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Preface 

Dios te libre, lector, de pr6logos largos 
Francisco de Quevedo Villegas, El mundo por de dentro. 

There are, so it is alleged, many ways to skin a cat. There are also many ways 
to teach coding theory. My feeling is that, contrary to other disciplines, coding 
theory was never a fully unified theory. To describe it, one can paraphrase what 
has been written about the Enlightenment: "It was less a determined swift river 
than a lacework of deltaic streams working their way along twisted channels" (E. 
0. Wilson, Consilience, 1999). 

The seed of this book was sown in 2000, when I was invited to teach a course 
on coded modulation at Princeton University. A substantial portion of students 
enrolled in the course had little or no background in algebraic coding theory, nor 
did the time available for the course allow me to cover the basics of the discipline. 
My choice was to start directly with coding in the signal space, with only a marginal 
treatment of the indispensable aspects of "classical" algebraic coding theory. The 
selection of topics covered in this book, intended to serve as a textbook for a first- 
level graduate course, reflects that original choice. Subsequently, I had the occasion 
to refine the material now collected in this book while teaching Master courses at 
Politecnico di Torino and at the Institute for Communications Engineering of the 
Technical University of Munich. 

While describing what can be found in this book, let me explain what can- 
not be found. I wanted to avoid generating an omnium-gatherum, and to keep 
the book length at a reasonable size, resisting encyclopedic temptations (piycr 
/3~/3Xiov p i y a  ~ c r ~ b v ) .  The leitmotiv here is soft-decodable codes described 
through graphical structures (trellises and factor graphs). I focus on the basic prin- 
ciples underlying code design, rather than providing a handbook of code design. 
While an earlier exposure to coding principles would be useful, the material here 
only assumes that the reader has a firm grasp of the concepts usually presented 
in senior-lever courses on digital communications, on information theory, and on 
random processes. 



Each chapter contains a topic that can be expatiated upon at book length. To in- 
clude all facts deserving attention in this tumultuous discipline, and then to clarify 
their finer aspects, would require a full-dress textbook. Thus, many parts should 
be viewed akin to movie trailers, which show the most immediate and memorable 
scenes as a stimulus to see the whole movie. 

As the mathematician Mark Kac puts it, a proof is that which convinces a rea- 
sonable reader; a rigorous proof is that which convinces an unreasonable reader. I 
assume here that my readers are reasonable, and hence try to avoid excessive rigor 
at the price of looking sketchy at times, with many treatments that should be taken 
modulo mathematical refinements. 

The reader will observe the relatively large number of epexegetic figures, justi- 
fied by the fact that engineers are visual animals. In addition, the curious reader 
may want to know the origin of the short sentences appearing at the beginning of 
each chapter. These come from one of the few literary works that was cited by C. E. 
Shannon in his technical writings. With subtle irony, in his citation he misspelled 
the work's title, thus proving the power of redundancy in error correction. 

Some sections are marked Sr. This means that the section's contents are crucial 
to the developments of this book, and the reader is urged to become comfortable 
with them before continuing. 

Some of the material of this book, including a few proofs and occasional ex- 
amples, reflects previous treatments of the subject I especially like: for these I am 
particularly indebted to sets of lecture notes developed by David Forney and by 
Robert Calderbank. 

I hope that the readers of this book will appreciate its organization and contents; 
nonetheless, I am confident that Pliny the Elder is right when he claims that "there 
is no book so bad that it is not profitable in some part." 

Many thanks are due to colleagues and students who read parts of this book 
and let me have their comments and corrections. Among them, a special debt of 
gratitude goes to the anonymous reviewers. I am also grateful to my colleagues 
Joseph Boutros, Marc Fossorier, Umberto Mengali, Alessandro Nordio, and Gior- 
gio Taricco, and to my students Daniel de Medeiros and Van Thanh Vu. Needless 
to say, whatever is flawed is nobody's responsibility but mine. Thus, I would ap- 
preciate it if the readers who spot any mistake or inaccuracy would write to me at 
e . biglieri@ieee . org. An errata file will be sent to anyone interested. 

Qu'on ne dise pas que je n'ai rien dit de nouveau: 
la disposition des mati2res est nouvelle. 

Blaise Pascal, PensCes, 65. 
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Tour d'horizon 

In this chapter we introduce the basic concepts that will be dealt with in the 
balance o f  the book and provide a short summary o f  major results. We first 
present coding in the signal space, and the techniques used for decoding. 
Next, we highlight the basic differences between the additive white Gaussian 
noise channel and different models o f  fading channels. The performance 
bounds following Shannon's rcsults are described, along with the historical 
development o f  coding theory. 
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1.1 Introduction and motivations 

This book deals with coding in the signal space and with "soft" decoding. Consider 
a finite set S = {x) of information-carrying vectors (or signals) in the Euclidean 
N-dimensional space IRN, to be used for transmission over a noisy channel. The 
output of the channel, denoted y, is observed, and used to decode, i.e., to generate 
an estimate 2 of the transmitted signal. Knowledge of the channel is reflected by 
the knowledge of the conditional probability distribution p(y I x) of the observable 
y, given that x was transmitted. In general, as in the case of fading channels 
(Chapters 4, lo), p(y I x) depends on some random parameters whose values may 
or may not be available at the transmitter and the receiver. 

The decoder chooses 2 by optimizing a predetermined cost function, usually 
related to the error probability P(e), i.e., the probability that 2 # x when x is 
transmitted. A popular choice consists of using the maximum-likelihood (ML) 
rule, which consists of maximizing, over x E S, the function p(y I x). This rule 
minimizes the word error probability under the assumption that all code words are 
equally likely. If the latter assumption is removed, word error probability is min- 
imized if we use the maximum a posteriori (MAP) rule, which consists of maxi- 
mizing the function 

(here and in the following, the notation cx indicates proportionality, with a propor- 
tionality factor irrelevant to the decision procedure). To prove the above statements, 
denote by X(x) the decision region associated with the transmitted signal x (that 
is, the receiver chooses x if and only if y E X(x)). Then 

P(e) is minimized by independently maximizing each term in the sum, which is 
obtained by choosing X(x) as the region where p(x I y) is a maximum over x: 
thus, the MAP rule yields the minimum P(e). If p(x) does not depend on x, i.e., 
p(x) is the same for all x E S, then the x that maximizes p(x I y) also maximizes 
p(y I x), and the MAP and ML rules are equivalent. 
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Selection of S consists of finding practical ways of communicating discrete mes- 
sages reliably 0n.a real-world channel: this may involve satellite communications, 
data transmission over twisted-pair telephone wires or shielded cable-TV wires, 
data storage, digital audiolvideo transmission, mobile communication, terrestrial 
radio, deep-space radio, indoor radio, or file transfer. The channel may involve 
several sources of degradation, such as attenuation, thermal noise, intersymbol in- 
terference, multiple-access interference, multipath propagation, and power limita- 
tions. 

The most general statement about the selection of S is that it should make 
the best possible use of the resources available for transmission, viz., bandwidth. 
power, and complexity, in order to achieve the quality of service (QoS) required. 
In summary, the selection should be based on four factors: error probability, band- 
width efficiency, the signal-to-noise ratio necessary to achieve the required QoS, 
and the complexity of the transmitkceive scheme. The first factor tells us how 
reliable the transmission is, the second measures the efficiency in bandwidth ex- 
penditure, the third measures how efficiently the transmission scheme makes use 
of the available power, and the fourth measures the cost of the equipment. 

Here we are confronted with a crossroads. As discussed in Chapter 3, we should 
decide whether the main limit imposed on transmission is the bandwidth- or the 
power-limitation of the channel. 

To clarify this point, let us define two basic parameters. The first one is the 
spectral (or bandwidth) efficiency Rb/W, which tells us how many bits per sec- 
ond (Rb) can be transmitted in a given bandwidth (W). The second parameter is 
the asymptotic power eficiency y of a signal set. This parameter is defined as fol- 
lows. Over the additive white Gaussian noise channel with a high signal-to-noise 
ratio (SNR), the error probability can be closely approximated by a complemen- 
tary error function, whose argument is proportional to the ratio between the energy 
per transmitted information bit E b  and twice the noise power spectral density of 
the noise No. The proportionality factor y expresses how efficiently a modulation 
scheme makes use of the available signal energy to generate a given error probabil- 
ity. Thus, we may say that, at least for high SNR, a signal set is better than another 
if its asymptotic power efficiency is greater (at low SNR the situation is much more 
complicated, but the asymptotic power efficiency still plays some role). Some pairs 
of values of Rb/W and y that can be achieved by simple choices of S (called ele- 
mentary constellations) are summarized in Table 1.1. 

The fundamental trade-off is that, for a given QoS requirement, increased spec- 
tral efficiency can he reliably achieved only with a corresponding increase in the 
minimum required SNR. Conversely, the minimum required SNR can be reduced 
only by decreasing the spectral efficiency of the system. Roughly, we may say 
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3 log2 M 
PAM 2l0g2 M 

M 2 - 1  
2 PSK log2 M sin - - log2 M 

M 
3 loga M 

QAM logz M -- 
2 M - 1  

log2 M FSK 2- 
1 

M 
- log2 M 
2 

Table 1.1 : Maximum bandwidth- and power-efficiency of some M -ary modulation 
schemes: PAM, PSK, QAM, and orthogonal FSK. 

that we work in a bandwidth-limited regime if the channel constraints force us to 
work with a ratio Rb/W much higher than 2, and in a power-limited regime if the 
opposite occurs. These regimes will be discussed in Chapter 3. 

1.2 Coding and decoding 

In general, the optimal decision on the transmitted code word may involve a large 
receiver complexity, especially if the dimensionality of S is large. For easier deci- 
sions it is useful to introduce some structure in S. This process consists of choosing 
a set X of elementary signals, typically one- or two-dimensional, and generating 
the elements of S as vectors whose components are chosen from X: thus, the ele- 
ments of S have the form x = (xl, x2, . . . , x,) with xi E X. The collection of 
such x will be referred to as a code in the signal space, and x as a code word. In 
some cases it is also convenient to endow S with an algebraic structure: we do this 
by defining a set e where operations are defined (for example, (2 = {0,1) with 
mod-2 addition and multiplication), and a one-to-one correspondence between el- 
ements of S and e (in the example above, we may choose S = {+&, -&), 
where 1 is the average energy of S, and the correspondence e --t S obtained by 
setting 0 -t +&, 1 -, -G). 

The structure in S may be described algebraically (we shall deal briefly with 
this choice in Chapter 3) or by a graphical structure on which the decoding process 
may be performed in a simple way. The graphical structures we describe in this 
book are trellises (Chapters 5, 6, and 7) and factor graphs (Chapters 8 and 9). 
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Figure 1.1 : Observing a channel output when x is transmitted. 

We shall examine, in particular, how a given code can be described by a graphical 
structure and how a code can be directly designed, once its graphical structure has 
been chosen. Trellises used for convolutional codes (Chapter 6) are still the most 
popular graphical models: the celebrated Viterbi decoding algorithm can be viewed 
as a way to find the shortest path through one such trellis. Factor graphs (Chapter 
8) were introduced more recently. When a code can be represented by a cycle-free 
factor graph, then the structure of the factor graph of a code lends itself naturally to 
the specification of a finite algorithm (the sum-product, or the max-sum algorithm) 
for optimum decoding. If cycles are present, then the decoder proceeds iteratively 
(Chapter 9), in agreement with a recent trend in decoding, and in general in signal 
processing, that favors iterative (also known as turbo) algorithms. 

1.2.1 Algebraic vs. soft decoding 

Consider transmission of the n-tuple x = (xl, . . . , xn) of symbols chosen from 2. 
At the output of the transmission channel, the vector y = (yl, . . . , y,) is observed 
(Figure 1.1). 

In algebraic decoding, a time-honored yet suboptimal decoding method, "hard" 
decisions are separately made on each component of the received signal y, and then 
the vector Z A (el, . . . , en) is formed. This procedure is called demodulation of 
the elementary constellation. If Z is an element of S, then the decoder selects 2 = 
Z. Otherwise, it claims that Z "contains errors," and the structure of S (usually an 
algebraic one, hence the name of this decoding technique) is exploited to "correct" 
them, i.e., to change some components of Z so as to make 2 an element of S. 
The channel is blamed for making these errors, which are in reality made by the 
demodulator. 

