
Learn JavaScript the quick and easy way,
from the experts at w3schools

Learn

JavaScript®

and Ajax

Add JavaScript

Defi ne functions

Create cookies

Declare variables

Create objects

Build Ajax pages

with w3schools

Learn

JavaScript
and AJAX

Hege Refsnes, Ståle Refsnes, Kai Jim Refsnes,
and Jan Egil Refsnes

with Kelly Dobbs Henthorne

Wiley Publishing, Inc.

with w3schools

®

Learn JavaScript® and AJAX with w3schools
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-61194-4

LOC/CIP: 2010925161

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the appro-
priate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, N 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and spe-
cifically disclaim all warranties, including without limitation warranties of fitness for a particular
purpose. No warranty may be created or extended by sales or promotional materials. The advice
and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should
be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The
fact that an organization or Website is referred to in this work as a citation and/or a potential source
of further information does not mean that the author or the publisher endorses the information the
organization or Website may provide or recommendations it may make. Further, readers should be
aware that Internet Websites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trade-
marks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. w3schools and the w3schools logo are registered
trademarks of w3schools. JavaScript is a registered trademark of Sun Microsystems, Inc. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress CIP Data is available from the publisher.

w3schools Authors/Editors
w3schools’ mission is to publish well-organized and easy-to-understand online tutorials
based on the W3C Web standards.

Hege Refsnes
Hege is a writer and editor for w3schools. She works to improve the usability and acces-
sibility of the Web.

Hege has been writing tutorials for w3schools since 1998.

Ståle Refsnes
Ståle has ten years of Internet development experience, developing all the Web-based solu-
tions for The Norwegian Handball Federation.

Ståle has been writing tutorials for w3schools since 1999.

Kai Jim Refsnes
Kai Jim has been around computers since childhood, working with them since the age
of 14.

He has been writing tutorials for w3schools since completing a bachelor’s degree in infor-
mation technology in 2005.

Jan Egil Refsnes
Jan Egil is the president and founder of w3schools.

He is a senior system developer with a master’s degree in information technology and
more than 30 years of computing experience.

“Jani” has supervised a large number of company-critical development projects for oil
companies like Amoco, British Petroleum, ELF, Halliburton, and Brown & Root. He has
also developed computer-based solutions for more than 20 governmental institutions like
The National Library, Norwegian High Schools, The State Hospital, and many others.

Jani started w3schools in 1998.

Credits
Acquisitions Editor
Scott Meyers

Production
Abshier House

Technical Editor
Harry Buss

Copy Editor
Abshier House

Associate Director of Marketing
David Mayhew

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreading and Indexing
Abshier House

Cover Designer
Michael Trent

v

Introduction..1
JavaScript.. 1

AJAX... 3

How To Use This Book... 4

Section I: JavaScript Basic..............................7

Chapter 1: JavaScript How To and Where To............... 9
How To Put a JavaScript into an HTML Page..................................... 9

How to Handle Simple Browsers... 12

Where to Put the JavaScript.. 12

Using an External JavaScript... 15

Chapter 2: JavaScript Statements and Comments....... 16
JavaScript Statements.. 16

JavaScript Comments.. 18

Chapter 3: JavaScript Variables................................... 23
Do You Remember Algebra from School?.. 23

JavaScript Variables... 23

Declaring (Creating) JavaScript Variables.. 25

Assigning Values to Undeclared JavaScript Variables.......................... 25

Redeclaring JavaScript Variables.. 26

JavaScript Arithmetic.. 26

Table of Contents

vi

Chapter 4: JavaScript Operators................................. 27
JavaScript Arithmetic Operators.. 27

JavaScript Assignment Operators... 28

The + Operator Used on Strings.. 28

Adding Strings and Numbers.. 28

Chapter 5: JavaScript Comparisons............................ 30
Comparison Operators.. 30

How to Use Comparisons... 31

Logical Operators.. 31

Conditional Operator... 31

Chapter 6: JavaScript If...Else Statements................... 32
Conditional Statements... 32

if Statement... 33

if...else Statement.. 34

if...else if...else Statement... 36

Chapter 7: JavaScript Loops....................................... 39
The for Loop... 39

The while Loop... 41

The do...while Loop.. 43

Chapter 8: Additional JavaScript Flow Control
Statements.. 46

The break Statement... 46

The continue Statement.. 47

JavaScript for...in Statement.. 48

JavaScript switch Statement... 50

Table of Contents

vii

Chapter 9: JavaScript Popup Boxes............................. 53
Popup Boxes.. 53

Chapter 10: JavaScript Functions............................... 58
How to Define a Function.. 58

JavaScript Function Examples... 59

The return Statement.. 62

The Lifetime of JavaScript Variables.. 63

Chapter 11: JavaScript Events..................................... 64
onLoad and onUnload.. 64

onFocus, onBlur, and onChange... 65

onSubmit.. 65

onMouseOver and onMouseOut... 66

onClick... 66

Chapter 12: Javascript try…catch and
throw Statements.. 67

JavaScript—Catching Errors... 67

The try...catch Statement.. 67

The throw Statement... 70

Chapter 13: JavaScript Special Characters and
Guidelines.. 73

Insert Special Characters... 73

JavaScript Is Case Sensitive.. 74

White Space.. 74

Break up a Code Line.. 74

Table of Contents

viii

Section II: JavaScript Objects.......................77

Chapter 14: JavaScript Objects Intro.......................... 79
Object-Oriented Programming... 79

Properties.. 79

Methods.. 80

Chapter 15: JavaScript String Object.......................... 81
String Object... 81

Examples... 82

Chapter 16: JavaScript Date Object............................ 88
Create a Date Object... 88

Set Dates... 89

Compare Two Dates.. 89

Examples... 90

Chapter 17: JavaScript Array Object........................... 95
What Is an Array?.. 95

Create an Array... 96

Access an Array... 96

Modify Values in an Array... 96

Examples... 97

Chapter 18: JavaScript Boolean Object.................... 107
Create a Boolean Object.. 107

Examples... 108

Table of Contents

ix

Chapter 19: JavaScript Math Object......................... 110
Math Object... 110

Mathematical Constants.. 110

Mathematical Methods... 111

Examples... 112

Chapter 20: JavaScript RegExp Object..................... 115
What Is RegExp?... 115

RegExp Modifiers.. 116

test().. 118

exec().. 119

Section III: JavaScript Advanced.................121

Chapter 21: JavaScrip Browser Detection................. 123
Browser Detection... 123

The Navigator Object... 124

Chapter 22: JavaScript Cookies................................ 129
What Is a Cookie?... 129

Create and Store a Cookie... 130

Chapter 23: JavaScript Form Validation................... 134
Required Fields... 134

E-mail Validation.. 136

Table of Contents

x

Chapter 24: JavaScript Animation............................ 138
The HTML Code... 138

The JavaScript Code.. 139

The Entire Code... 139

Chapter 25: JavaScript Image Maps.......................... 141
HTML Image Maps.. 141

Adding Some JavaScript.. 142

Chapter 26: JavaScript Timing Events...................... 144
The setTimeout() Method... 144

The clearTimeout() Method.. 149

Chapter 27: Create Your Own Objects
with JavaScript.. 151

JavaScript Objects... 151

Creating Your Own Objects.. 152

Section IV: AJAX Basic................................157

Chapter 28: AJAX XMLHttpRequest....................... 159
AJAX Uses the XMLHttpRequest Object.. 159

The XMLHttpRequest Object.. 159

Your First AJAX Application... 160

Chapter 29: AJAX Browser Support......................... 163
The XMLHttpRequest.. 163

All Together Now.. 164

Table of Contents

xi

Chapter 30: AJAX—The XMLHttpRequest
Object’s Methods and Properties................................. 166

Important Methods... 166

Sending an AJAX Request to a Server.. 167

Important Properties... 167

The responseText Property.. 167

XMLHttpRequest Open—Using False.. 167

XMLHttpRequest Open—Using True.. 168

The readyState Property.. 168

The onreadystatechange Property.. 169

Chapter 31: AJAX Server.. 170
XMLHttpRequest Object Can Request Any Data........................... 170

Requesting Files.. 170

Submitting Forms... 171

Section V: AJAX Advanced.........................173

Chapter 32: AJAX Suggest....................................... 175
The HTML Form... 175

The showHint() Function... 176

The GetXmlHttpObject() Function.. 177

The stateChanged() Function.. 177

AJAX Suggest Source Code... 178

Chapter 33: AJAX Database Example....................... 184
The AJAX JavaScript... 185

The AJAX Server Page... 186

Table of Contents

xii

Chapter 34: AJAX XML Example............................ 188
The AJAX JavaScript... 189

The AJAX Server Page... 190

The XML File... 191

Chapter 35: AJAX ResponseXML Example.............. 198
The AJAX JavaScript... 199

The AJAX Server Page... 201

Appendixes...203
Appendix A: JavaScript Objects..203

Appendix B: HTML DOM Objects...214

Index...245

Table of Contents

Introduction

Welcome to Learn JavaScript and Ajax with w3schools. This book is for Web site
designers and builders who want to learn to add interactivity to their Web pages

with JavaScript and Ajax.

w3schools (www.w3schools.com), is one of the top Web destinations to learn JavaScript
and many other key Web languages. Founded in 1998, w3schools’ tutorials are recom-
mended reading in more than 100 universities and high schools all over the world. This
book is a great companion to the JavaScript and Ajax tutorials on the w3schools site,
which were written by Jan Egil Refsnes, Ståle Refsnes, Kai Jim Refsnes, and Hege Refsnes.

Like the w3schools online tutorials, this book features a brief presentation of each topic,
trading lengthy explanations for abundant examples showcasing each key feature. This
book, as well as other w3schools books published by Wiley, features straight-forward and
concise tutorials on each topic from which the beginning Web developer can easily learn.
All of the book’s content is derived from w3schools’ accurate, user-tested content used by
millions of learners every month.

JavaScript
JavaScript is the scripting language of the Web. JavaScript is used in millions of Web pages
to add functionality, validate forms, detect browsers, and much more. JavaScript is the
most popular scripting language on the Internet and works in all major browsers, such as
Internet Explorer, Firefox, Chrome, Opera, and Safari.

What You Should Already Know
Before you continue you should have a basic understanding of HTML.

If you want to study this subject first, please read Learn HTML and CSS with w3schools.

What Is JavaScript?
	8	 JavaScript was designed to add interactivity to HTML pages.

	8	 JavaScript is a scripting language.

	8	 A scripting language is a lightweight programming language.

	8	 JavaScript is usually embedded directly into HTML pages.

2

	8	 JavaScript is an interpreted language (means that scripts execute without pre-
liminary compilation).

	8	 Everyone can use JavaScript without purchasing a license.

Are Java and JavaScript the Same?
No, they are not. Java and JavaScript are two completely different languages in both con-
cept and design.

Java (developed by Sun Microsystems) is a powerful and much more complex program-
ming language in the same category as C and C++.

What Can JavaScript Do?
	8	 JavaScript gives HTML designers a programming tool. HTML authors

are normally not programmers, but JavaScript is a scripting language with a
very simple syntax. Almost anyone can put small “snippets” of code into their
HTML pages.

	8	 JavaScript can put dynamic text into an HTML page. A JavaScript state-
ment like document.write(“<h1>” + name + “</h1>”) can write a vari-
able text into an HTML page.

	8	 JavaScript can react to events. A JavaScript script can be set to execute when
something happens, like when a page has finished loading or when a user clicks
on an HTML element.

	8	 JavaScript can read and write HTML elements. A JavaScript script can read
and change the content of an HTML element.

	8	 JavaScript can be used to validate data. A JavaScript script can be used to
validate form data before it is submitted to a server. This saves the server from
extra processing.

	8	 JavaScript can be used to detect the visitor’s browser. A JavaScript script
can be used to detect the visitor’s browser, and depending on the browser, load
another page specifically designed for that browser.

	8	 JavaScript can be used to create cookies. A JavaScript script can be used to
store and retrieve information on the visitor’s computer.

The Real Name Is ECMAScript
JavaScript’s official name is ECMAScript, which is developed and maintained by the
ECMA International organization.

The language was invented by Brendan Eich at Netscape (with Navigator 2.0) and has
appeared in all Netscape and Microsoft browsers since 1996.

Learn JavaScript and AJAX with w3schools

3

ECMA-262 is the official JavaScript standard. The development of ECMA-262 started in
1996, and the first edition of was adopted by the ECMA General Assembly in June 1997.
The standard was approved as an international ISO (ISO/IEC 16262) standard in 1998.

The development of the standard is still in progress.

AJAX
AJAX equals Asynchronous JavaScript and XML.

AJAX is based on JavaScript and HTTP requests. AJAX is not a new programming lan-
guage, but a new way to use existing standards.

AJAX is the art of trading data with a Web server, and changing parts of a Web page,
without reloading the whole page.

What You Should Already Know
Before you continue you should have a basic understanding of the following:

	8	 HTML

	8	 JavaScript

If you want to study these subjects first, find the tutorials on the w3schools home
page.

AJAX = Asynchronous JavaScript and XML
AJAX is not a new programming language, but a new technique for creating better, faster,
and more interactive Web applications.

With AJAX, a JavaScript can communicate directly with the server, with the XMLHttpRe-
quest object. With this object, a JavaScript can trade data with a Web server, without
reloading the page.

AJAX uses asynchronous data transfer (HTTP requests) between the browser and the Web
server, allowing Web pages to request small bits of information from the server instead of
whole pages.

The AJAX technique makes Internet applications smaller, faster, and more user friendly.

AJAX Is Based on Internet Standards
AJAX is based on the following Web standards:

	8	 JavaScript

	8	 XML

Introduction

4

	8	 HTML

	8	 CSS

AJAX applications are browser- and platform-independent.

AJAX Is About Better Internet-Applications
Internet applications have many benefits over desktop applications: They can reach a
larger audience; they are easier to install and support; and they are easier to develop.

However, Internet applications are not always as “rich” and user friendly as traditional
desktop applications.

With AJAX, Internet applications can be made richer and more user friendly.

Start Using AJAX Today
There is nothing new to learn. AJAX is based on existing standards. These standards have
been used by developers for several years.

How To Use This Book
Throughout this book, you will see several icons:

Try it yourself >>

The Try It Yourself icon indicates an opportunity for you to practice what you’ve just
learned. The code and examples under this icon come from examples on the w3schools
site, which allow you to make changes to the code and see the results immediately. You
do not have to type in the code examples in this book; you will find them all on the
w3schools site.

 �The w3schools icon indicates that more information is available on the w3schools
site.

 This icon indicates where you will find further information about a topic that is
covered more thoroughly elsewhere within the book.

This book is divided into five sections:

	8	 Section I: JavaScript Basic

	8	 Section II: JavaScript Objects

	8	 Section III: JavaScript Advanced

	8	 Section IV: AJAX Basic

	8	 Section V: SectionAJAX Advanced

Learn JavaScript and AJAX with w3schools

5

If you’re anxious to improve your Web pages and to add some interactivity, jump right
in with JavaScript Basic. Plenty of examples and opportunities to try things await, and
w3schools will be right there when you need them!

Introduction

7

Section I
JavaScript
Basic
❑	 Chapter 1: JavaScript How To and Where To

❑	� Chapter 2: JavaScript Statements and
Comments

❑	 Chapter 3: JavaScript Variables

❑	 Chapter 4: JavaScript Operators

❑	 Chapter 5: JavaScript Comparisons

❑	 Chapter 6: JavaScript If…Else

❑	 Chapter 7: JavaScript Loops

❑	 Chapter 8: JavaScript Flow Control Statements

❑	� Chapter 9: JavaScript Switch and Popup Boxes

❑	 Chapter 10: JavaScript Functions

❑	 Chapter 11: JavaScript Events

❑	� Chapter 12: JavaScript Try…Catch and Throw
Statements

❑	� Chapter 13: JavaScript Special Characters and
Guidelines

9

Chapter 1

JavaScript How To
and Where To

In This Chapter
	 ❑	 How To Put a JavaScript into an HTML Page

	 ❑	 How To Handle Simple Browsers

	 ❑	 Where To Put the JavaScript

	 ❑	 Using an External JavaScript

The HTML <script> tag is used to insert a JavaScript into an HTML page.

How To Put a JavaScript into an HTML
Page

The following example shows how to use JavaScript to write text on a Web page.

The result of this script is shown in Figure 1.1.

<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

</script>

</body>

</html>

Figure 1.1

Learn JavaScript and Ajax with w3schools

10

Here’s your first opportunity to personalize JavaScript. Change the “Hello World”
text to “Happy, Happy, Joy, Joy!” and see what happens. The result of your changes
is shown in Figure 1.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

document.write("Happy, Happy, Joy, Joy!");

</script>

</body>

</html>

The following example shows how to add HTML tags to the JavaScript. The result
of this code is shown in Figure 1.3.

<html>

<body>

<script type="text/javascript">

document.write("<h1>Hello World!</h1>");

</script>

</body>

</html>

Continuing with our happier version of the code, change the “Hello World!” text
to “Happy, Happy, Joy, Joy!” and see what happens. The result of your changes is
shown in Figure 1.4.

Figure 1.2

Figure 1.3

Chapter 1: JavaScript How To and Where To

11

Try it yourself >>

<html>

<body>

<script type="text/javascript">

document.write("<h1>Happy, Happy, Joy, Joy!</h1>");

</script>

</body>

</html>

To insert a JavaScript into an HTML page, we use the <script> tag. Inside the
<script> tag we use the type attribute to define the scripting language.

So, <script type="text/javascript"> and </script> tell where the Java-
Script starts and ends:

<html>

<body>

<script type="text/javascript">

...

</script>

</body>

</html>

The document.write command is a standard JavaScript command for writing
output to a page.

When you type the document.write command between the <script> and </
script> tags, the browser will recognize it as a JavaScript command and execute
the code line. In this case, the browser writes Hello World! to the page:

<html>

<body>

<script type="text/javascript">

document.write("Hello World!");

Figure 1.4

(continued)

Learn JavaScript and Ajax with w3schools

12

</script>

</body>

</html>

How to Handle Simple Browsers
Browsers that do not support JavaScript will display JavaScript as page content.

To prevent them from doing this and as a part of the JavaScript standard, the
HTML comment tag should be used to “hide” the JavaScript.

Just add an HTML comment tag <!-- before the first JavaScript statement, and an
end-of–comment tag --> after the last JavaScript statement, like this:

<html>

<body>

<script type="text/javascript">

<!--

document.write("Hello World!");

//-->

</script>

</body>

</html>

The two forward slashes at the end of comment line (//) comprise the JavaScript
comment symbol. This prevents JavaScript from executing the --> tag.

Where to Put the JavaScript
JavaScripts in a page will be executed immediately while the page loads into the
browser. This is not always what we want. Sometimes we want to execute a script
when a page loads, or at a later event, such as when a user clicks a button. When
this is the case we put the script inside a function. You will learn about functions in
Chapter 10, “JavaScript Functions.”

Figure 1.5

If we had not typed the <script> tag, the browser would have treated
the document.write(“Hello World!”) command as pure text and would just
write the entire line on the page, as shown in Figure 1.5.

N O T E

(continued)

Chapter 1: JavaScript How To and Where To

13

Scripts in <head>
Scripts to be executed when they are called, or when an event is triggered, are placed
in functions.

Put your functions in the head section. This way they are all in one place, and they
do not interfere with page content. The resulting alert box is shown in Figure 1.6.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

</body>

</html>

Scripts in <body>
If you don’t want your script to be placed inside a function, or if your script should
write page content, it should be placed in the body section. Figure 1.7 shows the
result.

Figure 1.6

Learn JavaScript and Ajax with w3schools

14

Try it yourself >>

<html>

<head>

</head>

<body>

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Scripts in <head> and <body>
You can place an unlimited number of scripts in your document, so you can have
scripts in both the body and the head section.

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script></head>

<body onload="message()">

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Figure 1.7

Chapter 1: JavaScript How To and Where To

15

Using an External JavaScript
If you want to run the same JavaScript on several pages without having to write the
same script on every page, you can write a JavaScript in an external file.

Save the external JavaScript file with a .js file extension. Your results are shown in
Figure 1.8.

Try it yourself >>

To use the external script, point to the .js file in the src attribute of the <script>
tag as shown:

<html>

<head>

<script type="text/javascript" src="xxx.js"></script>

</head>

<body>

</body>

</html>

Figure 1.8

The external script cannot contain the <script> tag!N O T E

Remember to place the script exactly where you normally would write the
script!

N O T E

16

Chapter 2

JavaScript
Statements and

Comments

In This Chapter
	 ❑	 JavaScript Code

	 ❑	 JavaScript Blocks

	 ❑	 JavaScript Multiline Comments

	 ❑	 Using Comments To Prevent Execution

	 ❑	 Using Comments at the End of a Line

JavaScript is a sequence of statements to be executed by the browser. Unlike HTML,
JavaScript is case-sensitive; therefore, watch your capitalization closely when you
write JavaScript statements and create or call variables, objects, and functions.

JavaScript Statements
A JavaScript statement is a command to a browser. The purpose of the command is
to tell the browser what to do.

The following JavaScript statement tells the browser to write “Hello Dolly” to the
Web page:

document.write("Hello Dolly");

It is normal to add a semicolon at the end of each executable statement. Most
people think this is a good programming practice, and most often you will see this
in JavaScript examples on the Web.

The semicolon is optional (according to the JavaScript standard), and the browser
is supposed to interpret the end of the line as the end of the statement. You often
will see examples without the semicolon at the end.

Chapter 2: JavaScript Statements and Comments

17

JavaScript Code
JavaScript code (or just JavaScript) is a sequence of JavaScript statements. Each
statement is executed by the browser in the sequence it is written.

This example will write a heading and two paragraphs to a Web page as shown in
Figure 2.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

</script>

</body>

</html>

JavaScript Blocks
JavaScript statements can be grouped together in blocks. Blocks start with a left
curly bracket { and end with a right curly bracket }.

The purpose of a block is to make the sequence of statements execute together.

The following example writes a heading and two paragraphs to a Web page as
shown in Figure 2.2.

Using semicolons makes it possible to write multiple statements on one
line, although good programming practice encourages placing only one statement per
line.

NOTE

Figure 2.1

Learn JavaScript and Ajax with w3schools

18

Try it yourself >>

<html>

<body>

<script type="text/javascript">

{

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

}

</script>

</body>

</html>

The preceding example is not very useful. It just demonstrates the use of a block.
Normally, a block is used to group statements together in a function or in a condi-
tion (in which a group of statements should be executed if a condition is met).

You will learn more about functions and conditions in Chapters 6 and 10.

JavaScript Comments
JavaScript comments can be added to explain the JavaScript script or to make the
code more readable.

Single line comments start with //.

The following example uses single-line comments to explain the code.

Figure 2.2

Chapter 2: JavaScript Statements and Comments

19

Your result is shown in Figure 2.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

// Write a heading

document.write("<h1>This is a heading</h1>");

// Write two paragraphs:

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

</script>

</body>

</html>

JavaScript Multiline Comments
Multiline comments start with /* and end with */.

The following example uses a multiline comment to explain the code.

Your result is shown in Figure 2.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

Figure 2.3

(continued)

Learn JavaScript and Ajax with w3schools

20

/*

The code below will write

one heading and two paragraphs

*/

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

</script>

</body>

</html>

Using Comments to Prevent Execution
In the following example, the comment is used to prevent the execution of a single
code line (can be suitable for debugging):

Your result is shown in Figure 2.5.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

//document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

Figure 2.4

(continued)

Chapter 2: JavaScript Statements and Comments

21

</script>

</body>

</html>

In the following example, the comment is used to prevent the execution of a code
block (can be suitable for debugging):

Try it yourself >>

<html>

<body>

<script type="text/javascript">

/*

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

*/

</script>

</body>

</html>

Your result would be a blank screen.

Figure 2.5

Learn JavaScript and Ajax with w3schools

22

Using Comments at the End of a Line
In the following example, the comment is placed at the end of a code line. Your
result is shown in Figure 2.6.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

document.write("Hello"); // Write "Hello"

document.write(" Dolly!"); // Write " Dolly!"

</script>

</body>

</html>

Figure 2.6

23

Chapter 3

JavaScript
Variables

In This Chapter
	 ❑	 Do You Remember Algebra from School?

	 ❑	 JavaScript Variables

	 ❑	 Declaring (Creating) JavaScript Variables

	 ❑	 Assigning Values to Undeclared JavaScript Variables

	 ❑	 Redeclaring JavaScript Variables

	 ❑	 JavaScript Arithmetic

Variables are “containers” for storing information.

Do You Remember Algebra from
School?

Do you remember algebra from school?

x = 5, y = 6, z = x + y

Do you remember that a letter (like x) could be used to hold a value (like 5), and
that you could use the information given to calculate the value of z to be 11?

These letters are called variables. Variables can be used to hold values (x = 5) or
expressions (z = x + y).

JavaScript Variables
As with algebra, JavaScript variables are used to hold values or expressions. A vari-
able can have a short name, like x, or a more descriptive name, like carname.

Learn JavaScript and Ajax with w3schools

24

Rules for JavaScript variable names:

	8	 Variable names are case sensitive (y and Y are two different variables).

	8	 Variable names must begin with a letter, the underscore character, or a dollar
sign. (The $ character is used primarily by code-generation tools.)

	8	 Subsequent characters may be letter, number, underscore, or dollar sign.

A variable’s value can change during the execution of a script. You can refer to a vari-
able by its name to display or change its value. Your result is shown in Figure 3.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var firstname;

firstname="Hege";

document.write(firstname);

document.write("
");

firstname="Tove";

document.write(firstname);

</script>

<p>The script above declares a variable,

assigns a value to it, displays the value, changes the
value,and displays the value again.</p>

</body>

</html>

There are 59 reserved words that are not legal variable names.N O TE

Because JavaScript is case sensitive, variable names are case sensitive.TIP

Chapter 3: Javascript Variables

25

Declaring (Creating) JavaScript
Variables

Creating variables in JavaScript is most often referred to as “declaring” variables.

You can declare JavaScript variables with the var statement:

var x;

var carname;

After the declaration shown, the variables are empty. (They have no values yet.)
However, you can also assign values to the variables when you declare them:

var x=5;

var carname="Volvo";

After the execution of the preceding statements, the variable x will hold the value 5,
and carname will hold the value Volvo.

Assigning Values to Undeclared
JavaScript Variables

If you assign values to variables that have not yet been declared, the variables will
automatically be declared.

The following statements:

x=5;

carname="Volvo";

Figure 3.1

When you assign a text value to a variable, use quotes around the value.N O TE

(continued)

Learn JavaScript and Ajax with w3schools

26

have the same effect as these:

var x=5;

var carname="Volvo";

Redeclaring JavaScript Variables
If you redeclare a JavaScript variable, it will not lose its original value.

var x=5;

var x;

After the execution of the preceding statements, the variable x will still have the
value of 5. The value of x is not reset (or cleared) when you redeclare it.

JavaScript Arithmetic
As with algebra, you can do arithmetic operations with JavaScript variables:

y=x-5;

z=y+5;

 You will learn more about the operators that can be used in Chapter 4,
“JavaScript Operators.”

(continued)

Sometimes the results seem unpredictable. If at least one variable on the
right side of an assignment expression contains a string value, the result will be a string
and the “+” operator is applied as the concatenation operator to the toString() values of
the variables. Only if all the variables to the right of the assignment operator are num-
bers will the result be a number.

N O TE

27

Chapter 4

JavaScript
Operators

In This Chapter
	 ❑	 JavaScript Arithmetic Operators

	 ❑	 JavaScript Assignment Operators

	 ❑	 The + Operator Used on Strings

	 ❑	 Adding Strings and Numbers

The assignment operator, =, is used to assign values to JavaScript variables, as shown
in the first two lines of the following code.

The arithmetic operator, +, is used to add values together, as shown in the last line
of the following code.

y = 5;

z = 2;

x = y+z;

The value of x, after the execution of the preceding statements is 7.

JavaScript Arithmetic Operators
Arithmetic operators are used to perform arithmetic between variables and/or val-
ues.

Given that y = 5, the following table explains the arithmetic operators.

Operator Description Example Result
+ Addition x = y+2 x = 7
- Subtraction x = y-2 x = 3
* Multiplication x = y*2 x = 10
/ Division x = y/2 x = 2.5
% Modulus (division remainder) x = y%2 x = 1
++ Increment x = ++y x = 6
-- Decrement x = --y x = 4

Learn JavaScript and Ajax with w3schools

28

JavaScript Assignment Operators
Assignment operators are used to assign values to JavaScript variables.

