance

The physical layer capacity is derived under the assumption that a
link probability constraint p has been imposed by the network layer,
such that delay constraints can be met. In the physical layer, the link
probability p is affected by the level of interference in the network and
thus it is very sensitive to the choice of receiver. Capacity results for
the matched filter, LMMSE detector and decorrelator, are presented in
the folowing for the synchronous transmission case. These results are
then extended to the more realistic scenario in which nodes transmit
asynchronously.
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Matched Filter Receiver - Synchronous Transmission

The SIR condition for an arbitrary node k using a matched filter
receiver in a network with random, normalized spreading sequences can
be expressed as:

Phy hy
2, 1K = 1, LK 2
o-+ % ZE:l, £k Phy SNE-! + N ZE:I, o4k hy
(3.105)
where we define the SNR = % to be the ratio of the transmit power to
the noise power.

Denoting by « the fixed ratio K/N and letting the number of nodes
and the spreading gain go to infinity, by using the law of large numbers
[Yates and Goodman, 1999], it follows that: Zle ez be — @En,
with Ey computed as in (3.103).

The network diameter guarantees require a link probability value
equal to p. This translates into a physical layer condition

P(H >~ySNR™' +avEy) = P(H > Tyr) = p. (3.106)

SIR, =

Using the notation Ty p = vSNR™! + avEy, the network diameter
condition renders an SN R condition

VSNR™' + avEy = Tap = SNR= — (3.107)
Typ —ayEn

where Tysr can be derived using (3.101) as follows:

1
p=1=Fy(Tur)=1—exp <—C ) ; (3.108)
Tnmr

or

C
Tyr = l—o—g@.

Equation (3.107) implies that a positive power solution exists if and only
if

(3.109)

c
Tyr log(r}p‘)
o < = 3.110
YEu YEn ( )

For ad hoc networks, it is most likely that the mobile nodes are en-
ergy limited so that we impose a maximal power transmission limit F}.
Denoting SNR, = P;/c?, the ad hoc network capacity becomes:

C

Tur 1 log(ﬁ) 1
i < _ _ - . 3111
ME = T EySNR.  ~Ew  EnSNR. (3.111)
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Decorrelator - Synchronous Transmission

Recall that (see Section 1.1 of this chapter) the SIR of an arbitrary
node in an asymptotically large network using decorrelating receivers
can be expressed as

Pth(l—a) o < 1’

2

(3.112)

Thus, if no power constraints are imposed, the network capacity region

1S
ag <1, (3.113)

If power constraints are imposed, and SNR < SNR. (SNR, is the
maximal SNR allowed), the physical layer constraint can be expressed

as
5 -
P <H > SR =a) a)> =p. (3.114)

If we define Ty = Eﬁ[mv the feasibility condition becomes

~y
=< . .
SNR Toi—a) = SNR, (3.115)

Imposing a network constraint on the 7y value, T; = 7Cl—>, the
ogl =5

asymptotic capacity region for a network using decorrelating receivers
and having transmission power constraints is given as

g Y
<l-—iteere—=1— ——+——. 3.116
= T4SNR, — ¢ __SNR, ( )
log<—1ip)

LMMSE Receiver - Synchronous Transmission

To derive the asymptotic ad hoc network capacity for the case of
LMMSE receivers, we express the SIR for an arbitrary node & in a large
network with equal transmission powers as follows:

hy
T I K Tphe
SNR™ + 5 D st ek mig e 9TE,

Imposing the QoS condition: SIRy > v, Vk =1,2,..., K, (where v is
the target SIR), we have

SIR;, = (3.117)

SIR; > (3.118)

hy,
~ 1 —K hihy
SNR™ + % 3 im ek 7 oFs
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Again, fixing o = K/N, as the number of nodes and the spreading gain
increase without bound we can apply the law of large numbers, so that,

K

K
1 hehe 1 hihe
N E - ot aE{H|h},

=1 ik &+ hey K Pt hi + hey

where we use the notation E{H|hy} to denote the normalized condi-
tional average interference (normalized to the number of nodes per di-
mension). It is shown in [Comaniciu and Poor, 2004c] that E{H|h;}
can be expressed as:

C
E{H|h} = Cexp <%> [El (5,%10 + %) - E <5j,c + h—:ﬂ .

Thus, the link probability constraint becomes
P(H > ySNR™' +ayE{H|h}) =p. (3.120)

We define the function f(h) = h —vySNR™! — ayE{H|h} and we plot
it in Fig. 3.13. We observe that f(h) is a monotonically increasing
function of h for the region of interest, and thus we can express the
condition (3.120) as

P(H > Tymse) = p- (3.121)

0 0.2 0.4 0.6 0.8 1
h

Figure 8.13. SIR condition monotonicity (all curves are coincident) (reprinted with
permission from [Comaniciu and Poor, 2004c])



Asymptotic capacity for wireless networks with multiuser receivers 141

Equation (3.121) has the same solution as in the previously analyzed
cases, and the physical layer constraint becomes

N
SNR = . 3.122
Tanse — ayE{H|h = Tynse} ( )

A positive transmitting power solution exists if and only if

Trrse
s < : 3.123
MM YE{H|h =Tyumse} | )
or equivalently,
C

1C (255 [Br (82,0 + viog (2 >)—E1 <5gfc+vézglg§))}'

If power constraints are imposed, the capacity region becomes

QMMSE <

aMMSE < hIATEL> ! ; (3.125)
= YE{H|h = Tasnrse}  E{H|h = Taynse}SNR:

or equivalently,

apmMse <

(5%0 +~log (fpm

c (1 p) [El (52 C +~log ( )) - E (51%10 4 ~log (ﬁm SNR.
(3.126)
Figure 3.14 illustrates the physical layer capacity as a function of the
link probability constraint p for the three receivers considered, with and
without power constraints. For the power-constrained case, a maximal
transmission power of B, = 10%¢? is considered for this example. A
target SIR -y = 5 is imposed. From Fig. 3.14 we can observe that there
is a significant capacity advantage if multiuser receivers are used, and
conversely, for given capacity requirements, substantial power savings
can be achieved by networks using multiuser receivers. As expected, the
LMMSE receiver performs the best due to its property of maximizing
the SIR. For higher transmission rates and lower delay requirements
(translated into a high link probability constraint) using the matched
filter is not feasible.

~C (ﬁ)v [El (53,16' + ~vlog (

v
N’ | —
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3 4 —+ MF:no power constraints
—+ MF:SNRc=10*
! ... Decorrelator: no power constraints

MMSE: no power constraints

251 ":}.y .. Decorrelator: SNRe=10*
> MMSE: SNRc=10*

0 0.2 0.4 0.6 08 1

Figure 3.14. Physical layer capacity for given link probability constraint: syn-
chronous transmission (reprinted with permission from [Comaniciu and Poor, 2004c])

Decorrelator - Asynchronous Transmission

Recall that (see Section 1.6 in this chapter), the SIR for the decorre-
lator can be approximated as

Ph(1-2a ’ a< 1/2
SIR, = { ) " oS (3.127)

Therefore, the capacity results from the previous subsection can be
straightforwardly extended to

ag < 1/2, (3.128)

when no power constraints are imposed.
If power constraints are imposed (SNR < SNR.), we derive the
capacity region as

Y
- 3.129
LSNRC ( )

Iog(l%p

DO =

ag <

LMMSE Receiver - Asynchronous Transmission

According to our previous discussion in Section 1.6, to characterize
the capacity of an asynchronous ad hoc network using LMMSE receivers,
we must rely on the lower bound obtained for the achievable SIR:

B

02+ aE{I(7P, Py, SIRy) + I((1 — 7)P, P, SIRy)}’ (3.130)

SIRy, =
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where 7 is a random variable that characterizes the delay associated with
an arbitrary node (a fraction of a symbol duration), and the expectation
is taken with respect to P and 7. Since the received power P can be
expressed as P = P;h, for equal transmit powers for all nodes, (3.130)
becomes

SIR; =
hug
SNR-T + aE{I(rP;h, Pihy, SIR;) + I1((1 — 7)P:h, Py, SIR;)
(3.131)
It is straightforward to see that aE{I(rP:h, Pihy, SIR:) + I((1 —
T)P:h, Pohy, SIRy)} can be expressed as

aE{E{H|hy,T}} =

oF {CT exp <%> {El <5;c + %) o <5§4c + C—hﬁ)] +
k k

ot (G072 [ (0 €0
-E <§%40 + %}:—Q)J } . (3.132)

Using an identical derivation for the network capacity as for the syn-
chronous case, all the capacity formulas hold with E{H|h;} replaced
by E{E{H|hg,7}}. In Fig. 3.15, we provide capacity comparisons
between networks using LMMSE receivers in the synchronous and the
asynchronous cases. (Here we assume that 7 is uniformly distributed on

[0,1}.)

Network Capacity

The overall network capacity is determined such that both physical
layer and network layer QoS requirements can be met. In the previous
section we have determined the maximal number of active nodes that
can be simultaneously supported by the network, as a function of a link
probability constraint, which maps to the transmission delay require-
ment. In this section, we use geometric arguments to determine the
dependence of the link probability on the network diameter constraint
(which is a surrogate for the delay constraint).

We consider the asymptotic case, in which we have an infinite num-
ber of nodes in the considered square area. The nodes are uniformly
distributed, and we ignore the edge effects: the square area can be con-
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—=— MMSE sync, no power constraints
> MMSE sync, SNRc=10"
4 MMSE async, no power constraints
. MMSE async, SNRe=10"

Figure 3.15. Capacity comparisons for ad hoc networks with LMMSE receivers: syn-
chronous versus asynchronous transmission (reprinted with permission from [Comani-
ciu and Poor, 2004c])

sidered to be a part of a multiple cell layout. It can be seen from Fig.
3.16 that the worst case distance is obtained when the source and des-
tination nodes are on the opposite vertices of the square. We showed in
the previous section that the link probability p can be expressed as

A

p= P(H >T)=P (dma:c < ‘ﬁ) ) (3-133)
where the threshold T depends on the particular receiver structure used.
This is equivalent to saying that a reliable transmission exists within a
radius dqp of the transmitting node. Consider now a diameter restric-
tion of D = 2, as in Fig. 3.16. In order to be able to transmit from the
source node (SN) to the destination node (DN) using only one interme-
diate node (IN), the minimal value for d,,,, must be

b2

Aoz = —5= (3.134)

For a generic value of D, the constraint becomes

bv2

dmaw - T (3135)
From (3.133) and (3.135), we obtain a threshold requirement of
A2D?
T= (3.136)

202



Asymptotic capacity for wireless networks with multiuser recetvers 145

AnsREE Ty,
e, *er,

Figure 3.16. Network diameter constraint (reprinted with permission from [Comani-
ciu and Poor, 2004c])

To determine the link probability constraint we introduce (3.136) into
the link probability expression: p = 1 — exp(—=C/T). In Fig. 3.17 we
illustrate the mapping between the link probability constraint and the
required network diameter.

0.8, 4 T T T T T

07t |

0.2r e 1

0.1 Qi — 1

D (network diameter) ->

Figure 3.17.  Link probability requirement (reprinted with permission from [Comani-
ciu and Poor, 2004c})



146 MULTIUSER DETECTION IN CROSS-LAYER DESIGN

Using the link probability constraint values previously determined,
the ad hoc network capacity can be determined for given delay (network
diameter) specifications. In Fig. 3.18 an example for the network capac-
ity for a network diameter constraint of D = 2 is presented. Fig. 3.18
shows the number of users per dimension that can be supported in an ad
hoc network for a given delay constraint, as a function of the maximum
transmission power requirement, SNR, = P,/o>.

1.4
—x- MF
~ MMSE
1.2}l Decorrelator
1k p.=0.78
D=2
0.81
3
0.61
0.4r
0.2k
o 2 - .LA D 8 8 10
10 10 10 10 10

SNRc

Figure 3.18. Ad hoc network capacity for delay sensitive traffic, D = 2 (reprinted
with permission from [Comaniciu and Poor, 2004c])

Network Throughput

As we have seen in the previous subsections, ad hoc network capacity
is greatly enhanced by using a CDMA access method and separating the
users using multiuser detectors. Tight power and delay constraints can
thus be met in such networks. We will show now that using multiuser
detectors in CDMA ad hoc networks improves also the overall through-
put of the network. To see this, we compare the network throughput
that can be achieved for our analysis by the LMMSE receiver, with the
scenario described in [Gupta and Kumar, 2000}, in which random access
is used. No delay constraints are enforced, and very similar network
models are used for comparison: all nodes are randomly located and
independently and uniformly distributed in a unit area (disc in [Gupta
and Kumar, 2000], square in our analysis), each node transmits traffic to
a randomly chosen destination, all nodes transmit with the same power
and the transmission rate is R. Both synchronous and asynchronous
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transmission cases are considered for the CDMA network and LMMSE
receivers are considered.

For the random access scenario, the order of the average throughput
capacity has been shown in [Gupta and Kumar, 2000] to be {(K) =
) <—R—> For the CDMA network we approximate the network

Klog(K)

throughput based on (3.104): I(K) = —g—', where R = W/N. We compare
the network throughput for the Gupta-Kumar analysis (G-K) [Gupta
and Kumar, 2000], with both a synchronous and an asynchronous CDMA
network using LMMSE receivers. The same numerical values as before
are selected for the example plotted in Fig. 3.19, which shows the nor-
malized network throughput as a function of the number of nodes per
unit area. The spreading gain is chosen to be N = 32. We can see that,
although the CDMA ad hoc network capacity also decreases with the
increase of the number of nodes per unit area, its capacity is significantly
higher than the random access network (G-K). Also, the use of LMMSE
receivers yields unreduced throughputs for the network for a fairly large
network (approx. 40 nodes per unit area for synchronous transmission).
Of course this advantage comes at the price of an increased implemen-
tation complexity in acquiring the signature sequences for all users and
dynamically adjusting the receivers.

0.9F,
i MMSE: sync.

0.8r
i | |
|

0.6 / MMSE: async.

0.5¢-

Throughput

047 random access: G-K

0.3r

0.2f

0.1} Sy T

Figure 3.19. Network throughput comparison (reprinted with permission from [Co-
maniciu and Poor, 2004c])
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2.2 Capacity for Finite Networks: Simulations

Since the above capacity results are asymptotic in nature, a perfor-
mance validation through simulations is required for practical finite net-
works. The experiments presented in this section consider unlimited
power transmission for the LMMSE case, and maximal power constraints
for the decorrelator, P, = 10%*0? (the case of the decorrelator with un-
limited transmission power is trivial: & < 1). For implementation sim-
plicity, all numerical results are obtained for synchronous transmission,
and using b = 6, A = 0.1 m and v = 5. The experiments consist of
selecting a finite (variable) number of nodes and randomly generating
their locations uniformly across a square area. Then, the link gains, and
consequently the achieved SIRs are computed for all pair of nodes, using
(3.105), (3.112), and (3.117), respectively. We note that the simulations
do not consider the SIR formulas’ accuracy for finite systems, as this
issue has already been discussed earlier in the chapter. In the simula-
tions, a link is considered to be feasible if the computed SIR is greater
than or equal to the target SIR, and the network diameter computation
uses Dijkstra’s algorithm [Bertsekas and Gallager, 1992]. The probabil-
ities associated with a range of network diameters are determined. An
infinite network diameter means that the network is disconnected. The
link probability p is also determined and compared with the theoretical
results.