A substantial improvement in decoding practice occurs by substituting algebraic 
decoders with soft decoders. In the first version that we shall consider (soft block 
decoding), an ML or a MAP decision is made on the entire code word, rather than 
symbol by symbol, by maximizing, over x E S, the function p(y I x) or p(x I y), 
respectively. Notice the difference: in soft decoding, the demodulator does not 
make mistakes that the decoder is expected to correct. Demodulator and decoder 
are not separate entities of the receiver, but rather a single block: this makes it 
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Figure 1.2: Illustrating error-correction coding theory. 
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Figure 1.3 : Illustrating error-con trol coding theory. 

more appropriate to talk about error-control rather than error-correcting codes. 
The situation is schematized in Figures 1.2 and 1.3. Soft decoding can be viewed 
as an application of the general principle [I .  111 

Never discard information prematurely that may be useful in making a 
decision until after all decisions related to that information have been 
completed, 

and often provides a considerable improvement in performance. An often-quoted 
ballpark figure for the SNR advantage of soft decoders versus algebraic is 2 dB. 

Example 1.1 

Consider transmission of binary information over the additive white Gaussian chan- 
nel using the following signal set (a repetition code). When the source emits a 0, 
then three equal signals with positive polarity and unit energy are transmitted; when 
the source emits a 1, then three equal signals with negative polarity are transmitted. 
Algebraic decoding consists of individually demodulating the three signals received 
at the channel output, then choosing a 0 if the majority of demodulated signals ex- 
hibits a positive polarity, and choosing a 1 otherwise. The second strategy (soft 
decoding) consists of demodulating the entire block of three signals, by choosing, 
between + + + and - - -, the one with the smaller Euclidean distance from the 
received signal. 

Assume for example that the signal transmitted is x = (+I, +1, +I),  and that 
the signal received is y = (0.8, -0.1, -0.2). Individual demodulation of these 
signals yields a majority of negative polarities, and hence the (wrong) decision that 
a 1 was transmitted. On the other hand, the squared Euclidean distances between 
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the received and transmitted signals are 

and 

which leads to the (correct) decision that a 0 was transmitted. We observe that in 
this example the hard decoder fails because it decides without taking into account 
the fact that demodulation of the second and third received samples is unreliable, as 
they are relatively close to the zero value. The soft decoder combines this reliability 
information in the single parameter of Euclidean distance. 

The probability of error obtained by using both decoding methods can be eas- 
ily evaluated. Algebraic decoding fails when there are two or three demodulation 
errors. Denoting by p the probability of one demodulation error, we have for hard 
decoding the error probability 

where p = ~ ( m ) ,  No/2 the power spectral density of the Gaussian noise, 
and Q( . ) the Gaussian tail function. For small-enough error probabilities, we have 
p % exp(-l/No), and hence 

PA (e) x 3p2 = 3 exp(-2lNo) 

For soft decoding, P(e) is the same as for transmission of binary antipodal signals 
with energy 3 [1.1]: 

This result shows that soft decoding of this code can achieve (even disregarding the 
factor of 3)  the same error performance of algebraic decoding with a signal-to-noise 
ratio smaller by a factor of 312, corresponding to 1.76 dB. 0 

In Chapters 5 ,6 ,  and 7, we shall see how trellis structures and the Viterbi algo- 
rithm can be used for soft block decoding. 

Symbol-by-symbol decoding 

Symbol-by-symbol soft decoders may also be defined. They minimize symbol er- 
ror probabilities, rather than word error probabilities, and work, in contrast to 
algebraic decoding, by supplying, rather than "hard" tentative decisions for the 
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Figure 1.4: MAP decoding: soft and hard decoder. 

various symbols, the so-called soft decisions. A soft decision for xi is the a poste- 
riori probability distribution of xi given y, denoted p(xily). A hard decision for 
xi is a probability distribution such that p(xily) is equal either to 0 or to 1. The 
combination of a soft decoder and a hard decoder (the task of the former usually be- 
ing much harder that the latter's) yields symbol-by-symbol maximum a posteriori 
(MAP) decoding (Figure 1.4). We can observe that the task of the hard decoder, 
which maximizes a function of a discrete variable (usually taking a small number 
of values) is far simpler than that of the soft decoder, which must marginalize a 
function of several variables. Chapter 8 will discuss how this marginalization can 
be done, once the code is given a suitable graphical description. 

1.3 The Shannon challenge 

In 1948, Claude E. Shannon demonstrated that, for any transmission rate less than 
or equal to a parameter called channel capacity, there exists a coding scheme that 
achieves an arbitrarily small probability of error, and hence can make transmission 
over the channel perfectly reliable. Shannon's proof of his capacity theorem was 
nonconstructive, and hence gave no guidance as to how to find an actual coding 
scheme achieving the ultimate performance with limited complexity. The corner- 
stone of the proof was the fact that if we pick a long code at random, then its av- 
erage probability of error will be satisfactorily low; moreover, there exists at least 
one code whose performance is at least as good as the average. Direct implemen- 
tation of random coding, however, leads to a decoding complexity that prevents its 
actual use, as there is no practical encoding or decoding algorithm. The general 
decoding problem (find the maximum-likelihood vector x E S upon observation of 
y = x + z) is NP-complete [1.2]. 

Figure 1.5 summarizes some of Shannon's finding on the limits of transmis- 
sion at a given rate p (in bits per dimension) allowed on the additive white Gaus- 
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Figure 1.5: Admissible region for the pair BER, Eb/No. For a given code rate p, 
only the region above the curve labeled p is admissible. The BER curve corre- 
sponding to uncoded binary antipodal modulation is also shown for comparison. 

sian noise channel with a given bit-error rate (BER). This figure shows that the 
ratio Eb/No, where Eb is the energy spent for transmitting one bit of informa- 
tion at a given BER over an additive white Gaussian noise channel and No/2 is 
the power spectral density of the channel noise, must exceed a certain quantity. 
In addition, a code exists whose performance approaches that shown in the Fig- 
ure. For example, for small-BER transmission at rate p = 112, Shannon's lim- 
its dictate Eb/NO > 0 dB, while for a vanishingly small rate one must guarantee 
Eb/NO > -1.6 dB. Performance limits of coded systems when the channel input is 
restricted to a certain elementary constellation could also be derived. For example, 
for p = 112, if we restrict the input to be binary we must have Eb/No > 0.187 dB. 

Since 1948, communication engineers have been trying hard to develop practi- 
cally implementable coding schemes in an attempt to approach ideal performance, 
and hence channel capacity. In spite of some pessimism (for a long while the 
motto of coding theorists was bbgood codes are messy") the problem was eventu- 



10 Chapter 1. Tour d'horizon 

ally solved in the early 1990s, at least for an important special case, the additive 
white Gaussian channel. Among the most important steps towards this solution, 
we may recall Gallager's low-density parity-check (LDPC) codes with iterative 
decoding (discovered in 1962 [1.9] and rediscovered much later: see Chapter 9); 
binary convolutional codes, which in the 1960s were considered a practical solu- 
tion for operating about 3 dB away from Shannon's limit; and Forney's concate- 
nated codes (a convolutional code concatenated with a ReedSolomon code can 
approach Shannon's limit by 2.3 dB at a BER of In 1993, a new class of 
codes called turbo codes was disclosed, which could approach Shannon's bound 
by 0.5 dB. Turbo codes are still among the very best codes known: they combine 
a random-like behavior (which is attractive in the light of Shannon's coding theo- 
rem) with a relatively simple structure, obtained by concatenating low-complexity 
compound codes. They can be decoded by separately soft-decoding their compo- 
nent codes in an iterative process that uses partial information available from all 
others. This discovery kindled a considerable amount of new research, which in 
turn led to the rediscovery, 40 years later, of the power and efficiency of LDPC 
codes as capacity-approaching codes. Further research has led to the recognition 
of the turbo principle as a key to decoding capacity-approaching codes, and to 
the belief that almost any simple code interconnected by a large pseudorandom 
interleaver and iteratively decoded will yield near-Shannon performance [1.7]. In 
recent years, code designs have been exhibited which progressively chip away at 
the small gap separating their performance from Shannon's limit. In 2001, Chung, 
Forney, Richardson, and Urbanke [1.5] showed that a certain class of LDPC codes 
with iterative decoding could approach that limit within 0.0045 dB. 

1.3.1 Bandwidth- and power-limited regime 

Binary error-control codes can be used in the power-limited (i.e., wide-bandwidth, 
low-SNR) regime to increase the power efficiency by adding redundant symbols to 
the transmitted symbol sequence. This solution requires the modulator to operate at 
a higher data rate and, hence, requires a larger bandwidth. In a bandwidth-limited 
environment, increased efficiency in power utilization can be obtained by choosing 
solutions whereby higher-order elementary constellations (e.g., &PSK instead of 
2-PSK) are combined with high-rate coding schemes. An early solution consisted 
of employing uncoded multilevel modulation; in the mid-1970s the invention of 
trellis-coded modulation (TCM) showed a different way [I. 101. The TCM solution 
(described in Chapter 7) combines the choice of a modulation scheme with that 
of a convolutional code, while the receiver does soft decoding. The redundancy 
necessary to power savings is obtained by a factor-of-2 expansion of the size of the 
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elementary-signal constellation X. Table 1.2 summarizes some of the energy sav- 
ings ("coding gains") in dB that can be obtained by doubling the constellation size 
and using TCM. These refer to coded 8-PSK (relative to uncoded 4-PSK) and to 
coded 16-QAM (relative to uncoded &PSK). These gains can actually be achieved 
only for high SNRs, and they decrease as the latter decrease. The complexity of 
the resulting decoder is proportional to the number of states of the trellis describing 
the TCM scheme. 

Number coding coding 
of gain gain 

states (8-PSK) (16-QAM) 

Table 1.2: Asymptotic coding gains of TCM (in dB). 

1.4 The wireless channel 

Coding choices are strongly affected by the channel model. We examine first the 
Gaussian channel, because it has shaped the coding discipline. Among the many 
other important channel models, some arise in digital wireless transmission. The 
consideration of wireless channels, where nonlinearities, Doppler shifts, fading, 
shadowing, and interference from other users make the simple AWGN channel 
model far from realistic, forces one to revisit the Gaussian-channel paradigms de- 
scribed in Chapter 3. Over wireless channels, due to fading and interference the 
signal-to-disturbance ratio becomes a random variable, which brings into play a 
number of new issues, among them optimum power allocation. This consists of 
choosing, based on channel measurements, the minimum transmit power that can 
compensate for the channel effects and hence guarantee a given QoS. 

Among the most common wireless channel models (Chapters 2,4), we recall the 
flat independent fading channel (where the signal attenuation is constant over one 
symbol interval, and changes independently from symbol to symbol), the block- 
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fading channel (where the signal attenuation is constant over an N-symbol block, 
and changes independently from block to block), and a channel operating in an 
interference-limited mode. This last model takes into consideration the fact that in 
a multiuser environment a central concern is overcoming interference, which may 
limit the transmission reliability more than noise. 

1.4.1 The flat fading channel 

This simplest fading channel model assumes that the duration of a signal is much 
greater than the delay spread caused by multipath propagation. If this is true, then 
all frequency components in the transmitted signal are affected by the same random 
attenuation and phase shift, and the channel is frequency-flat. If in addition the 
channel varies very slowly with respect to the elementary-signal duration, then the 
fading level remains approximately constant during the transmission of one signal 
(if this does not occur, the fading process is called fast.) 

The assumption of a frequency-flat fading allows it to be modeled as a process 
affecting the transmitted signal in a multiplicative form. The additional assumption 
of slow fading reduces this process to a sequence of random variables, each model- 
ing an attenuation that remains constant during each elementary-signal interval. In 
conclusion, if x  denotes the transmitted elementary signal, then the signal received 
at the output of a channel affected by slow, flat fading, and additive white Gaussian 
noise, and demodulated coherently, can be expressed in the form 

where z  is a complex Gaussian noise and R is a Gaussian random variable, having 
a Rice or Rayleigh pdf. 

It should be immediately apparent that, with this simple model of fading chan- 
nel, the only difference with respect to an AWGN channel, described by the input- 
output relationship 

y = x + z  (1.3) 

resides in the fact that R, instead of being a constant attenuation, is now a random 
variable whose value affects the amplitude, and hence the power, of the received 
signal. A key role here is played by the channel state information (CSI), i.e., the 
fade level, which may be known at the transmitter, at the receiver, or both. Knowl- 
edge of CSI allows the transmitter to use power control, i.e., to adapt to the fade 
level the energy associated with x, and the receiver to adapt its detection strategy. 

Figure 4.2 compares the error probability over the Gaussian channel with that 
over the Rayleigh fading channel without power control (a binary, equal-energy 
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uncoded modulation scheme is assumed, which makes CSI at the receiver irrele- 
vant). This simple example shows how considerable the loss in energy efficiency 
is. Moreover, in the power-limited environment typical of wireless channels, the 
simple device of increasing the transmitted energy to compensate for the effect of 
fading is not directly applicable. A solution is consequently the use of coding, 
which can compensate for a substantial portion of this loss. 