Given that x = 10 and y = 5, the following table explains the assignment operators:

Operator Example Same As Result
= x = y x = 5
+= x+ = y x = x+y x = 15
-= x- = y x = x-y x = 5
= x = y x = x*y x = 50
/= x/ = y x = x/y x = 2
%= x% = y x = x%y x = 0

The + Operator Used on Strings
The + operator also can be used to concatenate string variables or text values
together. To concatenate two or more string variables together, use the + operator:

txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

After the execution of the preceding statements, the variable txt3 contains “What
a verynice day”.

To add a space between the two strings, insert a space into one of the strings:

txt1="What a very ";

txt2="nice day";

txt3=txt1+txt2;

Or insert a space into the expression:

txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the preceding statements, the variable txt3 contains:

“What a very nice day”

Adding Strings and Numbers
The rule is as follows:

If you add a number and a string, the result will be a string! Your results are shown
in Figure 4.1.

Chapter 4: Javascript Operators

29

Try it yourself >>

<html>

<body>

<script type="text/javascript">

x=5+5;

document.write(x);

document.write("
");

x="5"+"5";

document.write(x);

document.write("
");

x=5+"5";

document.write(x);

document.write("
");

x="5"+5;

document.write(x);

document.write("
");

</script>

<p>The rule is: If you add a number and a string, the result
will be a string.</p>

</body>

</html>

Figure 4.1

30

Chapter 5

JavaScript
Comparisons

In This Chapter
	 ❑	 Comparison Operators

	 ❑	 How to Use Comparisons

	 ❑	 Logical Operators

	 ❑	 Conditional Operator

Comparison and logical operators are used to test for true or false.

Comparison Operators
Comparison operators are used in logical statements to determine equality or differ-
ence between variables or values.

Given that x = 5, the following table explains the comparison operators:

Operator Description Example
== is equal to value...is equal to value x == 8 is false
=== is exactly equal to value and type x === 5 is true

x === “5” is false
!= is not equal x! = 8 is true
> is greater than x > 8 is false
< is less than x < 8 is true
>= is greater than or equal to x >= 8 is false
<= is less than or equal to x <= 8 is true

Chapter 5: Javascript Comparisons

31

How to Use Comparisons
Comparison operators can be used in conditional statements to compare values and
take action depending on the result:

if (age<18) document.write("Too young");

 You will learn more about the use of conditional statements in the next
chapter.

Logical Operators
Logical operators are used to determine the logic between variables or values.

Given that x = 6 and y = 3, the following table explains the logical operators:

Operator Description Example
&& and (x < 10 && y > 1) is true
|| or (x == 5 || y == 5) is false
! not !(x == y) is true

Conditional Operator
JavaScript also contains a conditional operator that assigns a value to a variable
based on some condition. The syntax is as follows:

variablename=(condition)?value1:value2

For example,

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

If the variable visitor has the value of "PRES", then the variable greeting will be
assigned the value "Dear President " else it will be assigned "Dear".

32

Chapter 6

JavaScript If...Else
Statements

In This Chapter
	 ❑	 Conditional Statements

	 ❑	 if Statement

	 ❑	 if...else Statement

	 ❑	 if...else if...else Statement

Conditional statements are used to perform different actions based on different
conditions.

Conditional Statements
Very often when you write code, you want to perform different actions for different
decisions. You can use conditional statements in your code to do this.

JavaScript has the following conditional statements:

	8	 if statement. Use this statement to execute some code only if a specified condi-
tion is true.

	8	 if...else statement. Use this statement to execute some code if the condition is
true and another code if the condition is false.

	8	 if...else if....else statement. Use this statement to select one of many blocks of
code to be executed.

	8	 switch statement. Use this statement to select one of many blocks of code to
be executed.

Chapter 6: JavaScript If...Else Statements

33

if Statement
Use the if statement to execute some code only if a specified condition is true.

The syntax is as follows:

if (condition)

 {

 code to be executed if condition is true

 }

Your result is shown in Figure 6.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var d = new Date();

var time = d.getHours();

With conditionals, a { } block must contain the statements to be executed. If
curly braces are not present, only the subsequent statement is executed, which is a very
common programming error.

if (condition)

 {

 statement 1;

 statement 2;

 statement 3;

 } // all three statements are executed

if (condition)

 statement 1;

 statement 2;

 statement 3;

 // only statement 1 is executed

TIP

if is written in lowercase letters. Using uppercase letters (IF) will generate a
JavaScript error!

TIP

(continued)

Learn JavaScript and Ajax with w3schools

34

if (time < 10)

 {

 document.write("Good morning");

 }

</script>

<p>This example demonstrates the If statement.</p>

<p>If the time on your browser is less than 10, you will get
a "Good morning" greeting.</p>

</body>

</html>

if...else Statement
Use the if....else statement to execute some code if a condition is true and
another code if the condition is not true.

The syntax is as follows:

if (condition)

 {

 code to be executed if condition is true

 }

else

 {

 code to be executed if condition is not true

 }

(continued)

Figure 6.1

There is no ..else.. in this syntax. You tell the browser to execute some
code only if the specified condition is true.

N O TE

Chapter 6: JavaScript If...Else Statements

35

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var d = new Date();

var time = d.getHours();

if (time < 10)

{

document.write("Good morning");

}

else

{

document.write("Good day");

}

</script>

<p>

This example demonstrates the If...Else statement.

</p>

<p>

If the time on your browser is less than 10,

you will get a "Good morning" greeting.

Otherwise you will get a "Good day" greeting.

</p>

</body>

</html>

Your result is shown in Figure 6.2.

Figure 6.2

Learn JavaScript and Ajax with w3schools

36

The following example demonstrates a random link. When you click on the link,
it will take you to w3schools.com OR to RefsnesData.no. There is a 50 percent
chance for each of them. Your result is shown in Figure 6.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var r=Math.random();

if (r>0.5)

{

document.write("Learn Web
Development!");

}

else

{

document.write("Visit
Refsnes Data!");

}

</script>

</body>

</html>

if...else if...else Statement
Use the if....else if...else statement to select one of several blocks of code
to be executed.

The syntax is as follows:

if (condition1)

 {

 code to be executed if condition1 is true

Figure 6.3

Chapter 6: JavaScript If...Else Statements

37

 }

else if (condition2)

 {

 code to be executed if condition2 is true

 }

else

 {

 code to be executed if condition1 and condition2 are not
true

 }

Your result is shown in Figure 6.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var d = new Date();

var time = d.getHours();

if (time<10)

{

document.write("Good morning");

}

else if (time>=10 && time<16)

{

document.write("Good day");

}

else

{

document.write("Hello World!");

}

</script>

<p>

This example demonstrates the if..else if...else statement.

</p>

(continued)

Learn JavaScript and Ajax with w3schools

38

</body>

</html>

Figure 6.2

(continued)

39

Chapter 7

JavaScript Loops

In This Chapter
	 ❑	 The for Loop

	 ❑	 The while Loop

	 ❑	 The do...while Loop

Loops execute a block of code a specified number of times or while a specified
condition is true.

Often when you write code, you want the same block of code to run over and over
again in a row. Instead of adding several almost equal lines in a script, you can use
loops to perform a task like this.

In JavaScript, there are two kinds of loops:

	8	 for. Loops through a block of code a specified number of times

	8	 while. Loops through a block of code while a specified condition is true

The for Loop
The for loop is used when you know in advance how many times the script should
run.

The syntax is as follows:

for (var=startvalue;var<=endvalue;var=var+increment)

{

code to be executed

}

The following example defines a loop that starts with i = 0. The loop will continue
to run as long as i is less than or equal to 5. i will increase by 1 each time the loop
runs. Your result is shown in Figure 7.1.

The increment parameter could also be negative, and the <= could be any
comparing statement.

N OTE

Learn JavaScript and Ajax with w3schools

40

Try it yourself >>

<html>

<body>

<script type="text/javascript">

for (i = 0; i <= 5; i++)

{

document.write("The number is " + i);

document.write("
");

}

</script>

<p>Explanation:</p>

<p>This for loop starts with i=0.</p>

<p>As long as i is less than, or equal to 5, the loop
will continue to run.</p>

<p>i will increase by 1 each time the loop runs.</p>

</body>

</html>

Figure 7.1

Chapter 7: Javascript Loops

41

In the following example, you loop through the six different HTML headings. Your
result is shown in Figure 7.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

for (i = 1; i <= 6; i++)

{

document.write("<h" + i + ">This is heading " + i);

document.write("</h" + i + ">");

}

</script>

</body>

</html>

The while Loop
The while loop loops through a block of code a specified number of times or while
a specified condition is true.

The syntax is as follows:

while (var<=endvalue)

 {

Figure 7.2

(continued)

Learn JavaScript and Ajax with w3schools

42

 code to be executed

 }

The following example defines a loop that starts with i = 0. The loop will continue
to run as long as i is less than or equal to 5. i will increase by 1 each time the loop
runs, as shown in Figure 7.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

i=0;

while (i<=5)

{

document.write("The number is " + i);

document.write("
");

i++;

}

</script>

<p>Explanation:</p>

<p>i is equal to 0.</p>

<p>While i is less than, or equal to, 5, the loop
will continue to run.</p>

<p>i will increase by 1 each time the loop runs.</p>

</body>

</html>

The <= could be any comparing statement.N OTE

The distinction between the for and the while is that in the for loop, the
conditions are known and can be specified beforehand. The while loop is used when
the initial conditions are known, but the terminal condition is discovered as the block is
executed.

TIP

(continued)

Chapter 7: Javascript Loops

43

The do...while Loop
The do...while loop is a variant of the while loop. This loop will execute the
block of code once, and then it will repeat the loop as long as the specified condi-
tion is true.

The syntax is as follows:

do

 {

 code to be executed

 }

while (var<=endvalue);

The following example uses a do...while loop. The do...while loop will
always be executed at least once, even if the condition is false, because the state-
ments are executed before the condition is tested. The result is shown in Figure 7.4.

Figure 7.3

The difference between the while and do…while loops should be character-
ized by whether the condition is checked before or after the block is executed. In the
case of the while loop, the condition is checked first, so if false, the block will not be
executed. In the do…while loop, the condition is checked after the block is executed;
therefore the block is always executed at least once.

TIP

Learn JavaScript and Ajax with w3schools

44

Try it yourself >>

<html>

<body>

<script type="text/javascript">

i = 0;

do

{

document.write("The number is " + i);

document.write("
");

i++;

}

while (i <= 5)

</script>

<p>Explanation:</p>

<p>i equal to 0.</p>

<p>The loop will run</p>

<p>i will increase by 1 each time the loop runs.</p>

<p>While i is less than, or equal to, 5, the loop
will continue to run.</p>

</body>

</html>

Chapter 7: Javascript Loops

45

Figure 7.4

46

Chapter 8

Additional
JavaScript Flow

Control
Statements

In This Chapter
	 ❑	 The break Statement

	 ❑	 The continue Statement

	 ❑	 JavaScript for...in Statement

	 ❑	 JavaScript switch Statement

The break and continue statements are used to control loop execution. The
break statement can be used to halt execution of a loop if, for example, an error
condition is encountered. The continue statement is used to begin the next itera-
tion of a loop without executing all the statements in the block.

The break Statement
The break statement will terminate execution of the loop and continue executing
the code that follows after the loop (if any). Your result is shown in Figure 8.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

Chapter 8: Additional JavaScript Flow Control Statements

47

{

if (i==3)

 {

 break;

 }

document.write("The number is " + i);

document.write("
");

}

</script>

<p>Explanation: The loop will break when i=3.</p>

</body>

</html>

The continue Statement
The continue statement will terminate the current iteration and restart the loop
with the next value. Your result is shown in Figure 8.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

{

if (i==3)

 {

 continue;

 }

document.write("The number is " + i);

document.write("
");

Figure 8.1

(continued)

Learn JavaScript and Ajax with w3schools

48

}

</script>

<p>Explanation: The loop will break the current loop and
continue with the next value when i=3.</p>

</body>

</html>

JavaScript for...in Statement
The for...in statement loops through the elements of an array or through the
properties of an object.

The syntax is as follows:

for (variable in object)

 {

 code to be executed

 }

Figure 8.2

(continued)

The code in the body of the for...in loop is executed once for each
element/property.

NOTE

Chapter 8: Additional JavaScript Flow Control Statements

49

 Arrays are discussed more fully in Chapter 17, “JavaScript Array Object.”

In the following example, use the for...in statement to loop through an array.
Your result is shown in Figure 8.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

{

document.write(mycars[x] + "
");

}

</script>

</body>

</html>

Conditional statements are used to perform different actions based on different
conditions.

The variable argument can be a named variable, an array element, or a
property of an object.

NOTE

Figure 8.3

Learn JavaScript and Ajax with w3schools

50

JavaScript switch Statement
Use the switch statement to select one of many blocks of code to be executed.

The syntax is as follows:

switch(n)

{

case 1:

 execute code block 1

 break;

case 2:

 execute code block 2

 break;

default:

 code to be executed if n is different from case 1 and 2

}

This is how it works: First we have a single expression n (most often a variable) that
is evaluated once. The value of the expression is then compared with the values for
each case in the structure. If there is a match, the block of code associated with that
case is executed.

Execution continues until either the end of the switch block is reached or a break
statement is encountered. For example:

<html>

<body>

<script type="text/javascript">

var i = 1;

switch (i)

{

case 0:

 document.write("i == 0
");

case 1:

 document.write("i == 1
");

case 2:

 document.write("i == 2
");

 break;

case 3:

 document.write("i == 3
");

 break;

Chapter 8: Additional JavaScript Flow Control Statements

51

default:

 document.write("i > 3
");

}

</script>

<p>Note that when i == 1 execution begins with case 1: but
continues until the break statement is encountered.</>

</body>

</html>

Your results are shown in Figure 8.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var d = new Date();

theDay=d.getDay();

switch (theDay)

{

case 5:

 document.write("Finally Friday");

 break;

case 6:

 document.write("Super Saturday");

 break;

case 0:

 document.write("Sleepy Sunday");

 break;

default:

 document.write("I'm really looking forward to this
weekend!");

}

</script>

<p>This JavaScript will generate a different greeting based
on what day it is. Note that Sunday=0, Monday=1, Tues-
day=2, etc.</p>

(continued)

Learn JavaScript and Ajax with w3schools

52

</body>

</html>

Figure 8.4

(continued)

53

Chapter 9

JavaScript
Popup Boxes

In This Chapter
	 ❑	 Popup Boxes

	 •	 Alert Box

	 •	 Confirm Box

	 •	 Prompt Box

Popup Boxes
JavaScript has three types of popup boxes: alert box, confirm box, and prompt box.

Alert Box
An alert box is often used when you want to display information to the user.

When an alert box pops up, the user will have to click OK to proceed.

The syntax is as follows:

alert("sometext");

Your results are shown in Figure 9.1. When you click the button, the alert box in
Figure 9.2 pops up.

Try it yourself >>

<html>

<head>

(continued)

Learn JavaScript and Ajax with w3schools

54

(continued)
<script type="text/javascript">

function show_alert()

{

alert("Hello! I am an alert box!");

}

</script>

</head>

<body>

<input type="button" onclick="show_alert()" value="Show
alert box" />

</body>

</html>

The following example creates an alert box with line breaks.

Your results are shown in Figures 9.3 and 9.4.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function disp_alert()

{

alert("Hello again! This is how we" + '\n' + "add line
breaks to an alert box!");

}

Figure 9.1

Figure 9.2

Chapter 9: JavaScript Popup Boxes

55

</script>

</head>

<body>

<input type="button" onclick="disp_alert()" value="Display
alert box" />

</body>

</html>

Confirm Box
A confirm box is often used if you want the user to verify or accept something.

When a confirm box pops up, the user will have to click either OK or Cancel to
proceed.

If the user clicks OK, the box returns true. If the user clicks Cancel, the box returns
false.

The syntax is as follows:

confirm("sometext");

Your results are shown in Figures 9.5 and 9.6.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function show_confirm()

{

Figure 9.3

Figure 9.4

(continued)

Learn JavaScript and Ajax with w3schools

56

var r=confirm("Press a button!");

if (r==true)

 {

 alert("You pressed OK!");

 }

else

 {

 alert("You pressed Cancel!");

 }

}

</script>

</head>

<body>

<input type="button" onclick="show_confirm()" value="Show a
confirm box" />

</body>

</html>

Prompt Box
A prompt box is often used if you want the user to input a value while on a page
or from a page.

When a prompt box pops up, the user will have to click either OK or Cancel to
proceed after entering an input value.

Figure 9.5

Figure 9.6

(continued)

Chapter 9: JavaScript Popup Boxes

57

If the user clicks OK, the box returns the input value. If the user clicks Cancel, the
box returns null.

The syntax is as follows:

prompt("sometext","defaultvalue");

Your results are shown in Figure 9.7.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function disp_prompt()

{

var fname=prompt("Please enter your name:","Your name")

document.getElementById("msg").innerHTML="Greetings, " +
fname

}

</script>

</head>

<body>

<input type="button" onclick="disp_prompt()" value="Display
a prompt box" />

<div id="msg"></div>

</body>

</html>

Figure 9.7

58

Chapter 10

JavaScript
Functions

In This Chapter
	 ❑	 How to Define a Function

	 ❑	 JavaScript Function Examples

	 ❑	 The return Statement

	 ❑	 The Lifetime of JavaScript Variables

A function will be executed by an event or by an explicit call to the function.

To keep the browser from executing a script when the page loads, you can put your
script into a function.

A function contains code that will be executed by an event or by a call to the func-
tion.

You may call a function from anywhere within a page (or even from other pages if
the function is embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of a docu-
ment. However, to ensure that a function is read/loaded by the browser before it is
called, it should be placed in the <head> section.

How to Define a Function
The syntax is as follows:

function functionname(var1,var2,...,varX)

{

some code

}

Chapter 10: JavaScript Functions

59

The parameters var1, var2, and so on, are variables or values passed into the
function. The { and the } defines the start and end of the function.

JavaScript Function Examples
In the following example, if the line alert("Hello world!!") had not been put
within a function, it would have been executed as soon as the line was loaded. Now,
the script will not be executed before a user clicks the input button. The function
displaymessage() will be executed if the input button is clicked.

Your results are shown in Figures 10.1 and 10.2.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me!"
onclick="displaymessage()" />

</form>

<p>By pressing the button above, a function will be called.
The function will alert a message.</p>

A function with no parameters must include the parentheses () after the
function name.

NOTE

Do not forget about the importance of capitalization in JavaScript! The word
function must be written in lowercase letters, otherwise a JavaScript error occurs. Also
note that you must call a function with the exact same capitalization as in the function
declaration.

TIP

(continued)

Learn JavaScript and Ajax with w3schools

60

</body>

</html>

 You will learn more about JavaScript events in the Chapter 11, “JavaScript
Events.”

The following example of a function with a parameter shows how to pass a variable
to a function and use the variable in the function.

Your results are shown in Figures 10.3 and 10.4.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function myfunction(txt)

{

alert(txt);

}

</script>

</head>

<body>

<form>

<input type="button" onclick="myfunction('Hello')"

value="Call function">

</form>

Figure 10.1

(continued)

Figure 10.2

Chapter 10: JavaScript Functions

61

<p>By pressing the button above, a function will be called
with "Hello" as a parameter. The function will alert the
parameter.</p>

</body>

</html>

The following example shows how to let a function return a value.

Your results are shown in Figure 10.5

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function myFunction()

{

return ("Hello world!");

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(myFunction())

</script>

Figure 10.3

Figure 10.4

(continued)

Learn JavaScript and Ajax with w3schools

62

</body>

</html>

The return Statement
The return statement is used to specify the value that is returned from the
function.

So, functions that are going to return a value must use the return statement.

A return statement also may be used in a function that does not return a value to
end execution at any given point in the function; for example, if an error condition
is encountered:

Var globalName;

function setGlobalName(name)

{

 if (name.length == 0)

{

Alert("no name specified")

return;

 }

 globalName = name;

 }

The following example returns the product of two numbers (a and b).

Your results are shown in Figure 10.6.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function product(a,b)

{

return a*b;

(continued)

Figure 10.5

Chapter 10: JavaScript Functions

63

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(product(4,3));

</script>

<p>The script in the body section calls a function with two
parameters (4 and 3).</p>

<p>The function will return the product of these two param-
eters.</p>

</body>

</html>

The Lifetime of JavaScript Variables
If you declare a variable within a function, the variable can be accessed only within
that function. When you exit the function, the variable is destroyed. These vari-
ables are called local variables. You can have local variables with the same name in
different functions, because each is recognized only by the function in which it is
declared.

If you declare a variable outside a function, all the functions on your page can access
it. These variables are called global variables.

The lifetime of these variables starts when they are declared and ends when the page
is closed.

Figure 10.6

64

Chapter 11

JavaScript Events

In This Chapter
	 ❑	 onLoad and onUnload

	 ❑	 onFocus, onBlur, and onChange

	 ❑	 onSubmit

	 ❑	 onMouseOver and onMouseOut

	 ❑	 onClick

Events are actions that can be detected by JavaScript.

By using JavaScript, we have the ability to create dynamic Web pages.

Every element on a Web page has certain events that can trigger a JavaScript. For
example, we can use the onClick event of a button element to indicate that a
function will run when a user clicks the button. We define the events in the HTML
tags.

Examples of events:

	8	 A mouse click

	8	 A Web page or an image loading

	8	 Mousing over a hot spot on the Web page

	8	 Selecting an input field in an HTML form

	8	 Submitting an HTML form

onLoad and onUnload
The onLoad and onUnload events are triggered when the user enters or leaves the
page.

The onLoad event is often used to check the visitor’s browser type and browser
version and load the proper version of the Web page based on the information.

Events are normally used in combination with functions, and the function
will not be executed before the event occurs!

N O TE

Chapter 11: JavaScript Events

65

Both the onLoad and onUnload events often are used to deal with cookies that
should be set when a user enters or leaves a page. For example, you could have a
popup asking for the user’s name upon his first arrival to your page. The name is
then stored in a cookie. Next time the visitor arrives at your page, you could have
another popup saying something like: “Welcome John Doe!”.

onFocus, onBlur, and onChange
The onFocus, onBlur, and onChange events are often used in combination with
validation of form fields.

The onFocus and onBlur events are complementary and are caused by the user
clicking outside of the current window, frame, or form element or using the Tab key
to move among fields or elements. When the user leaves an element, that element
triggers a blur event. When the user moves to a new element, that element triggers
a focus event.

Following is an example of how to use the onChange event. The checkEmail()
function will be called whenever the user changes the content of the field:

<input type="text" size="30" id="email"
onchange="checkEmail()">

onSubmit
The onSubmit event may be used to validate form fields before submitting the
form.

Following is an example of how to use the onSubmit event. The checkForm()
function will be called when the user clicks the Submit button in the form. If 	
the field values are not accepted, the submit should be cancelled. The function
checkForm() returns either true or false. If it returns true, the form will be submit-
ted, otherwise the submit will be cancelled:

<form method="post" action="xxx.htm" onsubmit="return
checkForm()">

Because the programmer controls the function executed on onSubmit, he
can validate any, all, or no inputs as he sees fit.

TIP

Learn JavaScript and Ajax with w3schools

66

onMouseOver and onMouseOut
onMouseOver and onMouseOut often are used to create Rollover buttons.

Following is an example of an onMouseOver event. An alert box appears when an
onMouseOver event is detected:

<a href="http://www.w3schools.com" onmouseover="alert('An
onMouseOver event');return false"><img src="w3s.gif"
alt="w3schools" />

onClick
The onClick event occurs when the user mouse clicks on a visible element on the
screen. The following example could be used to translate text on a page when
requested by the user:

<input type="button" name="language" value="Click for
Spanish" onclick="translate()">

67

Chapter 12

javascript
try…catch and

Throw Statements

In This Chapter
	 ❑	 JavaScript—Catching Errors

	 ❑	 The try...catch Statement

	 ❑	 The throw Statement

The try…catch statement enables you to trap errors that occur during the execu-
tion of a block of code.

JavaScript—Catching Errors
When browsing Web pages on the Internet, we all have seen a JavaScript alert box
telling us there is a runtime error and asking “Do you wish to debug?” Error mes-
sages like this may be useful for developers but not for users. When users see errors,
they often leave the Web page.

This chapter teaches you how to catch and handle JavaScript error messages so you
don’t lose your audience.

The try...catch Statement
The try…catch statement enables you to trap errors that occur during the execu-
tion of a block of code. The try block contains the code to be run, and the catch
block contains the code to be executed if an error occurs.

Learn JavaScript and Ajax with w3schools

68

The syntax is as follows:

try

 {

 //Run some code here

 }

catch(err)

 {

 //Handle errors here

 }

The following example is supposed to alert “Welcome guest!” when the button is
clicked. However, there’s a typo in the message() function. alert() is misspelled
as adddlert(). A JavaScript error occurs. The catch block catches the error and
executes a custom code to handle it. The code displays a custom error message
informing the user what happened. Your results are shown in Figures 12.1 and 12.2.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

try

 {

 adddlert("Welcome guest!");

 }

catch(err)

 {

 txt="There was an error on this page.\n\n";

 txt+="Error message: " + err.message + "\n\n";

 txt+="Click OK to continue.\n\n";

 alert(txt);

 }

}

</script>

</head>

Note that try...catch is written in lowercase letters. Using uppercase
letters will generate a JavaScript error!

NOTE

Chapter 12: JavaScript Try…Catch and Throw Statements

69

<body>

<input type="button" value="View message" onclick="message()"
/>

</body>

</html>

The next example uses a confirm box to display a custom message telling users they
can click OK to continue viewing the page or click Cancel to go to the homepage.
If the confirm method returns false, the user clicked Cancel, and the code redirects
the user. If the confirm method returns true, the code does nothing. Your results are
shown in Figures 12.3 and 12.4.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

try

 {

 adddlert("Welcome guest!");

 }

catch(err)

 {

Figure 12.1

Figure 12.2

(continued)

Learn JavaScript and Ajax with w3schools

70

 txt="There was an error on this page.\n\n";

 txt+="Click OK to continue viewing this page,\n";

 txt+="or Cancel to return to the home page.\n\n";

 if(!confirm(txt))

 {

 document.location.href="http://www.w3schools.com/";

 }

 }

}

</script>

</head>

<body>

<input type="button" value="View message" onclick="message()"
/>

</body>

</html>

The throw Statement
The throw statement allows you to create an exception. If you use this statement
together with the try...catch statement, you can control program flow and gen-
erate accurate error messages.

Figure 12.3

Figure 12.4

(continued)

Chapter 12: JavaScript Try…Catch and Throw Statements

71

The syntax is as follows:

throw(exception)

The exception can be a string, integer, Boolean, or an object.

The following example determines the value of a variable called x. If the value of x
is higher than 10, lower than 0, or not a number, we are going to throw an error.
The error is then caught by the catch argument, and the proper error message is
displayed:

<html>

<body>

<script type="text/javascript">

var x=prompt("Enter a number between 0 and 10:","");

try

{

if(x>10)

 {

 throw "Err1";

 }

else if(x<0)

 {

 throw "Err2";

 }

else if(isNaN(x))

 {

 throw "Err3";

 }

}

catch(er)

{

if(er=="Err1")

 {

 alert("Error! The value is too high");

 }

if(er=="Err2")

 {

 alert("Error! The value is too low");

throw is written in lowercase letters. Using uppercase letters will generate
a JavaScript error!

NOTE

(continued)

Learn JavaScript and Ajax with w3schools

72

 }

if(er=="Err3")

 {

 alert("Error! The value is not a number");

 }

}

</script>

</body>

</html>

(continued)

73

Chapter 13

JavaScript Special
Characters and

Guidelines

In This Chapter
	 ❑	 Insert Special Characters

	 ❑	 JavaScript Is Case Sensitive

	 ❑	 White Space

	 ❑	 Break up a Code Line

In JavaScript, you can add special characters to a text string by using the back-
slash character. Also, when scripting with JavaScript, you should know some other
important guidelines.

Insert Special Characters
The backslash (\) is used to insert apostrophes, new lines, quotes, and other special
characters into a text string.

Look at the following JavaScript code:

var txt="We are the so-called "Vikings" from the north.";

document.write(txt);

In JavaScript, a string is started and stopped with either single or double quotes.
This means that the preceding string will be chopped to We are the so-called.

To solve this problem, you must place a backslash (\) before each double quote in
“Viking”. This turns each double quote into a string literal:

var txt="We are the so-called \"Vikings\" from the north.";

document.write(txt);

Learn JavaScript and Ajax with w3schools

74

JavaScript will now output the proper text string: We are the so-called “Vikings” from
the north.