Some simulation examples are presented in Tables 3.1, 3.2, and 3.3. It
can be seen that both the physical layer capacity results, reflected in the
achievable link probability p, and the network performance results (i.e.,
the achieved network diameter) are very close to the asymptotic ones,
especially for larger numbers of nodes in the network cell (the considered
square area).

2.3 Implications for Admission Control

The results in this chapter provide simple abstract models for the
physical layer performance in various scenarios, and therefore, they help
to bridge the physical and the network layer design. At higher lay-
ers, QoS provisioning will be based on these simple models. Once the
physical layer capacity is determined, resources can be managed at the
network layer using an admission control policy. Based on the results
presented in this chapter, admission control algorithms can be imple-
mented for both cellular and ad hoc networks. This topic is the subject
of the following chapter.
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Table 8.1. Simulation Results for Ad Hoc Networks with Delay Constraints: MF
(reprinted with permission from [Comaniciu and Poor, 2004c])

K/N p(analysis/sim.) D (asymptotic/sim.)

44/1024 p=0.5117/0.6107 D=3 D

31/256 p=0.2246/0.3093 D=5 D

144/512 p=0.1037/0.1127 D=8 D
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Table 3.2. Simulation Results for Ad Hoc Networks with Delay Constraints: Decor-
relator (reprinted with permission from [Comaniciu and Poor, 2004c])

K/N

p (analysis/sim.)

D (asymptotic/sim)

60/512

p= 0.7773/0.7472

1

0.5

0

120/1024

p=0.7773/0.7510

0.5

28,64

p=0.6160/0.5670

0.5

92/128

p=0.3803/0.3392

96/128

p=0.3464,/0.3074

100/128

p=0.3107/0.2764

57/64

p=0.1698/0.1515
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Table 3.3.  Simulation Results for Ad Hoc Networks with Delay Constraints: LMMSE
(reprinted with permission from [Comaniciu and Poor, 2004c])

K/N p (analysis/sim.) D (asymptotic/sim.)

1
- [
o

38/32 p=0.6056/0.7491 D~2 o

39/32 p=0.54150.4886 D=~3 o

42/32 p=0.4024,0.433 D~ 3/4 b

45/32 p=0.3137/0.3260 D=4 D

46/32 p=0.2913/0.2983 D4 0

48/32 p=0.2537/0.2590 D=5 D

57/32 p=0.1546/0.1584 D~T o




Chapter 4

INTEGRATED ADMISSION CONTROL

1. Cellular Wireless Networks

As we discussed in Chapter 2, the two simplest admission control
schemes (complete sharing policy and threshold policy) are based on re-
stricting the maximal number of users into the network using the phys-
ical layer capacity as an admission condition. As a consequence, simple
admission control algorithms may be derived in a straightforward man-
ner for each of the scenarios analyzed in Chapter 3.

Some earlier work on admission control has adopted very simple mod-
els for characterizing the physical layer performance. In [Holma and
Laakso, 1999], the system performance improvement using multiuser de-
tectors is quantified by a factor that represents the percentage of intra-
cell interference cancelled, and which is determined experimentally. The
capacity characterization in Chapter 3 permits a better understanding
of the physical layer performance and impacts the design of upper layer
protocols such as admission control.

Based on the SIR convergence results discussed in the previous chap-
ter, an optimal admission control for a multi-class network is proposed
in [Singh et al., 2001}, which exploits the interplay between the LMMSE
receiver performance and the network layer throughput performance
(blocking probability). In particular, for Poisson arrivals of new calls,
and exponential call durations, an optimal admission policy (which mini-
mizes the blocking probability) is derived using the SMDP (semi-Markov
decision process) [Tijms, 1986] theory.

In a semi-Markov decision process, a system of interest is described
by a sequence of states, such that the next state of the system depends
only on the current state and on an action taken. For call admission

153
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control, the action is selected according to an admission control policy,
such that a specified QoS criterion is optimized. SMDPs can essentially
be solved by considering an equivalent discrete time average cost Markov
decision process, using a process called uniformization [Bertsekas, 1995].
As a consequence, algorithms such as policy iteration, value iteration
and linear programming (LP), can be used to provide solutions for the
SMDP problem. An advantage of the LP approach is that optimization
constraints can easily be added. In [Singh et al., 2001], the admission
control policy is determined such that a weighted sum of blocking prob-
abilities for all classes of users is minimized, subject to constraints on
blocking probabilities for specific classes of users.

An SMDP is completely characterized [Tijms, 1986] by the following
quantities:

m the state space X;
m the action space A;

= pxy(a) = the probability that at the next decision epoch the system
will be in state y, if action a is selected at the current state x;

" 7x(a) (sojourn time)= the expected time until the next decision
epoch after action a is chosen in the present state x:

x(a) > 0,vx € X, a € Ay,

where Ax represents the admissible action space (to be defined be-
low); and

m ¢(x,a)=the expected costs incurred until the next decision epoch
after action a is chosen in the current state x.

The admission control policy derived in [Singh et al., 2001] optimizes
the network layer performance, given SIR constraints at the physical
layer (Fig. 4.1). The state space of the SMDP is constructed by selecting
all possible configurations of users that meet target SIR requirements at
the physical layer, for given fixed transmission powers. To improve the
network performance, new call requests that cannot be allowed in the
network are queued, using finite length buffers. The possible actions for
the admission control are: admit a new or queued user into the network,
queue a new call request, or reject a new call request. The network
performance measure is the blocking probability, and it is proved in
[Singh et al., 2001] that this probability can be expressed as an average
cost criterion for the SMDP process. However, the average delay cannot
be expressed as an average cost criterion, and thus call connection delays
were not considered as a QoS measure in [Singh et al., 2001]. Detailed
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Network layer ; Admission Control
4

1
Physical layer

Figure 4.1. Optimization of network layer performance (reprinted with permission
from [Comaniciu and Poor, 2003a])

Network layer ? Admission Control
1 4
||

v
Physical layer ? Power Control

Figure 4.2. Joint optimization across physical and network layers (reprinted with
permission from [Comaniciu and Poor, 2003a])

characterization of the SMDP, and complete derivations for its dynamics
and cost functions can be found in [Singh et al., 2001].

In this section, we discuss in more detail the work in [Comaniciu
and Poor, 2003a), which extends and completes [Singh et al., 2001].
In [Comaniciu and Poor, 20032}, joint optimization across the network
and physical layers is proposed (Fig. 4.2). At the physical layer, the
QoS requirements are specified in terms of a target SIR, and optimal
target powers are dynamically adjusted according to the current number
of users in the system. The network QoS is specified in terms of the
blocking probabilities and the call connection delays. The network layer
guarantees that both the physical layer and the network layer QoS are
met by employing admission control.