Coding for the slow, flat Rayleigh fading channel 

Analysis of coding for the slow, flat Rayleigh fading channel proves that Ham- 
ming distance (also called code diversity in this context) plays the central role 
here. Assume transmission of a coded sequence x = (xl, x2, . . . , x,), where the 
components of x are signals selected from an elementary constellation. We do 
not distinguish here among block or convolutional codes (with soft decoding), or 
block- or trellis-coded modulation. We also assume that, thanks to perfect (i.e., 
infinite-depth) interleaving, the fading random variables affecting the various sig- 
nals xk are independent. Finally, it is assumed that the detection is coherent, i.e., 
that the phase shift due to fading can be estimated and hence removed. 

We can calculate the probability that the receiver prefers the candidate code 
word 2 to the transmitted code word x (this is called the painvise error probability 
and is the basic building block of any error probability evaluation). This probability 
is approximately inversely proportional to the product of the squared Euclidean 
distances between the components of x,  2 that differ, and, to a more relevant extent, 
to a power of the signal-to-noise ratio whose exponent is the Hamming distance 
between x and 2, called the code diversity. This result holds under the assumption 
that perfect CSI is available at the receiver. 

Robustness 

From the previous discussion, it is accepted that coding schemes optimum for this 
channel should maximize the Hamming distance between code words. Now, if the 
channel model is uncertain or is not stationary enough to design a coding scheme 
closely matched to it, then the best proposition may be that of a "robust" solution, 
that is, a solution that provides suboptimum (but close to optimum) performance on 
a wide variety of channel models. The use of antenna diversity with maximal-ratio 
combining (Section 4.4.1) provides good performance on a wide variety of fading 
environments. The simplest approach to understanding receive-antenna diversity 
is based on the fact that, since antennas generate multiple transmission channels, 
the probability that the signal will be simultaneously faded on all channels can be 
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made small, and hence the detector performance improves. Another perspective is 
based upon the observation that, under fairly general conditions, a channel affected 
by fading can be turned into an additive white Gaussian noise (AWGN) channel 
by increasing the number of antenna-diversity branches and using maximum-ratio 
combining (which requires knowledge of CSI at the receiver). Consequently, it can 
be expected (and verified by analyses and simulations) that a coded modulation 
scheme designed to be optimal for the AWGN channel will perform asymptotically 
well also on a fading channel with diversity, at the cost only of an increased receiver 
complexity. 

We may also think of space or time or frequency diversity as a special case of 
coding. In fact, the various diversity schemes may be seen as implementations of 
the simple repetition code, whose Hamming distance turns out to be equal to the 
number of diversity branches. Another robust solution is offered by bit-interleaved 
coded modulation, which consists of separating encoder and modulator with a bit 
interleaver, as described in Section 7.9. 

1.5 Using multiple antennas 

Multiple receive antennas can be used as an alternative to coding, or in conjunction 
with it, to provide rate and diversity gain. Assume that t transmit and r receive 
antennas are used. Then, a multiplicity of transmit antennas creates a set of parallel 
channels that can be used to potentially increase the data rate up to a factor of 
min{t, r )  (with respect to single-antenna transmission) and hence generate a rate 
gain. The other gain is due to the number of independent paths traversed by each 
signal, which has a maximum value rt. There is a fundamental trade-off between 
these two gains: for example, maximum rate gain, obtained by simultaneously 
sending independent signals, entails no diversity gain, while maximum diversity 
gain, obtained by sending the same signal from all antennas, generates no rate 
gain. This point is addressed in Section 10.14. 

Recent work has explored the ultimate performance limits in a fading environ- 
ment of systems in which multiple antennas are used at both transmitter and re- 
ceiver side. It has been shown that, in a system with t transmit and r receive 
antennas and a slow fading channel modeled by an t x r matrix with random i.i.d. 
complex Gaussian entries (the independent Rayleigh fading assumption), the aver- 
age channel capacity with perfect CSI at the receiver is about m & min{t, r )  times 
larger than that of a single-antenna system for the same transmitted power and 
bandwidth. The capacity increases by about m bit/s/Hz for every 3-dB increase in 
signal-to-noise ratio (SNR). A further performance improvement can be achieved 
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under the assumption that CSI is available at the transmitter as well. Obtaining 
transmitter CSI from multiple transmitting antennas is particularly challenging be- 
cause the transmitter should achieve instantaneous information about the fading 
channel. On the other hand, if transmit CSI is missing, the transmission scheme 
employed should guarantee good performance with the majority of possible chan- 
nel realizations. Codes specifically designed for a multiple-antenna system use 
degrees of freedom in both space and time and are called space-time codes. 

1.6 , Some issues not covered in this book 

1.6.1 Adaptive coding and modulation techniques 

Since wireless channels exhibit a time-varying response, adaptive transmission 
strategies look attractive to prevent insufficient utilization of the channel capacity. 
The basic idea behind adaptive transmission consists of allocating power and rate 
to take advantage of favorable channel conditions by transmitting at high speeds, 
while at the same time counteracting bad conditions by reducing the throughput. 
For an assigned QoS, the goal is to increase the average spectral efficiency by 
taking advantage of the transmitter having knowledge of the CSI. The amount of 
performance improvement provided by such knowledge can be evaluated in prin- 
ciple by computing the Shannon capacity of a given channel with and without it. 
However, it should be kept in mind that capacity results refer to a situation in which 
complexity and delay are not constrained. Thus, for example, for a Rayleigh fading 
channel with independently faded elementary signals, the capacity with channel 
state information (CSI) at the transmitter and the receiver is only marginally larger 
than for a situation in which only the receiver has CSI. This result implies that if 
very powerful and complex codes are used, then CSI at the transmitter can buy lit- 
tle. However, in a delay- and complexity-constrained environment, a considerable 
gain can be achieved. Adaptive techniques are based on two steps: (a) measure- 
ment of the parameters of the transmission channel and (b) selection of one or more 
transmission parameters based on the optimization of a preassigned cost function. 
A basic assumption here is that the channel does not vary too rapidly; otherwise, 
the parameters selected might be badly matched to the channel. Thus, adaptive 
techniques can only be beneficial in a situation where the Doppler spread is not 
too wide. This conclusion makes adaptive techniques especially attractive in an 
indoors environment, where propagation delays are small and the relative speed 
between transmitter and receiver is typically low. In these conditions, adaptive 
techniques can work on a frame-by-frame basis. 
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1.6.2 Unequal error protection 

In some analog source coding applications, like speech or video compression, the 
sensitivity of the source decoder to errors in the coded symbols is typically not 
uniform: the quality of the reconstructed analog signal is rather insensitive to er- 
rors affecting certain classes of bits, while it degrades sharply when errors affect 
other classes. This happens, for example, when analog source coding is based on 
some form of hierarchical coding, where a relatively small number of bits carry the 
"fundamental information" and a larger number of bits carries the b'details," like in 
the case of MPEG standards. 

If we assume that the source encoder produces frames of binary coded symbols, 
each frame can be partitioned into classes of symbols of different "importance" 
(i.e., of different sensitivity). Then, it is apparent that the best coding strategy aims 
at achieving lower BER levels for the important classes while admitting higher 
BER levels for the unimportant ones. This feature is referred to as unequal error 
protection. 

A conceptually similar solution to the problem of avoiding degradations of the 
channel having a catastrophic effect on the transmission quality is multiresolution 
modulation. This process generates a hierarchical protection scheme by using a 
signal constellation consisting of clusters of points spaced at different distances. 
The minimum distance between two clusters is higher than the minimum distance 
within a cluster. The most significant bits are assigned to clusters, and the least 
significant bits to signals in a cluster. 

1.7 Bibliographical notes 

Comprehensive reviews of coding-theory development and applications can be 
found in [I .4,1.6,1.8]. Ref. [I .3] gives an overview of the most relevant information- 
theoretic aspects of fading channels. 
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2.1 Time- and frequency-selectivity 

We work with baseband-equivalent channel models, both continuous time and dis- 
crete time. In this Chapter we use the following notations: in continuous time, 
s ( t ) ,  y( t ) ,  and w( t )  denote the transmitted signal, the received signal, and the ad- 
ditive noise, respectively. In discrete time we use the notations s (n) ,  y (n) ,  and 
w(n) ,  with n the discrete time. We consider only linear channels here. The most 
general model is 

where h( t ;  T )  is the channel response at time t to a unit impulse S( - ) transmitted 
at time t - r. Similarly, h(n;  k )  is the channel impulse response at time n to 
a unit impulse 6(n )  transmitted at time n - k. This channel is said to be time 
selective and frequency selective, where time selectivity refers to the presence 
of a time-invariant impulse response and frequency selectivity to an input-output 
relationship described by a convolution between input and impulse response. By 
assuming that the sum in (2.1) includes L + 1 terms, we can represent the discrete 
channel by using the convenient block diagram of Figure 2.1, where 2-l denotes 
unit delay. 

Figure 2.1 : Block diagram of a discrete time-selective, fi-equency-selective chan- 
nel. 

If the channel is time invariant, then h( t ;  7 )  is a constant function oft .  We write 
h ( r )  A h(0; r )  for the (time-invariant) response of the channel to a unit impulse 
transmitted at time 0, and we have the following model of a non-time-selective, 
frequency-selective channel: 

y( t )  = ] h( r ) s ( t  - r )  dr  + w ( t )  y  (n)  = h(k ) s (n  - k )  + w ( n )  (2.2) 
k 
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The block diagram of Figure 2.1 is still valid for this channel, provided that we 
write h(k) in lieu of h(n; k). 

The model of a time-selective, non-frequency-selective channel is obtained by 
assuming that h(t; 7 )  = h ( t ) b ( ~ )  (or, for discrete channels, h(n; k) = h(n)b(lc)). 

and 

We observe that in (2.3) and (2.4) the channel impulse response affects the trans- 
mitted signal multiplicatively, rather than through a convolution. 

Finally, a non-time-selective, non-frequency-selective channel model is obtained 
by assuming that, in (2.3), h(t; 7 )  does not depend on t; if it has the form h(t; 7 )  = 
hS(r) (or, for discrete channels, h(n; k) = hS(n)), we obtain 

The simplest situation here occurs when h is a deterministic constant (later on we 
shall examine the case of h being a random variable). If in addition w(t) is white 
Gaussian noise, the resulting channel model is called an additive white Gaussian 
noise (AWGN) channel. Typically, it is assumed that h = 1 so that the only pa- 
rameter needed to characterize this channel is the power spectral density of w(t). 

2.2 Multipath propagation and Doppler effect 

The received power in a radio channel is affected by attenuations that are conve- 
niently characterized as a combination of three effects, as follows: 

(a) The path loss is the signal attenuation due to the fact that the power received 
by an antenna at distance D from the transmitter decreases as D increases. 
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Empirically, the power attenuation is proportional to Da, with a an exponent 
whose typical values range from 2 to 4. In a mobile environment, D varies 
with time, and consequently so does the path loss. This variation is the 
slowest among the three attenuation effects we are examining here. 

(b) The shadowing loss is due to the absorption of the radiated signal by scatter- 
ing structures. It is typically modeled by a random variable with log-normal 
distribution. 

(c) The fading loss occurs as a combination of two phenomena, whose combina- 
tion generates random fluctuations of the received power. These phenomena 
are rnultipath propagation and Doppler frequency shift. In the following 
we shall focus our attention on these two phenomena, and on mathematical 
models of the fading they generate. 

Multipath propagation occurs when the electromagnetic field carrying the infor- 
mation signal propagates along more than one "path" connecting the transmitter 
to the receiver. This simple picture of assuming that the propagation medium in- 
cludes several paths along which the electromagnetic energy propagates, although 
not very accurate from a theoretical point of view, is nonetheless useful to un- 
derstand and to analyze propagation situations that include reflection, refraction, 
and scattering of radio waves. Such situations occur, for example, in indoor prop- 
agation, where the electromagnetic waves are perturbed by structures inside the 
building, and in terrestrial mobile radio, where multipath is caused by large fixed 
or moving objects (buildings, hills, cars, etc.). 