Here is another example:

document.write ("You \& I are singing!");

The previous example will produce the following output:

You & I are singing!

The following table lists other special characters that can be added to a text string
with the backslash sign:

Code Outputs
\’ single quote
\” double quote
\& ampersand
\\ backslash
\n new line
\r carriage return
\t tab
\b backspace
\f form feed

JavaScript Is Case Sensitive
A function named myfunction is not the same as myFunction and a variable
named myVar is not the same as myvar.

JavaScript is case sensitive; therefore, watch your capitalization closely when you
create or call variables, objects, and functions.

White Space
JavaScript ignores extra spaces. You can add white space to your script to make it
more readable. The following lines are equivalent:

name="Hege";

name = "Hege";

Break up a Code Line
Text in code statements contained within quotes is called a string literal. A string
literal may not be broken across lines except by inserting the backslash character (\)
at the point where you want to break the string:

document.write("Hello \

World!");

Chapter 13: JavaScript Special Characters and Guidelines

75

The following will generate an “unterminated string literal” script error:

document.write("Hello

World!");

Another option is to use the concatenate operator (+) to break the string:

document.write("Hello "+

"World!");

Code statements may be broken across lines, but the backslash character must not
be used in this case.

The following is legal JavaScript:

document.write

("Hello "

+

World!"

);

As a rule, break code statements or string literals across lines only when the length
of the line or literal makes it difficult to read.

You can break up a code line within a text string with a backslash. The following
example will be displayed properly:

document.write("Hello \

World!");

However, you cannot break up a code line like this:

document.write \

("Hello World!");

77

Section II
JavaScript
Objects
❑	 Chapter 14: JavaScript Objects Intro

❑	 Chapter 15: JavaScript String Object

❑	 Chapter 16: JavaScript Date Object

❑	 Chapter 17: JavaScript Array Object

❑	 �Chapter 18: JavaScript Boolean
Object

❑	 Chapter 19: JavaScript Math Object

❑	 �Chapter 20: JavaScript RegExp
Objects

79

Chapter 14

JavaScript
Objects Intro

In This Chapter
	 ❑	 Object-Oriented Programming

	 ❑	 Properties

	 ❑	 Methods

JavaScript as a programming language has strong object-oriented capabilities. An
Object-Oriented (OOL) language enables you to model data using objects consist-
ing of properties and methods that operate on those properties.

Object-Oriented Programming
Creating your own objects is explained later in the section “Advanced JavaScript.”
We start by looking at the built-in JavaScript objects and how they are used. The
next pages explain each built-in JavaScript object in detail.

Note that an object is just a special kind of data. An object has properties and
methods.

Properties
Properties are the values associated with an object.

In the following example, we use the length property of the String object to return
the number of characters in a string:

<script type="text/javascript">

var txt="Hello World!";

document.write(txt.length);

</script>

(continued)

Learn JavaScript and Ajax with w3schools

80

The output of the previous code will be

12

Methods
Methods are the actions that can be performed on objects.

In the following example, we use the toUpperCase() method of the String object
to display a text in uppercase letters:

<script type="text/javascript">

var str="Hello world!";

document.write(str.toUpperCase());

</script>

The output of the previous code will be

HELLO WORLD!

(continued)

81

Chapter 15

JavaScript String
Object

In This Chapter
	 ❑	 String Object

	 ❑	 Examples

The String object is used to manipulate a stored piece of text.

String Object
The following example uses the length property of the String object to find the
length of a string:

var txt="Hello world!";

document.write(txt.length);

The preceding code will result in the following output:

12

The following example uses the toUpperCase() method of the String object to
convert a string to uppercase letters:

var txt="Hello world!";

document.write(txt.toUpperCase());

The preceding code will result in the following output:

HELLO WORLD!

Learn JavaScript and Ajax with w3schools

82

Examples
The following example shows how to return the length of a string. Your results are
shown in Figure 15.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var txt = "Hello World!";

document.write(txt.length);

</script>

</body>

</html>

The following example demonstrates how to use the methods of the String object
to style strings. Your results are shown in Figure 15.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var txt = "Hello World!";

Figure 15.1

Chapter 15: JavaScript String Object

83

document.write("<p>Big: " + txt.big() + "</p>");

document.write("<p>Small: " + txt.small() + "</p>");

document.write("<p>Bold: " + txt.bold() + "</p>");

document.write("<p>Italic: " + txt.italics() + "</p>");

document.write("<p>Fixed: " + txt.fixed() + "</p>");

document.write("<p>Strike: " + txt.strike() + "</p>");

document.write("<p>Fontcolor: " + txt.fontcolor("green") +
"</p>");

document.write("<p>Fontsize: " + txt.fontsize(6) + "</p>");

document.write("<p>Subscript: " + txt.sub() + "</p>");

document.write("<p>Superscript: " + txt.sup() + "</p>");

document.write("<p>Link: " + txt.link("http://www.w3schools.
com") + "</p>");

document.write("<p>Blink: " + txt.blink() + " (does not work
in IE, Chrome, or Safari)</p>");

</script>

</body>

</html>

Learn JavaScript and Ajax with w3schools

84

The following example demonstrates conversion of a string to lowercase or upper-
case. Your results are shown in Figure 15.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var txt="Hello World!";

document.write(txt.toLowerCase() + "
");

document.write(txt.toUpperCase());

</script>

Figure 15.2

Chapter 15: JavaScript String Object

85

</body>

</html>

Your results are shown in Figure 15.3.

The following example demonstrates how to search for a specified value within a
string. Your results are shown in Figure 15.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.match("world") + "
");

document.write(str.match("World") + "
");

document.write(str.match("worlld") + "
");

document.write(str.match("world!"));

</script>

</body>

</html>

The following example shows how to replace a specified value with another value in
a string. Your results are shown in Figure 15.5.

Figure 15.3

Figure 15.4

Learn JavaScript and Ajax with w3schools

86

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var str="Visit Microsoft!";

document.write(str.replace("Microsoft","w3schools"));

</script>

</body>

</html>

The following example demonstrates how to find the position of the first occur-
rence of a specified value in a string. Your results are shown in Figure 15.6.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.indexOf("Hello") + "
");

document.write(str.indexOf("WORLD") + "
");

document.write(str.indexOf("world"));

</script>

</body>

</html>

Figure 15.5

Chapter 15: JavaScript String Object

87

�For a complete reference of all the properties and methods that can be used
with the String object, go to the String object reference in Appendix A.

The reference contains a brief description and usage examples for each property
and method!

Figure 15.6

88

Chapter 16

JavaScript Date
Object

In This Chapter
	 ❑	 Create a Date Object

	 ❑	 Set Dates

	 ❑	 Compare Two Dates

	 ❑	 Examples

The Date object is used to work with dates and times.

Create a Date Object
The Date object is used to work with dates and times.

Date objects are created with the Date() constructor.

There are four ways of instantiating a date:

new Date() // current date and time

new Date(milliseconds) //milliseconds since 1970/01/01

new Date(dateString)

new Date(year, month, day, hours, minutes, seconds, milli-
seconds)

Most of the preceding parameters are optional.

When a parameter is not specified, 0 is passed to the method by default.

After a Date object is created, a number of methods enable you to operate on it.
Most methods allow you to get and set the year, month, day, hour, minute, second,
and millisecond of the object, using either local time or UTC (universal, or GMT)
time.

Chapter 16: JavaScript Date Object

89

All dates are calculated in milliseconds from 01 January, 1970 00:00:00 Universal
Time (UTC) with a day containing 86,400,000 milliseconds.

Some examples of instantiating a date:

today = new Date()

d1 = new Date(“October 13, 1975 11:13:00”)

d2 = new Date(79,5,24)

d3 = new Date(79,5,24,11,33,0)

For a complete reference of all the properties and methods that can be used
with the Date object, go to the complete Date object reference in Appendix A.

The reference contains a brief description and examples of use for each property
and method!

Set Dates
We can easily manipulate the date by using the methods available for the Date
object.

In the following example, we set a Date object to a specific date (14th January
2010):

var myDate=new Date();

myDate.setFullYear(2010,0,14);

And in the following example, we set a Date object to be five days into the future:

var myDate=new Date();

myDate.setDate(myDate.getDate()+5);

Compare Two Dates
The Date object is also used to compare two dates.

The following example compares today’s date with the 14th January 2010:

var myDate=new Date();

myDate.setFullYear(2010,0,14);

var today = new Date();

if (myDate>today)

 {

If adding five days to a date shifts the month or year, the changes are han-
dled automatically by the Date object itself!

N O TE

(continued)

Learn JavaScript and Ajax with w3schools

90

 alert(“Today is before 14th January 2010”);

 }

else

 {

 alert(“Today is after 14th January 2010”);

 }

Examples
The following example demonstrates how to use the Date() method to get today’s
date. Your results are shown in Figure 16.1.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

var d=new Date();

document.write(d);

</script>

</body>

</html>

The following example demonstrates how to use getTime() to calculate the mil-
liseconds since 1970.

Your results are shown in Figure 16.2.

Try it yourself >>

<html>

<body>

Figure 16.1

(continued)

Chapter 16: JavaScript Date Object

91

<script type=”text/javascript”>

var d=new Date();

document.write(d.getTime() + “ milliseconds since
1970/01/01”);

</script>

</body>

</html>

The following example shows how to use setFullYear() to set a specific date.

Your results are shown in Figure 16.3.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

var d = new Date();

d.setFullYear(1992,11,3);

document.write(d);

</script>

</body>

</html>

The following example demonstrates how to use toUTCString() to convert
today’s date (according to UTC) to a string.

Your results are shown in Figure 16.4.

Figure 16.2

Figure 16.3

Learn JavaScript and Ajax with w3schools

92

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

var d=new Date();

document.write(“Original form: “);

document.write(d + “
”);

document.write(“To string (universal time): “);

document.write(d.toUTCString());

</script>

</body>

</html>

The getDay() method returns the day of the week as a number, with Sunday =
0. The following example demonstrates how to use getDay() and an array to
display the day of the week as a text string rather than a number as shown in Figure
16.5.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

var d=new Date();

var weekday=new Array(7);

weekday[0]=”Sunday”;

weekday[1]=”Monday”;

weekday[2]=”Tuesday”;

Figure 16.4

Chapter 16: JavaScript Date Object

93

weekday[3]=”Wednesday”;

weekday[4]=”Thursday”;

weekday[5]=”Friday”;

weekday[6]=”Saturday”;

document.write(“Today is “ + weekday[d.getDay()]);

</script>

</body>

</html>

The following example demonstrates how to display a clock on your Web page.

Your results are shown in Figure 16.6.

Try it yourself >>

<html>

<head>

<script type=”text/javascript”>

function startTime()

{

var today=new Date();

var h=today.getHours();

var m=today.getMinutes();

var s=today.getSeconds();

// add a zero in front of numbers<10

m=checkTime(m);

s=checkTime(s);

document.getElementById(‘txt’).innerHTML=h+”:”+m+”:”+s;

t=setTimeout(‘startTime()’,500);

}

function checkTime(i)

{

if (i<10)

Figure 16.5

(continued)

Learn JavaScript and Ajax with w3schools

94

 {

 i=”0” + i;

 }

return i;

}

</script>

</head>

<body onload=”startTime()”>

<div id=”txt”></div>

</body>

</html>

Figure 16.6

(continued)

95

Chapter 17

JavaScript Array
Object

In This Chapter
	 ❑	 What Is an Array?

	 ❑	 Create an Array

	 ❑	 Access an Array

	 ❑	 Modify Values in an Array

	 ❑	 Examples

The Array object is used to store multiple values in a single variable.

What Is an Array?
An array is a special variable that can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single
variables could look like this:

cars1="Saab";

cars2="Volvo";

cars3="BMW";

However, what if you want to loop through the cars and find a specific one? And
what if you had not three cars, but 300?

The best solution here is to use an array. An array can hold all your variable values
under a single name. And you can access the values by referring to the array name.

Each element in the array has its own ID so that it can be easily accessed.

Learn JavaScript and Ajax with w3schools

96

Create an Array
An array can be defined in three ways.

The following code creates an Array object called myCars:

	 1.	

var myCars=new Array();

 // create a new array with no elements

 // new Array(n); will create a new array of length n

myCars[0]="Saab";

myCars[1]="Volvo";

myCars[2]="BMW";

	 2.	

var myCars=new Array("Saab","Volvo","BMW");

// create a new array with the specified elements

	 3.	

var myCars=["Saab","Volvo","BMW"];

//examples 2 & 3 are functionally equivalent

Access an Array
You can refer to a particular element in an array by referring to the name of the array
and the index number. The index number starts at 0.

The following code line

document.write(myCars[0]);

results in the following output:

Saab

Modify Values in an Array
To modify a value in an existing array, just specify a new value for the element at
the given index.

myCars[0]="Opel"; // overwrite the current value of
myCars[0]

If you specify numbers or true/false values inside the array then the vari-
able type will be Number or Boolean, instead of String.

N O TE

Chapter 17: JavaScript Array Object

97

Now, the following code line:

document.write(myCars[0]);

results in the following output:

Opel

Examples
The following example demonstrates how to create an array, assign values to it, and
write the values to the output.

Your results are shown in Figure 17.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (i=0;i<mycars.length;i++)

{

document.write(mycars[i] + "
");

}

</script>

</body>

</html>

Figure 17.1

Learn JavaScript and Ajax with w3schools

98

The following example demonstrates how to use a for...in statement to loop
through the elements of an array.

Your results are shown in Figure 17.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

{

document.write(mycars[x] + "
");

}

</script>

</body>

</html>

The following example demonstrates how to join two arrays. Your results are shown
in Figure 17.3

<html>

<body>

<script type="text/javascript">

var parents = ["Jani", "Tove"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(children);

document.write(family);

Figure 17.2

Chapter 17: JavaScript Array Object

99

</script>

</body>

</html>

The following example demonstrates how to join three arrays. Your results are
shown in Figure 17.4

<html>

<body>

<script type="text/javascript">

var parents = ["Jani", "Tove"];

var brothers = ["Stale", "Kai Jim", "Borge"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(brothers, children);

document.write(family);

</script>

</body>

</html>

The following example shows you how to join all elements of an array into a string.
Your results are shown in Figure 17.5.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.join() + "
");

document.write(fruits.join("+") + "
");

Figure 17.3

Figure 17.4

(continued)

Learn JavaScript and Ajax with w3schools

100

document.write(fruits.join(" and "));

</script>

</body>

</html>

The following example demonstrates how to remove the last element of an array,
and Figure 17.6 shows your results.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.pop() + "
");

document.write(fruits + "
");

document.write(fruits.pop() + "
");

document.write(fruits);

</script>

</body>

</html>

The following example demonstrates how to add new elements to the end of an
array. Your results are shown in Figure 17.7.

<html>

<body>

(continued)

Figure 17.5

Figure 17.6

Chapter 17: JavaScript Array Object

101

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.push("Kiwi") + "
");

document.write(fruits.push("Lemon","Pineapple") + "
");

document.write(fruits);

</script>

</body>

</html>

In the following example, you see how to reverse the order of the elements in an
array. Your results are shown in Figure 17.8.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.reverse());

</script>

</body>

</html>

The following example demonstrates how to remove the first element of an array.
Your results are shown in Figure 17.9.

<html>

<body>

<script type="text/javascript">

Figure 17.7

Figure 17.8

(continued)

Learn JavaScript and Ajax with w3schools

102

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.shift() + "
");

document.write(fruits + "
");

document.write(fruits.shift() + "
");

document.write(fruits);

</script>

</body>

</html>

The following example demonstrates how to use slice() to select elements from
an array. Your results are shown in Figure 17.10.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.slice(0,1) + "
");

document.write(fruits.slice(1) + "
");

document.write(fruits.slice(-2) + "
");

document.write(fruits);

</script>

</body>

</html>

(continued)

Figure 17.9

Figure 17.10

Chapter 17: JavaScript Array Object

103

The following three examples demonstrate how to use sort(). The first sort()
example shows how to sort alphabetically and ascending. Your results are shown in
Figure 17.11.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.sort());

</script>

</body>

</html>

The next sort() example demonstrates how to sort numerically and ascending.
Your results are shown in Figure 17.12.

<html>

<body>

<script type="text/javascript">

function sortNumber(a, b)

{

return a - b;

}

var n = ["10", "5", "40", "25", "100", "1"];

document.write(n.sort(sortNumber));

</script>

</body>

</html>

Figure 17.11

Figure 17.12

Learn JavaScript and Ajax with w3schools

104

The third sort() example demonstrates how to sort numerically and descending.
Your results are shown in Figure 17.13.

<html>

<body>

<script type="text/javascript">

function sortNumber(a, b)

{

return b - a;

}

var n = ["10", "5", "40", "25", "100", "1"];

document.write(n.sort(sortNumber));

</script>

</body>

</html>

The following example demonstrates how to use splice() to add an element to
the second position in an array. Your results are shown in Figure 17.14.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write("Removed: " + fruits.splice(2,0,"Lemon") +
"
");

document.write(fruits);

</script>

</body>

</html>

Figure 17.13

Chapter 17: JavaScript Array Object

105

The following example shows you how to convert an array to a string. Your results
are shown in Figure 17.15.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.toString());

</script>

</body>

</html>

The following example shows you how to add new elements to the beginning of an
array. Figure 17.16 shows your results.

<html>

<body>

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.unshift("Kiwi") + "
");

document.write(fruits.unshift("Lemon","Pineapple") + "
");

document.write(fruits);

</script>

<p>Note: The unshift() method does not work properly
in Internet Explorer, it only returns undefined!</p>

Figure 17.14

Figure 17.15

(continued)

Learn JavaScript and Ajax with w3schools

106

</body>

</html>

 You can follow these examples on the w3Schools Web site.

 For a complete reference of all the properties and methods that can be used
with the Array object, go to the complete Array object reference in Appendix A.

Figure 17.16

(continued)

The unshift() method does not work properly in Internet Explorer, it
only returns undefined, as shown in Figure 17.17.

N O TE

Figure 17.17

107

Chapter 18

JavaScript
Boolean Object

In This Chapter
	 ❑	 Create a Boolean Object

	 ❑	 Examples

The Boolean object is used to convert a non-Boolean value to a Boolean value
(either true or false).

Create a Boolean Object
The Boolean object represents two values: true or false.

The following code creates a Boolean object called myBoolean:

var myBoolean=new Boolean();

All the following lines of code create Boolean objects with an initial value of false:

var myBoolean=new Boolean();

var myBoolean=new Boolean(0);

var myBoolean=new Boolean(null);

var myBoolean=new Boolean("");

var myBoolean=new Boolean(false);

var myBoolean=new Boolean(NaN);

If the Boolean object has no initial value or if it is 0, -0, null, “”, false, unde-
fined, or NaN, the object is set to false. Otherwise, it is true (even with the string “false”)!

NOTE

Learn JavaScript and Ajax with w3schools

108

And all the following lines of code create Boolean objects with an initial value of
true:

var myBoolean=new Boolean(true);

var myBoolean=new Boolean("true");

var myBoolean=new Boolean("false");

var myBoolean=new Boolean("Richard");

 For a complete reference of all the properties and methods that can be
used with the Boolean object, go to the complete Boolean object reference in
Appendix A.

Examples
The following example demonstrates how to check whether a Boolean object is true
or false. Your result is shown in Figure 18.1.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

var b1=new Boolean(0);

var b2=new Boolean(1);

var b3=new Boolean(“”);

var b4=new Boolean(null);

var b5=new Boolean(NaN);

var b6=new Boolean(“false”);

document.write(“0 is boolean “+ b1 +”
”);

document.write(“1 is boolean “+ b2 +”
”);

document.write(“An empty string is boolean “+ b3 + “
”);

document.write(“null is boolean “+ b4+ “
”);

document.write(“NaN is boolean “+ b5 +”
”);

document.write(“The string ‘false’ is boolean “+ b6 +”
”);

</script>

</body>

</html>

Chapter 18: JavaScript Boolean Object

109

Figure 18.1

110

Chapter 19

JavaScript Math
Object

In This Chapter
	 ❑	 Math Object

	 ❑	 Mathematical Constants

	 ❑	 Mathematical Methods

	 ❑	 Examples

The Math object allows you to perform mathematical tasks.

Math Object
The Math object allows you to perform mathematical tasks.

The Math object includes several mathematical constants and methods.

The syntax for using properties/methods of Math is as follows:

var pi_value=Math.PI;

var sqrt_value=Math.sqrt(16);

Mathematical Constants
JavaScript provides eight mathematical constants that can be accessed from the
Math object. These are E, PI, square root of 2, square root of 1/2, natural log of 2,
natural log of 10, base-2 log of E, and base-10 log of E.

You may reference these constants from your JavaScript like this:

The Math object is provided by JavaScript and does not need to be created
by the programmer. In fact, trying to create a Math object using new() will result in a
JavaScript error.

N O TE

Chapter 19: JavaScript Math Object

111

Math.E

Math.PI

Math.SQRT2

Math.SQRT1_2

Math.LN2

Math.LN10

Math.LOG2E

Math.LOG10E

Mathematical Methods
In addition to the mathematical constants that can be accessed from the Math
object, several methods also are available.

The following example uses the round() method of the Math object to round a
number to the nearest integer:

document.write(Math.round(4.7));

The preceding code results in the following output:

5

The following example uses the random() method of the Math object to return a
random number between 0 and 1:

document.write(Math.random());

The preceding code can result in the following output:

0.07730209357983464

The following example uses the floor() and random() methods of the Math
object to return a random number between 0 and 10:

document.write(Math.floor(Math.random()*11));

The preceding code can result in the following output:

1

 For a complete reference of all the properties and methods that can be used
with the Math object, go to the complete Math object reference in Appendix A.

Learn JavaScript and Ajax with w3schools

112

Examples
The following example demonstrates how to use round(). Your results are shown
in Figure 19.1.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

document.write(Math.round(0.60) + “
”);

document.write(Math.round(0.50) + “
”);

document.write(Math.round(0.49) + “
”);

document.write(Math.round(-4.40) + “
”);

document.write(Math.round(-4.60));

</script>

</body>

</html>

The following example demonstrates how to use random() to return a random
number between 0 and 1 as shown in Figure 19.2.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

//return a random number between 0 and 1

Figure 19.1

Chapter 19: JavaScript Math Object

113

document.write(Math.random() + “
”);

//return a random integer between 0 and 10

document.write(Math.floor(Math.random()*11));

</script>

</body>

</html>

The following example demonstrates how to use max() to return the largest of the
specified values. Your results are shown in Figure 19.3.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

document.write(Math.max(5,10) + “
”);

document.write(Math.max(0,150,30,20,38) + “
”);

document.write(Math.max(-5,10) + “
”);

document.write(Math.max(-5,-10) + “
”);

document.write(Math.max(1.5,2.5));

</script>

</body>

</html>

Figure 19.2

Figure 19.3

Learn JavaScript and Ajax with w3schools

114

The following example shows how to use min() to return the smallest of the speci-
fied values. Your results are shown in Figure 19.4.

Try it yourself >>

<html>

<body>

<script type=”text/javascript”>

document.write(Math.min(5,10) + “
”);

document.write(Math.min(0,150,30,20,38) + “
”);

document.write(Math.min(-5,10) + “
”);

document.write(Math.min(-5,-10) + “
”);

document.write(Math.min(1.5,2.5));

</script>

</body>

</html>

Figure 19.4

115

Chapter 20

JavaScript RegExp
Object

In This Chapter
	 ❑	 What Is RegExp?

	 ❑	 RegExp Modifiers

	 ❑	 test()

	 ❑	 exec()

RegExp is short for regular expression.

What Is RegExp?
A regular expression is an object that describes a pattern of characters. When you
search in a text, you can use a pattern to describe what you are searching for.

A simple pattern can be a single character. A more complicated pattern can consist
of more characters and can be used for parsing, format checking, substitution, and
more.

Regular expressions are used to perform powerful pattern-matching and search-
and-replace functions on text.

The syntax is as follows:

var txt=new RegExp(pattern,modifiers);

or more simply:

var txt=/pattern/modifiers;

Learn JavaScript and Ajax with w3schools

116

The syntax follows a couple of general guidelines:

	8	 The pattern specifies the pattern of an expression.

	8	 The modifiers specify whether a search should be global, case-sensitive, and so
on.

RegExp Modifiers
Modifiers are used to perform case-insensitive and global searches.

The i modifier is used to perform case-insensitive matching.

The g modifier is used to perform a global match (find all matches rather than stop-
ping after the first match).

The following example demonstrates how to do a case-insensitive search for
“w3schools” in a string:

var str="Visit W3Schools";

var patt1=/w3schools/i;

Your results are shown in Figure 20.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var str = "Visit W3Schools";

var patt1 = /w3schools/i;

document.write(str.match(patt1));

</script>

</body>

</html>

Figure 20.1

Chapter 20: JavaScript RegExp Object

117

The following example demonstrates how to do a global search for “is”:

var str="Is this all there is?";

var patt1=/is/g;

Your results are shown in Figure 20.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var str="Is this all there is?";

var patt1=/is/g;

document.write(str.match(patt1));

</script>

</body>

</html>

The following example demonstrates how to do a global, case-insensitive search for
“is”:

var str="Is this all there is?";

var patt1=/is/gi;

Your results are shown in Figure 20.3.

Try it yourself >>

<html>

<body>

Figure 20.2

(continued)

Learn JavaScript and Ajax with w3schools

118

<script type="text/javascript">

var str="Is this all there is?";

var patt1=/is/gi;

document.write(str.match(patt1));

</script>

</body>

</html>

test()
The test() method searches a string for a specified value and returns true or false,
depending on the result.

The following example searches a string for the character “e”:

var patt1=new RegExp("e");

document.write(patt1.test("The best things in life are
free"));

Because there is an “e” in the string, the output of the preceding code is as follows:

true

Your results are shown in Figure 20.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var patt1=new RegExp("e");

Figure 20.3

(continued)

Chapter 20: JavaScript RegExp Object

119

document.write(patt1.test("The best things in life are
free"));

</script>

</body>

</html>

exec()
The exec() method searches a string for a specified value and returns the text of
the found value. If no match is found, it returns null.

The following example searches a string for the character “e”:

var patt1=new RegExp("e");

document.write(patt1.exec("The best things in life are
free"));

Because there is an “e” in the string, the output of the preceding code is:

e

Your results are shown in Figure 20.5.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var patt1=new RegExp("e");

document.write(patt1.exec("The best things in life are
free"));

</script>

</body>

</html>

Figure 20.4

Learn JavaScript and Ajax with w3schools

120

 For a complete reference of all the properties and methods that can be used
with the RegExp object, go to the complete RegExp object reference in Appendix A.

Figure 20.5

121

Section III
JavaScript
Advanced
❑	� Chapter 21: JavaScript Browser

Detection

❑	 Chapter 22: JavaScript Cookies

❑	� Chapter 23: JavaScript Form
Validation

❑	 Chapter 24: JavaScript Animation

❑	 Chapter 25: JavaScript Image Maps

❑	� Chapter 26: JavaScript Timing
Events

❑	� Chapter 27: Create Your Own
Objects with JavaScript

123

Chapter 21

JavaScript
Browser

Detection

In This Chapter
	 ❑	 Browser Detection

	 ❑	 The Navigator Object

The Navigator object contains information about the visitor’s browser.

Browser Detection
Almost everything in this tutorial works on all JavaScript-enabled browsers. How-
ever, some things just don’t work on certain browsers—especially on older browsers.

So, sometimes it can be very useful to detect the visitor’s browser and then serve up
the appropriate information.

The best way to do this is to make your Web pages smart enough to look one way
to some browsers and another way to other browsers. The Navigator object can be
used for this purpose.

The Navigator object contains information about the visitor’s browser name, 	
version, and more.

No public standard applies to the Navigator object, but all major browsers
support it.

N O T E

Learn JavaScript and Ajax with w3schools

124

The Navigator Object
The Navigator object contains all information about the visitor’s browser. We are
going to look at two properties of the Navigator object:

	8	 appName—holds the name of the browser

	8	 appVersion—holds, among other things, the version of the browser

Your results are shown in Figure 21.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var browser=navigator.appName;

var b_version=navigator.appVersion;

var version=parseFloat(b_version);

document.write("Browser name: "+ browser);

document.write("
");

document.write("Browser version: "+ version);

</script>

</body>

</html>

The variable “browser” in the preceding example holds the name of the browser,
that is, “Netscape” or “Microsoft Internet Explorer.”