The analysis in [Comaniciu and Poor, 2003a] models the network as an
equivalent queueing system, as described in Chapter 2 (Fig. 2.16). The
service rate for each queue is varied by the admission control such that
the power control feasibility condition holds and hence all users can meet
their target SIRs. A single cell, power controlled synchronous CDMA
system is considered, which supports J classes of users, characterized
by different target SIRs, v;, different blocking probability requirements,

Pg , and different connection delay constraints, Z;, j =1, 2, ..., J.
Requests for connections occur with rates A;, j =1, 2, ..., J and are
Poisson distributed. The call durations are exponentially distributed
and the mean duration for class j is u;, 7=1, 2, ..., J.

The admission policy is constructed by accounting for both the phys-
ical layer QoS (the physical layer capacity is determined as given in
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Theorem 3.14), as well as the network layer QoS (blocking probabili-
ties and call connection delays). At the physical layer, target powers
are ajusted according to the current number of users admitted into the
system (Theorem 3.14).

At the network layer, the equivalent queueing problem consists of J
M/M/K;/B(j) queues (B(j) represents the length of buffer for queue
J, and Kj is the number of class j users), j = 1, 2, ..., J. The
service rates depend on the current number of connections (such that
a; = K;/N satisfles (3.53)), and also on the current number of calls
waiting for connection {according to delay and blocking constraints).

The state space

The state of the j% queue is characterized by the number of users
n%(t) in the queue at time ¢, ¢ > 0, and the number of servers n}(t) at
time ¢ (equivalent to the number of connections admitted for class 7).

The state of the system at decision epoch ¢ can be defined as
x(t) = [ng(8), ny(8), n2(8),n3 (1), ..., m (2), nd (1)]. (4.1)

Since the arrivals and departures of users are random, {x(t), t > 0} rep-
resents a finite state stochastic process. The state space X is comprised
of all state vectors x, such that SIR constraints can be met:

l/\

(4.2)

ZISQ,

J
X= x:nggB(i),i: Z

where we use the notation A; = (L — 1)y + %J—)

Decision epochs

Every time a new user arrives and requests a new connection, and
any time a departure occurs, the state of the system changes. Since
these changes in the system state should affect the admission process,
the decision epochs are the set of all arrival and departure instances.

The action space

At each decision epoch, an action a is chosen that determines how the
admission control will perform at the next decision moment. The action
vector a is state dependent, and its components depend on the type of
event: arrival or departure. In general, action a at decision epoch t is
defined as

a(t) = [af (1), af(t), a3 (1), a3 (2), ..., a5 (1), (1)), (4.3)
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where a% denotes the action for queue j if an arrival occurs and a?
denotes the action for queue j if a departure occurs, which are defined
as follows:

R maintain the number of servers for queue j
"1 1; increase (by 1) the number of servers for queue j

d _ | 0; decrease (by 1) the number of servers for queue j
R A maintain the number of servers for queue j

The action space can be defined as the set of all possible actions:
A ={0,1}%¥. (4.4)

The action space must be restricted for a given state x € X, such
that the selected action will not result in a transition into a state that is
not allowed (not in X). Also, the admissible action space (Ax), must be
restricted such that 1/7x(a) > 0, Vx € X, a € Ax, i.e, (af,a},...,a%) #
(0,0,...,0) if the system is in state x = (0,0,0,0,...,0,0).

Thus, the admissible action space Ax can be defined as:

sz{aeA:a?:Oifx-f—(0,0,...,0,1,...,0,0)¢X, and
J

(a%,ad,...,a%) # (0,0,...,0) if x = (0,0,0,0,...,0,0)}. (4.5)

The state dynamics

The state dynamics of an SMDP can be characterized by the transition
probabilities of its embedded chain, and the expected sojourn time for
each state-action pair [Bertsekas, 1995].

We define the following notation:

0; =0
- 5(35):{ 1; §>0

" x; = [nd, n}] represents the state vector for class j users, such that the
state vector for the system can be expressed as x = [xl, X2, ...y XJ]

. e? represents a vector of dimension 2J, containing only zeros except

for the position 2(j — 1) + 1, which contains a 1; x + e/ is equivalent

to x; + [1,0] and maps an increase in the queue of class j users by 1.
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= e represents a vector of dimension 2.J, containing only zeros except
for the position 2(j — 1) + 2, which contains a 1; x + €] is equivalent
to x; + [0, 1] and maps an increase in the number of servers for class
J users (number of admitted users) by 1.

Derivations of pxy(a) and 7x(a) rely on the statistical properties of
the arrival and departure processes, which are Poisson and mutually in-
dependent. It follows that the cumulative process is also Poisson and
thus the cumulative event rate is the sum of the rates for all constituent
processes. It should be mentioned that arrivals that are blocked do not
constitute an event such that the cumulative process includes only the
unblocked arrivals, which are also Poisson with rates \;(1— F}). Hence,
the inter-event time 7, (a) (the expected sojourn time) can be defined as
the inverse of the event rate:

Tx(a) =

-1

J J J
= > Nad+ Y NI =a))6(BG) —n)) + Y pml| . (46)
Jj=1 j=1 j=1

Equation (4.6) can be interpreted as follows: the embedded chain always
changes state when an arrival occurs unless the arrival is blocked (the
queue is full and no new servers are allocated for that particular queue),
and also, it always changes state when a departure occurs.

To derive the transition probabilities, the decomposition property of a
Poisson process is used: an event of certain type occurs (e.g. arrival class
J, departure class i) with a probability equal to the ratio between the
rate of that particular type of event and the total cumulative event rate
1/mx(a). Hence, the transition probabilities for the embedded Markov
chain are determined to be:

/\ja;‘LTX(a)§ ify=x+ el
/\j(l_a?)CS(B(j)—”é)Tx(a); ifyzx#—e;].
:ny(a) = ujnga;-irx(a); fy=x-— eg

(1 = ad)r(@) + yndad(l ~ 6(nf)rxc(a); HY =X ¢

0; otherwise
(4.7
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Optimal policy: linear programming approach

For any given state x € X, an action a is selected according to a
specified policy R . A stationary policy R is a function that maps the
state space into the admissible action space, where the class of admissible
policies can be defined as:

Rx)a = {R[R X = AXa ]./Tx(R) > O} . (48)

According to [Bertsekas, 1995], an average cost criterion for a given
policy R and an initial state xg can be associated with the SMDP:

T

JR(x0) = lim lE{/ c(x(t),a(t))dt}. (4.9)
T—oco 0

An optimal policy R*, that minimizes an average cost criterion Jg (o)

for any initial state xg, exists under the weak unichain assumption [Ti-

jms, 1986].

In (4.9), e(x(t),a(t)) can be interpreted as the expected cost until
the next decision epoch, and will be selected to meet the network layer
performance criteria as will be discussed shortly. An optimal policy
for the above defined SMDP process can be determined using a linear
programming approach. The optimal policy R"(x) € Rxa, x € X, can
be obtained using the decision variables u%g, x € X, a € Ax, which
are obtained by solving the linear program associated with the SMDP
[Tijms, 1986]:

J
HEHZ Z ZQjcj(x,a)uxyaTX(a)

xeXacAy j=1

subject to the constraints

Z Uya — Z Z pxy(a)uxa =0, y € X

aEAy XEXaEAX

Z Z UxaTx(a) = 1, (410)

xeXacAy

and

where 8; represents a weighting of the cost function for class 7, and U is
defined as:

U= {uxa: uxa>0,vae Ax and ¥x € X}.