Example 2.1 (Two-path propagation) 

Assume that the transmitter and the receiver are fixed and that two propagation paths 
exist. This is a useful model for the propagation in terrestrial microwave radio links. 
The received signal can be written in the form 

where b and T denote the relative amplitude and the differential delay of the reflected 
signal, respectively (in other words, it is assumed that the direct path has attenuation 
1 and delay 0). Equation (2.6) models a static multipath situation in which the prop- 
agation paths remain fixed in their characteristics and can be identified individually. 
The channel is linear and time invariant. Its transfer function 



2.2. Multipath propagation and Doppler effect 23 

Incoming 

Figure 2.2: Effect of movement: Doppler effect. 

in which the term b exp(- j2n f T )  describes the multipath component, has magni- 
tude 

/ H ( ~ ) I  = J(1+ b cos~rr f r )2  + b2sin2 2 n f i  

= J1+b2+2bcos2nfr  

For certain delays and frequencies, the two paths are essentially in phase alignment, 
so cos 2n f T x 1, which produces a large value of I H (  f ) 1. For some other values, 
the paths nearly cancel each other, so cos 2n f T x -1, which produces a minimum 
of I H(  f )  1 usually referred to as a notch. 0 

When the receiver and the transmitter are in relative motion with constant radial 
speed, the received signal is subject to a constant frequency shift (the Doppler 
shift) proportional to this speed and to the carrier frequency. Consider the situation 
depicted in Figure 2.2. Here the receiver is in relative motion with respect to the 
transmitter. The latter transmits an unmodulated carrier with frequency fo. Let 
v denote the speed of the vehicle (assumed constant), and y the angle between 
the direction of propagation of the electromagnetic plane wave and the direction of 
motion. The Doppler effect causes the received signal to be a tone whose frequency 
is displaced (decreased) by an amount 

(the Doppler frequency shift), where c is the speed of propagation of the electro- 
magnetic field in the medium. Notice that the Doppler frequency shift is either 
greater or lower than 0, depending on whether the transmitter is moving toward the 
receiver or away from it (this is reflected by the sign of cosy). 

By disregarding for the moment the attenuation and the phase shift affecting the 
received signal, we can write it in the form 
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Notice that we have assumed a constant vehicle speed, and hence a constant fD. 
Variations of v would cause a time-varying fD in (2.8). 

More generally, consider now the transmission of a bandpass signal x(t), and 
take attenuation a(t) and delay ~ ( t )  into account. The complex envelope of the 
received signal is 

jj ( t )  = a ( t )  e-je@) 2 [t - T (t)] 

This channel can be modeled as a time-varying linear system with low-pass equiv- 
alent impulse response 

2.3 Fading 

In general, the term fading describes the variations with time of the received signal 
strength. Fading, due to the combined effects of multipath propagation and of rel- 
ative motion between transmitter and receiver, generates time-varying attenuations 
and delays that may significantly degrade the performance of a communication 
system. 

With multipath and motion, the signal components arriving from the various 
paths with different delays combine to produce a distorted version of the transmit- 
ted signal. A simple example will illustrate this fact. 

Example 2.2 (A simple example of fading) 

Consider now the more complex situation represented in Figure 2.3. A vehicle 
moves at constant speed v along a direction that we take as the reference for angles. 
The transmitted signal is again an unmodulated carrier at frequency fo. It propagates 
along two paths, which for simplicity we assume to have the same delay (zero) and 
the same attenuation. Let the angles under which the two paths are received be 0 
and y. Due to the Doppler effect, the received signal is 

y (t)  = A exp [j2n fo (1 - :) t] + A exp j2n fo 1 - 2 cos y) t] (2.9) [ ( c  

We observe from the above equation that the transmitted sinusoid is received as 
a pair of tones: this effect can be viewed as a spreading of the transmitted signal 
frequency, and hence as a special case of frequency dispersion caused by the channel 
and due to the combined effects of Doppler shift and multipath propagation. 
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Figure 2.3: Effect of a two-path propagation and movement. 

Equation (2.9) can be rewritten in the form 

The magnitude of the term in square brackets provides the instantaneous envelope 
of the received signal: 

The last equation shows an important effect: the envelope of the received signal 
exhibits a sinusoidal variation with time, occurring with frequency 

The resulting channel has a time-varying response. We have time-selective fading, 
and, as observed before, also frequency dispersion. 0 

A more complex situation, occurring when the transmission environment in- 
cludes several reflecting obstacles, is described in the example that follows. 

Example 2.3 (Multipath propagation and the effect of movement) 

Assume that the transmitted signal (an unmodulated carrier as before) is received 
through N paths. The situation is depicted in Figure 2.4. Let the receiver be in 
motion with velocity v, and let Ai, Oi, and yi denote the amplitude, the phase, and 
the angle of incidence of the ray from the ith path, respectively. The received signal 
contains contributions with a variety of Doppler shifts: in the ith path the carrier 
frequency fo is shifted by 
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Figure 2.4: Effect of N-path propagation and movement. 

Thus, the (analytic) received signal can be written in the form 

The complex envelope of the received signal turns out to be 

2.3.1 Statistical models for fading channels 

As we can observe from the previous examples, our ability to model the chan- 
nel is connected to the possibility of deriving the relevant propagation parameters. 
Clearly, this is increasingly difficult and becomes quickly impractical as the num- 
ber of parameters increases. A way out of this impasse, and one that leads to mod- 
els that are at the same time accurate and easily applicable, is found in the use of 
the central limit theorem whenever the propagation parameters can be modeled as 
random variables (RV) and their number is large enough. To be specific, let us refer 
to the situation of Example 2.3. For a large number N of paths, we may assume 
that the attenuations Ai and the phases 27r fit - Oi in (2.1 1) are random variables 
that can be reasonably assumed to be independent of each other. Then, invoking 
the central limit theorem, we obtain that at any instant, as the number of contribut- 
ing paths become large, the sum in (2.1 1) approaches a Gaussian RV. The complex 
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envelope of the received signal becomes a lowpass Gaussian process whose real 
and imaginary parts are independent and have mean zero and the same variance 
a2. In these conditions, R( t )  and O(t)  turn out to be independent processes, with 
O(t)  being uniformly distributed in (0, 27r) and R( t )  having a Rayleigh probability 
density function (pdf), viz., 

Here the average power of the envelope is given by 

A channel whose envelope pdf is (2.12) is called a Rayleigh fading channel. The 
Rayleigh pdf is often used in its "normalized form, obtained by choosing IE[R2] = 
1 : 

2 
pR(r) = 2re+ (2.14) 

An alternative channel model can be obtained by assuming that, as often occurs 
in practice, the propagation medium has, in addition to the N weaker "scatter" 
paths, one major strong fixed path (often called a specular path) whose magnitude 
is known. Thus, we may write the received-signal complex envelope in the form 

where, as before, u( t )  is Rayleigh distributed, a ( t )  is uniform in (0, 27r), and v( t )  
and P( t )  are deterministic signals. With this model, R( t )  has the Rice pdf 

for r > 0. (Io( . ) denotes the zeroth-order modified Bessel function of the first 
kind.) Its mean square is E [ R ~ ]  = v2 + 2a2. This pdf is plotted in Figure 2.5 for 
some values of v and a2 = 1. 

Here R( t )  and O(t)  are not independent, unless we further assume a certain 
amount of randomness in the fixed-path signal. Specifically, assume that the phase 
,6 of the fixed path changes randomly and that we can model it as a RV uniformly 
distributed in (0, 27r). As a result of this assumption, R( t )  and O(t)  become in- 
dependent processes, with O uniformly distributed in (0, 27r) and R( t )  still a Rice 
random variable. 
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Figure 2.5: Rice pdf with a2 = 1. 

Notice that, in (2.15), v denotes the envelope of the fixed-path component of 
the received signal, while 2u2 is the power of the Rayleigh component (see (2.13) 
above). Thus, the "Rice factor" 

denotes the ratio between the power of the fixed-path component and the power 
of the Rayleigh component. Sometimes the Rice pdf is written in a normalized 
form, obtained by assuming I E [ R ~ ]  = v2 + 2a2 = 1 and exhibiting the Rice factor 
explicitly: 

for r 2 0. 
As K -+ 0-i.e., as the fixed path reduces its power-since Io(0) = 1, the Rice 

pdf becomes a Rayleigh pdf. On the other hand, if K t oo, i.e., the fixed-path 
power is considerably higher than the power in the random paths, then the Gaussian 
pdf is a good approximation for the Rice density. 
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Yet another statistical model for the envelope R  of the fading is the Nakagami-m 
distribution. The probability density function of R is 

which has I E [ R ~ ]  = 0. The parameter m, called fading Jigure, is a ratio of mo- 
ments: 

For integer values of m, (2.17) is the pdf of the RV 

where XI, . . . , Xm are independent, Rayleigh-distributed RVs. As special cases, 
the choice m = 1 yields the Rayleigh distribution, while m = 112 yields a single- 
sided Gaussian distribution. 

We observe that the Nakagami-m distribution is characterized by two parame- 
ters, and consequently it provides some extra flexibility if the mathematical model 
of the fading must be matched to experimental data. 

2.4 Delay spread and Doppler-frequency spread 

A simple yet useful classification of fading channels can be set up on the basis of 
the definition of two quantities called coherence time and coherence bandwidth of 
the physical channel. 

Multipath fading occurs because different paths are received, each with a dif- 
ferent Doppler shift: when the receiver and the transmitter are in relative motion 
with constant radial speed, the Doppler effect, in conjunction with multipath prop- 
agation, causes time- and frequency-selective fading. Consider these propagation 
paths, each characterized by a delay and attenuation, and examine how they change 
with time to generate a time-varying channel response. First, observe that signifi- 
cant changes in the attenuations of different paths occur at a rate much lower than 
significant changes in their phases. If ri(t) denotes the delay in the ith path, the 
corresponding phase is 27r fo (t - T~ (t)), which changes by 27r when ri (t) changes 
by l/ fo, or, equivalently, when the path length changes by c/ fo. Now, if the path 
length changes at velocity vi, this change occurs in a time c/(fovi), the inverse of 
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the Doppler shift in the ith path. Consequently, significant changes in the chan- 
nel occur in a time T, whose order of magnitude is the inverse of the maximum 
Doppler shift BD among the various paths, called the Doppler spread of the chan- 
nel. The time Tc is called the coherence time of the channel, and we have 

The significance of T, is as follows. Let Tx denote the duration of a transmitted 
signal.' If it is so short that during transmission the channel does not change ap- 
preciably in its features, then the signal will be received undistorted. Its distortion 
becomes noticeable when Tx is above T,, which can be interpreted as the delay be- 
tween two time components of the signal beyond which their attenuations become 
independent. We say the channel is time selective if Tx 2 T,. 

The coherence time shows how rapidly a fading channel changes with time. 
Similarly, the quantity dual to it, called coherence bandwidth, shows how rapidly 
the channel changes in frequency. Consider paths i and j and the phase difference 
between them, i.e., 27r f (ri(t) - rj(t)).  This changes significantly when f changes 
by an amount proportional to the inverse of the difference ri(t) - 7 j  ( t ) .  If Td, called 
the delay spread of the channel, denotes the maximum among these differences, a 
significant change occurs when the frequency change exceeds the inverse of Td. 
We define the coherence bandwidth of the channel as 

This measures the signal bandwidth beyond which the frequency distortion of the 
transmitted signal becomes relevant. In other words, the coherence bandwidth is 
the frequency separation at which two frequency components of the signal undergo 
independent attenuations. A signal with Bx $ B, is subject to frequency-selective 
fading. More precisely, the envelope and phase of two unmodulated carriers at 
different frequencies will be markedly different if their frequency spacing exceeds 
Bc so that the cross-conelation of the fading fluctuations of the two tones decreases 
toward zero. The term frequency-selective fading expresses this lack of correlation 
among different frequency components of the transmitted signal. 

In addition to coherence time and bandwidth, it is sometimes useful to define the 
coherence distance of a channel in which multiple antennas are used (see especially 
Chapter 10). This is the maximum spatial separation of two antennas over which 

'since we shall be considering coded signal for most of this work, from now on we may think of 
T, as the duration of a code word. 
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Figure 2.6: Radio-channel classijication. 

flat in t 
selective in f 

flat in t 
flat in f 

the channel response can be assumed constant: specifically, we say that the channel 
is space selective if the separation between antennas is larger than the coherence 
distance. 

selective in t 
selective in f 

selective in t 
flat in f 

2.4.1 Fading-channel classification 

From the previous discussion we have two quantities Bc and Tc describing how the 
channel behaves for the transmitted signal. Specifically, 

(a) If Bx << B,, there is no frequency-selective fading and hence no time dis- 
persion. The channel transfer function looks constant, and the channel is 
called $at (or nonselective) in frequency. The fading affects the transmitted 
signal multiplicatively, by a factor which varies with time. 

(b) If Tz << Tc, there is no time-selective fading, and the channel is called $at 
(or nonselective) in time. 