The appVersion property in the preceding example returns a string that contains
much more information than just the version number, but for now we are only
interested in the version number. To pull the version number out of the string, we
are using a function called parseFloat(), which pulls the first thing that looks
like a decimal number out of a string and returns it.

Figure 21.1

To find the version number in IE 5.0 and later, you will have to dig a little deeper
into either the appVersion or userAgent property. The IE version will be in the form
“MSIE x.x” so use a regular expression such as /MSIE \d\.\d;/.exec(navigator.
userAgent)to return a string containing the specific IE version.

T I P

Chapter 21: JavaScript Browser Detection

125

The following example displays a different alert, depending on the visitor’s browser.

The alert box is shown in Figure 21.2.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function detectBrowser()

{

var browser=navigator.appName;

var b_version=navigator.appVersion;

var version=parseFloat(b_version);

if ((browser=="Netscape"||browser=="Microsoft Internet Ex-
plorer") && (version>=4))

 {

 alert("Your browser is good enough!");

 }

else

 {

 alert("It's time to upgrade your browser!");

 }

}

</script>

</head>

<body onload="detectBrowser()">

</body>

</html>

Figure 21.2

Learn JavaScript and Ajax with w3schools

126

The following example provides more rules about the visitor’s browser.

Your results are shown in Figure 21.3.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

document.write("<p>Browser: ");

document.write(navigator.appName + "</p>");

document.write("<p>Browserversion: ");

document.write(navigator.appVersion + "</p>");

document.write("<p>Code: ");

document.write(navigator.appCodeName + "</p>");

document.write("<p>Platform: ");

document.write(navigator.platform + "</p>");

document.write("<p>Cookies enabled: ");

document.write(navigator.cookieEnabled + "</p>");

document.write("<p>Browser's user agent header: ");

document.write(navigator.userAgent + "</p>");

</script>

</body>

</html>

Figure 21.3

Chapter 21: JavaScript Browser Detection

127

The following example provides ALL the details about the visitor’s browser. Your
results are shown in Figure 21.4.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

var x = navigator;

document.write("CodeName=" + x.appCodeName);

document.write("
");

document.write("MinorVersion=" + x.appMinorVersion);

document.write("
");

document.write("Name=" + x.appName);

document.write("
");

document.write("Version=" + x.appVersion);

document.write("
");

document.write("CookieEnabled=" + x.cookieEnabled);

document.write("
");

document.write("CPUClass=" + x.cpuClass);

document.write("
");

document.write("OnLine=" + x.onLine);

document.write("
");

document.write("Platform=" + x.platform);

document.write("
");

document.write("UA=" + x.userAgent);

document.write("
");

document.write("BrowserLanguage=" + x.browserLanguage);

document.write("
");

document.write("SystemLanguage=" + x.systemLanguage);

document.write("
");

document.write("UserLanguage=" + x.userLanguage);

</script>

</body>

</html>

Learn JavaScript and Ajax with w3schools

128

Figure 21.4

129

Chapter 22

JavaScript
Cookies

In This Chapter
	 ❑	 What Is a Cookie?

	 ❑	 Create and Store a Cookie

A cookie is often used to identify a user.

What Is a Cookie?
A cookie is a variable that is stored on the visitor’s computer. Each time the same
computer requests a page with a browser, it sends the cookie, too. With JavaScript,
you can both create and retrieve cookie values.

Examples of cookies:

	8	 Name cookie. The first time a visitor arrives on your Web page, she must fill
in her name. The name then is stored in a cookie. Next time the visitor arrives
at your page, she could get a welcome message like “Welcome Jane Doe!” The
name is retrieved from the stored cookie.

	8	 Password cookie. The first time a visitor arrives on your Web page, she must
fill in a password. The password then is stored in a cookie. Next time the visitor
arrives at your page, the password is retrieved from the cookie.

	8	 Date cookie. The first time a visitor arrives to your Web page, the current date
is stored in a cookie. Next time the visitor arrives at your page, she could get
a message like “Your last visit was on Tuesday, August 11, 2005!” The date is
retrieved from the stored cookie.

Learn JavaScript and Ajax with w3schools

130

Create and Store a Cookie
In this example we create a cookie that stores the name of a visitor. The first time
a visitor arrives at the Web page, she is asked to fill in her name. The name then
is stored in a cookie. The next time the visitor arrives at the same page, she sees a
welcome message.

First, we create a function that stores the name of the visitor in a cookie variable:

function setCookie(c_name,value,expiredays)

{

var exdate=new Date();

exdate.setDate(exdate.getDate()+expiredays);

document.cookie=c_name+ "=" +escape(value)+

((expiredays==null) ? "" : ";expires="+exdate.toGMTString());

}

The parameters of the preceding function hold the name of the cookie, the value of
the cookie, and the number of days until the cookie expires.

In the preceding function, we first convert the number of days to a valid date and
then we add the number of days until the cookie should expire. After that, we store
the cookie name, cookie value, and the expiration date in the document.cookie
object.

Then we create another function that checks whether the cookie has been set:

function getCookie(c_name)

{

if (document.cookie.length>0)

 {

 c_start=document.cookie.indexOf(c_name + "=");

 if (c_start!=-1)

 {

 c_start=c_start + c_name.length+1;

 c_end=document.cookie.indexOf(";",c_start);

 if (c_end==-1) c_end=document.cookie.length;

 return unescape(document.cookie.substring(c_start,c_
end));

 }

 }

return "";

}

Chapter 22: JavaScript Cookies

131

The preceding function first checks whether a cookie is stored at all in the 	
document.cookie object. If the document.cookie object holds some cookies,
then check to see whether our specific cookie is stored. If our cookie is found, then
return the value; if not, return an empty string.

Last, we create the function that displays a welcome message if the cookie is set, and
if the cookie is not set, it displays a prompt box asking for the name of the user:

function checkCookie()

{

username=getCookie('username');

if (username!=null && username!="")

 {

 alert('Welcome again '+username+'!');

 }

else

 {

 username=prompt('Please enter your name:',"");

 if (username!=null && username!="")

 {

 setCookie('username',username,365);

 }

 }

}

The following example runs the checkCookie() function when the page loads.

The resulting dialog box is shown in Figure 22.1.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function getCookie(c_name)

{

if (document.cookie.length>0)

 {

 c_start=document.cookie.indexOf(c_name + "=");

 if (c_start!=-1)

 {

 c_start=c_start + c_name.length+1 ;

 c_end=document.cookie.indexOf(";",c_start);

 if (c_end==-1) c_end=document.cookie.length
(continued)

Learn JavaScript and Ajax with w3schools

132

 return unescape(document.cookie.substring(c_start,c_
end));

 }

 }

return ""

}

function setCookie(c_name,value,expiredays)

{

var exdate=new Date();

exdate.setDate(exdate.getDate()+expiredays);

document.cookie=c_name+ "=" +escape(value)+((expiredays=
=null) ? "" : "; expires="+exdate.toGMTString());

}

function checkCookie()

{

username=getCookie('username');

if (username!=null && username!="")

 {

 alert('Welcome again '+username+'!');

 }

else

 {

 username=prompt('Please enter your name:',"");

 if (username!=null && username!="")

 {

 setCookie('username',username,365);

 }

 }

}

</script>

</head>

<body onLoad="checkCookie()">

</body>

</html>

(continued)

Chapter 22: JavaScript Cookies

133

Figure 22.1

134

Chapter 23

JavaScript Form
Validation

In This Chapter
	 ❑	 Required Fields

	 ❑	 E-mail Validation

JavaScript can be used to validate data in HTML forms before sending off the
content to a server.

Form data that typically are checked by a JavaScript could be:

	8	 Has the user left required fields empty?

	8	 Has the user entered a valid e-mail address?

	8	 Has the user entered a valid date?

	8	 Has the user entered text in a numeric field?

Required Fields
The following function checks whether a required field has been left empty. If the
required field is blank, an alert is displayed, and the function returns false. If a value
is entered, the function returns true (means that data is OK):

function validate_required(field,alerttxt)

{

with (field)

 {

 if (value==null||value==””)

 {

 alert(alerttxt);return false;

 }

 else

Chapter 23: JavaScript Form Validation

135

 {

 return true;

 }

 }

}

The entire script with the HTML form could look something like this:

<html>

<head>

<script type=”text/javascript”>

function validate_required(field,alerttxt)

{

with (field)

 {

 if (value==null||value==””)

 {

 alert(alerttxt);return false;

 }

 else

 {

 return true;

 }

 }

}

function validate_form(thisform)

{

with (thisform)

 {

 if (validate_required(email,”Email must be filled
out!”)==false)

 {email.focus();return false;}

 }

}

</script>

</head>

<body>

(continued)

Learn JavaScript and Ajax with w3schools

136

<form action=”submit.htm” onsubmit=”return validate_
form(this)” method=”post”>

Email: <input type=”text” name=”email” size=”30”>

<input type=”submit” value=”Submit”>

</form>

</body>

</html>

E-mail Validation
The following function checks whether the content follows the general syntax of
an e-mail address.

This means that the input data must contain at least an @ sign and a dot (.). Also,
the @ must not be the first character of the e-mail address, and the last dot must at
least be one character after the @ sign:

function validate_email(field,alerttxt)

{

with (field)

 {

 apos=value.indexOf(“@”);

 dotpos=value.lastIndexOf(“.”);

 if (apos<1||dotpos-apos<2)

 {alert(alerttxt);return false;}

 else {return true;}

 }

}

The entire script with the HTML form could look something like this:

<html>

<head>

<script type=”text/javascript”>

function validate_email(field,alerttxt)

{

This function only checks that the content appears to be an e-mail with the
proper format. It does not verify that the e-mail address actually exists.

NOTE

(continued)

Chapter 23: JavaScript Form Validation

137

with (field)

 {

 apos=value.indexOf(“@”);

 dotpos=value.lastIndexOf(“.”);

 if (apos<1||dotpos-apos<2)

 {alert(alerttxt);return false;}

 else {return true;}

 }

}

function validate_form(thisform)

{

with (thisform)

 {

 if (validate_email(email,”Not a valid e-mail
address!”)==false)

 {email.focus();return false;}

 }

}

</script>

</head>

<body>

<form action=”submit.htm” onsubmit=”return validate_
form(this);” method=get”>

Email: <input type=”text” name=”email” size=”30”>

<input type=”submit” value=”Submit”>

</form>

</body>

</html>

138

Chapter 24

JavaScript
Animation

In This Chapter
	 ❑	 The HTML Code

	 ❑	 The JavaScript Code

	 ❑	 The Entire Code

With JavaScript, we can create animated images.

The trick is to let a JavaScript change between different images on different events.

In the following example, we add an image that should act as a link button on a
Web page. We then add an onMouseOver event and an onMouseOut event that
will run two JavaScript functions that change between the images.

The HTML Code
The HTML code looks like this:

<img border="0" alt="Visit w3schools!" src="b_pink.gif"
id="b1"

onmouseOver="mouseOver()" onmouseOut="mouseOut()" />

Note that we have given the image an id, to make it possible for JavaScript to
address it later.

The onMouseOver event tells the browser that once a mouse is rolled over the
image, the browser should execute a function that replaces the image with another
image.

The onMouseOut event tells the browser that once a mouse is rolled away from the
image, another JavaScript function should be executed. This function inserts the
original image again.

Chapter24: JavaScript Animation

139

The JavaScript Code
The changing between the images is done with the following JavaScript:

<script type="text/javascript">

function mouseOver()

{

document.getElementById("b1").src ="b_blue.gif";

}

function mouseOut()

{

document.getElementById("b1").src ="b_pink.gif";

}

</script>

The function mouseOver() causes the image to shift to “b_blue.gif.”

The function mouseOut() causes the image to shift to “b_pink.gif.”

The Entire Code
In the following example, we combine the HTML and JavaScript code to produce
animation.

The resulting animation is shown in Figure 24.1.

 �You can try this example on the www.w3schools.com Web site or include
you own graphic files in the directory with your html source, substituting
for b_blue and b_pink in the html source code.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function mouseOver()

{

document.getElementById("b1").src ="b_blue.gif";

}

function mouseOut()

{

document.getElementById("b1").src ="b_pink.gif";

}

(continued)

Learn JavaScript and Ajax with w3schools

140

</script>

</head>

<body>

<img border="0" alt="Visit w3schools!" src="b_pink.gif"
id="b1"

width="26" height="26" onmouseover="mouseOver()"
onmouseout="mouseOut()" />

</body>

</html>

Figure 24.1

(continued)

141

Chapter 25

JavaScript Image
Maps

In This Chapter
	 ❑	 HTML Image Maps

	 ❑	 Adding Some JavaScript

An image map is an image with clickable regions.

HTML Image Maps
 �If you’ve read Learn HTML and CSS with w3schools or completed the
HTML tutorial on the w3schools Web site, you know that an image map
is an image with clickable regions. Normally, each region has an associated
hyperlink. Clicking on one of the regions takes you to the associated link.
Look at the simple HTML image map.

The result of an image map is shown in Figure 25.1.

Try it yourself >>

<html>

<body>

<img src ="planets.gif" width ="145" height ="126"
alt="Planets" usemap="#planetmap" />

<map name="planetmap">

<area shape ="rect" coords ="0,0,82,126"

href ="sun.htm" target ="_blank" alt="Sun" />

<area shape ="circle" coords ="90,58,3"
(continued)

Learn JavaScript and Ajax with w3schools

142

href ="mercur.htm" target ="_blank" alt="Mercury" />

<area shape ="circle" coords ="124,58,8"

href ="venus.htm" target ="_blank" alt="Venus" />

</map>

</body>

</html>

Adding Some JavaScript
We can add events (that can call a JavaScript) to the <area> tags inside the image
map. The <area> tag supports the onClick, onDblClick, onMouseDown,
onMouseUp, onMouseOver, onMouseMove, onMouseOut, onKeyPress, onKey-
Down, onKeyUp, onFocus, and onBlur events.

Here’s the HTML image-map example, with some JavaScript added. Your results
are shown in Figure 25.2.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function writeText(txt)

{

document.getElementById("desc").innerHTML=txt;

}

</script>

</head>

<body>

Figure 25.1

(continued)

Chapter 25: JavaScript Image Maps

143

<img src ="planets.gif" width ="145" height ="126"
alt="Planets"

usemap="#planetmap" />

<map name="planetmap">

<area shape ="rect" coords ="0,0,82,126"

onMouseOver="writeText('The Sun and the gas giant planets
like Jupiter are by far the largest objects in our Solar
System.')"

href ="sun.htm" target ="_blank" alt="Sun" />

<area shape ="circle" coords ="90,58,3"

onMouseOver="writeText('The planet Mercury is very difficult
to study from the Earth because it is always so close to
the Sun.')"

href ="mercur.htm" target ="_blank" alt="Mercury" />

<area shape ="circle" coords ="124,58,8"

onMouseOver="writeText('Until the 1960s, Venus was often
considered a twin sister to the Earth because Venus is
the nearest planet to us, and because the two planets seem
to share many characteristics.')"

href ="venus.htm" target ="_blank" alt="Venus" />

</map>

<p id="desc"></p>

</body>

</html>

Figure 25.2

144

Chapter 26

JavaScript Timing
Events

In This Chapter
	 ❑	 The setTimeout() Method

	 ❑	 The clearTimeout() Method

With JavaScript, it is possible to execute some code after a specified time interval.
This is called timing events.

It’s very easy to time events in JavaScript. The two key methods that are used are
as follows:

	8	 setTimeout()—Executes a code some time in the future

	8	 clearTimeout()—Cancels the setTimeout()

The setTimeout() Method
The syntax is as follows:

var t=setTimeout("javascript statement",milliseconds);

The setTimeout() method returns a value. In the preceding statement, the value
is stored in a variable called t. If you want to cancel this setTimeout(), you can
refer to it using the variable name.

The first parameter of setTimeout() is a string that contains a JavaScript state-
ment. This statement could be a statement like "alert('5 seconds!')" or a call
to a function, like "alertMsg()".

The second parameter indicates how many milliseconds from now you want to
execute the first parameter.

The setTimeout() and clearTimeout() are both methods of the
HTML DOM Window object.

N O TE

Chapter 26: JavaScript Timing Events

145

When the button is clicked in the following example, an alert box is displayed after
3 seconds.

Your results are shown in Figure 26.1.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function timedMsg()

{

var t=setTimeout("alert('I am displayed after 3
seconds!')",3000);

}

</script>

</head>

<body>

<form>

<input type="button" value="Display alert box!"
onClick="timedMsg()" />

</form>

</body>

</html>

To get a timer to work in an infinite loop, you must write a function that calls itself.

In the following example, when a button is clicked, the input field starts to count
(forever) starting at 0.

Notice that you also have a function that checks whether the timer is already run-
ning, to avoid creating additional timers if the button is clicked more than once.

Your results are shown in Figure 26.2.

There are 1000 milliseconds in 1 second.N O TE

Figure 26.1

Learn JavaScript and Ajax with w3schools

146

Try it yourself >>

<html>

<head>

<script type="text/javascript">

var c=0;

var t;

var timer_is_on=0;

function timedCount()

{

document.getElementById('txt').value=c;

c=c+1;

t=setTimeout("timedCount()",1000);

}

function doTimer()

{

if (!timer_is_on)

 {

 timer_is_on=1;

 timedCount();

 }

}

</script>

</head>

<body>

<form>

<input type="button" value="Start count!"
onClick="doTimer()">

<input type="text" id="txt">

</form>

<p>Click on the button above. The input field will count for-
ever, starting at 0.</p>

</body>

</html>

Chapter 26: JavaScript Timing Events

147

The following example is another simple timing using the setTimeout() method.

Your results are shown in Figure 26.3.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function timedText()

{

var t1=setTimeout("document.getElementById('txt').value='2
seconds!'",2000);

var t2=setTimeout("document.getElementById('txt').value='4
seconds!'",4000);

var t3=setTimeout("document.getElementById('txt').value='6
seconds!'",6000);

}

</script>

</head>

<body>

<form>

<input type="button" value="Display timed text!"
onclick="timedText()" />

<input type="text" id="txt" />

</form>

<p>Click on the button above. The input field will tell you
when two, four, and six seconds have passed.</p>

</body>

</html>

Figure 26.2

Learn JavaScript and Ajax with w3schools

148

The following example shows a clock created with a timing event.

Your results are shown in Figure 26.4.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function startTime()

{

var today=new Date();

var h=today.getHours();

var m=today.getMinutes();

var s=today.getSeconds();

// add a zero in front of numbers<10

m=checkTime(m);

s=checkTime(s);

document.getElementById('txt').innerHTML=h+":"+m+":"+s;

t=setTimeout('startTime()',500);

}

function checkTime(i)

{

if (i<10)

 {

 i="0" + i;

 }

return i;

}

</script>

</head>

Figure 26.3

Chapter 26: JavaScript Timing Events

149

<body onload="startTime()">

<div id="txt"></div>

</body>

</html>

The clearTimeout() Method
The syntax is as follows:

clearTimeout(setTimeout_variable)

The following example is the same as the previous infinite loop example. The only
difference is that we have now added a "Stop Count!" button that stops the
timer. Your results are shown in Figure 26.5.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

var c=0;

var t;

var timer_is_on=0;

function timedCount()

{

document.getElementById('txt').value=c;

c=c+1;

t=setTimeout("timedCount()",1000);

}

function doTimer()

{

Figure 26.4

(continued)

Learn JavaScript and Ajax with w3schools

150

if (!timer_is_on)

 {

 timer_is_on=1;

 timedCount();

 }

}

function stopCount()

{

clearTimeout(t);

timer_is_on=0;

}

</script>

</head>

<body>

<form>

<input type="button" value="Start count!" onclick="doTimer()"
/>

<input type="text" id="txt" />

<input type="button" value="Stop count!"
onclick="stopCount()" />

</form>

<p>

Click on the "Start count!" button above to start the timer.
The input field will count forever, starting at 0. Click on
the "Stop count!" button to stop the counting. Click on
the "Start count!" button to start the timer again.

</p>

</body>

</html>

Figure 26.5

(continued)

151

Chapter 27

Create your own
objects with

JavaScript

In This Chapter
	 ❑	 JavaScript Objects

	 ❑	 Creating Your Own Objects

Objects are useful to organize information.

JavaScript Objects
Earlier in this book, you learned that JavaScript has several built-in objects, like
String, Date, Array, and more. In addition to these built-in objects, you also can
create your own.

An object is just a special kind of data, a collection of properties and methods.

Let’s illustrate with an example and create an object that models a person. Proper-
ties are the values associated with the object. The person’s properties include name,
height, weight, age, skin tone, eye color, and so on. All persons have these proper-
ties, but the values of those properties differ from person to person. Objects also
have methods. Methods are the actions that can be performed on objects. The
person’s methods could be eat(), sleep(), work(), play(), and so on.

Properties
The syntax for accessing a property of an object is as follows:

objName.propName

Learn JavaScript and Ajax with w3schools

152

You can add a property to an object by simply giving it a value. Assume that the
personObj already exists; you can give it properties named firstname, lastname,
age, and eyecolor as follows:

personObj.firstname="John";

personObj.lastname="Doe";

personObj.age=30;

personObj.eyecolor="blue";

document.write(personObj.firstname);

The preceding code generates the following output:

John

Methods
An object also can contain methods.

You can call a method with the following syntax:

objName.methodName()

To call a method called sleep() for the personObj:

personObj.sleep();

If the sleep() method accepts a parameter for the number of hours, it could be
called like this:

personObj.sleep(8)

Creating Your Own Objects
There are two ways to create a new object: You can create a direct instance of an
object, or you can create a template of an object.

Create a Direct Instance of an Object
The following code creates an instance of an object and adds four properties to it:

personObj=new Object();

personObj.firstname="John";

Parameters required for the method can be passed between the
parentheses.

NOTE

Chapter 27: Create Your Own Objects with JavaScript

153

personObj.lastname="Doe";

personObj.age=50;

personObj.eyecolor="blue";

Adding a method to the personObj is also simple. The following code adds a
method called eat() to the personObj:

personObj.eat=eat;

In the following example, you create a direct instance of an object.

Your results are shown in Figure 27.1.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

personObj=new Object();

personObj.firstname="John";

personObj.lastname="Doe";

personObj.age=50;

personObj.eyecolor="blue";

document.write(personObj.firstname + " is " + personObj.age +
" years old.");

</script>

</body>

</html>

Figure 27.1

Learn JavaScript and Ajax with w3schools

154

Create a Template of an Object
The template defines the structure of an object so that you can more easily create
multiple instances of that object:

function person(firstname,lastname,age,eyecolor)

{

this.firstname=firstname;

this.lastname=lastname;

this.age=age;

this.eyecolor=eyecolor;

}

Notice that the template is just a function.

It is also called a constructor. Inside the constructor, you add the properties and
methods that will belong to each subsequent instance of the object. When you
use person as a constructor for more than one object, you must include the “this”
keyword. JavaScript uses “this” to assign the properties to the specific object created
with the “new” keyword.

In the following example, you create a template for an object.

Your results are shown in Figure 27.2.

Try it yourself >>

<html>

<body>

<script type="text/javascript">

function person(firstname,lastname,age,eyecolor)

{

this.firstname=firstname;

this.lastname=lastname;

this.age=age;

this.eyecolor=eyecolor;

}

myFather=new person("John","Doe",50,"blue");

document.write(myFather.firstname + " is " + myFather.age + "
years old.");

</script>

Chapter 27: Create Your Own Objects with JavaScript

155

</body>

</html>

After you have the template, you can create new instances of the object, like this:

myFather=new person("John","Doe",50,"blue"); myMother=new
person("Sally","Rally",48,"green");

You can also add some methods to the person object. This is also done inside the
template:

function person(firstname,lastname,age,eyecolor)

{

this.firstname=firstname;

this.lastname=lastname;

this.age=age;

this.eyecolor=eyecolor;

this.newlastname=newlastname;

}

Note that methods are just functions attached to objects. Then you will have to
write the newlastname() function:

function newlastname(new_lastname)

{

this.lastname=new_lastname;

}

The newlastname() function defines the person’s new last name and assigns that
to the person. JavaScript knows which person you’re talking about by using “this.”
So, now you can write: myMother.newlastname("Doe").

Figure 27.2

157

Section IV
AJAX Basic

❑	 Chapter 28: AJAX XMLHttpRequest

❑	 Chapter 29: AJAX Browser Support

❑	� Chapter 30: AJAX—The
XMLHttpRequest Object’s Methods
and Properties

❑	 Chapter 31: AJAX Server

159

Chapter 28

AJAX
XMLHttpRequest

In This Chapter
	 ❑	 AJAX Uses the XMLHttpRequest Object

	 ❑	 The XMLHttpRequest Object

	 ❑	 AJAX Example

	 ❑	 Your First AJAX Application

AJAX Uses the XMLHttpRequest
Object

To get or send information from/to a database or a file on the server with tradi-
tional JavaScript, you will have to make an HTML form. A user will have to click
the Submit button to send/get the information and wait for the server to respond.
Then a new page will load with the results. Because the server returns a new page
each time the user submits input, traditional Web applications can run slowly and
tend to be less user friendly.

With AJAX, your JavaScript communicates directly with the server through the
JavaScript XMLHttpRequest object.

With the XMLHttpRequest object, a Web page can make a request to, and get a
response from a Web server—without reloading the page. The user will stay on the
same page, and he will not notice that scripts request pages or send data to a server
in the background.

The XMLHttpRequest Object
By using the XMLHttpRequest object, a Web developer can update a page with
data from the server after the page has loaded!

Learn JavaScript and Ajax with w3schools

160

AJAX was made popular in 2005 by Google (with Google Suggest).

Google Suggest is using the XMLHttpRequest object to create a very dynamic Web
interface: When you start typing in Google’s search box, a JavaScript sends the let-
ters off to a server, and the server returns a list of suggestions.

The XMLHttpRequest object is supported in all major browsers (Internet Explorer,
Firefox, Chrome, Opera, and Safari).

Your First AJAX Application
To understand how AJAX works, we will create a small AJAX application.

We will create an AJAX application from scratch. The application will use two
click buttons to fetch data from a server and display the information in a Web page
without reloading the page itself.

First, create a small HTML page with a short <div> section. The <div> section
will be used to display alternative information requested from a server.

To identify the <div> section, we use an id=”test” attribute:

<html>

<body>

<div id="test">

<h2>Clickto let AJAX change this text</h2>

</div>

<body>

</html>

Then we add two simple <buttons>. When they are clicked the buttons will call
a function loadXMLDoc():

<button type="button" onclick="loadXMLDoc(‘test1.txt’)">Click
Me</button>

<button type="button" onclick="loadXMLDoc(‘test2.txt’)">Click
Me</button>

Finally, we add a <script> to the page’s <head> section to contain the loadXML
Doc() function:

<head>

<script type="text/javascript">

function loadXMLDoc(url)

{

Chapter 28: AJAX XMLHttpRequest

161

.... Your AJAX script goes here ...

}

</script>

</head>

 The next chapters explain the script (using AJAX) and how to make the
application work.

 �The various supporting files and images, including the test1.txt and
test2.txt files, are accessed when completing this tutorial online at www.
w3schools.com.

Your results are shown in Figure 28.1.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function loadXMLDoc(url)

{

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.open("GET",url,false);

xmlhttp.send(null);

document.getElementById(‘test’).innerHTML=xmlhttp.response-
Text;

}

</script>

</head>

<body>

<div id="test">

<h2>Clickto let AJAX change this text</h2>

(continued)

Learn JavaScript and Ajax with w3schools

162

</div>

<button type="button" onclick="loadXMLDoc(‘test1.txt’)">Click
Me</button>

<button type="button" onclick="loadXMLDoc(‘test2.txt’)">Click
Me</button>

</body>

</html>

Figure 28.1

(continued)

163

Chapter 29

AJAX Browser
Support

In This Chapter
	 ❑	 The XMLHttpRequest

	 ❑	 All Together Now

The keystone of AJAX is the XMLHttpRequest object.

The XMLHttpRequest
All new browsers support a new built-in JavaScript XMLHttpRequest object (IE5
and IE6 use an ActiveXObject).

The XMLHttpRequest object can be used to request information (data) from a
server.