A heuristic explanation [Tijms, 1986] for (4.10) is to interpret uxa7x(a)
as the steady-state probability of being in state x and choosing action
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a (for an aperiodic Markov chain). Hence, the objective function is to
minimize the long run average of the cost function per unit time. The
first constraint in (4.10) can be interpreted as a balance equation, and the
second constraint requires that the sum of the steady state probabilities
should be equal to 1.

After solving (4.10), an optimal policy for the admission control can
be constructed as follows [Tijms, 1986]:

m V¥x, choose any a*, such that uf,. > 0; then set the optimal policy
for state x to be R*(x) = a*.

As we will see shortly, for our purpose of meeting QoS requirements
in terms of blocking probabilities and average delay constraints, it is
important to be able to solve a constrained optimization. The linear
programming approach allows us to introduce very easily probabilistic
constraints related to an expected cost function cj(x, a) for class j [Ti-
jms, 1986]:

Z ¢j(x,a)uxarx(a) < C, (4.11)
xe X!, acAxk

where C ia a fixed value constraint, and X;’-, Al)’(,j are the state subspace
and the action subspace that result in blocked calls for class j .

When probabilistic constraints are imposed, the optimal policy be-
comes a randomized policy: in each state, an action a is chosen randomly
according to a probability 73 (x) = vk a/ > ac Ax Uk,a- The randomized

policy can be specified as a matrix R? (X).aim(Ax))’ with each entry

dim
given as R*(7,7) = 7} (). The (4, 7)t" entry for matrix R* represents the
probability that action j is selected when the system is in state ¢. The
matrix R* is determined off line, and the admission control randomly
chooses actions at each decisions epoch, according to the corresponding

probabilities from the matrix R*.

Cost functions and network QoS

The network layer performance measures are the blocking probabili-

ties, P/, j =1, ..., J (which reflect the network throughput capacity),
and the average connection delays Wj, j =1, ..., J. The network QoS
requirements are specified as
Pl<Wy, j=1,...,J
=0 LA . 4.12
{WjSEj,jzl,...,J (412)

To determine the optimal admission policy, the cost functions ¢(x, a)
and /(x,a) must be defined.
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Blocking probabilility

In [Singh et al., 2001], the authors proved that the blocking probabil-
ity can be expressed as

T
B = i 7B { [ (- $0)0 - 0B0) = n )y ()i
(4.13)
The expression (4.13) represents the cumulative average blocking prob-
ability. We can then obtain an expression for the expected blocking
probability until the next decision epoch for class j, when action a is
chosen in current state x:
c(x,a); = (1 -af)(1-0(B(j) —nj)). (4.14)
To minimize a weighted sum of blocking probabilities for all users in the
system, (4.14) gives the expected cost in (4.10). Furthermore, blocking
probability constraints can be met by selecting ¢(x,a); = (1 — a$)(1 —
6(B(j) —nj)), and C = T; in (4.11).

Average delay

As opposed to the blocking probability, the average connection delay
cannot be expressed as an average cost criterion. However, it is shown
in [Comaniciu and Poor, 2003a] that a combination of cost functions can
be used to ensure that the QoS requirements in (4.12) are met for all
users, if the requirements are feasible.

The average connection delay can be expressed using a queueing anal-
ysis for the equivalent system in Fig. 2.16. The delay expression for a
particular class j is given by Little’s theorem as a function of the average
number of calls in the j%* queue N{, the arrival rate \;, and the blocking

probability for class j, Pg :
N

j:

The delay restrictions imposed in (4.12) for a class 7 of users can be

rewritten as , 4
Ng <EN(A - PbJ) (4.16)

Since Plf < ¥, is also required, (4.16) is guaranteed to be met if

NI < (1= 0y). (4.17)
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Therefore, the network QoS requirements can be reformulated to be

J e i
{ij—?“ bt (4.18)
Ny S:j)\j(l—\lfj), i=1, ..., J
The average number of calls in the queue can be expressed as an av-
erage cost function by selecting the expected cost until the next decision
epoch (for class j) to be

c(x,a); = ng. (4.19)
Hence, to determine an admission policy that satisfies the restrictions in
(4.18), constraints on both the blocking probability and on the average
number of queued call requests must be imposed. The last ones can be
obtained by selecting ¢(x,a); = n} and C = E;X\;(1 — ¥,) in (4.11).
The optimal admission policy can be determined as described in the
following result.

Proposition 4.1. An optimal admission control policy can be deter-
mined as a solution of a constrained linear programming optimization,
such that the network QoS requirements in (4.12) can be guaranteed for
all users if the system is feasible. The linear program is formulated as
follows:

J
win Y- Y Y651 -a)(l - §(B() ~ nf)ux.arx(a)

xeXacAx =1

subject to the constraints

Z Uya — Z Z pxy(a)uxa =0, y € X,

acAy xeXacAx
Z Z uXaTx(a) = 1,
xeXacAx

S (1-al)(1-8(BG) —nh)uxarx(a) < T,

xeX®, acAk
j=1,...,J
and
Z nguXaTx(a) S Ej/\j(l—\llj), j = 17...,,]. (420)
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The optimal solution obtained by solving (4.20) minimizes both the
blocking probabilities (a weighted sum for all classes) as well as the av-
erage delays, subject to the network QoS constraints in (4.12).

Proposition 4.1 gives the optimal admission policy that minimizes
blocking probabilities and average delays under certain network QoS
constraints. However, the admission policy exists only if the system is
feasible, that is, only if for the given arrival rate for each class, the net-
work QoS requirements can be met for the given buffer dimension. As we
will see also in the numerical results section, not all buffer configurations
result in feasible solutions. The buffers’ dimensions are thus parameters
of the optimization, being closely related to the blocking probability.
In case of infeasibility, the linear programming can be reformulated for
different buffer configurations. A numerical example will be discussed
shortly.

There is also the scenario in which the arrival rate is too high and
no buffer configuration can be found to accommodate the network QoS
requirements. Theoretically, a maximal arrival rate per class can be de-
fined, which is the arrival rate that can be supported by the network
such that QoS requirements are met. This represents the network ca-
pacity. However, this quantity is very hard to determine analytically.
As a solution, the LP optimization may be solved for increasingly lower
arrival rates, until the system becomes feasible. If A < Aj is the network
capacity for class j, determined using this trial and error procedure, the
final blocking probability requirements must be relaxed, and the result-
ing blocking probability for class j is determined as

P, = Plpl, (4.21)

. A
where p} =1 — 3L.
J

In other words, in this situation, the admission control policy will be
selected as a solution to an LP formulation with a lower arrival rate
A7, such that it will meet the specified QoS requirements for this ar-
rival rate. The above discussion on the design of such an optimal policy
applies directly, with the only difference being that further action is
needed to reduce the arrival rate, and the final admission control will be
implemented in two steps. To reduce the arrival rate from the initial rate
Aj to A7, a higher level admission control can be implemented as follows:

Higher-Level Admission Control: Before requesting a new call con-
nection, each user in class j runs a Bernoulli trial experiment with prob-
ability of success pédm = l—p{,. In case of success, the request for connec-
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tion is made; otherwise the call is automatically rejected. This ensures
that the rate of call connection requests is reduced to A} = p;dm/\j, and
the Poisson distribution of the call connection requests is preserved.

After the call connection request has been made, the call is admit-
ted or rejected according to the previously discussed optimal admission
policy, based on the SMDP formulation.

We now illustrate the performance of the proposed call admission con-
trol using simulations for a two-class system having equal high trans-
mission rates corresponding to an equivalent spreading gain N, = 8
(N = 128 and M = 16 codes; N, = N/M). Parameter values for
the experiments are A\; = 1, Ao = 0.5, p; = 0.25, po = 0.1375 and
1 = v = 10. It is also assumed that the estimated channel gain is
|h|?> = 1 and the channel estimation variance is £? = 0.05.