Qualitatively, the situation appears as shown in Figure 2.6. The channel flat in 
t and f is not subject to fading either in time or in frequency. The channel flat in 
time and selective in frequency is called an intersymbol-integerence channel. The 
channel flat in frequency is a good model for several terrestrial mobile radio chan- 
nels. The channel selective both in time and in frequency is not a good model for 
terrestrial mobile radio channels, but it can be useful for avionic communications, 
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in which high speeds (and hence short coherence times) combine with long delays 
due to earth reflections (and hence narrow coherence bandwidths). 

The product TdBD = l/TcBc is called the spread factor of the channel. If 
TdBD < 1, the channel is said to be underspread, otherwise, it is overspread. 
Generally, if the spread factor TdBD << 1, the channel impulse response can be 
easily measured, and that measurement can be used by the receiver in the demod- 
ulation of the received signal and by the transmitter to optimize the transmitted 
signal. Measurement of the channel impulse response of an overspread channel 
is extremely difficult and unreliable, if not impossible. Since, in general, signal 
bandwidth and signal duration are such that BxT, >> 1 (as otherwise there would 
be no hope for reliable communication, even in a nonfaded time-invariant channel, 
as, for example, the AWGN channel), it follows that a slowly fading, frequency 
nonselective channel is underspread. 

Finally, we say that the channel is ergodic if the signal (i.e., the code word) is 
long enough to experience essentially all the states of the channel. This situation 
occurs when Tx >> Tc. Thus, we discriminate between slow and fast fading and 
ergodic and nonergodic channels according to the variability of the fading process 
in terms of the whole code word transmission duration. 

The preceding discussion is summarized in Table 2.1. (See [2.2] for further 
details.) 

Bx << Bc frequency-flat fading 
BX 2 BC frequency-selective channel 

Tx << Tc time-flat (slow) fading 

TX 2 TC time-selective (fast) channel 

TCBC > 1 underspread channel 
TcBc << 1 overspread channel 

Tx << Tc nonergodic channel 
Tx >> Tc ergodic channel 

Table 2.1 : Classification of fading channels. 

2.5 Estimating the channel 

As we shall see in subsequent chapters, the performance of a transmission system 
over a fading channel may be greatly improved if the value taken on by the fading 
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random variable affecting the propagation is known, at the receiver only or at both 
transmitter and receiver. Here we examine a technique for measuring a channel 
described as in Figure 2.1. We use "probing signals," to be transmitted in addition 
to information-bearing signals each time the channel changes significantly (and 
hence at least once every Tc). 

A good set of probing signals is generated by a pseudonoise (PN) sequence 
u(l),  . . . , u(N); it has the property that its autocorrelation c(m) is approximately 
an ideal impulse. For simplicity we assume here that the channel is real, that the 
sequence is binary (u(j) = f A for 1 5 j 5 N), and that we have exactly 

where we take u(j)  = 0 whenever j <' 1 or j > N. Without noise, the channel . . 

response to the PN sequence is the convolution 

This response can be nonzero only from time n = 1 to time n = N + L: in this 
period we assume that the channel, albeit random, remains constant, so that we can 
rewrite (2.23) as 

with h(k), k = 0, . . . , L, a sequence of complex random variables. Now, correlate 
the noiseless channel output rl(n) with the PN sequence. Using (2.22) we obtain 
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which is proportional to the mth sample of the channel impulse response. 
Consider now the effect of an additive white Gaussian noise w(n) with variance 

a2. The noisy-channel response to the PN sequence is 

Correlating the channel output y(n) with the PN sequence, we obtain 

where the additional term is again a Gaussian RV with mean zero and variance 

In conclusion, we observe a correlation p(-m) which is the sum of two terms: 
one is proportional to N times the impulse-response sample that we wish to es- 
timate, while the other is a noise term whose variance is proportional to the PN 
sequence length N. The resulting signal-to-noise ratio is proportional to N: thus, 
by increasing the sequence length (and hence the measurement length) we can 
make the channel measure arbitrarily good. Notice, however, that making N very 
long leads to an accurate estimate but decreases the data-transmission rate. Two 
techniques, used, for example, in the GSM standard of digital cellular telephony, 
allow one to increase the ratio between the information symbols and the probe 
symbols: the first one consists of placing the probe symbols in the middle of a data 
frame, the second one of interpolating between the previous and the next channel 
measurement. 

2.6 Bibliographical notes 

Ref. [2.2] contains an extensive review of the information-thoretical and commu- 
nications aspects of fading channels. Engineering aspects of wireless channels and 
modeling problems are treated, for example, in [2.3-2.51. 
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3.1 Signal constellations 

Consider a finite signal constellation, i.e., a set S = {x) of vectors in the Euclidean 
N-dimensional space IRN (also called points, or signals), to be used for transmis- 
sion over a noisy channel. The squared norm llx 1 1  will be referred to as the energy 
of x. 

Let M IS/ denote the number of elements of S, i.e., the number of available 
signals. Then, the maximum amount of information carried by S is log IS1 bits; this 
maximum information is the entropy of the constellation corresponding to equally 
likely signals (see Appendix A). We assume for simplicity that IS1 is a power of 2, 
that is, 

M = 2m (3.1) 

A one-to-one map, called a labeling, can be defined, which associates with every 
element x E S an m-tuple of binary digits. The association of this m-tuple with x 
is called modulation. Notice that choice of a labeling affects also the design of the 
device (the demodulator) that transforms the received signal back into a sequence 
of binary digits to be delivered to the end user. 

* Measuring the information transmitted: the rate. We list here various pos- 
sible definitions of the rate R at which information is transmitted over the channel. 
The maximum amount of information transmitted by using the constellation S can 
be measured by m log M ,  the number of bits per signal. Since every signal 
has N dimensions, we may define the transmission rate in bits per dimension as 
p log M/N. If the speed of information transmission Rb (in bits per second) is 
of concern, and an N-dimensional signal is transmitted every T seconds (that is, we 
have T-' signals transmitted every second), we transmit at a rate N I T  dimensions 
per second, or 

logM bit N dimension log M bit 
Rb = - - - -- 

N dimension T s T s (3.2) 

If, in addition, the bandwidth need of the signals selected is ,B Hz per dimension 
per second, then the bandwidth requirement for the transmission will be PN/T Hz. 
Notice that, although the actual value with real-life waveforms may vary, it is often 
assumed for simplicity that ,B = 112: in fact, the dimensionality of a set of signals 
with duration T and bandwidth W is approximately N = 2WT (see [3.2, p. 801, 
[3.ll], and infra, Section 3.4.1). 

In some cases, rather than using the number of bits carried by one signal, it 
may be preferable to use the number of bits per channel use: this option should be 
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chosen whenever the definition of a channel entails the transmission of more than 
one signal, as in the case (to be examined later in Chapter 10) of multiple-antenna 
transmitters. 

The demodulation problem. If we denote by y the vector observed at the output 
of the channel (in general, the dimension of y may differ from the dimension of 
x), the demodulation problem consists of selecting in S an estimate of x,  which we 
denote 2, which is optimum under some performance criterion. 

The signal design problem. This is the problem of selecting, under a suitable 
set of constraints (for example, the average transmitter power), the set S so that, 
under a prescribed demodulation criterion, performance is maximized. 

The additive white Gaussian noise (AWGN) channel is defined as the channel 
that transforms x into 

y = x + z  (3.3) 

that is, x is perturbed additively by a noise vector z independent of x and whose 
components are independent, zero-mean Gaussian random variables with common 
variance No/2 (this parameter is referred to as the power spectral density of the 
white noise). 

We assume that the blocks of m binary digits output by the information source 
are equally likely and statistically independent, so the signals transmitted over the 
channel are also equally likely and independent. Assume also that the channel is 
stationary memoryless (see Section A.l in refAppendix A)), i.e., that it processes 
every signal independently and irrespectively of its transmission time. In this situa- 
tion, the behavior of the channel is described by the conditional probability density 
function (pdf) p(y I x), i.e., the pdf of y given that x was transmitted. (With an 
additive channel described by (3.3), p(y ( x)  is simply the pdf of the noise z with 
mean x.) Moreover, it makes sense to choose, as the performance criterion for the 
demodulator, the minimization of the signal error probability, i.e., the probability 
that when x is transmitted the demodulator selects 2 # x: 

or the bit error probability, that is, the probability that a binary digit output by the 
source and mapped into x is transformed into a different binary digit. 
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3.2 Coding in the signal space 

For easier modulation, demodulation, and labeling of the constellation S, it is con- 
venient to introduce some structure in it. This may consist of choosing a set X of 
elementary signals, typically one- or two-dimensional, and S C Xn, that is, gener- 
ating the vectors of S as having n components in X. This way, the elements of S 
have the form x = (xl, x2, . . . , xn), with xi E X. The collection of such x will 
be referred to as a block code in the signal space, and x as a code word. 

Example 3.1 

Choose X = {+I, -1) and the following constellation of 4 signals in R3: S = 
{(+I, +1, +I), (+I, -1, -I), (-1, +1, -I), (-1, -1, +I)). The components of 
each element in S are chosen so that the third one equals the product of the first two: 
consequently, even when the source emits independent pairs of binary digits, the 
elementary signals transmitted over the channel are not independent. Observe also 
that in this case we may define a channel use as the transmission either of a single 
f 1 or of a triplet. Finally, observe that a simple labeling of the four signals can be 
obtained as follows: let a binary "0" correspond to the elementary signal "+1," and 
a binary "1" to the elementary signal "-1." This generates the first two components 
of x, while the third one is obtained as their product. 0 

A special case of S is the "uncoded constellation" S = Xn, the set of all n-tuples 
of elementary signals. Here IS1 = IXln, and S has n x D dimensions, where D is 
the dimensionality of X. 

3.2.1 Distances 

A way of characterizing the quality of a code in the signal space used for transmis- 
sion over a noisy channel is through the distinguishability of its elements, which in 
turn leads to the definition of a distance d(x, x') between pairs of words x, x'. 

Euclidean distance 

This is the quantity 
dE(x, x') A I I x  - ~ ' 1 1  

It can be seen that for a code in the signal space we have 
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The Euclidean distance is especially useful with AWGN channels with low noise 
spectral density. In particular, the minimum Euclidean distance between any two 
vectors in S 

dE,min A min dE(x,  x') 
x#xl 

(3.7) 

is a parameter that, as we shall see in the following, often plays a central role in 
code design, in the sense that codes with larger minimum Euclidean distance ex- 
hibit a lower error probability at high SNR. Notice, however, that the above state- 
ment may be deceiving if the SNR at which the constellation is used is not large 
enough (see Problem 2 in the Problem section of this chapter, and our discussion 
of turbo codes in Chapter 9). 

Hamming distance 

The Hamming distance dH(x ,  x') between x  and x1 is defined as the number of 
components in which the two vectors differ. The minimum Hamming distance 

also plays a central role in code desngn, as we shall see later on in the context of 
coding for low-noise independent Rayleigh fading channels (Chapter 4). 

Bhattacharyya distance 

Another useful distinguishability measure is provided by the Bhattacharyya dis- 
tance, which depends explicitly on the channel on which the transmission takes 
place. This is defined as 

The average Bhattacharyya distance over the constellation: 

yields sometimes a suitable measure for signal selection. 
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Example 3.2 
Given two signals x and x' with equal energies, that is llx112 = l l ~ ' 1 1 ~  = & and 
scalar product (x, x') = p&, their Bhattacharyya distance over the AWGN channel 
is proportional to the signal-to-noise ratio &/4No and to (1 - p): thus, it is maxi- 
mized when p = -1, i.e., when the two signals are antipodal. 0 

* Relation between Hamming and Euclidean distance 

For general constellations, there is no immediate relation between dH and dE. 
However, consider the special case of the binary elementary constellation X = 
{x, -XI. The squared Euclidean distance between two code words x, x' differing 
in dH(x, x') places is given by 

d;(x, x') = 4&dH(x, x') (3.11) 

where E 4 1 1 ~ 1 1 ~ .  This result shows in particular that, for a code with a binary el- 
ementary constellation, maximizing the Hamming distance is tantamount to maxi- 
mizing the Euclidean distance and consequently getting a good performance over 
the low-noise AWGN channel. This observation prompts us to examine in special 
detail those codes based on a binary elementary constellation. Specifically, if we 
represent the signals f x through two elements in the binary Galois field Fa, we 
can introduce two operations (mod-2 sum and product) that allow the code to be 
endowed with nice algebraic properties that facilitate the study of these "binary" 
codes. Later in the Chapter we shall delve into this. 