Let’s update our HTML file with a JavaScript in the <head> section:

function loadXMLDoc(url)

{

if (window.XMLHttpRequest)

{// code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();

}

else

{// code for IE6, IE5

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.open("GET",url,false);

xmlhttp.send(null);

document.getElementById(‘test’).innerHTML=xmlhttp.response-
Text;

}

Learn JavaScript and Ajax with w3schools

164

Try to create an XMLHttpRequest object:

xmlhttp=new XMLHttpRequest()

If not (if IE5 or IE6), create an ActiveXObject:

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP")

Open the request object:

xmlhttp.open("GET",url,false)

Send your request to your server:

xmlhttp.send(null)

Update your page with the response from the server:

document.getElementById(‘test’).innerHTML=xmlhttp.response-
Text

 In Chapter 30, “AJAX—the XMLHttpRequest Object”, you learn more
about the XMLHttpRequest.

All Together Now
The following example puts what you’ve learned all together.

Your results are shown in Figure 29.1.

Try it yourself >>

<html>

<head>

<script type="text/javascript">

function loadXMLDoc(url)

{

if (window.XMLHttpRequest)

 {// code for IE7+, Firefox, Chrome, Opera, Safari

 xmlhttp=new XMLHttpRequest();

The preceding code can be used every time you need to create an XML
HttpRequest object, so just copy and paste it whenever you need it.

N OTE

Chapter 29: AJAX Browser Support

165

 }

else

 {// code for IE6, IE5

 xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

xmlhttp.open("GET",url,false);

xmlhttp.send(null);

document.getElementById(‘test’).innerHTML=xmlhttp.response-
Text;

}

</script>

</head>

<body>

<div id="test">

<h2>Click to let AJAX change this text</h2>

</div>

<button type="button" onclick="loadXMLDoc(‘test1.txt’)">Click
Me</button>

<button type="button" onclick="loadXMLDoc(‘test2.txt’)">Click
Me</button>

</body>

</html>

Figure 29.1

166

Chapter 30

AJAX—The
XMLHttpRequest

Object’s Methods
and Properties

In This Chapter
	 ❑	 Important Methods

	 ❑	 Sending an AJAX Request to a Server

	 ❑	 Important Properties

	 ❑	 The responseText Property

	 ❑	 XMLHttpRequest Open—Using False

	 ❑	 XMLHttpRequest Open—Using True

	 ❑	 The readyState Property

	 ❑	 The onreadystatechange Property

In this chapter, you learn about important methods and properties of the XML
HttpRequest object.

Important Methods
The XMLHttpRequest object has two important methods:

	8	 The open() method

	8	 The send() method

Chapter 30: AJAX—The XMLHttpRequest Object’s Methods and Objects

167

Sending an AJAX Request to a Server
To send a request to a Web server, use the open() and send() methods.

The open() method takes three arguments. The first argument defines which
method to use (GET or POST). The second argument specifies the name of
the server resource (URL). The third argument specifies if the request should be 	
handled asynchronously.

The send() method sends the request off to the server. If we assume the file
requested is called time.asp, the code would be:

url="time.asp"

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

In the example, we assume that the current Web page and the requested resource are
both in the same file directory.

Important Properties
The XMLHttpRequest object has three important properties:

	8	 The responseText property

	8	 The readyState property

	8	 The onreadystatechange property

The responseText Property
The XMLHttpRequest object stores any data retrieved from a server as a result of a
server request in its responseText property.

In the previous chapter, you copied the content of the responseText property
into your HTML with the following statement:

document.getElementById('test').innerHTML=xmlhttp.response-
Text

XMLHttpRequest Open—Using False
In the previous examples, we used this simplified syntax:

xmlhttp.open("GET",url,false);

xmlhttp.send(null);

document.getElementById('test').innerHTML=xmlhttp.
responseText;

Learn JavaScript and Ajax with w3schools

168

The third parameter in the open call is “false”. This tells the XMLHttpRequest
object to wait until the server request is completed before next statement is executed.

For small applications and simple server requests, this might be OK. But if the
request takes a long time or cannot be served, this might cause your Web applica-
tion to hang or stop.

XMLHttpRequest Open—Using True
By changing the third parameter in the open call to “true”, you tell the XMLHttpRe-
quest object to continue the execution after the request to the server has been sent.

Because you cannot simply start using the response from the server request before
you are sure the request has been completed, you need to set the onreadystate-
change property of the XMLHttpRequest, to a function (or name of a function)
to be executed after completion.

In this onreadystatechange function, you must test the readyState property
before you can use the result of the server call.

Simply change the code to

xmlhttp.onreadystatechange=function()

{

if(xmlhttp.readyState==4) HB: // request is complete

 {document.getElementById('test').innerHTML=xmlhttp.
responseText}

}

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

The readyState Property
The readyState property holds the status of the server’s response.

Possible values for the readyState property are shown in the following table.

State Description

0 The request is not initialized

1 The request has been set up

2 The request has been sent

3 The request is in process

4 The request is complete

Chapter 30: AJAX—The XMLHttpRequest Object’s Methods and Objects

169

The onreadystatechange Property
The onreadystatechange property stores a function (or the name of a function)
to be called automatically each time the readyState property changes.

You can define the entire function in the property like this:

xmlhttp.onreadystatechange=function()

{

if(xmlhttp.readyState==4)

 {document.getElementById('test').innerHTML=xmlhttp.
responseText}

}

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

Or you can simply store the name of a function that is defined elsewhere, like this:

xmlhttp.onreadystatechange=state_Change

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

...

...

...

function state_Change()

{

if(xmlhttp.readyState==4)

 {document.getElementById('test').innerHTML=xmlhttp.
responseText}

}

170

Chapter 31

AJAX Server

In This Chapter
	 ❑	 XMLHttpRequest Object Can Request Any Data

	 ❑	 Requesting Files

	 ❑	 Submitting Forms

There is no such thing as an AJAX server.

XMLHttpRequest Object Can Request
Any Data

With the XMLHttpRequest object, you can request any Web resource from a server.

You can request TXT files, HTML files, XML files, pictures, or any data that is
accessible from the Internet.

Requesting Files
Many AJAX applications request pure text files to retrieve data for the application.

A very common AJAX method is to request XML files to retrieve application data.

Requesting an ASP or PHP file is the most common way to access database infor-
mation.

Requesting HTML files is a common method for filling out different information
on a Web page.

AJAX is about creating clever applications that can use the data.N O TE

Chapter 31: AJAX Server

171

Submitting Forms
With AJAX, you can easily submit form data without having to reload the page.

 In the following chapters, we request data and files and learn how to submit
forms.

173

Section V
AJAX Advanced

❑	 Chapter 32: AJAX Suggest

❑	� Chapter 33: AJAX Database
Example

❑	 Chapter 34: AJAX XML Example

❑	� Chapter 35: AJAX ResponseXML
Example

175

Chapter 32

AJAX Suggest

In This Chapter
	 ❑	 The HTML Form

	 ❑	 The showHint() Function

	 ❑	 The GetXmlHttpObject() Function

	 ❑	 The stateChanged() Function

	 ❑	 AJAX Suggest Source Code

AJAX can be used to create more interactive applications.

The following AJAX example demonstrates how a Web page can communicate
with a Web server while a user enters data into an HTML form.

For this example, use the name “Kelly.” Note what happens as you type a name in
the input field, as shown in Figure 32.1.

The HTML Form
The preceding form has the following HTML code:

<form>

First Name: <input type="text" id="txt1"
onkeyup="showHint(this.value)" />

</form>

<p>Suggestions: </p>

It is just a simple HTML form with an input field called "txt1".

Figure 32.1

Learn JavaScript and Ajax with w3schools

176

An event attribute for the input field defines a function to be triggered by the
onkeyup event.

The paragraph below the form contains a span called "txtHint". The span is used
as a placeholder for data retrieved from the Web server.

When a user inputs data, the function called "showHint()" is executed. The
execution of the function is triggered by the "onkeyup" event. In other words,
each time a user presses and then releases a key inside the input field, the function
showHint is called.

The showHint() Function
The showHint() function is a very simple JavaScript function placed in the
<head> section of the HTML page:

var xmlhttp;

function showHint(str)

{

if (str.length==0)

 {

 document.getElementById("txtHint").innerHTML="";

 return;

 }

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null)

 {

 alert ("Your browser does not support XMLHTTP!");

 return;

 }

var url = "gethint.asp";

url = url + "?q =" +str;

url = url + "&sid=" +Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

The preceding function executes every time a character is entered in the input field.

Chapter 32: AJAX Suggest

177

If there is input in the input field (str.length > 0), the showHint() function
executes the following:

	8	 Defines the URL (filename) to send to the server

	8	 Adds a parameter (q) to the URL with the content of the input field

	8	 Adds a random number to prevent the server from using a cached file

	8	 Creates an XMLHttp object and tells the object to execute a function called
stateChanged when a change is triggered

	8	 Opens the XMLHttp object with the given URL

	8	 Sends an HTTP request to the server

If the input field is empty, the function simply clears the content of the txtHint
placeholder.

The GetXmlHttpObject() Function
The showHint() function calls a function named GetXmlHttpObject().

The purpose of the GetXmlHttpObject() function is to solve the problem of
creating different XMLHttp objects for different browsers:

function GetXmlHttpObject()

{

if (window.XMLHttpRequest)

 {

 // code for IE7+, Firefox, Chrome, Opera, Safari

 return new XMLHttpRequest();

 }

if (window.ActiveXObject)

 {

 // code for IE6, IE5

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

return null;

}

The stateChanged() Function
The stateChanged() function contains the following code:

function stateChanged()

{

if (xmlhttp.readyState==4)
(continued)

Learn JavaScript and Ajax with w3schools

178

 {

 document.getElementById("txtHint").innerHTML=xmlhttp.re-
sponseText;

 }

}

The stateChanged() function executes every time the state of the XMLHttp
object changes.

When the state changes to 4 (“complete”), the content of the txtHint placeholder
is filled with the response text.

AJAX Suggest Source Code
The following source code belongs to the previous AJAX example.

You can copy and paste it, and try it yourself.

The AJAX HTML Page
This is the HTML page. It contains a simple HTML form and a link to a 	
JavaScript.

<html>

<head>

<script src="clienthint.js"></script>

</head>

<body>

<form>

First Name: <input type="text" id="txt1"
onkeyup="showHint(this.value)" />

</form>

<p>Suggestions: </p>

</body>

</html>

Be sure to try it on a server with ASP or PHP enabled.N O T E

(continued)

Chapter 32: AJAX Suggest

179

The AJAX JavaScript
This is the JavaScript code, stored in the file clienthint.js:

var xmlhttp

function showHint(str)

{

if (str.length==0)

 {

 document.getElementById("txtHint").innerHTML="";

 return;

 }

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null)

 {

 alert ("Your browser does not support XMLHTTP!");

 return;

 }

var url="gethint.asp";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

function stateChanged()

{

if (xmlhttp.readyState==4)

 {

 document.getElementById("txtHint").innerHTML=xmlhttp.re-
sponseText;

 }

}

function GetXmlHttpObject()

{

if (window.XMLHttpRequest)

 {

 // code for IE7+, Firefox, Chrome, Opera, Safari

(continued)

Learn JavaScript and Ajax with w3schools

180

 return new XMLHttpRequest();

 }

if (window.ActiveXObject)

 {

 // code for IE6, IE5

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

return null;

}

The AJAX Server Page—ASP and PHP
There is no such thing as an AJAX server. AJAX pages can be served by any Internet
server.

The server page called by the JavaScript in the previous example is a simple ASP file
called gethint.asp.

Following are two examples of the server page code, one written in ASP and one
in PHP.

AJAX ASP Example
The code in the gethint.asp page is written in VBScript for an Internet Information
Server (IIS). It checks an array of names and returns the corresponding names to
the client:

<%

response.expires=-1

dim a(30)

'Fill up array with names

a(1)="Anna"

a(2)="Brittany"

a(3)="Cinderella"

a(4)="Diana"

a(5)="Eva"

a(6)="Fiona"

a(7)="Gunda"

a(8)="Hege"

a(9)="Inga"

a(10)="Johanna"

a(11)="Kitty"

a(12)="Linda"

(continued)

Chapter 32: AJAX Suggest

181

a(13)="Nina"

a(14)="Ophelia"

a(15)="Petunia"

a(16)="Amanda"

a(17)="Raquel"

a(18)="Cindy"

a(19)="Doris"

a(20)="Eve"

a(21)="Evita"

a(22)="Sunniva"

a(23)="Tove"

a(24)="Unni"

a(25)="Violet"

a(26)="Liza"

a(27)="Elizabeth"

a(28)="Ellen"

a(29)="Wenche"

a(30)="Vicky"

'get the q parameter from URL

q=ucase(request.querystring("q"))

'lookup all hints from array if length of q>0

if len(q)>0 then

 hint=""

 for i=1 to 30

 if q=ucase(mid(a(i),1,len(q))) then

 if hint="" then

 hint=a(i)

 else

 hint=hint & " , " & a(i)

 end if

 end if

 next

end if

'Output "no suggestion" if no hint were found

'or output the correct values

if hint="" then

 response.write("no suggestion")

else (continued)

Learn JavaScript and Ajax with w3schools

182

 response.write(hint)

end if

%>

AJAX PHP Example
The preceding code can be rewritten in PHP.

<?php

// Fill up array with names

$a[]="Anna";

$a[]="Brittany";

$a[]="Cinderella";

$a[]="Diana";

$a[]="Eva";

$a[]="Fiona";

$a[]="Gunda";

$a[]="Hege";

$a[]="Inga";

$a[]="Johanna";

$a[]="Kitty";

$a[]="Linda";

$a[]="Nina";

$a[]="Ophelia";

$a[]="Petunia";

$a[]="Amanda";

$a[]="Raquel";

$a[]="Cindy";

$a[]="Doris";

$a[]="Eve";

$a[]="Evita";

$a[]="Sunniva";

$a[]="Tove";

$a[]="Unni";

$a[]="Violet";

$a[]="Liza";

$a[]="Elizabeth";

$a[]="Ellen";

To run the entire example in PHP, remember to change the value of the url
variable in "clienthint.js" from "gethint.asp" to "gethint.php".

N O T E

(continued)

Chapter 32: AJAX Suggest

183

$a[]="Wenche";

$a[]="Vicky";

//get the q parameter from URL

$q=$_GET["q"];

//lookup all hints from array if length of q>0

if (strlen($q) > 0)

 {

 $hint="";

 for($i=0; $i<count($a); $i++)

 {

 if (strtolower($q)==strtolower(substr($a[$i],0,strlen(
$q))))

 {

 if ($hint=="")

 {

 $hint=$a[$i];

 }

 else

 {

 $hint=$hint." , ".$a[$i];

 }

 }

 }

 }

// Set output to "no suggestion" if no hint were found

// or to the correct values

if ($hint == "")

 {

 $response="no suggestion";

 }

else

 {

 $response=$hint;

 }

//output the response

echo $response;

?>

184

Chapter 33

AJAX Database
Example

In This Chapter
	 ❑	 The AJAX JavaScript

	 ❑	 The AJAX Server Page

AJAX can be used for interactive communication with a database.

The example shown in Figure 33.1 demonstrates how a Web page can fetch infor-
mation from a database with AJAX technology.

The preceding example contains a simple HTML form and a link to a JavaScript:

<html>

<head>

<script type="text/javascript" src="selectcustomer.js"></
script>

</head>

<body>

<form>

Select a Customer:

<select name="customers" onchange="showCustomer(this.
value)">

Figure 33.1

Chapter 33: AJAX Database Example

185

<option value="ALFKI">Alfreds Futterkiste</option>

<option value="NORTS ">North/South</option>

<option value="WOLZA">Wolski Zajazd</option>

</select>

</form>

<div id="txtHint">Customer info will be listed here.</
b></div>

</body>

</html>

As you can see, it is just a simple HTML form with a drop-down box called 	
customers.

The <div> below the form will be used as a placeholder for info retrieved from the
Web server.

When the user selects data, a function called showCustomer() is executed. The
execution of the function is triggered by the “onchange” event. In other words,
each time the user changes the value in the drop-down box, the function show-
Customer() is called.

The AJAX JavaScript
This is the JavaScript code stored in the file selectcustomer.js:

var xmlhttp

function showCustomer(str)

{

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null)

 {

 alert ("Your browser does not support AJAX!");

 return;

 }

var url="getcustomer.asp";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

(continued)

Learn JavaScript and Ajax with w3schools

186

}

function stateChanged()

{

if (xmlhttp.readyState==4)

 {

 document.getElementById("txtHint").innerHTML=xmlhttp.
responseText;

 }

}

function GetXmlHttpObject()

{

if (window.XMLHttpRequest)

 {

 // code for IE7+, Firefox, Chrome, Opera, Safari

 return new XMLHttpRequest();

 }

if (window.ActiveXObject)

 {

 // code for IE6, IE5

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

return null;

}

The AJAX Server Page
The server page called by the previous JavaScript script is an ASP file called getcus-
tomer.asp.

The ASP page is written in VBScript for an Internet Information Server (IIS). It
could easily be rewritten in PHP or some other server language.

The code runs a query against a database and returns the result in an HTML table:

<%

response.expires=-1

sql="SELECT * FROM CUSTOMERS WHERE CUSTOMERID="

sql=sql & "'" & request.querystring("q") & "'"

(continued)

Chapter 33: AJAX Database Example

187

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("/db/northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

rs.Open sql,conn

response.write("<table>")

do until rs.EOF

 for each x in rs.Fields

 response.write("<tr><td>" & x.name & "</td>")

 response.write("<td>" & x.value & "</td></tr>")

 next

 rs.MoveNext

loop

response.write("</table>")

%>

188

Chapter 34

AJAX XML Example

In This Chapter
	 ❑	 The AJAX JavaScript

	 ❑	 The AJAX Server Page

	 ❑	 The XML File

AJAX can be used for interactive communication with an XML file.

The example in Figure 34.1 demonstrates how a Web page can fetch information
from an XML file with AJAX technology.

The preceding example contains a simple HTML form and a link to a JavaScript:

<html>

<head>

<script src="selectcd.js"></script>

</head>

<body>

<form>

Select a CD:

<select name="cds" onchange="showCD(this.value)">

<option value="Bob Dylan">Bob Dylan</option>

<option value="Bonnie Tyler">Bonnie Tyler</option>

<option value="Dolly Parton">Dolly Parton</option>

Figure 34.1

Chapter 34: AJAX XML Example

189

</select>

</form>

<div id="txtHint">CD info will be listed here.</div>

</body>

</html>

As you can see, it is just a simple HTML form with a simple drop-down box called
cds.

The <div> below the form will be used as a placeholder for info retrieved from the
Web server.

When the user selects data, a function called showCD is executed. The execution of
the function is triggered by the onchange event. In other words each time the user
changes the value in the drop-down box, the function showCD is called.

The AJAX JavaScript
This is the JavaScript code stored in the file selectcd.js:

var xmlhttp

function showCD(str)

{

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null)

 {

 alert ("Your browser does not support AJAX!");

 return;

 }

var url="getcd.asp";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

function stateChanged()

{

(continued)

Learn JavaScript and Ajax with w3schools

190

if (xmlhttp.readyState==4)

{

document.getElementById("txtHint").innerHTML=xmlhttp.
responseText;

}

}

function GetXmlHttpObject()

{

if (window.XMLHttpRequest)

 {

 // code for IE7+, Firefox, Chrome, Opera, Safari

 return new XMLHttpRequest();

 }

if (window.ActiveXObject)

 {

 // code for IE6, IE5

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

return null;

}

The AJAX Server Page
The server page called by the preceding JavaScript is an ASP file called getcd.asp.

The page is written in VBScript for an Internet Information Server (IIS). It could
easily be rewritten in PHP or some other server language.

The code runs a query against an XML file and returns the result as HTML:

<%

response.expires=-1

q=request.querystring("q")

set xmlDoc=Server.CreateObject("Microsoft.XMLDOM")

xmlDoc.async="false"

xmlDoc.load(Server.MapPath("cd_catalog.xml"))

set nodes=xmlDoc.selectNodes("CATALOG/CD[ARTIST='" & q &
"']")

(continued)

Chapter 34: AJAX XML Example

191

for each x in nodes

 for each y in x.childnodes

 response.write("" & y.nodename & ": ")

 response.write(y.text)

 response.write("
")

 next

next

%>

The XML File
The XML file used in the example is cd_catalog.xml. This document contains a CD
collection and appears as follows:

<!-- Edited by XMLSpy® -->

−

<CATALOG>

−

<CD>

<TITLE>Empire Burlesque</TITLE>

<ARTIST>Bob Dylan</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Columbia</COMPANY>

<PRICE>10.90</PRICE>

<YEAR>1985</YEAR>

</CD>

−

<CD>

<TITLE>Hide your heart</TITLE>

<ARTIST>Bonnie Tyler</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>CBS Records</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1988</YEAR>

</CD>

−

<CD>

<TITLE>Greatest Hits</TITLE>

<ARTIST>Dolly Parton</ARTIST>

<COUNTRY>USA</COUNTRY> (continued)

Learn JavaScript and Ajax with w3schools

192

<COMPANY>RCA</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1982</YEAR>

</CD>

−

<CD>

<TITLE>Still got the blues</TITLE>

<ARTIST>Gary Moore</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Virgin records</COMPANY>

<PRICE>10.20</PRICE>

<YEAR>1990</YEAR>

</CD>

−

<CD>

<TITLE>Eros</TITLE>

<ARTIST>Eros Ramazzotti</ARTIST>

<COUNTRY>EU</COUNTRY>

<COMPANY>BMG</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1997</YEAR>

</CD>

−

<CD>

<TITLE>One night only</TITLE>

<ARTIST>Bee Gees</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Polydor</COMPANY>

<PRICE>10.90</PRICE>

<YEAR>1998</YEAR>

</CD>

−

<CD>

<TITLE>Sylvias Mother</TITLE>

<ARTIST>Dr.Hook</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>CBS</COMPANY>

<PRICE>8.10</PRICE>

<YEAR>1973</YEAR>

</CD>

(continued)

Chapter 34: AJAX XML Example

193

−

<CD>

<TITLE>Maggie May</TITLE>

<ARTIST>Rod Stewart</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Pickwick</COMPANY>

<PRICE>8.50</PRICE>

<YEAR>1990</YEAR>

</CD>

−

<CD>

<TITLE>Romanza</TITLE>

<ARTIST>Andrea Bocelli</ARTIST>

<COUNTRY>EU</COUNTRY>

<COMPANY>Polydor</COMPANY>

<PRICE>10.80</PRICE>

<YEAR>1996</YEAR>

</CD>

−

<CD>

<TITLE>When a man loves a woman</TITLE>

<ARTIST>Percy Sledge</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Atlantic</COMPANY>

<PRICE>8.70</PRICE>

<YEAR>1987</YEAR>

</CD>

−

<CD>

<TITLE>Black angel</TITLE>

<ARTIST>Savage Rose</ARTIST>

<COUNTRY>EU</COUNTRY>

<COMPANY>Mega</COMPANY>

<PRICE>10.90</PRICE>

<YEAR>1995</YEAR>

</CD>

−

<CD>

<TITLE>1999 Grammy Nominees</TITLE>

<ARTIST>Many</ARTIST>

(continued)

Learn JavaScript and Ajax with w3schools

194

<COUNTRY>USA</COUNTRY>

<COMPANY>Grammy</COMPANY>

<PRICE>10.20</PRICE>

<YEAR>1999</YEAR>

</CD>

−

<CD>

<TITLE>For the good times</TITLE>

<ARTIST>Kenny Rogers</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Mucik Master</COMPANY>

<PRICE>8.70</PRICE>

<YEAR>1995</YEAR>

</CD>

−

<CD>

<TITLE>Big Willie style</TITLE>

<ARTIST>Will Smith</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Columbia</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1997</YEAR>

</CD>

−

<CD>

<TITLE>Tupelo Honey</TITLE>

<ARTIST>Van Morrison</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Polydor</COMPANY>

<PRICE>8.20</PRICE>

<YEAR>1971</YEAR>

</CD>

−

<CD>

<TITLE>Soulsville</TITLE>

<ARTIST>Jorn Hoel</ARTIST>

<COUNTRY>Norway</COUNTRY>

<COMPANY>WEA</COMPANY>

<PRICE>7.90</PRICE>

<YEAR>1996</YEAR>

(continued)

Chapter 34: AJAX XML Example

195

</CD>

−

<CD>

<TITLE>The very best of</TITLE>

<ARTIST>Cat Stevens</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Island</COMPANY>

<PRICE>8.90</PRICE>

<YEAR>1990</YEAR>

</CD>

−

<CD>

<TITLE>Stop</TITLE>

<ARTIST>Sam Brown</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>A and M</COMPANY>

<PRICE>8.90</PRICE>

<YEAR>1988</YEAR>

</CD>

−

<CD>

<TITLE>Bridge of Spies</TITLE>

<ARTIST>T'Pau</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Siren</COMPANY>

<PRICE>7.90</PRICE>

<YEAR>1987</YEAR>

</CD>

−

<CD>

<TITLE>Private Dancer</TITLE>

<ARTIST>Tina Turner</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>Capitol</COMPANY>

<PRICE>8.90</PRICE>

<YEAR>1983</YEAR>

</CD>

−

<CD>

<TITLE>Midt om natten</TITLE>

(continued)

Learn JavaScript and Ajax with w3schools

196

<ARTIST>Kim Larsen</ARTIST>

<COUNTRY>EU</COUNTRY>

<COMPANY>Medley</COMPANY>

<PRICE>7.80</PRICE>

<YEAR>1983</YEAR>

</CD>

−

<CD>

<TITLE>Pavarotti Gala Concert</TITLE>

<ARTIST>Luciano Pavarotti</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>DECCA</COMPANY>

<PRICE>9.90</PRICE>

<YEAR>1991</YEAR>

</CD>

−

<CD>

<TITLE>The dock of the bay</TITLE>

<ARTIST>Otis Redding</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>Atlantic</COMPANY>

<PRICE>7.90</PRICE>

<YEAR>1987</YEAR>

</CD>

−

<CD>

<TITLE>Picture book</TITLE>

<ARTIST>Simply Red</ARTIST>

<COUNTRY>EU</COUNTRY>

<COMPANY>Elektra</COMPANY>

<PRICE>7.20</PRICE>

<YEAR>1985</YEAR>

</CD>

−

<CD>

<TITLE>Red</TITLE>

<ARTIST>The Communards</ARTIST>

<COUNTRY>UK</COUNTRY>

<COMPANY>London</COMPANY>

<PRICE>7.80</PRICE>

(continued)

Chapter 34: AJAX XML Example

197

<YEAR>1987</YEAR>

</CD>

−

<CD>

<TITLE>Unchain my heart</TITLE>

<ARTIST>Joe Cocker</ARTIST>

<COUNTRY>USA</COUNTRY>

<COMPANY>EMI</COMPANY>

<PRICE>8.20</PRICE>

<YEAR>1987</YEAR>

</CD>

</CATALOG>

198

Chapter 35

AJAX ResponseXML
Example

In This Chapter
	 ❑	 The AJAX JavaScript

	 ❑	 The AJAX Server Page

responseText returns the HTTP response as a string.

responseXML returns the response as XML.

The responseXML property returns an XML document object, which can be 	
examined and parsed using the DOM (Document Object Model).

 See Appendix B for a complete listing of the HTML DOM Objects.

The example in Figure 35.1 demonstrates how a Web page can fetch information
from a database with AJAX technology. The selected data from the database will
this time be converted to an XML document, and then we will use the DOM to
extract the values to be displayed.

The preceding example contains an HTML form, several elements to hold
the returned data, and a link to a JavaScript:

<html>

<head>

<script src="selectcustomer_xml.js"></script>

</head>

<body>

<form action="">

Select a Customer:

Figure 35.1

Chapter 35: AJAX ResponseXML Example

199

<select name="customers" onchange="showCustomer(this.
value)">

<option value="ALFKI">Alfreds Futterkiste</option>

<option value="NORTS ">North/South</option>

<option value="WOLZA">Wolski Zajazd</option>

</select>

</form>

</body>

</html>

The preceding example contains an HTML form with a drop-down box called
customers.

When the user selects a customer in the drop-down box, a function called 	
showCustomer() is executed. The execution of the function is triggered by the
onchange event. In other words. each time the user changes the value in the drop-
down box, the function showCustomer() is called.