The optimal policy for each experiment is obtained using an LP opti-
mization. For each numerical example, a randomized optimal stationary
policy R”* is obtained, which is then used for simulations. The aver-
age call connection delays are obtained from simulations, averaged over
10.000 call requests. The blocking probabilities can be obtained both as
a result of the LP optimization, as well as from simulations implemented
using the obtained optimal policy.

Both blocking probability and delay constraints are imposed: ¥ =
[0.2,0.1] and E = [2.5,0.67], respectively. The delay constraints trans-
late into constraints on the average number of users in the queues: i =[2,
0.3]. Different bufler configurations are considered, some of which are in-
feasible: B =[1,1], B=[1,2], B =[1,3], B = [2,3], and B = [3,3]. The
network performance is summarized in Table 4.1. The first four columns
represent the blocking probabilities and average number of queued calls
obtained from the LP optimization. The last four columns represent
simulation results. We can see that all four buffer configurations re-
sult in admission policies for which the imposed QoS requirements are
met. From Table 4.1, we see that when delay constraints are imposed,
increasing the length of the buffer for class 2 (the most delay sensitive
class) lowers P2, but increases P}. This is a consequence of the fact
that class 2 users are more delay sensitive, and by increasing their buffer
length (and correspondingly decreasing their blocking probability), their
service has to be increased as well, so that the delay constraints can be
met. The most delay sensitive class (class 2) is an expensive class, since
increasing its share of capacity (lower blocking probability obtained us-
ing more buffering) affects the performance of all other classes in the
system.
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Table 4.1. Numerical Results: Admission Control with Delay and Blocking Proba-
bility Constraints (reprinted with permission from {Comaniciu and Poor, 2003a])

(B [ BF | nl | B | n2 [ B -sim | B -sim [ del 1 [ del 2|
2,1] | 0.1865 | 0.6865 | 0.1 [ 0.1880 | 0.I797 | 0.1040 | 0.8349 | 0.4037 |
22 02 ]0.8283]0.0598 | 0.3 01881 | 0.0585 | 0.9706 | 0.6177 |
3,1] [ 01645 | 1.1655 | 0.1 | 0.1847 | 0.1656 | 0.1022 | 1.3718 | 0.4027 |
3,2] [ 0.1855 | 1.3702 | 0.0333 | 0.3 0.1907 | 0.0573 | 1.6654 | 0.6383 |

On a final note, we compare the performance of the optimal admission
policy with two other approaches for call admission control: the complete
sharing policy, and the threshold policy. Results for the complete sharing
policy are presented in Table 4.2.

Table 4.2. Numerical Results for the Complete Sharing Policy (reprinted with per-
mission from [Comaniciu and Poor, 2003a])

[ B [ Pl I P7 I delay 1 [ delay 2 ]
2,1} | 0.1109 | 0.1892 | 0.4595 | 0.6017
2,2] | 0.1352 | 0.1118 | 0.5414 | 1.1026
3,1] | 0.0758 | 0.1857 | 0.6289 | 0.6144
3,2] | 0.0782 | 0.2019 | 0.6297 | 0.6385
3,3] | 0.1146 | 0.0891 | 0.9051 1.7118
5,3] | 0.0844 | 0.1059 | 1.5627 | 2.0285
5,11 | 0.0395 | 0.2234 | 0.9824 | 0.7031

For the threshold policy, the resources are partitioned between the
two classes such that the blocking probability for the most demanding
class (class 2) is met. In order to fairly compare the results, we impose
the same blocking probability constraints as the ones considered for the
optimal policy: [0.2, 0.1].

According to (3.53), the total number of users that can be accepted
into the system for the considered numerical values is K = K; + K, = 8.
We wish to find K; and K» such that P? < 0.1. For fixed K and B(2),
we have an M/M/K,/(B(2) + K3) queue, and the blocking probability
can be computed as [Bertsekas and Gallager, 1992]

K2K2p2(B(2)+K2)
gt

e (4.22)

Pb2 =p
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where py = %2@, and pg is the probability of an empty queue and no
one in service:

-1

Ka—1 K2+B(2) .
_ K2P2 (Ka2p2) 1
po = 1+§ + kEK ramracl K (4.23)
=Nn2

The average connection delay experienced by calls in class 2 can be
expressed as

p2Pg
W,y = 2@ 4.24
2T N0 - ) (4.24)

where Py is the probability of queueing, defined as

K Ky K>+B(2)
Py = po(—;é),— ps e, (4.25)

k=K>

We note that both the blocking probability and the delay depend on
K, and B(2); therefore they cannot be optimized independently. If we
fix Ky and B(2) for a given constraint for the blocking probability, the
delay is also automatically fixed to the value computed from (4.24).

Table 4.3. Numerical Results for the Threshold Policy (reprinted with permission
from [Comaniciu and Poor, 2003a])

L B I P} | P? [ delay 1 | delay 2 |
2,1] | 0.3325 | 0.1132 | 1.3461 | 0.2340
2,2] | 0.3404 | 0.0654 | 1.4325 | 0.4983
3,1] | 0.3053 | 0.1154 | 2.2313 | 0.2342
3,2] | 0.3040 | 0.0742 | 2.1936 | 0.5359
3,3] | 0.2999 | 0.0505 | 2.1757 | 0.8041
5,3] | 0.2748 | 0.0540 | 4.1355 | 0.8135
5,11 | 0.2722 | 0.1046 | 4.0970 | 0.2282

We represent P? in Fig. 4.3 as a function of Kp for three different
values of the buffer length. It can be seen that the partition [Ki, K] =
[3,5] gives P? ~ 0.1, depending on the designed buffer length. Therefore,
this partition is used to obtain simulation results, which are summarized
in Table 4.3. We note that the QoS constraints: ¥ = [0.2,0.1] and E =
[2.5,0.67] cannot be met. Lower blocking probabilities can be obtained
if the buffer lengths are increased for both classes, but this comes at
the expense of increased delay. We observe that the threshold policy is
clearly suboptimal and lacks flexibility in guaranteeing the desired QoS.
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Figure 4.3. Threshold policy: blocking probability for class 2 (reprinted with per-
mission from [Comaniciu and Poor, 2003a])

2. Ad Hoc Networks

Admission control for ad hoc networks usually imposes some hierar-
chical structure, such that the network is divided into clusters and a
cluster-head node is in charge of admission control. Alternatively, a dis-
tributed approach based on only local information may be more suitable.

A simple admission control scheme can be designed based on capacity
results discussed in Chapter 3. Once we know the maximal number of
nodes that can be supported by the network for given QoS specifications
(SIR and delay), a complete sharing policy or a threshold policy can
be readily determined (recall that for ad hoc networks, the delay is
caused by the multi-hop routing). Once admitted, a user is guaranteed
to meet its QoS requirements, irrespective of mobility, when a shortest
hop routing protocol is used, and for fixed power transmission.

If power control is also implemented, the admission control can be
determined as a power control feasibility condition, following the work
in [Comaniciu and Poor, 2004b]. If the system is too heavily loaded, the
powers will begin to increase without bound (the power control algorithm
does not converge), and the new user needs to be dropped out of the
network. For this scenario, admission control is effectively integrated
with power control and routing.