Example 3.3 
Another example of a constellation in which Euclidean and Hamming distances are 
proportional is shown in Figure 3.1, where the 4-PSK constellation is labeled in 
such a way that the Euclidean distance is related to Hamming distance by 

d;(x, x') = 2&dH(x, x') (3.12) 

0 

3.3 Performance evaluation: Error probabilities 

Consider now demodulation, under the minimum-P(e) criterion, of a constellation 
used for transmission over the AWGN channel. It is known from detection theory 
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Figure 3.1: In Gray-coded 4-PSK the squared Euclidean distance is proportional 
to Hamming distance. 

that optimum demodulation consists of selecting as 2 the vector with the minimum 
Euclidean distance from the observed vector y. It is convenient here to define the 
Voronoi region (or decision region) associated with x E S as the set of vectors in 
IRN that are closer to x than to any other element of S: 

The probability of an erroneous decoding when x is the transmitted signal is then 
given by 

where p(z )  is the pdf of the noise, so that p(z - x) is the pdf of x + z. 
Since in most cases the exact expression (3.13) is too hard to compute, it is often 

expedient to resort to a simple upper bound. Let P(x + 2)  denote the probability 
that, when x is transmitted, y is closer to 2 than to x. This is called the paimise 
error probability (PEP) because if the transmission system uses only two signals, 
viz., x and 2, then P(e I x) = P(x + 2). Observe that P(e I x)  can be expressed 
as the probability that at least one 2 # x is closer than x  to y. Using the upper 
bound to the probability of a union of events, we can write 
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Finally, the error probability P(e)  is given by 

Now, the PEP can be easily computed in closed form as follows: 

Observe that the scalar product (z, 2 - x ) ,  being a linear transformation of the 
Gaussian vector z, is itself a Gaussian RV, with mean 0 and variance No ll~-?11~/2. 
Thus, since for a Gaussian RV X with mean 0 and variance a2 we have 

we obtain 

where Q( . ) denotes the Gaussian tail function: 

This function is related to the often-used complementary errorfunction erfc( . ) by 

A simpler approximation (the Bhattacharyya bound) is based on the exponential 
bound (which is equivalent to the Chernoff bound derived in the Problem section) 

and yields 

P(x  + 2) 5 exp {- IIx - 2 1 1 2 / 4 ~ ~ )  (3.20) 
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Example 3.4 

With uncoded binary signaling ( M  = 2) we have P(e)  = P ( x  + g), and con- 
sequently, by choosing the antipodal signal set S = {+&, -&), we obtain 
from (3.18): 

(3.21) 

0 

3.3.1 Asymptotics 

As No + 0, since Q( - ) is a decreasing function, the right-hand side of (3.15) will 
be dominated by the pairs of signals at minimum Euclidean distance. By retaining 
only these dominant terms, we can write 

N 

where the notation 5 indicates that the inequality holds only approximately, unless 
No is vanishingly small, and where a is a constant (see Problem 1 for its interpre- 
tation as the average number of nearest neighbors in the constellation). 

The above approximation (3.22) shows that for low enough No we may choose, 
as a criterion for signal selection, and hence for code selection, the maximization 
of the minimum Euclidean distance. 

3.3.2 Bit error probabilities 

The above calculations were based on symbol error probability. To allow com- 
parisons among modulation schemes with different values of M and hence whose 
signals cany different numbers of bits, a better performance measure is the bit error 
probability Pb(e), often referred to as bit-error rate (BER). This is the probability 
that a binary digit emitted by the source will be received erroneously by the user. 

In general, it can be said that the calculation of P(e) is a far simpler task than 
the calculation of Pb(e). Moreover, the latter depends also on the mapping of the 
source bits onto the signals in the modulator's constellation. A simple bound on 
Pb(e) can be derived by observing that, since each signal carries log M bits, one 
symbol error produces at least one bit error and at most log M bit errors. Therefore, 

< 5 p(e) 
log M - 
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Since (3.23) is valid in general, we should try to keep Pb(e) as close as possible to 
its lower bound P(e)/ log M (this is sometimes'referred to as error probability per 
bit). One way of achieving this goal is by choosing the labeling in such a way that, 
whenever a symbol error occurs, the signal erroneously chosen by the demodulator 
differs from the transmitted one by the least number of bits. Since for high signal- 
to-noise ratios we may expect that errors occur when a signal is mistaken for one of 
its nearest neighbors, then a reasonable choice is a labeling such that neighboring 
signal points correspond to binary sequences that differ by only one digit. When 
this choice is made, we say that the signals are Gray labeled, and we approximate 
Pb(e) by its lower bound in (3.23). Figure 3.1 shows an example of Gray labeling 
(see also our discussion of bit-interleaved coded modulation in Section 7.9). 

3.4 Choosing a coding/modulation scheme 

We now discuss some criteria that should guide the choice of a coding/modulation 
scheme over the AWGN channel. These are bandwidth efficiency, power efficiency, 
and error probability. 

3.4.1 * Bandwidth occupancy 

Since in the following we shall be interested in a comparison among coding/mod- 
ulation schemes that leaves out of consideration the actual waveform shapes and 
focuses instead on the geometric features of the signal constellations, it is con- 
venient to use the following definition of bandwidth. The 2WT-theorem [3.2, p. 
801, [3.11], states that, for large T and W, the dimensionality of a set of signals 
with duration T and bandwidth occupancy W is approximately N = 2WT. This 
motivates our definition of the Shannon bandwidth of a signal set with N dimen- 
sions as 

This bandwidth can of course be expressed in Hz, but it may be appropriate in sev- 
eral instances to express it in dimension pairs per second. The Shannon bandwidth 
is the minimum amount of bandwidth that the signal needs, in contrast to the (sev- 
eral possible) definitions of Fourier bandwidth of the modulated signal. The latter 
expresses the amount of bandwidth that the signal actually uses. In most cases, 
Shannon bandwidth and Fourier bandwidth differ little: however, there are exarn- 
ples of modulated signals (spread-spectrum signals) whose Fourier bandwidth is 
much larger than their Shannon bandwidth. 



3.4. Choosing a codinpjmodulation scheme 47 

Example 3.5 (PSK) 

An M-PAM has 1 dimension, so its Shannon bandwidth is W = 1/2T. An M-PSK 
signal has 2 dimensions, and hence W = 1/T. 0 

Note that in general, for any sensible definition of the bandwidth W, we have 
W = a /T,  which reflects the fundamental fact from Fourier theory that the time 
duration of a signal is inversely proportional to its bandwidth occupancy. The 
actual value of a depends on the definition of bandwidth and on the actual shapes 
of the waveforms used by the modulator. 

3.4.2 * Signal-to-noise ratio 

Recall that the information rate of the source, Rb, is related to the number of wave- 
forms used by the modulator, M, and to the duration of these waveforms, T, by 
the equality 

log M 
Rb = - 

T 
This is the rate, in bitls, that can be accepted by the modulator. The average power 
expended by the modulator is 

a 

where E is the average energy of the modulator signals, i.e., 

Each signal carries log M information bits. Thus, defining E b  as the average energy 
expended by the modulator to transmit one bit, so that 1 = Eb log M ,  we have 

log M 
Y = E b -  

T 
= EbRb 

We define the signal-to-noise ratio as the ratio between the average signal power 
and the average noise power. The latter equals (No/2) . 2W = NOW, where we 
assume conventionally that the equivalent noise bandwidth of the receiving filter is 
the Shannon bandwidth. We have 
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3.4.3 * Bandwidth efficiency and asymptotic power efficiency 

Expression (3.28) shows that the signal-to-noise ratio is the product of two quan- 
tities, viz., Eb/No, the energy per bit divided by twice the power spectral density, 
and Rb/W, the bandwidth (or spectral) eficiency of a modulation scheme. In fact 
the latter, measured in bit/s/Hz, tells us how many bits per second are transmitted 
in a given bandwidth W. The higher the bandwidth efficiency, the more efficient is 
the use of the available bandwidth made by the modulation scheme. 

We also observe that Rb/W may be conveniently related to the number of bits 
per dimension. We have 

Since p is the number of bits transmitted per dimension, we can interpret the above 
equality by saying that the spectral efficiency Rb/ W represents the number of bits 
transmitted per dimension pair (this interpretation is especially useful when we use 
two-dimensional elementary constellations, which is often the case). 

We now define the asymptotic power eficiency y. We have seen that, for high 
signal-to-noise ratios, the error probability is approximated by a Gaussian tail func- 
tion whose argument is d ~ , , ~ , / m .  Define y as the quantity satisfying 

that is, 

so that 

In words, y expresses how efficiently a constellation makes use of the available sig- 
nal energy to generate a given minimum distance. Thus, we may say that, at least 
for high signal-to-noise ratios, a constellation is better than another (having a com- 
parable average number a of nearest neighbors) if its asymptotic power efficiency 
is greater. 

For example, the antipodal constellation [3.2] S = {f a) has ab = and 
dE,rnin = 2&, so y = 1. This may serve as a baseline figure. Other values of y 
and Rb/ W are shown in Table 1.1 and in Figure 3.2. 
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Figure 3.2: Power efficiency vs. bandwidth efficiency of some constellations (OR- 
THO stands for orthogonal constellations). Observe how, with orthogonal signal- 
ing, increasing the constellation size M yields an increase of y and a decrease of 
Rb/W. The opposite occurs with PAM, QAM, and PSK. 
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3.4.4 Tradeoffs in the selection of a constellation 
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In summary, the evaluation of a constellation may be based on the following three 
parameters: the error probability P(e),  the signal-to-noise ratio Eb/No necessary 
to achieve P(e),  and the bandwidth efficiency Rb/W. The first tells us about 
the reliability of the transmission, the second measures the efficiency in power 
expenditure, and the third measures how efficiently the modulation scheme makes 
use of the bandwidth. For low error probabilities, we may simply consider the 
asymptotic power efficiency y and the bandwidth efficiency. 

The ideal system achieves a small P(e) with a low Eb/No and a high Rb/W: 
now, we shall evaluate bounds on the values of these parameters that can be achieved 
by any modulation scheme. In addition, complexity considerations force us to 
move further apart from the theoretical limits. Consequently, complexity should 
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also be introduced among the parameters that force a tradeoff in the selection of a 
modulation scheme. 

3.5 Capacity of the AWGN channel 

We now evaluate the capacity of the AWGN channel; specifically, we examine the 
Gaussian channel and a code built out of one-dimensional (i.e., real) elementary 
signals. For every channel use, the input is x  and the output is the real random 
variable y  = x  + z. Assume initially that no constraint is put on the input and 
output alphabets X and Y ,  except for a constraint on the energy of the input signal, 
which has the form E x2. Since zlx, we have (see Appendix A for the relevant 
definitions): 

H(y I x )  = H(x + z  I x) = H(z I x )  = H(z) (3.32) 

and hence 

Now (Theorem A.3.1, Appendix A), 

1 
H(z) = - log 27re IE z2 

2  
and, since IE z  = 0, 

Thus, the entropy of Y is bounded above by 3 log 27re(E x2 + IE z2),  and in conclu- 
sion 

1 1 
I(x; y) 5 - log 27re(E x2 + IE z2)  - - log 27re IE z2 

2  2  

and the maximum of I ( X ;  Y )  is attained when x  is a Gaussian random vector with 
zero mean and variance IE x2. This maximum value is the information capacity of 
the Gaussian channel: 

1 
C = - log (1 + SNR) biddimension 

2  
where 

E x 2  
S N R  = - 

IE 2 2  
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Observation 3.5.1 If x and z are complex, then the maximum value of the mu- 
tual information is achieved for x Gaussian, with zero mean, variance iElx12, and 
independent real and imaginary parts. Moreover, it is convenient to express C in 
biddimension pair: 

C = log(1 + SNR) biddimension pair (3.39) 

where now SNR 4 I E \ X ~ ~ / I E ~ Z ~ ~ .  

Observation 3.5.2 The SNR (3.38) can be given different expressions as follows. 
Assume x to be N-dimensional. The signal variance is &, while the noise variance 
is NNo/2. Since the Shannon bandwidth of a signal is W = N/2T, we may write 

Recalling (3.28), we can also express the SNR in the form 

EbRb SNR = - 
Now 

Since SNR= 2E/(NNo), we see that, as N -t oo, if &/No remains constant then 
the number of bits per dimension expressed by C tends to zero, because SNR-t 0. 
The number N C  of bits that can be reliably transmitted over N dimensions tends 
to the constant limit log(e)&/No. We shall return on this in Section 3.5.1. 

Sketch of the proof of the capacity theorem 

The capacity (3.37) is also the maximum achievable rate for the channel. A fun- 
damental theorem of Information Theory (Appendix A) shows that there exists a 
sequence of codes with rate C and block length n such that, as n -+ oo, the error 
probability tends to 0. Here we provide a qualitative summary of the proof, in the 
form originally given by Shannon. 