The AJAX JavaScript
This is the JavaScript code stored in the file selectcustomer_xml.js:

var xmlhttp

function showCustomer(str)

{

xmlhttp=GetXmlHttpObject();

if (xmlhttp==null)

 {

 alert ("Your browser does not support AJAX!");

 return;

 }

var url="getcustomer_xml.asp";

url=url+"?q="+str;

url=url+"&sid="+Math.random();

(continued)

Learn JavaScript and Ajax with w3schools

200

xmlhttp.onreadystatechange=stateChanged;

xmlhttp.open("GET",url,true);

xmlhttp.send(null);

}

function stateChanged()

{

if (xmlhttp.readyState==4)

 {

 var xmlDoc=xmlhttp.responseXML.documentElement;

 document.getElementById("companyname").innerHTML=

 xmlDoc.getElementsByTagName("compname")[0].childNodes[0].
nodeValue;

 document.getElementById("contactname").innerHTML=

 xmlDoc.getElementsByTagName("contname")[0].childNodes[0].
nodeValue;

 document.getElementById("address").innerHTML=

 xmlDoc.getElementsByTagName("address")[0].childNodes[0].
nodeValue;

 document.getElementById("city").innerHTML=

 xmlDoc.getElementsByTagName("city")[0].childNodes[0].node-
Value;

 document.getElementById("country").innerHTML=

 xmlDoc.getElementsByTagName("country")[0].childNodes[0].
nodeValue;

 }

}

function GetXmlHttpObject()

{

if (window.XMLHttpRequest)

 {

 // code for IE7+, Firefox, Chrome, Opera, Safari

 return new XMLHttpRequest();

 }

if (window.ActiveXObject)

 {

 // code for IE6, IE5

 return new ActiveXObject("Microsoft.XMLHTTP");

 }

return null;

}

(continued)

Chapter 35: AJAX ResponseXML Example

201

The showCustomer() and GetXmlHttpObject() functions are the same as in
previous chapters. The stateChanged() function also is used earlier in this tuto-
rial; however, this time we return the result as an XML document (with response
XML) and use the DOM to extract the values we want to be displayed.

The AJAX Server Page
The server page called by the JavaScript is an ASP file called getcustomer_xml.asp.

The page is written in VBScript for an Internet Information Server (IIS). It could
easily be rewritten in PHP or some other server language.

The code runs a query against a database and returns the result as an XML docu-
ment:

<%

response.expires=-1

response.contenttype="text/xml"

sql="SELECT * FROM CUSTOMERS "

sql=sql & " WHERE CUSTOMERID='" & request.querystring("q") &
"'"

on error resume next

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open(Server.Mappath("/db/northwind.mdb"))

set rs=Server.CreateObject("ADODB.recordset")

rs.Open sql, conn

if err <> 0 then

 response.write(err.description)

 set rs=nothing

 set conn=nothing

else

 response.write("<?xml version='1.0'
encoding='ISO-8859-1'?>")

 response.write("<company>")

 response.write("<compname>" &rs.fields("companyname")& "</
compname>")

 response.write("<contname>" &rs.fields("contactname")& "</
contname>")

 response.write("<address>" &rs.fields("address")& "
</address>")

(continued)

Learn JavaScript and Ajax with w3schools

202

 response.write("<city>" &rs.fields("city")& "</city>")

 response.write("<country>" &rs.fields("country")& "
</country>")

 response.write("</company>")

end if

on error goto 0

%>

Notice the second line in the ASP code: response.contenttype="text/xml".
The ContentType property sets the HTTP content type for the response object.
The default value for this property is “text/html”. This time we want the content
type to be XML.

Then we select data from the database and build an XML document with the data.

(continued)

203

Appendix A

JavaScript
Objects

In This Appendix
	 ❑	 Array Object

	 ❑	 Boolean Object

	 ❑	 Date Object

	 ❑	 Math Object

	 ❑	 Number Object

	 ❑	 String Object

	 ❑	 RegExp Object

	 ❑	 Global Properties and Functions

Array Object
The Array object is used to store multiple values in a single variable.

 For a tutorial about arrays, see Chapter 17, “JavaScript Array Object.”

Array Object Properties

Property Description

constructor Returns the function that created the Array object’s prototype

length Sets or returns the number of elements in an array

prototype Allows you to add properties and methods to an object

Learn JavaScript and Ajax with w3schools

204

Array Object Methods
Method Description
concat() Joins two or more arrays, and returns a copy of the joined arrays
join() Joins all elements of an array into a string
pop() Removes the last element of an array, and returns that element
push() Adds new elements to the end of an array, and returns the new length
reverse() Reverses the order of the elements in an array
shift() Removes the first element of an array, and returns that element
slice() Selects a part of an array, and returns the new array
sort() Sorts the elements of an array
splice() Adds/Removes elements from an array
toString() Converts an array to a string, and returns the result
unshift() Adds new elements to the beginning of an array, and returns the new

length
valueOf() Returns the primitive value of an array as values separated by commas

Boolean Object
The Boolean object is used to convert a non-Boolean value to a Boolean value (true
or false).

 For a tutorial about the Boolean object, see Chapter 18, “JavaScript Bool-
ean Object.”

Boolean Object Properties
Property Description
constructor Returns the function that created the Boolean object’s prototype
prototype Allows you to add properties and methods to an object

Boolean Object Methods
Method Description
toString() Converts a Boolean value to a string, and returns the result

valueOf() Returns the primitive value of a Boolean object

Date Object
The Date object is used to work with dates and times.

Date objects are created with new Date().

There are four ways of instantiating a date:

var d = new Date();

Appendix A: JavaScript Objects

205

var d = new Date(milliseconds);

var d = new Date(dateString);

var d = new Date(year, month, day, hours, minutes, seconds,
milliseconds);

 For a tutorial about date and times, see Chapter 16, “JavaScript Date
Object.”

Date Object Properties
Property Description
constructor Returns the function that created the Date object’s prototype
prototype Allows you to add properties and methods to an object

Date Object Methods
Method Description
getDate() Returns the day of the month (from 1–31)
getDay() Returns the day of the week (from 0–6)
getFullYear() Returns the year (four digits)
getHours() Returns the hour (from 0–23)
getMilliseconds() Returns the milliseconds (from 0–999)
getMinutes() Returns the minutes (from 0–59)
getMonth() Returns the month (from 0–11)
getSeconds() Returns the seconds (from 0–59)
getTime() Returns the number of milliseconds since midnight January 1,

1970
getTimezoneOffset() Returns the time difference between GMT and local time in

minutes
getUTCDate() Returns the day of the month, according to universal time (from

1–31)
getUTCDay() Returns the day of the week, according to universal time (from

0–6)
getUTCFullYear() Returns the year, according to universal time (four digits)
getUTCHours() Returns the hour, according to universal time (from 0–23)
getUTCMilliseconds() Returns the milliseconds, according to universal time (from 0–999)
getUTCMinutes() Returns the minutes, according to universal time (from 0–59)
getUTCMonth() Returns the month, according to universal time (from 0–11)
getUTCSeconds() Returns the seconds, according to universal time (from 0–59)
getYear() Deprecated. Use the getFullYear() method instead
parse() Parses a date string and returns the number of milliseconds since

midnight of January 1, 1970
setDate() Sets the day of the month (from 1–31)

(continued)

Learn JavaScript and Ajax with w3schools

206

Method Description
setFullYear() Sets the year (four digits)
setHours() Sets the hour (from 0–23)
setMilliseconds() Sets the milliseconds (from 0–999)
setMinutes() Set the minutes (from 0–59)
setMonth() Sets the month (from 0–11)
setSeconds() Sets the seconds (from 0–59)
setTime() Sets a date and time by adding or subtracting a specified number

of milliseconds to/from midnight January 1, 1970
setUTCDate() Sets the day of the month, according to universal time (from 1–31)
setUTCFullYear() Sets the year, according to universal time (four digits)
setUTCHours() Sets the hour, according to universal time (from 0–23)
setUTCMilliseconds() Sets the milliseconds, according to universal time (from 0–999)
setUTCMinutes() Set the minutes, according to universal time (from 0–59)
setUTCMonth() Sets the month, according to universal time (from 0–11)
setUTCSeconds() Set the seconds, according to universal time (from 0–59)
setYear() Deprecated. Use the setFullYear() method instead
toDateString() Converts the date portion of a Date object into a readable string
toGMTString() Deprecated. Use the toUTCString() method instead
toLocaleDateString() Returns the date portion of a Date object as a string, using locale

conventions
toLocaleTimeString() Returns the time portion of a Date object as a string, using locale

conventions
toLocaleString() Converts a Date object to a string, using locale conventions
toString() Converts a Date object to a string
toTimeString() Converts the time portion of a Date object to a string
toUTCString() Converts a Date object to a string, according to universal time
UTC() Returns the number of milliseconds in a date string since mid-

night of January 1, 1970, according to universal time
valueOf() Converts a Date to milliseconds. Same as getTime().

Math Object
The Math object allows you to perform mathematical tasks.

Math is not a constructor. All properties/methods of Math can be called by using
Math as an object, without creating it.

The syntax is as follows:

var x = Math.PI; // Returns PI

var y = Math.sqrt(16); // Returns the square root of 16

 For a tutorial about the Math object, see Chapter 19, “JavaScript Math
Object.”

(continued)

Appendix A: JavaScript Objects

207

Math Object Properties
Property Description
E Returns Euler’s number, the base of the natural logarithm (approx.

2.718)
LN2 Returns the natural logarithm of 2 (approx. 0.693)
LN10 Returns the natural logarithm of 10 (approx. 2.302)
LOG2E Returns the base-2 logarithm of E (approx. 1.442)
LOG10E Returns the base-10 logarithm of E (approx. 0.434)
PI Returns PI (approx. 3.14159)
SQRT1_2 Returns the square root of 1/2 (approx. 0.707)
SQRT2 Returns the square root of 2 (approx. 1.414)

Math Object Methods
Method Description
abs(x) Returns the absolute value of x
acos(x) Returns the arccosine of x, in radians
asin(x) Returns the arcsine of x, in radians

atan(x)
Returns the arctangent of x as a numeric value between –PI/2 and PI/2
radians

atan2(y,x) Returns the arctangent of the quotient of its arguments
ceil(x) Returns x, rounded upward to the nearest integer
cos(x) Returns the cosine of x (x is in radians)
exp(x) Returns the value of E to the power of x
floor(x) Returns x, rounded downward to the nearest integer
log(x) Returns the natural logarithm (base E) of x
max(x,y,z,...,n) Returns the number with the highest value
min(x,y,z,...,n) Returns the number with the lowest value
pow(x,y) Returns the value of x to the power of y
random() Returns a random number between 0 and 1
round(x) Rounds x to the nearest integer
sin(x) Returns the sine of x (x is in radians)
sqrt(x) Returns the square root of x
tan(x) Returns the tangent of x (x is in radians)

Number Object
The Number object is an object wrapper for primitive numeric values.

Number objects are created with new Number().

The syntax is as follows:

var num = new Number(value);

Learn JavaScript and Ajax with w3schools

208

Number Object Properties
Property Description
constructor Returns the function that created the Number object’s prototype
MAX_VALUE Returns the largest number possible in JavaScript
MIN_VALUE Returns the smallest number possible in JavaScript
NEGATIVE _INFINITY Represents negative infinity (returned on overflow)
POSITIVE_INFINITY Represents infinity (returned on overflow)
prototype Allows you to add properties and methods to an object

Number Object Methods
Method Description
toExponential(x) Converts a number to exponential notation
toFixed(x) Formats a number with x number of digits after the decimal point
toPrecision(x) Formats a number to x significant digits
toString() Converts a Number object to a string
valueOf() Returns the primitive value of a Number object

String Object
The String object is used to manipulate a stored piece of text.

String objects are created with new String().

The syntax is as follows:

var txt = new String(string);

or more simply:

var txt = string;

 For a tutorial about the String object, see Chapter 15, “JavaScript String
Object.”

String Object Properties
Property Description
constructor Returns the function that created the String object’s prototype
length Returns the length of a string
prototype Allows you to add properties and methods to an object

If the value parameter cannot be converted into a number, it returns NaN
(Not-a-Number).

N O TE

Appendix A: JavaScript Objects

209

String Object Methods
Method Description
charAt() Returns the character at the specified index
charCodeAt() Returns the Unicode of the character at the specified index
concat() Joins two or more strings, and returns a copy of the joined strings
fromCharCode() Converts Unicode values to characters
indexOf() Returns the position of the first found occurrence of a specified value

in a string
lastIndexOf() Returns the position of the last found occurrence of a specified value

in a string
match() Searches for a match within the string using a regular expression.

Returns an array or null if no matches found.
replace() Searches for a match between a substring (or regular expression) and a

string, and replaces the matched substring with a new substring
search() Searches for a match between a regular expression and a string, and

returns the position of the match or –1 if not found
slice() Extracts a part of a string and returns a new string
split() Splits a string into an array of substrings
substr() Extracts the characters from a string, beginning at a specified start

position through the specified number of characters
substring() Extracts the characters from a string, between two specified indices
toLowerCase() Converts a string to lowercase letters
toUpperCase() Converts a string to uppercase letters
valueOf() Returns the primitive value of a String object

String HTML Wrapper Methods
The HTML wrapper methods return the string wrapped inside the appropriate
HTML tag.

Method Description
anchor() Creates an anchor
big() Displays a string using a big font
blink() Displays a blinking string
bold() Displays a string in bold
fixed() Displays a string using a fixed-pitch font
fontcolor() Displays a string using a specified color
fontsize() Displays a string using a specified size
italics() Displays a string in italic
link() Displays a string as a hyperlink
small() Displays a string using a small font
strike() Displays a string with a strikethrough
sub() Displays a string as subscript text
sup() Displays a string as superscript text

Learn JavaScript and Ajax with w3schools

210

RegExp Object
A regular expression is an object that describes a pattern of characters.

Regular expressions are used to perform pattern-matching and search-and-replace
functions on text.

The syntax is as follows:

var txt=new RegExp(pattern,modifiers);

or more simply:

var txt=/pattern/modifiers;

	8	 Pattern specifies the pattern of an expression.

	8	 Modifiers specify whether a search should be global, case-sensitive, and so on.

 For a tutorial about the RegExp object, see Chapter 20, “JavaScript RegExp
Object.”

Modifiers
Modifiers are used to perform case-insensitive and global searches:

Modifier Description
i Perform case-insensitive matching

g
Perform a global match (find all matches rather than stopping after
the first match)

m Perform multiline matching

Brackets
Brackets are used to find a range of characters:

Expression Description
[abc] Match any character between the brackets
[^abc] Match any character not between the brackets
[0-9] Match any digit from 0 to 9
[a-z] Match any character from lowercase a to lowercase z
[A-Z] Match any character from uppercase A to uppercase Z
[a-Z] Match any character from lowercase a to uppercase Z
[adgk] Match any character in the given set
[^adgk] Match any character outside the given set
[red|blue|green] Match any of the alternatives specified

Appendix A: JavaScript Objects

211

Metacharacters
Metacharacters are characters with a special meaning:

Metacharacter Description
. Find a single character, except newline or line terminator
\w Match any alphanumeric character, including the underscore
\W Match any nonalphanumeric character
\d Find a digit
\D Find a nondigit character
\s Find a single whitespace character
\S Find a single nonwhitespace character
\b Match at the beginning/end of a word
\B Match not at the beginning/end of a word
\0 Find a NUL character
\n Find a new line
\f Find a form feed
\r Find a carriage return
\t Find a tab
\v Find a vertical tab
\xxx Find the character specified by an octal number xxx
\xdd Find the character specified by a hexadecimal number dd
\uxxxx Find the Unicode character specified by a hexadecimal number

xxxx

Quantifiers
Quantifier Description
+ Match the preceding character 1 or more times
* Match the preceding character 0 or more times
? Match the preceding character 0 or 1 time
{x} Where x is a positive integer, matches exactly n occurrences of the

preceding character
{x,y} Where x and y are positive integers, matches at least x and no more

than y occurrences of the preceding character
{x,} Where x is a positive integer, matches at least n occurrences of the

preceding character
n$ Matches any string with n at the end of it
^n Matches any string with n at the beginning of it
n(?=m) Matches n only if followed by m
n(?|m) Matches n only if not followed by m

Learn JavaScript and Ajax with w3schools

212

RegExp Object Properties
Property Description
global Specifies if the “g” modifier is set
ignoreCase Specifies if the “i” modifier is set
lastIndex The index at which to start the next match
multiline Specifies if the “m” modifier is set
source The text of the RegExp pattern

RegExp Object Methods
Method Description
compile() Compiles a regular expression
exec() Tests for a match in a string. Returns a result array
test() Tests for a match in a string. Returns true or false

JavaScript Global Properties and
Functions

The JavaScript global properties and functions can be used with all the built-in
JavaScript objects.

JavaScript Global Properties
Property Description
Infinity A numeric value that represents positive/negative infinity
NaN “Not-a-Number” value
undefined Indicates that a variable has not been assigned a value

JavaScript Global Functions
Function Description
decodeURI() Decodes a URI
decodeURIComponent() Decodes a URI component
encodeURI() Encodes a URI
encodeURIComponent() Encodes a URI component
escape() Encodes a string

eval()
Evaluates a string and executes it as if it were a JavaScript
expression

isFinite() Determines whether a value is a finite number
isNaN() Determines whether a value is an illegal number
Number() Converts an object’s value to a number

Appendix A: JavaScript Objects

213

Function Description
parseFloat() Parses a string and returns a floating point number
parseInt() Parses a string and returns an integer
String() Converts an object’s value to a string
unescape() Decodes an encoded string

214

Appendix B

HTML DOM Objects

In This Appendix
	 ❑	 Document Object

	 ❑	 Event Object

	 ❑	 Element Object

	 ❑	 Anchor Object

	 ❑	 Area Object

	 ❑	 Base Object

	 ❑	 Body Object

	 ❑	 Button Object (Push Button)

	 ❑	 Form Object

	 ❑	 Frame/IFrame Object

	 ❑	 Frameset Object

	 ❑	 Image Object

	 ❑	 Button Object

	 ❑	 Checkbox Object

	 ❑	 FileUpload Object

	 ❑	 Hidden Object

	 ❑	 Password Object

	 ❑	 Radio Object

	 ❑	 Reset Object

	 ❑	 Submit Object

	 ❑	 Text Object

Appendix B: HTML DOM Objects

215

	 ❑	 Link Object

	 ❑	 Meta Object

	 ❑	 Object Object

	 ❑	 Option Object

	 ❑	 Select Object

	 ❑	 Style Object

	 ❑	 Table Object

	 ❑	 TableCell Object

	 ❑	 TableRow Object

	 ❑	 Textarea Object

The World Wide Web Consortium (W3C) is an international community that
develops standards to ensure the long-term growth of the Web. The W3C DOM
page is located at http://www.w3.org/DOM/.

Document Object
Each HTML document loaded into a browser window becomes a Document
object.

The Document object provides access to all HTML elements in a page, from within
a script.

Document Object Collections
W3C: W3C Standard

Collection Description W3C

anchors[] Returns an array of all the anchors in the document Yes

forms[] Returns an array of all the forms in the document Yes

images[] Returns an array of all the images in the document Yes

links[] Returns an array of all the links in the document Yes

The Document object is also part of the Window object and can be accessed
through the window.document property.
T IP

Learn JavaScript and Ajax with w3schools

216

Document Object Properties
Property Description W3C
cookie Returns all name/value pairs of cookies in the document Yes

documentMode
Returns the mode used by the browser to render the docu-
ment

No

domain
Returns the domain name of the server that loaded the docu-
ment

Yes

lastModified Returns the date and time the document was last modified No
readyState Returns the (loading) status of the document No

referrer
Returns the URL of the document that loaded the current
document

Yes

title Sets or returns the title of the document Yes
URL Returns the full URL of the document Yes

Document Object Methods
Method Description W3C

close()
Closes the output stream previously opened with
document.open()

Yes

getElementById() Accesses the first element with the specified id Yes
getElementsByName() Accesses all elements with a specified name Yes
getElementsByTagName() Accesses all elements with a specified tagname Yes

open()
Opens an output stream to collect the output from
document.write() or document.writeln()

Yes

write()
Writes HTML expressions or JavaScript code to a
document

Yes

writeln()
Same as write(), but adds a newline character after
each statement

Yes

Event Object
The Event object gives you information about an event that has occurred.

The Event object represents the state of an event, such as the element in which the
event occurred, the state of the keyboard keys, the location of the mouse, and the
state of the mouse buttons.

Events are normally used in combination with functions, and the function will not
be executed before the event occurs!

Event Handlers
New to HTML 4.0 was the ability to let HTML events trigger actions in the
browser, like starting a JavaScript when a user clicks on an HTML element. Follow-
ing is a list of the attributes that can be inserted into HTML tags to define event
actions.

Appendix B: HTML DOM Objects

217

IE: Internet Explorer; F: Firefox; O: Opera; W3C: W3C Standard.

Attribute The event occurs when... IE F O W3C
onblur An element loses focus 3 1 9 Yes
onchange The content of a field changes 3 1 9 Yes
onclick Mouse clicks an object 3 1 9 Yes
ondblclick Mouse double-clicks an object 4 1 9 Yes

onerror
An error occurs when loading a document or an
image

4 1 9 Yes

onfocus An element gets focus 3 1 9 Yes
onkeydown A keyboard key is pressed 3 1 No Yes
onkeypress A keyboard key is pressed or held down 3 1 9 Yes
onkeyup A keyboard key is released 3 1 9 Yes
onload A page or an image is finished loading 3 1 9 Yes
onmousedown A mouse button is pressed 4 1 9 Yes
onmousemove The mouse is moved 3 1 9 Yes
onmouseout The mouse is moved off an element 4 1 9 Yes
onmouseover The mouse is moved over an element 3 1 9 Yes
onmouseup A mouse button is released 4 1 9 Yes
onresize A window or frame is resized 4 1 9 Yes
onselect Text is selected 3 1 9 Yes
onunload The user exits the page 3 1 9 Yes

Mouse / Keyboard Attributes
Property Description IE F O W3C

altKey
Returns whether the Alt key was pressed when an
event was triggered

6 1 9 Yes

button
Returns which mouse button was clicked when an
event was triggered

6 1 9 Yes

clientX
Returns the horizontal coordinate of the mouse
pointer when an event was triggered

6 1 9 Yes

clientY
Returns the vertical coordinate of the mouse
pointer when an event was triggered

6 1 9 Yes

ctrlKey
Returns whether the Ctrl key was pressed when an
event was triggered

6 1 9 Yes

metaKey
Returns whether the meta key was pressed when
an event was triggered

6 1 9 Yes

relatedTarget
Returns the element related to the element that
triggered the event

No 1 9 Yes

screenX
Returns the horizontal coordinate of the mouse
pointer when an event was triggered

6 1 9 Yes

screenY
Returns the vertical coordinate of the mouse
pointer when an event was triggered

6 1 9 Yes

shiftKey
Returns whether the Shift key was pressed when an
event was triggered

6 1 9 Yes

Learn JavaScript and Ajax with w3schools

218

Other Event Attributes
Property Description IE F O W3C

bubbles
Returns a Boolean value that indicates whether an
event is a bubbling event

No 1 9 Yes

cancelable
Returns a Boolean value that indicates whether an
event can have its default action prevented

No 1 9 Yes

currentTarget
Returns the element whose event listeners trig-
gered the event

No 1 9 Yes

eventPhase
Returns which phase of the event flow is currently
being evaluated

 Yes

target Returns the element that triggered the event No 1 9 Yes

timeStamp
Returns the time stamp, in milliseconds, from the
epoch (system start or event trigger)

No 1 9 Yes

type Returns the name of the event 6 1 9 Yes

Element Object
The collections, properties, methods, and events in the following tables can be used
on all HTML elements.

Element Object Collections
W3C: W3C Standard.

Collection Description W3C
attributes[] Returns an array of the attributes of an element Yes
childNodes[] Returns an array of child nodes for an element Yes

Element Object Properties
Property Description W3C
accessKey Sets or returns an accesskey for an element Yes
className Sets or returns the class attribute of an element Yes

clientHeight
Returns the viewable height of the content on a page (not
including borders, margins, or scrollbars)

Yes

clientWidth
Returns the viewable width of the content on a page (not
including borders, margins, or scrollbars)

Yes

dir Sets or returns the text direction of an element Yes
disabled Sets or returns the disabled attribute of an element Yes
firstChild Returns the first child of an element Yes
height Sets or returns the height attribute of an element Yes
id Sets or returns the id of an element Yes
innerHTML Sets or returns the HTML contents (+text) of an element Yes
lang Sets or returns the language code for an element Yes

Appendix B: HTML DOM Objects

219

Property Description W3C
lastChild Returns the last child of an element Yes
length Does not apply to all objects. See specific object type. Yes
nextSibling Returns the element immediately following an element Yes
nodeName Returns the tagname of an element (in uppercase) Yes
nodeType Returns the type of the element Yes
nodeValue Returns the value of the element Yes

offsetHeight
Returns the height of an element, including borders and pad-
ding if any, but not margins

No

offsetLeft
Returns the horizontal offset position of the current element
relative to its offset container

Yes

offsetParent Returns the offset container of an element Yes

offsetTop
Returns the vertical offset position of the current element
relative to its offset container

Yes

offsetWidth
Returns the width of an element, including borders and pad-
ding if any, but not margins

No

ownerDocument Returns the root element (document object) for an element Yes
parentNode Returns the parent node of an element Yes
previousSibling Returns the element immediately before an element Yes

scrollHeight
Returns the entire height of an element (including areas hid-
den with scrollbars)

Yes

scrollLeft
Returns the distance between the actual left edge of an ele-
ment and its left edge currently in view

Yes

scrollTop
Returns the distance between the actual top edge of an ele-
ment and its top edge currently in view

Yes

scrollWidth
Returns the entire width of an element (including areas hid-
den with scrollbars)

Yes

style Sets or returns the style attribute of an element Yes
tabIndex Sets or returns the tab order of an element Yes
tagName Returns the tagname of an element as a string (in uppercase) Yes
title Sets or returns the title attribute of an element Yes
width Sets or returns the width attribute of an element Yes

Element Object Methods
Method Description W3C
appendChild() Adds a new child element to the end of the list of

children of the element
Yes

blur() Removes focus from an element Yes
click() Executes a click on an element Yes
cloneNode() Clones an element Yes
focus() Gives focus to an element Yes
getAttribute() Returns the value of an attribute Yes
getElementsByTagName() Accesses all elements with a specified tagname Yes

(continued)

Learn JavaScript and Ajax with w3schools

220

Method Description W3C
hasChildNodes() Returns whether an element has any child elements Yes
insertBefore() Inserts a new child element before an existing child

element
Yes

item() Returns an element based on its index within the
document tree

Yes

normalize() Puts all text nodes underneath this element (including
attributes) into a “normal” form where only structure
(for example, elements, comments, processing instruc-
tions, CDATA sections, and entity references) separates
Text nodes, that is, there are neither adjacent Text
nodes nor empty Text nodes

Yes

removeAttribute() Removes a specified attribute from an element Yes
removeChild() Removes a child element Yes
replaceChild() Replaces a child element Yes
setAttribute() Adds a new attribute to an element Yes
toString() Converts an element to a string Yes

Element Object Events
Event Description W3C
onblur When an element loses focus Yes
onclick When a mouse clicks on an element Yes
ondblclick When a mouse double-clicks on an element Yes
onfocus When an element gets focus Yes
onkeydown When a keyboard key is pressed Yes
onkeypress When a keyboard key is pressed or held down Yes
onkeyup When a keyboard key is released Yes
onmousedown When a mouse button is pressed Yes
onmousemove When the mouse is moved Yes
onmouseout When the mouse cursor leaves an element Yes
onmouseover When the mouse cursor enters an element Yes
onmouseup When a mouse button is released Yes
onresize When an element is resized Yes

Anchor Object
The Anchor object represents an HTML hyperlink.

For each <a> tag in an HTML document, an Anchor object is created.

An anchor allows you to create a link to another document (with the href attri-
bute) or to a different point in the same document (with the name attribute).

You can access an anchor by using getElementById() or by searching through
the anchors[] array of the Document object.

(continued)

Appendix B: HTML DOM Objects

221

Anchor Object Properties
W3C: W3C Standard.

Property Description W3C
charset Sets or returns the value of the charset attribute of a link Yes
href Sets or returns the value of the href attribute of a link Yes
hreflang Sets or returns the value of the hreflang attribute of a link Yes
name Sets or returns the value of the name attribute of a link Yes
rel Sets or returns the value of the rel attribute of a link Yes
rev Sets or returns the value of the rev attribute of a link Yes
target Sets or returns the value of the target attribute of a link Yes
type Sets or returns the value of the type attribute of a link Yes

Standard Properties, Methods, and Events
The Anchor object also supports the standard properties, methods, and events.

Area Object
The Area object represents an area inside an HTML image map (an image map is
an image with clickable areas).