Integrated admission control, power control and routing is also pro-
posed in [Sankaran and Ephremides, 2002] for multicasting in ad hoc
networks, and will be discussed in more detail in the following. In
[Sankaran and Ephremides, 2002], circuit switched multicasting for a
synchronous, fixed CDMA ad hoc network is analyzed. In this multi-
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casting scheme, nodes perform session admission control by specifying
reception power bounds for signals. The admission control involves de-
ciding whether or not a node can take part in a new multicast session.
If an arbitrary node k decides to take part in the new session, it must
specify a minimal (p(x min)) and a maximal (p(gmaez)) Power value that
can be received by the node k for that session. The minimal power
value ensures that target SIRs are met at the receiving node, whereas
the maximal reception power value ensures that the signal for the new
session does not cause too much interference to the ongoing multicast
sessions. The network connectivity graph for the new multicast session
is a function of the minimal and maximal power levels set by the nodes.
To set up a new session, three steps are necessary:

1 admitting the new session;
2 building the multicast tree; and

3 implementing power control, such that the power will be in the spec-
ified range.

Admission control

The admission control proposed in [Sankaran and Ephremides, 2002]
is based only on localized information, i.e., nodes have access only to
information from their neighbors. Each node %k decides if it can take
part of a new session or not, based on its residual capacity. The max-
imal capacity for node k is determined using (3.14), (3.16), or (3.19)
(for the matched filter, decorrelator or LMMSE receiver, respectively),
under the assumption that all the processed sessions can be received
with the same power p(x mn). In reality, in a multicast session, signals
processed at node &k usually cannot all be received with the same power,
since the transmitting nodes may have multiple destination nodes with
links characterized by different link gain coefficients. To overcome this
problem, two different versions for the admission control are proposed
in [Sankaran and Ephremides, 2002].

Admission control 1

For the first version, the value for p ;s is fixed. Choosing its value
affects the node’s capacity: a higher value means greater capacity, but it
is restricted by the capability of all its source nodes to be received with
at least that amount of power. One possible approach is to choose the
smallest maximal power value that can be received from any of the node’s
neighbors. Note that it is not necessarily required for the transmitting
node to be received at node k with p ;niny; this is necessary only if the
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receiving node operates at full capacity. A transmitting node informs its
neighbors about its maximal transmission power that may be required
for each outgoing session, P&,max), which is determined as the maximal
power required such that it will be received with at least power p( min)
at all receiving nodes (k is an arbitrary receiving node index). Since
a transmitter may actually be received with a higher power than the
minimum required, node & must also select a maximal allowed received
POWET D maz)- A simple calculation of p(gmqe) can be done for the
simplest case in which matched filter receivers are used. In this case,
the interference depends only on the total interference power and does
not depend on the actual number of interferers. If we denote as p~,,,, the
total power received at node k, including the interference signals, then
the node sets its maximal received power to be equal to

Pk,maz) = Rkp(k,min) - p}scuma (426)

where K ; is the approximated user capacity for node j (exact when all
users are received with the same power).

A disadvantage of this algorithm is that all nodes assume that every
transmitter £ transmits with maximal power, and is thus received by an
arbitrary node k with at least p(x ;nin), €ven though this is not the case
for most of the time. This leads to inefficient network utilization and
consequently to higher blocking probabilities for new sessions. One way
to overcome this problem is to increase the value p(j miy) gradually as
the load increases. This leads to the second version of the admission
control.

Admission control 2

For this version, a node decides to participate in new sessions by
assuming that current transmissions are going to increase their powers
by a factor of §, when the node joins the new session. The factor §,
greatly influences the performance of the admission control and therefore
must be chosen carefully. The admission control decision requires several
steps:

m If there exists a session which, after the power increase, will violate
the maximum received power constraint, node & cannot participate
in this new session and sets p(xmas) = 0. It is assumed that power
increases occur only as a consequence of new session additions.

Otherwise,

» Node k recomputes p(x min) and p(xmaz) for the scaled powers, and
also recomputes its capacity Kj. We note that the capacity is com-
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puted according to (3.14), (3.16), o (3 19), but considering an en-
hanced noise power akg, instead of O’k The enhanced noise power
accounts for the interference power at node k (from signals that are
not currently processed by the node; see also the discussion on hybrid
partial systems in Chapter 3).

» For LMMSE receivers, since the interference function is not additive,
node k must determine also the maximal number of neighbors that
can transmit for the new session': N maz = |P(kmaz)/P(k,min)]-

We note that, for the decorrelator, the SIR performance at one node
will depend only on the current SNR, i.e., no constraint needs to be
imposed on the maximal number of neighbors that can transmit for
the new session, but the enhanced noise plus interference power U,'f
must be updated for the scaled powers. Based on the updated noise
level, a new capacity value Kj, is then derived.

A disadvantage of this algorithm is that, even if a node decides to
deny a session, due to the scaling algorithm for the powers, an ongoing
session for that node can still cause a transmission with a higher power
than the maximal allowable power. When this happens, all the nodes
that process signals from the node that violated the power constraint do
not admit any new session until the transmitter can reduce its power to
acceptable levels.

Multicast routing

Once the nodes decide that they can participate in a new session, they
will form a set of potential downstream neighbors for that session. A
node £ is a potential downstream neighbor of & if node & can satisfy the
power range requirements for node ¢. In addition, for LMMSE receivers,
the maximum transmitting neighbors condition must also be satisfied.
The network connectivity graph for the multicast tree depends on the
set of potential downstream neighbors for that particular session. Each
multicast tree is characterized by a certain distribution of powers for
the nodes, which influences the current interference level and the total
energy consumption. We can define the cost of a link (k, ) as the trans-
mission power Py¢ required by node & to be correctly received by node
¢. In general, a node will have many outgoing links (see an example in
Fig. 4.4), and thus the node cost will be the maximal cost over all the
outgoing links.

11t is proved in [Sankaran and Ephremides, 2002] that the SIR constraint will stil! hold if
fewer than the maximal allowable number of neighbor nodes transmit, provided that the total
received power satisfies the maximal power constraint.
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Figure 4.4. Multiple outgoing links in a multicast trec

For the example considered in Fig. 4.4, the cost of node k is costy =
max{Py;, Pre, Pem, Pin }. The multicast cost of a tree is the sum of costs
for all nodes in the tree. While, the goal is to minimize this cost, addi-
tional constraints must be met, such as maximal power values specified
by each node, as well as a maximal number of transmitting neighbors
for the case in which LMMSE receivers are used. The problem of find-
ing an optimal multicast tree is NP-hard, and a suboptimal solution
is proposed in [Sankaran and Ephremides, 2002]: the pruned extended
tree algorithm (PET). In this algorithm, an extended tree rooted at
the source is constructed, and then the multicast tree is obtained by
removing nondestination leaf nodes from the tree (pruning). The term
“extended tree” means that not all the leaves in the obtained tree will be
multicast destinations. Starting with the source, nodes are added to the
tree one at a time, until all the multicast destinations have been added.
The instantaneous cost of the tree is the cost of the current tree. The
rule for addition of new nodes is to add a link that gives the minimal
cost addition to the current multicast tree cost. The addition is made
ounly if the above mentioned additional restrictions hold.

After adding a new link, backsweeping may be necessary, i.e, a node
parent in the tree is changed if this results in a reduction of the overall
cost for the tree. Backsweeping must be done carefully to avoid loops in
the tree.