As we are considering one-dimensional elementary signals and code words with 
length n, the dimensionality of the signal constellation is n. Observe now that the 
volume of a n-dimensional sphere En with radius r is proportional to rn; thus, 
the volume of the shell between r - E (with 0 < E < r )  and r is proportional to 
rn - (r  - E ) ~ .  The ratio between the volume of the shell and the volume of the 
sphere is 



52 Chapter 3. Coding in a signal space 

and tends to 1 as n + oo, no matter what the thickness E of the shell is. This 
phenomenon, called sphere hardening, is summarized by saying that the volume 
of a n-dimensional sphere tends to concentrate near its surface as n + oo. 

Next, consider a set of code words x whose components are subject to the energy 
constraint Ex2 5 E, and let the received vector be y = x + z. Let us first apply 
the sphere-hardening concept to the noise vector z. As n grows to infinity, due to 
the law of large numbers, the squared length of vector z tends to a constant value: 

where zi are the independent, equally distributed random components of z. Sphere 
hardening assures that, while fluctuations of the length of z are possible, they tend 
to vanish as n + oo, so that x + z lies on the surface of the sphere Cn(x), centered 
at x and with radius d m .  Thus, signals differing by a Euclidean distance 
less than cannot be detected without ambiguity. Conversely, x can be 
detected with vanishingly small ambiguity if Cn(x) is disjoint from the spheres 
associated with the other code words: in fact, C,(x) is contained in the Voronoi 
region of x. 

Further, consider the received vector y. Its squared length tends to 

and consequently y lies within a sphere with radius Jn(E + No/2). In these 
conditions, the maximum number of disjoint spheres Cn(x) that can be accornmo- 
dated inside the sphere with radius d n ( E  + No/2) is no more than the ratio of the 
volumes 

This is the number IS1 of code words. Thus, the rate of the code is 

loglSl 1 C = - = - log(l+ SNR) 
n 2 

This "sphere-packing" argument also shows that we cannot hope to send informa- 
tion at a rate greater than C with low probability of error. 

3.5.1 The bandlimited Gaussian channel 

Assume now that the transmission of signal x takes a time T. Assuming as usual 
that the dimensionality of the constellation is N = 2WT, with W its (Shannon-) 
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bandwidth occupancy, we transmit 2W dimensions per second. Thus, using (3.40), 
Equation (3.37) can be rewritten in the form 

which expresses the capacity of the bandlimited AWGN channel. 
Notice that, as W -+ oo, we have 

'3' 
C -t - log e biUs 

No 
(3.44) 

which shows how capacity grows linearly with signal power, rather than logarith- 
mically as in (3.37). Equation (3.44) also shows that, for a given PINo, the capac- 
ity remains bounded even though W (and hence the number of signal dimensions) 
grows without bounds. This occurs because 'P is fixed, and hence the power per Hz 
tends to zero. 

If (3.41) is used, we obtain 

Since for reliable transmission we must have Rb < C, we require that 

5 W < log (1 + -$$) 
Solving this inequality for the minimum allowable Eb/NO, we obtain 

as plotted in Figure 3.3. The curve in this figure demarcates the region in which ar- 
bitrary low P(e) can be reached: for any given Rb/ W there exists a minimum value 
of Eb/No that must be exceeded if arbitrarily high reliability must be achieved. No- 
tice that, as W increases, the required Eb/No approaches the lower limit 

2Rb/W - 1 
lim = In2 @ -1.6dB 

W--roo Rb/W 

Moreover, as Rb/W > 2, that is, when bandwidth is constrained, the energy-to- 
noise ratio required for reliable transmission increases dramatically. The region 
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Figure 3.3: Capacity limits for the bandlimited AWGN channel. 

where Rb/W > 2 (more than 2 bit/s/Hz, or equivalently more than 1 bit per di- 
mension) is usually referred to as the bandwidth-limited region, and the region 
where Rb/W < 2 as the power-limited region. Figure 3.3 suggests that if the 
available power is severely limited, then we should compensate for this limitation 
by increasing the bandwidth occupancy, while the cost of a bandwidth limitation is 
an increase in the transmitted power. 

Example 3.6 

In this example we exhibit explicitly an M-ary signal constellation that, with no 
bandwidth constraint, has an error probability that tends to 0, as M -+ oo, provided 
that Eb/No > In 2, and hence shows the best possible behavior asymptotically. This 
is the set of M orthogonal, equal-energy signals defined by 

This signal set has dimensionality N = M. Due to the special symmetry of this 
signal set, the Voronoi regions of the signals are all congruent (more on this infra, in 
Section 3.6), and hence the error probability P(e  I xi) is the same for all transmitted 
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signals xi. Thus, we can assume with no loss of generality that xl was transmitted, 
and write P(e)  = P(e  I XI). The Voronoi region X(xl) is bounded by the M - 1 
hyperplanes yl = y2, y1 = 93, . . . , y1 = y ~ .  Hence, the probability of correct 
reception is given by 

Now, given that xl was transmitted, the RVs 91,. . . , y~ are iid Gaussian, with 
equal variance No/2 and mean values 

The events {yl > yi I XI} are not independent; however, they are conditionally 
independent given yl, so, using (3.17), we have 

where the expectation is taken with respect to the RV yl, whose conditional pdf is 

We now rewrite P(c), after observing that E = Eb log M, in the form 

where X N N(0, I), and examine the behavior of P(c) as M -+ oo. Take the 
logarithm of the argument of the expectation in (3.47), and observe that 

M-1 
lim in [I - Q ( X  + 4 2  log M . Ea/N0)] 

M + m  

In [I - Q(X + J2 log M - E~JNO)] 
= lim 

M + m  ( M  - 11-1 

Using 11H8pital's rule, the above is equal to 

(M - 1)2 
lim - 

M + m  ~l+(Eb/No) /  ln 2 A(l% M )  

where 
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Define now E A 1 - (&b/No)/ ln 2. By observing that, as M + m, we have 
= o(ln M )  and In In M = o(ln M),  we can see that asymptotically 

ln((M - 1)2/~1+(EbIN0)11n 2 ) ~ ( ~ )  - E In M + o(ln M )  4 sgn(&) . m 

Thus, 

which shows that the error probability tends to zero as M + co, provided that 
eb/NO exceeds the threshold value In 2 given by the capacity formula. 0 

3.5.2 -k Constellation-constrained AWGN channel 

The calculation of the channel capacity developed above involves no constraint 
on the use of an elementary constellation, except for the assumption of signals x 
with limited energy. We now evaluate the capacity of the AWGN channel when a 
specific elementary constellation is chosen as X. To avoid a maximization of the 
mutual information over the a priori probabilities of the transmitted signals (as in- 
volved by the definition of channel capacity), we make the simplifying assumption 
that the elementary signals x E X are transmitted with equal probabilities. Under 
our assumption of equally likely signals, the capacity of the channel is given by 

where H(x) is the maximum number of bits that can be carried by each elemen- 
tary signal (this is log [XI). Using Bayes's rule, and observing that the a priori 
probabilities of x are equal, we obtain 
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so that 

This capacity can be conveniently evaluated by using Monte Carlo integration, 
by picking first a value of x, then taking the expectation with respect to y given 
x, and finally taking the expectation with respect to x. Under our assumptions of 
equally likely signals, the latter is computed as 

Notice that for the AWGN channel we have 

where c is a normalization constant, which is irrelevant here. Figure 3.4 shows C 
for some two-dimensional constellations as a function of the signal-to-noise ratio 

which follows from our assumption of two-dimensional signals, which entails 
Rb/W = log M. The uppermost curve of Figure 3.4 describes the capacity of 
the AWGN channel with no constraint on the constellation. It is seen that, for 
low SNRs, the capacity loss due to the use of a specific constellation may be very 
small, while it increases at high SNR. From this we can infer that binary transmis- 
sion is a reasonable proposition for small SNR, whereas we should choose a large 
constellation if the channel has a large signal-to-noise ratio. 

3.5.3 * How much can we achieve from coding? 

We now examine the amount of energy savings that the use of the code S allows 
one to achieve with respect to the transmission of the elementary uncoded constel- 
lation X. If we plot the error probability achieved with and without coding as a 
function of Eb/NO, a typical behavior of the two error-probability curves emerges 
(see Figure 3.5. In particular, it is seen that, with coding, the same value of P(e) 
may be achieved at a lower Eb/No than without coding. If this occurs, we say 
that the coding scheme yields a coding gain, usually measured in dB. Notice that 
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Figure 3.4: Capacity of some two-dimensional constellations over the AWGN 
channel. The unconstrained capacity log(1 + €/No)  is also shown 

the coding gain might be negative if P(e) is not low enough: this shows that cod- 
ing may improve the quality of a channel only if the channel itself is not too bad. 
Also, the coding gain usually increases as P(e) decreases: the limiting value as 
P(e) --t 0 is called asymptotic coding gain. 

The asymptotic coding gain can be evaluated by simply taking the ratio between 
the values of the asymptotic power efficiency for coded and uncoded constellations. 

Example 3.1 (continued) 

This constellation has minimum squared Euclidean distance 8 and E b  = 312. Thus, 
its asymptotic power efficiency is 413. The baseline y (uncoded binary PAM) is 1, 
so the asymptotic coding gain of this constellation is 413. 0 

A way to evaluate the potential performance of an elementary constellation used 
with coding consists of computing its performance with reference to a code achiev- 
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Figure 3.5: Illustration of coding gain. 

ing capacity at a certain SNR. Define first the normalized SNR 

SNR 
SNR ' - " - C-l(p) 

Here C denotes the capacity of the channel, interpreted as a function of SNR, such 
that C-I (p) is the minimum value of SNR required to support the actual data rate p, 
in bitfdimension. Thus, SNR, measures how much the SNR exceeds this minimal 
value. For a capacity-achieving coding scheme, p = C, and hence SNR, = 1 (that 
is, 0 dB). A practical scheme (which has p < C) requires an SNR that is larger 
than SNR, by some factor, which is precisely the normalized SNR. Thus, the value 
of the normalized signal-to-noise ratio signifies how far a system is operating from 
the capacity limit. 

Recall that, with no constraint on the choice of the (one-dimensional) signal 
constellation X, the channel capacity is given by 

1 
C = - log(1 + SNR) bitJdimension 

2 
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where SNR = 2E/No. The capacity is actually achieved by a Gaussian-distributed 
set of elementary signals. Now, rewrite the capacity formula (3.55) as 

SNR = 22C - 1 (3.56) 

which, in conjunction with (3.54), yields the definition of normalized SNR in the 
form 

SNR 
SNR, 2L - 

22p - 1 
where p is the actual rate. 

Example 3.7 

Consider PAM as a baseline one-dimensional constellation; this has 1x1 points 
equally spaced on the real line, and centered at the origin. Let d denote the spacing 
between two adjacent signals; then the error probability over the AWGN channel is 
known to be 

for the two outer points of the constellation, and 

for the 1x1 - 2 inner points [3.2, Section 5.21. Hence, by observing that the average 
energy of the constellation is 

and that SNR = 2E/No, the average error probability is given by 

For uncoded PAM, p = log 1x1 bitldimension. From (3.57) we have 

SNR 
SNRo = - 

1x12 - 1 

so that the error probability for PAM can be written in the form 
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Figure 3.6: Error probability of uncoded PAM vs. the normalized SNR. 

where the last approximation holds for large constellation size and makes P(e) in- 
dependent of 1x1. With P(e)  plotted versus SNR, (Figure 3.6), it can be seen that, 
for P(e)  = uncoded PAM is about 9 dB away from the capacity limit, which 
indicates that the use of coding can in principle buy that much. Observe also that 
the available coding gain decreases as the error probability increases. 0 

A dual way of describing the performance of a coding/modulation scheme is to 
plot its error probability versus the data rate for a fixed SNR level. The normalized 
rate 

indicates again how far (in terms of rate) a system is operating from the capacity 
limit. For the AWGN channel we have 

2P 
= log(1 + SNR) 
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Figure 3.7: Error probability o f  uncoded PAM vs. the normalized rate p,. 

Example 3.7 (continued) 

With uncoded PAM, we have, using (3.62) and (3.58), 

1x1 = 2 P  = (1 + s N R ) ~ ~ ' ~  

and 
SNR 1 

which is plotted in Figure 3.7. We observe, for example, that, at an error probability 
of and SNR= 10 dB, the rate achieved is about one half of the capacity. 