For each <area> tag in an HTML document, an Area object is created.

Area Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns the value of the alt attribute of an area Yes
coords Sets or returns the value of the coords attribute of an area Yes
hash Sets or returns the anchor part of the href attribute value Yes
host Sets or returns the hostname:port part of the href attribute value Yes
hostname Sets or returns the hostname part of the href attribute value Yes
href Sets or returns the value of the href attribute of an area Yes
noHref Sets or returns the value of the nohref attribute of an area Yes
pathname Sets or returns the pathname part of the href attribute value Yes
port Sets or returns the port part of the href attribute value Yes
protocol Sets or returns the protocol part of the href attribute value Yes
search Sets or returns the querystring part of the href attribute value Yes
shape Sets or returns the value of the shape attribute of an area Yes
target Sets or returns the value of the target attribute of an area Yes

Learn JavaScript and Ajax with w3schools

222

Standard Properties, Methods, and Events
The Area object also supports the standard properties, methods, and events.

Base Object
The Base object represents an HTML base element.

The base element is used to specify a default address or a default target for all links
on a page.

For each <base> tag in an HTML document, a Base object is created.

Base Object Properties
W3C: W3C Standard.

Property Description W3C
href Sets or returns the value of the href attribute in a base element Yes
target Sets or returns the value of the target attribute in a base element Yes

Standard Properties, Methods, and Events
The Base object also supports the standard properties, methods, and events.

Body Object
The Body object represents the HTML body element.

The Body element defines a document’s body.

The Body element contains all the contents of an HTML document, such as text,
hyperlinks, images, tables, lists, and so on.

Body Object Properties
W3C: W3C Standard.

Property Description W3C
aLink Sets or returns the value of the alink attribute of the body element Yes

background
Sets or returns the value of the background attribute of the body
element

Yes

bgColor Sets or returns the value of the bgcolor attribute of the body element Yes
link Sets or returns the value of the link attribute of the body element Yes
text Sets or returns the value of the text attribute of the body element Yes
vLink Sets or returns the value of the vlink attribute of the body element Yes

Appendix B: HTML DOM Objects

223

Standard Properties, Methods, and Events
The Body object also supports the standard properties, methods, and events.

Button Object (Push Button)
The Button object represents a Button Object (Push Button).

For each <button> tag in an HTML document, a Button object is created.

Inside an HTML Button element you can put content like text or images. This is
the difference between this element and buttons created with the input element.

Button Object Properties
W3C: W3C Standard.

Property Description W3C
form Returns a reference to the form that contains a button Yes
name Sets or returns the value of the name attribute of a button Yes
type Sets or returns the type of a button Yes
value Sets or returns the value of the value attribute of a button Yes

Standard Properties, Methods, and Events
The Button object also supports the standard properties, methods, and events.

Form Object
The Form object represents an HTML form.

For each <form> tag in an HTML document, a Form object is created.

Forms are used to collect user input and contain input elements like text fields,
check boxes, radio buttons, Submit buttons, and more. A form also can contain
select menus and textarea, fieldset, legend, and label elements.

Forms are used to pass data to a server.

Form Object Collections
W3C: W3C Standard.

Collection Description W3C
elements[] Returns an array of all elements in a form Yes

Learn JavaScript and Ajax with w3schools

224

Form Object Properties
Property Description W3C
acceptCharset Sets or returns the value of the accept-charset attribute in a form Yes
action Sets or returns the value of the action attribute in a form Yes
enctype Sets or returns the value of the enctype attribute in a form Yes
length Returns the number of elements in a form Yes
method Sets or returns the value of the method attribute in a form Yes
name Sets or returns the value of the name attribute in a form Yes
target Sets or returns the value of the target attribute in a form Yes

Form Object Methods
Method Description W3C
reset() Resets a form Yes
submit() Submits a form Yes

Form Object Events
Event The event occurs when... W3C
onreset The Reset button is clicked Yes
onsubmit The Submit button is clicked Yes

Standard Properties, Methods, and Events
The Form object also supports the standard properties, methods, and events.

Frame/IFrame Object
The Frame object represents an HTML frame.

The <frame> tag defines one particular window (frame) within a frameset.

For each <frame> tag in an HTML document, a Frame object is created.

The IFrame object represents an HTML inline frame.

The <iframe> tag defines an inline frame that contains another document.

For each <iframe> tag in an HTML document, an IFrame object is created.

Appendix B: HTML DOM Objects

225

Frame/IFrame Object Properties
W3C: W3C Standard.

Property Description W3C
align Sets or returns the value of the align attribute in an iframe Yes
contentDocument Returns the document object generated by a frame/iframe Yes
contentWindow Returns the window object generated by a frame/iframe No

frameBorder
Sets or returns the value of the frameborder attribute in a
frame/iframe

Yes

height Sets or returns the value of the height attribute in an iframe Yes

longDesc
Sets or returns the value of the longdesc attribute in a frame/
iframe

Yes

marginHeight
Sets or returns the value of the marginheight attribute in a
frame/iframe

Yes

marginWidth
Sets or returns the value of the marginwidth attribute in a
frame/iframe

Yes

name
Sets or returns the value of the name attribute in a frame/
iframe

Yes

noResize Sets or returns the value of the noresize attribute in a frame Yes

scrolling
Sets or returns the value of the scrolling attribute in a frame/
iframe

Yes

src Sets or returns the value of the src attribute in a frame/iframe Yes
width Sets or returns the value of the width attribute in an iframe Yes

Standard Properties, Methods, and Events
The Frame and IFrame objects also support the standard properties, methods, and
events.

Frameset Object
The Frameset object represents an HTML frameset.

The HTML frameset element holds two or more frame elements. Each frame ele-
ment holds a separate document.

The HTML frameset element states only how many columns or rows there will be
in the frameset.

Frameset Object Properties
W3C: W3C Standard.

Property Description W3C
border Sets or returns the width of the border between frames Yes
cols Sets or returns the value of the cols attribute in a frameset Yes
rows Sets or returns the value of the rows attribute in a frameset Yes

Learn JavaScript and Ajax with w3schools

226

Frameset Object Events
Event Description W3C
onload Script to be run when a document loads Yes

Standard Properties, Methods, and Events
The Frameset object also supports the standard properties, methods, and events.

Image Object
The Image object represents an embedded image.

For each tag in an HTML document, an Image object is created.

Image Object Properties
W3C: W3C Standard.

Property Description W3C
align Sets or returns how to align an image according to the surrounding

text
Yes

alt Sets or returns an alternate text to be displayed if a browser cannot
show an image

Yes

border Sets or returns the border around an image Yes
complete Returns whether the browser has finished loading the image No
height Sets or returns the height of an image Yes
href
hspace Sets or returns the white space on the left and right side of the image Yes
isMap Returns whether an image is a server-side image map Yes
longDesc Sets or returns a URL to a document containing a description of the

image
Yes

lowsrc Sets or returns a URL to a low-resolution version of an image No
name Sets or returns the name of an image Yes
src Sets or returns the URL of an image Yes
useMap Sets or returns the value of the usemap attribute of a client-side im-

age map
Yes

vspace Sets or returns the white space on the top and bottom of the image Yes
width Sets or returns the width of an image Yes

Appendix B: HTML DOM Objects

227

Image Object Events
Event The event occurs when... W3C
onabort Loading of an image is interrupted Yes
onerror An error occurs when loading an image Yes
onload An image is finished loading Yes

Standard Properties, Methods, and Events
The Image object also supports the standard properties, methods, and events.

Button Object
The Button object represents a button in an HTML form.

For each instance of an <input type="button"> tag in an HTML form, a
Button object is created.

You can access a button by searching through the elements[] array of the form or
by using document.getElementById().

Button Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port buttons
Yes

disabled Sets or returns whether a button should be disabled Yes
form Returns a reference to the form that contains the button Yes
name Sets or returns the name of a button Yes
type Returns the type of form element a button is Yes
value Sets or returns the text that is displayed on the button Yes

Standard Properties, Methods, and Events
The Button object also supports the standard properties, methods, and events.

Checkbox Object
The Checkbox object represents a check box in an HTML form.

For each <input type="checkbox"> tag in an HTML form, a Checkbox object
is created.

You can access a check box by searching through the elements[] array of the
form, or by using document.getElementById().

Learn JavaScript and Ajax with w3schools

228

Checkbox Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not

support check boxes
Yes

checked Sets or returns whether a check box should be checked Yes
defaultChecked Returns the default value of the checked attribute Yes
disabled Sets or returns whether a check box should be disabled Yes
form Returns a reference to the form that contains the check box Yes
name Sets or returns the name of a check box Yes
type Returns the type of form element a check box is Yes
value Sets or returns the value of the value attribute of a check box Yes

Standard Properties, Methods, and Events
The Checkbox object also supports the standard properties, methods, and events.

FileUpload Object
For each <input type="file"> tag in an HTML form, a FileUpload object is
created.

You can access a FileUpload object by searching through the elements[] array of
the form or by using document.getElementById().

FileUpload Object Properties
W3C: W3C Standard.

Property Description W3C
accept Sets or returns a comma-separated list of MIME types that indicates

the MIME type of the file transfer
Yes

alt Sets or returns an alternate text to display if the browser does not
support <input type=”file”>

Yes

defaultValue Sets or returns the initial value of the FileUpload object Yes
disabled Sets or returns whether the FileUpload object should be disabled Yes
form Returns a reference to the form that contains the FileUpload object Yes
name Sets or returns the name of the FileUpload object Yes
type Returns the type of the form element. For a FileUpload object it will

be “file”
Yes

value Returns the filename of the FileUpload object after the text is set by
user input

Yes

Appendix B: HTML DOM Objects

229

FileUpload Object Methods
Method Description W3C
select() Selects the FileUpload object Yes

Standard Properties, Methods, and Events
The FileUpload object also supports the standard properties, methods, and events.

Hidden Object
The Hidden object represents a hidden input field in an HTML form.

For each <input type="hidden"> tag in an HTML form, a Hidden object is
created.

You can access a hidden input field by searching through the elements[] array of
the form, or by using document.getElementById().

Hidden Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port hidden fields
Yes

form Returns a reference to the form that contains the hidden field Yes
name Sets or returns the name of a hidden field Yes
type Returns the type of form element a hidden input field is Yes
value Sets or returns the value of the value attribute of the hidden field Yes

Standard Properties, Methods, and Events
The Hidden object also supports the standard properties, methods, and events.

Password Object
The Password object represents a password field in an HTML form.

For each <input type="password"> tag in an HTML form, a Password object
is created.

You can access a password field by searching through the elements[] array of the
form or by using document.getElementById().

Learn JavaScript and Ajax with w3schools

230

Password Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port password fields
Yes

defaultValue Sets or returns the default value of a password field Yes
disabled Sets or returns whether a password field should be disabled Yes
form Returns a reference to the form that contains the password field Yes
maxLength Sets or returns the maximum number of characters in a password

field
Yes

name Sets or returns the name of a password field Yes
readOnly Sets or returns whether a password field should be read-only Yes
size Sets or returns the size of a password field Yes
type Returns the type of form element a password field is Yes
value Sets or returns the value of the value attribute of the password field Yes

Password Object Methods
Method Description W3C
select() Selects the text in a password field Yes

Standard Properties, Methods, and Events
The Password object also supports the standard properties, methods, and events.

Radio Object
The Radio object represents a radio button in an HTML form.

For each <input type="radio"> tag in an HTML form, a Radio object is
created.

You can access a Radio object by searching through the elements[] array of the
form or by using document.getElementById().

Radio Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not

support radio buttons
Yes

checked Sets or returns the state of a radio button Yes
defaultChecked Returns the default state of a radio button Yes

Appendix B: HTML DOM Objects

231

Property Description W3C
disabled Sets or returns whether a radio button should be disabled Yes
form Returns a reference to the form that contains the radio button Yes
name Sets or returns the name of a radio button Yes
type Returns the type of form element a radio button is Yes
value Sets or returns the value of the value attribute of the radio button Yes

Standard Properties, Methods, and Events
The Radio object also supports the standard properties, methods, and events.

Reset Object
The Reset object represents a reset button in an HTML form.

For each <input type="reset"> tag in an HTML form, a Reset object is
created.

You can access a reset button by searching through the elements[] array of the
form or by using document.getElementById().

Reset Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port reset buttons
Yes

disabled Sets or returns whether a reset button should be disabled Yes
form Returns a reference to the form that contains the reset button Yes
name Sets or returns the name of a reset button Yes
type Returns the type of form element a reset button is Yes
value Sets or returns the text that is displayed on a reset button Yes

Standard Properties, Methods, and Events
The Reset object also supports the standard properties, methods, and events.

Submit Object
The Submit object represents a submit button in an HTML form.

For each <input type="submit"> tag in an HTML form, a Submit object is
created.

Example: Form validation

Learn JavaScript and Ajax with w3schools

232

You can access a submit button by searching through the elements[] array of the
form or by using document.getElementById().

Submit Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port submit buttons
Yes

disabled Sets or returns whether a submit button should be disabled Yes
form Returns a reference to the form that contains the submit button Yes
name Sets or returns the name of a submit button Yes
type Returns the type of form element a submit button is Yes
value Sets or returns the text that is displayed on a submit button Yes

Standard Properties, Methods, and Events
The Submit object also supports the standard properties, methods, and events.

Text Object
The Text object represents a text-input field in an HTML form.

For each <input type="text"> tag in an HTML form, a Text object is created.

You can access a text-input field by searching through the elements[] array of the
form, or by using document.getElementById().

Text Object Properties
W3C: W3C Standard.

Property Description W3C
alt Sets or returns an alternate text to display if a browser does not sup-

port text fields
Yes

defaultValue Sets or returns the default value of a text field Yes
disabled Sets or returns whether a text field should be disabled Yes
form Returns a reference to the form that contains the text field Yes
maxLength Sets or returns the maximum number of characters in a text field Yes
name Sets or returns the name of a text field Yes
readOnly Sets or returns whether a text field should be read-only Yes
size Sets or returns the size of a text field Yes
type Returns the type of form element a text field is Yes
value Sets or returns the value of the value attribute of a text field Yes

Appendix B: HTML DOM Objects

233

Text Object Methods
Method Description W3C
select() Selects the content of a text field Yes

Standard Properties, Methods, and Events
The Text object also supports the standard properties, methods, and events.

Link Object
The Link object represents an HTML link element.

A link element defines the relationship between two linked documents.

The link element is defined in the head section of an HTML document.

Link Object Properties
W3C: W3C Standard.

Property Description W3C
charset Sets or returns the character encoding of the target URL Yes
disabled Sets or returns whether the target URL should be disabled Yes
href Sets or returns the URL of a linked resource Yes
hreflang Sets or returns the base language of the target URL Yes
media Sets or returns on what device the document will be displayed Yes
name Sets or returns the name of a <link> element Yes
rel Sets or returns the relationship between the current document and

the target URL
Yes

rev Sets or returns the relationship between the target URL and the cur-
rent document

Yes

type Sets or returns the MIME type of the target URL Yes

Standard Properties, Methods, and Events
The Link object also supports the standard properties, methods, and events.

Meta Object
The Meta object represents an HTML meta element.

Metadata is information about data.

The <meta> tag provides metadata about the HTML document. Metadata will not
be displayed on the page, but will be machine parsable.

Learn JavaScript and Ajax with w3schools

234

Meta elements are typically used to specify page description, keywords, author of
the document, last modified, and other metadata.

The <meta> tag always goes inside the head element.

Meta Object Properties
W3C: W3C Standard.

Property Description W3C
content Sets or returns the value of the content attribute of a <meta>

element
Yes

httpEquiv Connects the content attribute to an HTTP header Yes
name Connects the content attribute to a name Yes
scheme Sets or returns the format to be used to interpret the value of the

content attribute
Yes

Standard Properties, Methods, and Events
The Meta object also supports the standard properties, methods, and events.

Object Object
The Object object represents an HTML object element.

The <object> tag is used to include objects such as images, audio, videos, Java
applets, ActiveX, PDF, and Flash into a Web page.

Object Object Properties
W3C: W3C Standard.

Property Description W3C
align Sets or returns the alignment of the object according to the sur-

rounding text
Yes

archive Sets or returns a string that can be used to implement your own
archive functionality for the object

Yes

border Sets or returns the border around the object Yes
code Sets or returns the URL of the file that contains the compiled Java

class
Yes

codeBase Sets or returns the URL of the component Yes
codeType Sets or retrieves the Internet media type for the code associated with

the object. Read only.
Yes

data A URL specifying the location of the object’s data Yes
declare Declare (for future reference), but do not instantiate, this object Yes
form Returns a reference to the object’s parent form Yes

Appendix B: HTML DOM Objects

235

Property Description W3C
height Sets or returns the height of the object Yes
hspace Sets or returns the horizontal margin of the object Yes
name Sets or returns the name of the object Yes
standby Sets or returns a message when loading the object Yes
type Sets or returns the content type for data downloaded via the data

attribute
Yes

useMap Use client-side image map Yes
vspace Sets or returns the vertical margin of the object Yes
width Sets or returns the width of the object Yes

Standard Properties, Methods, and Events
The Object object also supports the standard properties, methods, and events.

Option Object
The Option object represents an option in a drop-down list in an HTML form.

For each <option> tag in an HTML form, an Option object is created.

You can access an Option object by searching through the elements[] array of the
form, or by using document.getElementById().

Option Object Properties
W3C: W3C Standard.

Property Description W3C
defaultSelected Returns the default value of the selected attribute Yes
disabled Sets or returns whether an option should be disabled Yes
form Returns a reference to the form that contains an option Yes
index Returns the index position of an option in a drop-down list Yes
label Sets or returns a label for an option (only for option-groups) Yes
selected Sets or returns the value of the selected attribute Yes
text Sets or returns the text value of an option Yes
value Sets or returns the value to be sent to the server Yes

Standard Properties, Methods, and Events
The Option object also supports the standard properties, methods, and events.

Learn JavaScript and Ajax with w3schools

236

Select Object
The Select object represents a drop-down list in an HTML form.

For each <select> tag in an HTML form, a Select object is created.

You can access a Select object by searching through the elements[] array of the
form or by using document.getElementById().

Select Object Collections
W3C: W3C Standard.

Collection Description W3C
options[] Returns an array of all the options in a drop-down list Yes

Select Object Properties
Property Description W3C
disabled Sets or returns whether a drop-down list should be disabled Yes
form Returns a reference to the form that contains the drop-down list Yes
length Returns the number of options in a drop-down list Yes
multiple Sets or returns whether multiple items can be selected Yes
name Sets or returns the name of a drop-down list Yes
selectedIndex Sets or returns the index of the selected option in a drop-down

list
Yes

size Sets or returns the number of visible rows in a drop-down list Yes
type Returns the type of form element a drop-down list is Yes

Select Object Methods
Method Description W3C
add() Adds an option to a drop-down list Yes
remove() Removes an option from a drop-down list Yes

Standard Properties, Methods, and Events
The Select object also supports the standard properties, methods, and events.

Style Object
The Style object represents an individual style statement.

The Style object can be accessed from the document or from the elements to which
that style is applied.

Appendix B: HTML DOM Objects

237

Syntax for using the Style object properties:

document.getElementById("id").style.property="value"

The Style object property categories are as follows:

	8	 Background

	8	 Border and Margin

	8	 Layout

	8	 List

	8	 Misc

	8	 Positioning

	8	 Printing

	8	 Table

	8	 Text

Background Properties
W3C: W3C Standard.

Property Description W3C
background Sets all background properties Yes
backgroundAttachment Sets whether a background-image is fixed or scrolls

with the page
Yes

backgroundColor Sets the background-color of an element Yes
backgroundImage Sets the background-image of an element Yes
backgroundPosition Sets the starting position of a background-image Yes
backgroundPositionX Sets the x-coordinates of the backgroundPosition

property
No

backgroundPositionY Sets the y-coordinates of the backgroundPosition
property

No

backgroundRepeat Sets if/how a background-image will be repeated Yes

Border and Margin Properties
Property Description W3C
border Sets all properties for the four borders Yes
borderBottom Sets all properties for the bottom border Yes
borderBottomColor Sets the color of the bottom border Yes
borderBottomStyle Sets the style of the bottom border Yes
borderBottomWidth Sets the width of the bottom border Yes

(continued)

Learn JavaScript and Ajax with w3schools

238

Property Description W3C
borderColor Sets the color of all four borders (can have up to four colors) Yes
borderLeft Sets all properties for the left border Yes
borderLeftColor Sets the color of the left border Yes
borderLeftStyle Sets the style of the left border Yes
borderLeftWidth Sets the width of the left border Yes
borderRight Sets all properties for the right border Yes
borderRightColor Sets the color of the right border Yes
borderRightStyle Sets the style of the right border Yes
borderRightWidth Sets the width of the right border Yes
borderStyle Sets the style of all four borders (can have up to four styles) Yes
borderTop Sets all properties for the top border Yes
borderTopColor Sets the color of the top border Yes
borderTopStyle Sets the style of the top border Yes
borderTopWidth Sets the width of the top border Yes
borderWidth Sets the width of all four borders (can have up to four

widths)
Yes

margin Sets the margins of an element (can have up to four values) Yes
marginBottom Sets the bottom margin of an element Yes
marginLeft Sets the left margin of an element Yes
marginRight Sets the right margin of an element Yes
marginTop Sets the top margin of an element Yes
outline Sets all outline properties Yes
outlineColor Sets the color of the outline around a element Yes
outlineStyle Sets the style of the outline around an element Yes
outlineWidth Sets the width of the outline around an element Yes
padding Sets the padding of an element (can have up to four values) Yes
paddingBottom Sets the bottom padding of an element Yes
paddingLeft Sets the left padding of an element Yes
paddingRight Sets the right padding of an element Yes
paddingTop Sets the top padding of an element Yes

Layout Properties
Property Description W3C
clear Sets on which sides of an element other floating elements

are not allowed
Yes

clip Sets the shape of an element Yes
content Sets meta-information Yes
counterIncrement Sets a list of counter names, followed by an integer. The

integer indicates by how much the counter is incremented
for every occurrence of the element. The default is 1

Yes

counterReset Sets a list of counter names, followed by an integer. The
integer gives the value that the counter is set to on each
occurrence of the element. The default is 0

Yes

(continued)

Appendix B: HTML DOM Objects

239

Property Description W3C
cssFloat Sets where an image or a text will appear (float) in another

element
Yes

cursor Sets the type of cursor to be displayed Yes
direction Sets the text direction of an element Yes
display Sets how an element will be displayed Yes
height Sets the height of an element Yes
markerOffset Sets the distance between the nearest border edges of a

marker box and its principal box
Yes

marks Sets whether cross marks or crop marks should be rendered
just outside the page box edge

Yes

maxHeight Sets the maximum height of an element Yes
maxWidth Sets the maximum width of an element Yes
minHeight Sets the minimum height of an element Yes
minWidth Sets the minimum width of an element Yes
overflow Specifies what to do with content that does not fit in an

element box
Yes

verticalAlign Sets the vertical alignment of content in an element Yes
visibility Sets whether an element should be visible Yes
width Sets the width of an element Yes

List Properties
Property Description W3C
listStyle Sets all the properties for a list Yes
listStyleImage Sets an image as the list-item marker Yes
listStylePosition Positions the list-item marker Yes
listStyleType Sets the list-item marker type Yes

Misc Properties
Property Description W3C
cssText Contains the entire contents of the stylesheet. IE only

property

Positioning Properties
Property Description W3C
bottom Sets how far the bottom edge of an element is above/be-

low the bottom edge of the parent element
Yes

left Sets how far the left edge of an element is to the right/left
of the left edge of the parent element

Yes

position Places an element in a static, relative, absolute, or fixed posi-
tion

Yes

(continued)

Learn JavaScript and Ajax with w3schools

240

Property Description W3C
right Sets how far the right edge of an element is to the left/right

of the right edge of the parent element
Yes

top Sets how far the top edge of an element is above/below the
top edge of the parent element

Yes

zIndex Sets the stack order of an element Yes

Printing Properties
Property Description W3C
orphans Sets the minimum number of lines for a paragraph that

must be left at the bottom of a page
Yes

page Sets a page type to use when displaying an element Yes
pageBreakAfter Sets the page-breaking behavior after an element Yes
pageBreakBefore Sets the page-breaking behavior before an element Yes
pageBreakInside Sets the page-breaking behavior inside an element Yes
size Sets the orientation and size of a page Yes
widows Sets the minimum number of lines for a paragraph that

must be left at the top of a page
Yes

Table Properties
Property Description W3C
borderCollapse Sets whether the table borders are collapsed into a single

border or detached as in standard HTML
Yes

borderSpacing Sets the distance that separates cell borders Yes
captionSide Sets the position of the table caption Yes
emptyCells Sets whether to show empty cells in a table Yes
tableLayout Sets the algorithm used to display the table cells, rows, and

columns
Yes

Text Properties
Property Description W3C
color Sets the color of the text Yes
font Sets all font properties Yes
fontFamily Sets the font of an element Yes
fontSize Sets the font-size of an element Yes
fontSizeAdjust Sets/adjusts the size of text Yes
fontStretch Sets how to condense or stretch a font Yes
fontStyle Sets the font-style of an element Yes
fontVariant Displays text in a small-caps font Yes
fontWeight Sets the boldness of the font Yes
letterSpacing Sets the space between characters Yes
lineHeight Sets the distance between lines Yes

(continued)

Appendix B: HTML DOM Objects

241

Property Description W3C
quotes Sets which quotation marks to use in text Yes
textAlign Aligns the text Yes
textDecoration Sets the decoration of text Yes
textIndent Indents the first line of text Yes
textShadow Sets the shadow effect of text Yes
textTransform Sets capitalization effect on text Yes
unicodeBidi Sets the Unicode bidirectional property Yes
whiteSpace Sets how to handle line breaks and white space in text Yes
wordSpacing Sets the space between words in a text Yes

Table Object
The Table object represents an HTML table.

For each <table> tag in an HTML document, a Table object is created.

Table Object Collections
W3C: W3C Standard.

Collection Description W3C
cells[] Returns an array containing each cell in a table No
rows[] Returns an array containing each row in a table Yes
tBodies[] Returns an array containing each tbody in a table Yes

Table Object Properties
Property Description W3C
border Sets or returns the width of the table border Yes
caption Sets or returns the caption of a table Yes
cellPadding Sets or returns the amount of space between the cell border and cell

content
Yes

cellSpacing Sets or returns the amount of space between the cells in a table Yes
frame Sets or returns the outer borders of a table Yes
rules Sets or returns the inner borders of a table Yes
summary Sets or returns a description of a table Yes
tFoot Returns the tFoot object of a table Yes
tHead Returns the tHead object of a table Yes
width Sets or returns the width of a table Yes

Learn JavaScript and Ajax with w3schools

242

Table Object Methods
Method Description W3C
createCaption() Creates a caption element for a table Yes
createTFoot() Creates an empty tFoot element in a table Yes
createTHead() Creates an empty tHead element in a table Yes
deleteCaption() Deletes the caption element and its content from a table Yes
deleteRow() Deletes a row from a table Yes
deleteTFoot() Deletes the tFoot element and its content from a table Yes
deleteTHead() Deletes the tHead element and its content from a table Yes
insertRow() Inserts a new row in a table Yes

Standard Properties, Methods, and Events
The Table object also supports the standard properties, methods, and events.

TableCell Object
The TableCell object represents an HTML table cell.

For each <td> tag in an HTML document, a TableCell object is created.

TableCell Object Properties
W3C: W3C Standard.

Property Description W3C
abbr Sets or returns an abbreviated version of the content in a table cell Yes
align Sets or returns the horizontal alignment of data within a table cell Yes
axis Sets or returns a comma-delimited list of related table cells Yes
cellIndex Returns the position of a cell in the cells collection of a row Yes
ch Sets or returns the alignment character for a table cell Yes
chOff Sets or returns the offset of alignment character for a table cell Yes
colSpan Sets or returns the number of columns a table cell should span Yes
headers Sets or returns a list of space-separated header-cell ids Yes
rowSpan Sets or returns the number of rows a table cell should span Yes
scope Sets or returns if this cell provides header information Yes
vAlign Sets or returns the vertical alignment of data within a table cell Yes
width Sets or returns the width of a table cell Yes

Standard Properties, Methods, and Events
The TableCell object also supports the standard properties, methods, and events.

Appendix B: HTML DOM Objects

243

TableRow Object
The TableRow object represents an HTML table row.

For each <tr> tag in an HTML document, a TableRow object is created.

TableRow Object Collections
W3C: W3C Standard.