Power control

The last step in the process is to ensure that the sessions will really
get the desired QoS, and this implies that power control must be im-
plemented. Similarly to the problem in [Comaniciu and Poor, 2003c], a
node may need to satisfy SIR constraints for multiple outgoing links, so
that the SIR condition translates to the requirement that the weakest
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outgoing link must meet the target SIR. As we discussed in Chapter 2,
this power control problem is standard and can be implemented as an
iterative power control algorithm algorithm:

Pn+1) =T(p(n)), (4.27)

where T(p) = maxj ¢ I(1¢)(P) is a standard interference function, and
(k,£) is an arbitrary link. The expressions for I ¢ can be directly
determined by imposing the condition that the achievable link SIR must
be greater than or equal to a target SIR ~*. Consequently, for the
matched filter we have

* (%v >k PP+ ‘72) '

I = o ; (4.28)
and for the LMMSE receiver we have
(1 hjePihe e Pr 2
[mmse _ 7 <N Lotk Fa Pty P T O ) (4.29)
(k&) P e ‘ ‘

Here hy ¢ is the link gain from node % to node £.

Performance results

The performance of the proposed admission control (version 2) and
the multicast algorithm were illustrated by simulations in [Sankaran and
Ephremides, 2002). We present here an example for 10 simulations, 50
nodes and 100 multicast sessions per simulation. Parameter values used
for the experiments are: pp, = {0.1, 1}, maximal transmission power 5,
§ =13,y =3, N =511, and 6 = 0.2. Nodes are placed randomly in a
square grid of dimensions (10 x 10). The arrival process for the multicast
sessions is Poisson with mean A, and the session duration is exponential
with mean 1. Three different performance metrics are considered:

n Multicast efficiency:
X
1 ™m;
Eff =+ — 4.30
RS % (4:30)

where X is the number of multicast requests, m; is the number of des-
tinations reached for the i*" session, and n; is the number of intended
destinations for the ** session.

m Blocking probability

P, = b—X, (4.31)
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where bx is the number of completely blocked multicast requests
(mi = 0).

» Average power consumption
1 X e;
P =— — 4.32
=T T (432

where X’ is the number of multicast request for which at least one
destination is reached, e; is the sum of energies for all nodes partici-
pating in session ¢, 7; is the number of nodes transmitting in session
1, and t; is the duration for session .

The simulation results are illustrated in Figs. 4.5, 4.6, and 4.7.
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Figure 4.5. Multicast efficiency (reprinted with permission from [Sankaran and
Ephremides, 2002])

Performance comparisons among the three receivers reveal that, while
the LMMSE receiver performs the best, the performance of the decorre-
lator is comparable with that of the matched filter.
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Figure 4.6. Blocking probability(reprinted with permission from [Sankaran and
Ephremides, 2002])
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Chapter 5

MULTIUSER DETECTION IN
CROSS-LAYER DESIGN: PERSPECTIVES

Cross-layer design and multiuser detection are both controversial top-
ics. For multiuser detection, an extensive literature is dedicated to show-
ing that significant gains in spectral efficiency, user capacity and near /far
resistance can be achieved. On the other hand, skeptics argue that the
complexity cost of multiuser detection makes it impractical for commer-
cial implementation. Despite this, the least complex of the multiuser
receiver family (the interference cancellation receivers) are begining to
be implemented in third generation cellular systems. Further, there is
considerable potential for multiuser receivers to be used in emerging
types of networks such as ad hoc networks, which are particularly sus-
ceptible to interference and to near/far problems. One of the hurdles to
be overcome in implementing multiuser detectors in ad hoc networks is
the requirement of continuous adaptation of filter coefficients as a result
of changes in the user population, and consequently, the need to con-
tinuously learn the signature sequences of neighboring transmitters. We
have seen that one possible solution to this problem is to blindly learn
the interference subspace and construct the filter coefficients accordingly.
For rapidly moving users in an ad hoc network (when the users move
quickly in and out of a neighborhood), multiuser detection is not a suit-
able solution. This type of network is probably most suitable for random
access and short bursty transmissions, for which implementing a mul-
tiuser receiver is very difficult. This, and related considerations, suggest
that the suitability of multiuser detection is application and network de-
pendent. However, as DSP and CMOS technologies continue to evolve,
the class of networks for which multiuser detection is suitable will grow.

Another obstacle to the deployment of multiuser receivers has been
the fact that the physical layer performance was hard to quantify in
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a network context when interacting with upper layer protocols, such
as power control, access control and routing. We have seen that some
progress has been made in characterizing and optimizing such systems,
although there is still considerable room for further research in this area.

Understanding and exploiting the interactions between different layers
of the protocol stack is the core of the cross-layer design concept. Several
questions about cross-layer design must be answered before these inter-
actions can be successfully exploited. First of all, does cross-layer design
mean that we must completely discard the OSI layered model? Do we
still need a network architecture? Is cross-layer design suitable for all
types of networks and all types of applications? Are the gains obtained
from cross-layer design of a short-term nature, or of a long term nature?

We address the above questions by analyzing simple facts related to
wireless networks. First of all, wireless networks do not come with fixed
links as their wireline counterparts do. This means that the upper layer
protocols must rely on a network model that is inherently physical layer
dependent. Aside from channel impairments, the reliability of the links
that form this network model depends on the level of interference in the
system, which in turn may be influenced by upper layer protocols. We
have already seen examples in this book that discuss the interdependence
among the receiver design, routing, power control, access control and
admission control.

On the other hand, the layered architecture has multiple advantages:
it has a modular design, it is easily upgradable and suitable for stan-
dardization and mass production, which immediately translates into long
term gains for this architecture. The success story of the Internet is
a very good example supporting the efficiency and suitability of the
OSI model. Layered, modular, architecture models have certain ad-
vantages that are equally important for wireless networks. A common
missconception in cross-layer design is that the layered approach must
be completely eliminated, and all layers must be integrated and jointly
optimized. While this approach might lead to some overall performance
gains in the short term, it is clearly impractical and cannot be consid-
ered as a solution for future generation network design. At the other
extreme, the isolated design for layers as commonly used in wireline
networks might be applied for wireless networks as well. This is also a
undesirable since it ignores the interactions between layers and might
lead to severe penalties in performance. The solution for cross-layer de-
sign should rather be based on a holistic view of wireless networking,
which maintains the layered approach, while accounting for the inter-
actions between various protocols at different layers. QoS support for
various applications should be implemented at all layers in the protocol
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stack and the response to changes in the channel environment should be
hierarchically implemented across all layers. Interactions between differ-
ent protocols can be accounted for by exchanging pertinent information
between layers. Abstract models for layers may also greatly simplify the
design. We have seen an example in Chapter 3 of how the physical layer
performance can be abstracted for upper layers: the capacity of power
controlled networks was derived for asymptotically large networks. If
such an abstraction is possible, it is much easier to determine what in-
formation should be exchanged between layers and how it should be used
by the adaptation protocols. In general, the inter-layer coupling is diffi-
cult to characterize and this is one of the current key research problems
in cross-layer design. Another important issue is that of maintaining
the right balance between performance, complexity and scalability for
wireless network optimizations.

Note that some inter-layer coupling may occur in all kinds of networks
(even wireline), but it is especially strong for wireless architectures, due
to the nature of wireless transmission. As a consequence, cross-layer
design might be beneficial for all wireless architectures and all types of
applications. However, caution should be exercised when implementing
cross-layer optimization, since one would expect that the optimal trade-
offs among performance, complexity and scalability would be application
and network dependent.

As a final remark, in this book we have shown that multiuser de-
tection in cross-layer design has the potential to significantly improve
the performance of wireless networks. This topic is fairly new and it
opens many new and exciting research problems for all types of wireless
networks supporting heterogeneous applications.
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