Collection Description W3C
cells[] Returns an array containing each cell in the table row Yes

TableRow Object Properties
Property Description W3C
align Sets or returns the horizontal alignment of data within a table

row
Yes

ch Sets or returns the alignment character for cells in a table row Yes
chOff Sets or returns the offset of alignment character for the cells in

a table row
Yes

rowIndex Returns the position of a row in the table’s rows collection Yes
sectionRowIndex Returns the position of a row in the tBody, tHead, or tFoot rows

collection
Yes

vAlign Sets or returns the vertical alignment of data within a table row Yes

TableRow Object Methods
Method Description W3C
deleteCell() Deletes a cell in a table row Yes
insertCell() Inserts a cell in a table row Yes

Standard Properties, Methods, and Events
The TableRow object also supports the standard properties, methods, and events.

Textarea Object
The Textarea object represents a text-area in an HTML form.

For each <textarea> tag in an HTML form, a Textarea object is created.

You can access a Textarea object by indexing the elements array (by number or
name) of the form or by using getElementById().

Learn JavaScript and Ajax with w3schools

244

Textarea Object Properties
W3C: W3C Standard.

Property Description W3C
cols Sets or returns the width of a textarea Yes
defaultValue Sets or returns the default text in a textarea Yes
disabled Sets or returns whether a textarea should be disabled Yes
form Returns a reference to the form that contains the textarea Yes
name Sets or returns the name of a textarea Yes
readOnly Sets or returns whether a textarea should be read-only Yes
rows Sets or returns the height of a textarea Yes
Property Description W3C
type Returns the type of the form element Yes
value Sets or returns the text in a textarea Yes

Textarea Object Methods
Method Description W3C
select() Selects the text in a textarea Yes

Standard Properties, Methods, and Events
The Textarea object also supports the standard properties, methods, and events.

245

Index

Symbols
\t, 74
;, 17
*/, 19
/*, 19
\&, 74
\\, 74
\', 74
\", 74
\b, 74
\f, 74
\n, 74
\r, 74
}, 17, 59
{, 17, 59
\ character, 73–75
(), functions, 59
- operator, 27
-- operator, 27
! operator, 31
!= operator, 30
% operator, 27
%= operator, 28
&& operator, 31
* operator, 27
*= operator, 28
/ operator, 27
/= operator, 28
|| operator, 31
+ operator, 27–28, 75
++ operator, 27
+= operator, 28
< operator, 30
<= operator, 30, 39, 42
= operator, 27–28
-= operator, 28
== operator, 30
=== operator, 30
> operator, 30
>= operator, 30
// symbol, 12, 18
<!-- tag, 12

A
ActiveXObject, 163–164
adding array elements, 100–101, 105–106
adding tags, 10–11
AJAX, 3–4

applications, creation, 160–162
applications, interactive, 175

browser support, 163–165
database example, 184–187
information requests, 163–164
requests, 167
responseXML example, 198–202
servers, 170
Suggest source code, 175–183

ASP server page, 180–182
HTML page, 178–179
PHP server page, 182–183

XML example, 188–197
XMLHttpRequest object, 3, 159–164

alert boxes, 53–55, 67–69, 125
algebraic variables, 23
ampersand character, 74
animation, 138–140

code example, 139
id, images, 138
image, changing, 139
mouseOut() function, 139
mouseOver() function, 139
onMouseOut event, 138
onMouseOver event, 138

applications, AJAX, 160–162
applications, interactive, 175
appName property, 124
appVersion property, 124
<area> tags, 142
arithmetic operations, 26–27
arrays, 49
array elements, 49
Array object, 95–106, 151, 203–204

accessing, 96
creation, 96–97
defined, 95
elements, adding, 100–101, 105–106
elements, joining, 99–100
elements, removing, 100–102
elements, reversing order, 101
for...in statement, 98
joining, 98–99
slice() method, 102
sort() method, 103–104
splice() method, 104–105
string, converting, 105
unshift() method, 106
values, assigning, 97
values, modifying, 96–97
values, writing, 97
variables, 95
variable types, 96

246

Index

ASP server page, AJAX, 180–182
assignment operators, 27–28
attributes, src, 15

B
backslash (\), 73–74
backspace character, 74–75
base-2 log of E constant, 110–111
base-10 log of E constant, 110–111
blocks, statements, 17–18, 21
<body> section

functions, 58
scripts, 13–14

Boolean object, 107–109, 204
creation, 107–108
false values, 107
no values, 107
null, 107
true values, 108

brackets, 210
break statements, 46–47, 50
breaks, code line, 74–75
browsers

detection, 2, 123–128
Navigator object, 123–128

appName property, 124
appVersion property, 124
parseFloat() function, 124
properties, 124
userAganet property, 124

support, 12, 163–165
built-in objects, 151–152
buttons, Rollover, 66

C
C, 2
C++, 2
capitalization, 74
carriage return character, 74
case-sensitive searches, 116–118
case sensitivity, 74
catch arguments, 71
catch blocks, 68
checkCookie() function, 131–133
checkEmail() function, 65
checkForm() function, 65
Chrome, 1, 160
clearTimeout() method, 144, 149–150
clocks, displaying, 93–94
code, statements, 17
code line breaks, 74–75
commands, see statements
comments, 18–22

end of lines, 22
execution, preventing, 20–21
multiline, 19–20

placement, 22
single-line, 18–20

comment symbol, 12
comment tags, 12
comparison, dates, 89–90
comparison operators, 30–31
concatenate operator, 75
conditional operators, 31
conditional statements, 31–38, 49

curly braces, 33
if statements, 32–34
if...else statements, 32, 34–36
if...else if...else statements, 32, 36–38
links, random, 36
random links, 36
switch statements, 32, 38

confirm boxes, 53, 55–56, 69–70
constants, Math object, 110–111
constructors, 154–155
continue statements, 46–48
cookies, 2, 65, 129–133

checkCookie() function, 131–133
creation, 130–133
date, 129
defined, 129
document.cookie object, 130–131
name, 129–130
password, 129
storage, 130–133

creation errors, Math object, 110
curly braces, 17, 33, 59

D
database example, AJAX, 184–187
data validation, 2, 134–137

e-mail validation, 136–137
required fields, 134–136

Date() constructor, 88
date cookie, 129
Date() method, 90
Date object, 88–94, 151, 204–206

clocks, displaying, 93–94
comparison, dates, 89–90
creation, 88–89
Date() constructor, 88
Date() method, 90
getDay() method, 92–93
getTime() method, 90–91
methods, 89
parameters, 88
setFullYear() method, 91
setting date, 89
time, 88
toUTCString() method, 91–92

dates, see Date object
declaring variables, 25

247

Index

direct instance, objects, 152–153
displaymessage() function, 59–60
document.cookie object, 130–131
document.write command, 2, 11–12
do...while loops, 43–45
dynamic text, 2

E
E constant, 110–111
ECMA International, 2–3
ECMAScript, 2–3
Eich, Brendan, 2
elements, arrays, 99–102, 105–106

adding, 100–101, 105–106
joining, 99–100
removing, 100–102
reversing order, 101

e-mail validation, 136–137
error conditions, functions, 62
errors, 67–72
events, 60, 64–66

adding, 142–143
form fields validation, 65
functions, 60, 64
onBlur, 65, 142
onChange, 65
onClick, 64, 66, 142
onDblClick, 142
onFocus, 65, 142
onKeyDown, 142
onKeyPress, 142
onKeyUp, 142
onLoad, 64–65
onMouseDown, 142
onMouseMove, 142
onMouseOut, 66, 138, 142
onMouseOver, 66, 138, 142
onSubmit, 65
onUnload, 64–65
timing, 144–150

clearTimeout() method, 144, 149–150
setTimeout() method, 144–149

validation, form fields, 65
exceptions, throw statements, 71
exec() method, 119–120
execution, preventing, 20–21
external scripts, 15

F
false parameter, XMLHttpRequest, 167–168
fields, required, 134–136
files, requesting, 170
Firefox, 1, 160
floor() method, 111

flow control statements, 46–52
break, 46–47, 50
conditional, 49
continue, 46–48
for...in, 48–49
switch, 50–52

for...in statements, 48–49, 98
for loops, 39–42
form feed character, 74
form fields validation, 65
form validation, 134–137

e-mail validation, 136–137
required fields, 134–136

forms, submitting, 171
functions, 58–63, 212–213

<body> section, 58
capitalization, 59
checkCookie(), 131–133
checkEmail(), 65
checkForm(), 65
curly braces, 59
defining, 58–59
displaymessage(), 59–60
error conditions, 62
events, 60, 64
examples, 59–62
GetXmlHttpObject(), 177, 201
global variables, 63
<head> section, 58
local variables, 63
message(), 68
mouseOut(), 139
mouseOver(), 139
parameters, 59–60
parentheses, 59
parseFloat(), 124
pattern-matching, 115–116
return statement, 62–63
search-and-replace, 115–116
showCD, 189
showCustomer(), 185, 199, 201
showHint(), 176–177
stateChanged(), 177–178
values, returning, 61–63
variables, 59–60, 63

G
g modifier, 116–117
getDay() method, 92–93
getTime() method, 90–91
GetXmlHttpObject() function, 177, 201
global functions, 212–213
global properties, 212
global searches, 117–118
global variables, 63
Google Suggest, 160

248

Index

H
<head> section, 13–14

functions, 58
HTML, 1, 3
HTML DOM objects, 214–244

Anchor object, 220–221
Area object, 221–222
Base object, 222
Body object, 222–223
Button object (push button), 223
Button object, 227
Checkbox object, 227–228
Document object, 215–216
Element object, 218–220
Event object, 216–218
FileUpload object, 228–229
Form object, 223–224
Frame/IFrame object, 224–225
Frameset object, 225–226
Hidden object, 229
Image object, 226–227
Link object, 233
Meta object, 233–234
Object object, 234–235
Option object, 235
Password object, 229–230
Radio object, 230–231
Reset object, 231
Select object, 236
Style object, 236–240
Submit object, 231–232
Table object, 241–242
TableCell object, 242
TableRow object, 242–243
Text object, 232–233
Textarea object, 243–244

HTML elements, 2
HTML forms, 175–176
HTML page, AJAX, 178–179

I
i modifier, 116
id, images, 138
if statements, 32–34
if...else statements, 32, 34–36
if...else if...else statements, 32, 36–38
images, changing, 139
image maps, 141–143

<area> tags, 142
defined, 141
events, adding, 142–143

increment parameters, 39
information requests, AJAX, 163–164
interactivity, 1
Internet Explorer, 1, 106, 124, 160
Internet Information Server (IIS), 186, 190, 201

J–K
Java, 2
joining arrays, 98–100
js file extension, 15

L
length property, 79–80

String object, 81–82
lines, comments, 22
links, random, 36
local variables, 63
logical operators, 31
logical statements, 30
loops, 39–45

do...while, 43–45
for, 39–42
increment parameters, 39
while, 39, 41–43

M
Math object, 110–114, 206–207

constants, 110–111
creation errors, 110
floor() method, 111
max() method, 113
methods, 111
min() method, 114
random() method, 111–113
round() method, 111–112

max() method, 113
message() function, 68
metacharacters, 211
methods, 79–80, 151–152, 155

clearTimeout(), 144, 149–150
Date object, 89
Date(), 90
exec(), 119–120
floor(), 111
getDay(), 92–93
getTime(), 90–91
Math object, 111
max(), 113
min(), 114
open(), 166–167
parameters, 152
random(), 111–113
round(), 111–112
send(), 166–167
setFullYear(), 91
setTimeout(), 144–149
slice(), 102
sort(), 103–104
splice(), 104–105
String object, 82–84
test(), 118–119
toLowerCase(), 84–85

249

Index

toUpperCase(), 80–81, 84–85
toUTCString(), 91–92
unshift(), 106
XMLHttpRequest, 166–167

Microsoft browsers, 2
min() method, 114
modifiers, RegExp object, 116–118, 210
mouseOut() function, 139
mouseOver() function, 139
multiline comments, 19–20

N
name cookie, 129–130
names, variables, 23–24
natural log of 2 constant, 110–111
natural log of 10 constant, 110–111
Navigator 2.0, 2
Navigator object, 123–128

appName property, 124
appVersion property, 124
parseFloat() function, 124
properties, 124
userAganet property, 124

Netscape, 2
new line character, 74
numbers, adding, 28–29
Number object, 207–208

O
objects, 79, 203–213

ActiveXObject, 163
Array object, 95–106, 151, 203–204

accessing, 96
creation, 96–97
defined, 95
elements, adding, 100–101, 105–106
elements, joining, 99–100
elements, removing, 100–102
elements, reversing order, 101
for...in statement, 98
joining, 98–99
slice() method, 102
sort() method, 103–104
splice() method, 104–105
string, converting, 105
unshift() method, 106
values, assigning, 97
values, modifying, 96–97
values, writing, 97
variables, 95
variable types, 96

Boolean object, 107–109, 204
creation, 107–108
false values, 107
no values, 107

null, 107
true values, 108

built-in, 151–152
creation, 152–155

constructors, 154–155
direct instance, 152–153
templates, 154–155

Date object, 88–94, 151, 204–206
clocks, displaying, 93–94
comparison, dates, 89–90
creation, 88–89
Date() constructor, 88
Date() method, 90
getDay() method, 92–93
getTime() method, 90–91
methods, 89
parameters, 88
setFullYear() method, 91
setting date, 89
time, 88
toUTCString() method, 91–92

document.cookie, 130–131
HTML DOM, 214–244

Anchor object, 220–221
Area object, 221–222
Base object, 222
Body object, 222–223
Button object (push button), 223
Button object, 227
Checkbox object, 227–228
Document object, 215–216
Element object, 218–220
Event object, 216–218
FileUpload object, 228–229
Form object, 223–224
Frame/IFrame object, 224–225
Frameset object, 225–226
Hidden object, 229
Image object, 226–227
Link object, 233
Meta object, 233–234
Object object, 234–235
Option object, 235
Password object, 229–230
Radio object, 230–231
Reset object, 231
Select object, 236
Style object, 236–240
Submit object, 231–232
Table object, 241–242
TableCell object, 242
TableRow object, 242–243
Text object, 232–233
Textarea object, 243–244

250

Index

Math object, 110–114, 206–207
constants, 110–111
creation errors, 110
floor() method, 111
max() method, 113
methods, 111
min() method, 114
random() method, 111–113
round() method, 111–112

methods, 151
Navigator object, 123–128

appName property, 124
appVersion property, 124
parseFloat() function, 124
properties, 124
userAganet property, 124

Number object, 207–208
properties, 151
RegExp object, 115–120, 210

case-sensitive searches, 116–118
defined, 115–116
exec() method, 119–120
g modifier, 116–117
i modifier, 116
global searches, 117–118
modifiers, 116–118
pattern-matching functions, 115–116
patterns, 115–116
search-and-replace functions, 115–116
test() method, 118–119

String object, 81–87, 151, 208–209
length property, 81–82
methods, 82–84
toLowerCase() method, 84–85
toUpperCase() method, 81, 84–85
values, first occurrence, 86–87
values, replacing, 85–86
values, searching, 85

String HTML wrapper methods, 209
XMLHttpRequest object, 3, 159–164

AJAX requests, 167
false parameter, 167–168
methods, 166–167
properties, 167–169
true parameter, 168

object-oriented language, 79
object-oriented programming, 79
onBlur event, 65, 142
onChange event, 65
onClick event, 64, 66, 142
onDblClick event, 142
onFocus event, 65, 142
onKeyDown event, 142
onKeyPress event, 142
onKeyUp event, 142
onLoad event, 64–65

onMouseDown event, 142
onMouseMove event, 142
onMouseOut event, 66, 138, 142
onMouseOver event, 66, 138, 142
onMouseUp event, 142
onSubmit event, 65
onUnload event, 64–65
OOL, see object-oriented language
Opera, 1, 160
operators, 27–29

+, 27–28, 75
arithmetic, 27
assignment, 27–28
comparison, 30–31
concatenate operator, 75
conditional, 31–38
logical, 31
numbers, adding, 28–29
space, adding, 28
strings, adding, 28–29
text values, concatenating, 28
variables, concatenating, 28

P
parameters

Date object, 88
functions, 59–60

parentheses, functions, 59
parseFloat() function, 124
password cookie, 129
pattern-matching functions, 115–116
patterns, 115–116
PHP server page, AJAX, 182–183
PI constant, 110–111
placement, scripts, 12–14
popup boxes, 53–57, 65

alert boxes, 53–55
confirm boxes, 53, 55–56
prompt boxes, 53, 56–57

programming tool, 2
prompt boxes, 53, 56–57
properties, 79–80, 151–152, 212

appName, 124
appVersion, 124
length, 79
Navigator object, 124
onreadystatechange, 169
readyState, 168–169
responseText, 167
responseXML, 198–202
userAganet, 124
XMLHttpRequest, 167–169

Q
quantifiers, 211
quote marks, 25, 73–74

251

Index

R
random links, 36
random() method, 111–113
redeclaring variables, 26
RegExp object, 115–120, 210–212

case-sensitive searches, 116–118
defined, 115–116
exec() method, 119–120
g modifier, 116–117
i modifier, 116
global searches, 117–118
modifiers, 116–118
pattern-matching functions, 115–116
patterns, 115–116
search-and-replace functions, 115–116
test() method, 118–119

regular expressions, see RegExp object
removing array elements, 100–102
requesting files, 170
required fields, 134–136
responseXML example, AJAX, 198–202
return statement, 62–63
reversing order, array elements, 101
rollover buttons, 66
round() method, 111–112

S
Safari, 1, 160
<script> tag, 11–13, 15
</script> tag, 11–12
scripting languages, 1
scripts, see also text, 12–15

<body> section, 13–14
external, 15
<head> section, 13–14
js file extension, 15
placement, 12–14
src attribute, 15

search-and-replace functions, 115–116
semicolons, 16–17
setFullYear() method, 91
setTimeout() method, 144–149
setting date, 89
showCD function, 189
showCustomer() function, 185, 199, 201
showHint() function, 176–177
single-line comments, 18–20
slice() method, 102
sort() method, 103–104
space, adding, 28
 elements, 198
special characters, 73–74
splice() method, 104–105
square root of 1/2 constant, 110–111

square root of 2 constant, 110–111
src attribute, 15
stateChanged() function, 177–178
statements, 16–18

blocks, 17–18
break, 46–47, 50
code, 17
conditional, 31, 49
continue, 46–48
curly brackets, 17
flow control statements, 46–52
for...in, 48–49, 98
if, 32–34
if...else, 32, 34–36
if...else if...else, 32, 36–38
logical, 30
return, 62–63
semicolons, 16–17
switch, 32, 38, 50–52
throw, 70–72
try...catch, 67–70

storage, cookies, 130–133
string, converting, 105
string literals, 74–75
String object, 81–87, 151, 208–209

length property, 81–82
methods, 82–84
toLowerCase() method, 84–85
toUpperCase() method, 81, 84–85
values, first occurrence, 86–87
values, replacing, 85–86
values, searching, 85

String HTML wrapper methods, 209
strings, adding, 28–29
submitting forms, 171
Suggest source code, AJAX, 175–183

ASP server page, 180–182
HTML page, 178–179
PHP server page, 182–183

Sun Microsystems, 2
switch statements, 32, 38, 50–52

T
tab character, 74
tags,

<!--, 12
adding, 10–11
<area>, 142
comment, 12
<script>, 11–13, 15
</script>, 11–12
text, 10–11

templates, objects, 154–155
test() method, 118–119
text values, concatenating, 28

252

Index

text, writing to Web pages, see also scripts, 9–12
browsers, 12
comment symbol, 12
comment tag, 12
document.write command, 11–12
<script> tag, 11–13, 15
</script> tag, 11–12
tags, 10–11

throw statement, 70–72
catch argument, 71
exceptions, 71
try...catch combination, 70

time, 88
timing events, 144–150

clearTimeout() method, 144, 149–150
setTimeout() method, 144–149

toLowerCase() method, 84–85
toUpperCase() method, 80–81, 84–85
toUTCString() method, 91–92
true parameter, XMLHttpRequest, 168
try...catch statement, 67–70

capitalization, 68
catch blocks, 68
message() function, 68

U
undeclared variables, 25–26
unshift() method, 106
userAganet property, 124
universal time, 88-89, 91-92
UTC (universal) time, 88–89, 91–92

V
validation, form fields, 65
values

arrays, 96–97
first occurrence, 86–87
replacing, 85–86
returning, 61–63
searching, 85
String object, 85–87
variables, 24–25

var statement, 25

variables, 23–26
algebraic, 23
arguments, 49
arithmetic operations, 26
arrays, 95
concatenating, 28
declaring, 25
functions, 59–60, 63
global, 63
lifetime, 63
local, 63
names, 23–24, 49
quotes, 25
redeclaring, 26
types, 96
undeclared, 25–26
values, 24–25
var statement, 25

VBScript, 186, 190, 201

W
w3schools.com, 1
while loops, 39, 41–43
white space, 74

X–Z
XML example, AJAX, 188–197
XMLHttpRequest object, 3, 159–164

AJAX requests, 167
false parameter, 167–168
methods, 166–167

open(), 166–167
send(), 166–167

properties, 167–169
onreadystatechange, 169
readyState, 168–169
responseText, 167

requesting files, 170
submitting forms, 171
true parameter, 168

There’s no faster, easier way
to learn JavaScript and Ajax
If you want to start building interactive Web pages right away, you

should begin by learning how to use JavaScript and Ajax. w3schools

has perfected a straightforward tutorial approach that gives you

what you need to know in manageable lessons, liberally supported

with examples. You’ll fi nd that tried-and-true format in this book, along with

a detailed reference section that you will use again and again.

You will learn:

• What JavaScript is and isn’t

• How to put JavaScript into an HTML page

• JavaScript special characters and guidelines

• How to use JavaScript operators

• If…else statements and do…while loops

• All about JavaScript objects

• How to use Ajax properties

• What the Ajax XMLHttpRequest Object does

w3schools is a leading Web destination for learning key Web
technologies online. Founded in 1999, it receives more than
10 million unique visitors each month. w3schools tutorials are
required reading in more than 100 high schools and universities.

$29.99 US/$35.99 CAN

Programming Languages/
JavaScript

	Learn JavaScript and Ajax with w3schools
	Table of Contents
	Introduction
	JavaScript
	AJAX
	How To Use This Book

	Section I JavaScript Basic
	Chapter 1: JavaScript How To and Where To
	In This Chapter
	How To Put a JavaScript into an HTML Page
	How to Handle Simple Browsers
	Where to Put the JavaScript
	Using an External JavaScript

	Chapter 2: JavaScript Statements and Comments
	In This Chapter
	JavaScript Statements
	JavaScript Comments

	Chapter 3: JavaScript Variables
	In This Chapter
	Do You Remember Algebra from School?
	JavaScript Variables
	Declaring (Creating) JavaScript Variables
	Assigning Values to Undeclared JavaScript Variables
	Redeclaring JavaScript Variables
	JavaScript Arithmetic

	Chapter 4: JavaScript Operators
	In This Chapter
	JavaScript Arithmetic Operators
	JavaScript Assignment Operators
	The + Operator Used on Strings
	Adding Strings and Numbers

	Chapter 5: JavaScript Comparisons
	In This Chapter
	Comparison Operators
	How to Use Comparisons
	Logical Operators
	Conditional Operator

	Chapter 6: JavaScript If... Else Statements
	In This Chapter
	Conditional Statements
	if Statement
	if... else Statement
	if... else if... else Statement

	Chapter 7: JavaScript Loops
	In This Chapter
	The for Loop
	The while Loop
	The do... while Loop

	Chapter 8: Additional JavaScript Flow Control Statements
	In This Chapter
	The break Statement
	The continue Statement
	JavaScript for... in Statement
	JavaScript switch Statement

	Chapter 9: JavaScript Popup Boxes
	In This Chapter
	Popup Boxes

	Chapter 10: JavaScript Functions
	In This Chapter
	How to Define a Function
	JavaScript Function Examples
	The return Statement
	The Lifetime of JavaScript Variables

	Chapter 11: JavaScript Events
	In This Chapter
	onLoad and onUnload
	onFocus, onBlur, and onChange
	onSubmit
	onMouseOver and onMouseOut
	onClick

	Chapter 12: Javascript try… Catch and Throw Statements
	In This Chapter
	JavaScript—Catching Errors
	The try... catch Statement
	The throw Statement

	Chapter 13: JavaScript Special Characters and Guidelines
	In This Chapter
	Insert Special Characters
	JavaScript Is Case Sensitive
	White Space
	Break up a Code Line

	Section II JavaScript Objects
	Chapter 14: JavaScript Objects Intro
	In This Chapter
	Object-Oriented Programming
	Properties
	Methods

	Chapter 15: JavaScript String Object
	In This Chapter
	String Object
	Examples

	Chapter 16: JavaScript Date Object
	In This Chapter
	Create a Date Object
	Set Dates
	Compare Two Dates
	Examples

	Chapter 17: JavaScript Array Object
	In This Chapter
	What Is an Array?
	Create an Array
	Access an Array
	Modify Values in an Array
	Examples

	Chapter 18: JavaScript Boolean Object
	In This Chapter
	Create a Boolean Object
	Examples

	Chapter 19: JavaScript Math Object
	In This Chapter
	Math Object
	Mathematical Constants
	Mathematical Methods
	Examples

	Chapter 20: JavaScript RegExp Object
	In This Chapter
	What Is RegExp?
	RegExp Modifiers
	test()
	exec()

	Section III JavaScript Advanced
	Chapter 21: JavaScript Browser Detection
	In This Chapter
	Browser Detection
	The Navigator Object

	Chapter 22: JavaScript Cookies
	In This Chapter
	What Is a Cookie?
	Create and Store a Cookie

	Chapter 23: JavaScript Form Validation
	In This Chapter
	Required Fields
	E-mail Validation

	Chapter 24: JavaScript Animation
	In This Chapter
	The HTML Code
	The JavaScript Code
	The Entire Code

	Chapter 25: JavaScript Image Maps
	In This Chapter
	HTML Image Maps
	Adding Some JavaScript

	Chapter 26: JavaScript Timing Events
	In This Chapter
	The setTimeout() Method
	The clearTimeout() Method

	Chapter 27: Create your own objects with JavaScript
	In This Chapter
	JavaScript Objects
	Creating Your Own Objects

	Section IV AJAX Basic
	Chapter 28: AJAX XMLHTTPRequest
	In This Chapter
	AJAX Uses the XMLHttpRequest Object
	The XMLHttpRequest Object
	Your First AJAX Application

	Chapter 29: AJAX Browser Support
	In This Chapter
	The XMLHttpRequest
	All Together Now

	Chapter 30: AJAX— The XMLHttpRequest Object’s Methods and Properties
	In This Chapter
	Important Methods
	Sending an AJAX Request to a Server
	Important Properties
	The responseText Property
	XMLHttpRequest Open—Using False
	XMLHttpRequest Open—Using True
	The readyState Property
	The onreadystatechange Property

	Chapter 31: AJAX Server
	In This Chapter
	XMLHttpRequest Object Can Request Any Data
	Requesting Files
	Submitting Forms

	Section V: AJAX Advanced
	Chapter 32: AJAX Suggest
	In This Chapter
	The HTML Form
	The showHint() Function
	The GetXmlHttpObject() Function
	The stateChanged() Function
	AJAX Suggest Source Code

	Chapter 33: AJAX Database Example
	In This Chapter
	The AJAX JavaScript
	The AJAX Server Page

	Chapter 34: AJAX XML Example
	In This Chapter
	The AJAX JavaScript
	The AJAX Server Page
	The XML File

	Chapter 35: AJAX ResponseXML Example
	In This Chapter
	The AJAX JavaScript
	The AJAX Server Page

	Appendix A: JavaScript Objects
	In This Appendix
	Array Object
	Boolean Object
	Date Object
	Math Object
	Number Object
	String Object
	RegExp Object
	JavaScript Global Properties and Functions

	Appendix B: HTML DOM Objects
	In This Appendix
	Document Object
	Event Object
	Element Object
	Anchor Object
	Area Object
	Base Object
	Body Object
	Button Object (Push Button)
	Form Object
	Frame/IFrame Object
	Frameset Object
	Image Object
	Button Object
	Checkbox Object
	FileUpload Object
	Hidden Object
	Password Object
	Radio Object
	Reset Object
	Submit Object
	Text Object
	Link Object
	Meta Object
	Object Object
	Option Object
	Select Object
	Style Object
	Table Object
	TableCell Object
	TableRow Object
	Textarea Object

	Index