3.6 Geometrically uniform constellations 

Here we want to characterize the symmetries of the constellation S used for trans- 
mission over the AWGN channel. In particular, we want to develop tools useful to 
assess whether a given constellation has certain symmetries that are important in 
communications. 
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In general, the conditional error probability P(e I x) depends on x, i.e., different 
x may have different error probabilities. We are interested in finding constellations 
S = {x) such that P (e  I x)  is independent of x. We have two options here: 

(a) If the error probability is estimated via the union bound 

then this estimate of P ( e  I x) does not depend on x if the set of Euclidean 
distances (including multiplicities) from x to any point of S do not depend 
on x. In this case we say that S is distance uniform. 

(b) If we use the exact expression of error probability: 

then P(e  ( x) does not depend on x if the Voronoi regions are all congruent. 
We say that S is Voronoi uniform if all Voronoi regions are congruent. 

The significance of these two properties is the following. Uniformity properties 
can be used to simplify the evaluation of error probability P(e) for transmission of 
S over the AWGN channel, because the union bound on P(e I x)  does not depend 
on the transmitted vector x if S is distance-uniform. Similarly, the exact error 
probability does not depend on x if S is Voronoi uniform. Voronoi uniformity 
implies distance uniformity. 

In practice, it is convenient to define a higher level of uniformity, called geomet- 
ric uniformity, that implies both Voronoi and distance uniformity. Let us first recall 
some definitions. 

Definition 3.6.1 An isometry of IRN is a transformation u : IRN + IRN that 
preserves Euclidean distances: 

Consider next a set S of points in I R N .  

Definition 3.6.2 An isometry u that leaves S invariant, i.e., such that 

is called a symmetry of S. The symmetries of S form a group under composition of 
isometries, called the symmetry group of S and denoted F(S). 
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Figure 3.8: A non-GU signal set. 

We are now ready to define geometric uniformity. 

Definition 3.6.3 S is geometrically uniform $ given any two points xi, xj in S, 
there exists an isometry ui,j that transfoms xi in xj and leaves S invariant: 

A geometrically uniform (GU) signal set can thus be generated by the action of a 
group of isometries on an "initial" vectol: 

Example 3.8 

The constellation of Figure 3.8 is not geometrically uniform: in fact its symme- 
try group (which has four elements: the identity, the reflection along the horizontal 
axis, the reflection along the vertical axis, and the combination of two reflections) 
does not act transitively to generate the four signal points from an initial x E S. 

Example 3.9 

Take the initial vector [I/& 1/41' and the rotation group R4 represented by the 
four matrices 

This generates a four-point constellation (4-PSK). We learn from this example that 
it may happen that the symmetry group F(S) of a geometrically uniform signal set 
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is larger than necessary to generate S. In fact, 4-PSK has the &element dihedral 
group D4 as its symmetry group. In addition to the rotation matrices shown above, 
D4 has the matrices 

[: -;I [; :] [-: ;] [ a  -:] 
0 

Definition 3.6.4 A generating group U(S) of S is a subgroup of the symmetry 
group r (S)  that is minimally suscient to generate S from an arbitrary initial vec- 
tol: Such a map from U(S) to S induces a group structure on S, making it isomor- 
phic to the generating group. 

Example 3.9 (continued) 
It is seen that 4-PSK can be generated not only by the rotation group R4 as above 
(this group is isomorphic to the group Z4 of integers mod 4), but also by the group 
of reflections about either axis, corresponding to the four diagonal matrices of D4. 
This observation shows that a signal set may have more than one generating group. 

Example 3.10 
The 8-PSK constellation is GU. One of its generating groups is R8, the set of ro- 
tations by multiples of 7r/4. The symmetry group of S is r(8) = VR8, the set of 
all compositions of elements of R8 with elements of a two-element reflection group 
V consisting of the identity and a reflection about the line between any point and 
the origin. This group is isomorphic to the dihedral group D8. D8 is the symmetry 
group of the only other two-dimensional uniform constellation with eight points, 
asymmetric 8-PSK (see Figure 3.9). 0 

We quote from Forney [3.4]: 

A geometrically uniform signal set S has the important property of  
looking the same from any of its points. This property implies that any 
arbitrary point of S may be taken as the "center of the universe," and 
that all the geometric properties relative to that point do not depend on 
which point is chosen. 
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Figure 3.9: 8-PSK and asymmetric 8-PSK. 

3.6.1 Error probability 

By combining the Bhattacharyya bound (3.20) with the union bound (3.15), we 
obtain for a GU constellation the union-Bhattacharyya bound 

The last bound can be given a convenient form by defining the distance enumerator 
function of the signal set S as the following function of the indeterminate X: 

where Ai is the number of signals x at Euclidean distance Ilx - 211 from the refer- 
ence signal 2. This function does not depend on 2 because of the GU assumption. 
With this definition, (3.63) takes the compact form 

A tighter bound can be obtained by observing the exact value of the painvise 
error probability (3.18). Using the inequality (see Problem section) 

and observing that for 2 # x we have Ilx - 211 2 dE,min, we can bound the PEP 
as follows: 
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Thus, 

3.7 Algebraic structure in S: Binary codes 

Here we show how, by introducing a suitable algebraic structure in a subset S of 
Xn, it is possible to obtain constellations that can be easily described and analyzed. 

Let Fz denote the set {0,1) with mod-2 operations, and F; the set of binary 
n-tuples with mod-2 operations extended componentwise. 

Definition 3.7.1 An [n, M ,  d] binary code e is a set of M binary n-tuples, its 
words, such that d is the minimum Hamming distance between any two of them. 

Based on this definition, a code S in the signal space can be generated by ap- 
plying to each component of each word of the binary code e the map {0,1) + 

{f d) (see Figure 3.10). Under this map, the set F! is transformed into the set 
{f d l n  of the 2n vertices of the n-dimensional hypercube of side &centered at 
the origin. All signals in S have the same energy n&. The binary code e maps to the 
subset S of M vertices of this hypercube. Figure 3.10 shows a three-dimensional 
cube and two codes, one with M = 8 and d = 1, and the other with M = 4 and 
d = 2. 

Notice also that (3.11) holds here, so that S has 

Moreover, since M 5 2n, using (3.29) we can see that the bandwidth efficiency of 
S satisfies 

which shows that binary codes are suitable for the power-limited regime. The 
asymptotic power efficiency (3.30) takes the value 
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Figure 3.10: Geometric representation of two codes with n  = 3.  (a) [3 ,8 ,1 ]  code, 
whose words are all the binary triples. (b) [3 ,4 ,2 ]  code, whose words are the binary 
triples with an even number of "1" components. 

where the last equality is derived from E b  = n € /  log M .  The asymptotic coding 
gain of the code is given by the ratio of y above to the asymptotic power efficiency 
of the baseline constellation 2-PAM. The latter is 1, so y is also the asymptotic 
coding gain. 

To understand the limitations of binary coding, Table 3.1, taken from [3.1], 
shows upper bounds to M for various values of the block length n and of the 
minimum Hamming distance d. 

Definition 3.7.2 I f  (2 has the form 

where G is a k  x n  binary matrix with n  5 k  and rank k, called the generator 
matrix of e, then (3 is called an ( n ,  k ,  d )  linear binary code. The code words of 
a linear code have the form uG, where u is any binary k-tuple of binary source 
digits. 

It follows from the definition that the words of code e are all the linear combina- 
tions (with coefficients 0 or 1) of the k  rows of G; the code forms a linear subspace 
of FT with 2k elements. Figure 3.11 represents the coding chain for linear binary 
codes. The binary source symbols are grouped in blocks of k ,  then sent into the 
encoder. This transforms each of them in a word c E e. The mapper transforms c 
into an element x in S. 

The code rate is p = k l n  bitldimension, which yields a bandwidth efficiency 
2 k / n ,  with a loss k l n  with respect to the efficiency of X = {f l), i.e., 2-PAM 
(that is, the use of this code entails a bandwidth expansion by a factor of n l k ) .  The 
asymptotic power efficiency (3.67) (and hence the asymptotic coding gain with 
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Table 3.1: Upper bounds to the number M o f  code words for binary codes with 
length n and minimum Hamming distance d. 

-- 

' 1 ~ ~  E {0, I) u E (0, I ) ~  c = UG E e c {o, I ) ~  x E s g {*&I~ 
source 

Figure 3.11: Transmission o f  linearly encoded symbols. 

b 

respect to binary PAM) becomes 
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Example 3.11 

Let the generator matrix of a (4, 3, d )  binary code be 

The eight words of this code are obtained by multiplying all the binary triples by G: 

and are characterized by having an even number of "1" components. Binary codes 
with this property are called single-parity-check codes. One can easily verify that 
d  = 2 in this case, so the asymptotic coding gain is 614 + 1.76 dB. 0 

Capacity limits 

Using the capacity formula, we can derive the minimum value of Eb/No that allows 
transmission with vanishingly small error probability under the constraint that the 
code rate is p. Since for one-dimensional signals we have SNR= 2pEb/No, from 

p < 2 log (1 + 2 4 3  

we obtain the capacity limit 

As an example, for infinitely reliable transmission with rate-112 codes we need 
Eb/NO > 0 dB. For unconstrained rate (i.e., for p --+ 0), we obtain the known result 
Eb/No > In 2 = - 1.6 dB. Some additional values are tabulated in Table 4.1. 

The capacity limit is often used to evaluate the quality of a practical code. The 
value of Eb/NO necessary to achieve a small error probability (e.g., is com- 
pared to (3.69) for the same rate. If these two values are close enough, we say that 
the code performs "close to capacity." 
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Systematic codes 

Definition 3.7.3 A linear code is called systematic if its generator matrix has the 

form G = [Ik i PI, where P is a k x (n - k) matrix. The words of these codes 
have the form 

uG = [ui UP] (3.70) 

that is, theirjirst k positions are a copy of the source k-tuple. 

The assumption that a code generated by G is systematic does not entail any loss 
of generality. In fact, by combining linearly the rows of G (and possibly permuting 
its columns, which corresponds to changing the order of the components of all code 
words), we can give G the form (3.70). A general algorithm to do this is Gauss- 
Jordan elimination (Section B.3, Appendix B). 

Parity-check matrix 

Definition 3.7.4 An alternative dejinition of a linear code is through the concept 
of an (n - k) x n parity-check matrix H. A code (2 is linear if 

where the prime ' denotes transposition of all code words. 

This definition follows from the observation that, if e l  denotes the (n - k)- 
dimensional vector space orthogonal to (3 (which is another code called the dual of 
e), and hl, . . . , h,-k are n-vectors spanning it, then for any i and for any binary 
n-tuple y we have hiy1 = 0 if and only if x E e. The matrix H whose rows are 
the vectors above is the parity-check matrix of e ,  and the vector Hy' is called the 
syndrome of r: this is the null vector if and only if y is a code word. H describes 
the n - k linear constraints ("'parity checksy7) that a binary n-tuple must satisfy to 
be a code word. To avoid redundant constraints, the n - k rows of H are assumed 
to be linearly independent. 

Example 3.12 

Consider a linear binary (n, n - 1, d) code with 

H =  [ 1 1  ... 11 

The syndrome of the binary n-vector y = (yl, y2, . . . , y n )  is given by 
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which is zero if and only if there are an even number of 1s among the components 
of y. (2 has d = 2 and is a single-parity-check code. 0 

Example 3.13 

The (n, 1, n) binary repetition code, consisting of two words, namely, the all-zero 
and the all-1 binary vectors, has the parity-check matrix 

where Ik denotes the k x k identity matrix. For n = 4, we obtain 

and the syndrome Hy' is null if and only if yl + y4 = yz + y4 = y3 + y4 = 0, i.e., 
Y1 = Y2 = y3 = y4. 0 

Observation 3.7.1 From the definitions of G and H it follows that 

HG'=O and GH1=O, 

where 0 denotes an all-zero matrix with suitable dimensions. 

Error detection 

The concept of syndrome of an n-tuple is convenient to define a procedure called 
error detection. If hard decisions 5i (see Section 1.2.1) are separately made on the 
components of a code word observed at the output of a noisy channel, the resulting 
vector Z (it1, . . . , 5,) may not be a code word, thus indicating that "the channel 
has made errors." To verify if a binary n-tuple is a code word, it suffices to compute 
its syndrome. 
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Hamming distance and Hamming weight 

From the definition of a linear code, it follows that d, the minimum Hamming 
distance of a code C!, equals the minimum Hamming weight of the words of C!, 
i.e., the minimum number of "1"s contained in each nonzero code word. In fact, if 
w(c) denotes the Hamming weight of c, we have, for the Hamming distance of the 
code words c', c": 

dH (c' , c'') = w (c' + c") = w (c) 

where c c' + C" is (because of the linearity of the code) another word of C! (see 
the Problem section). Thus, 

min dH (c', c") = min W(C) 
cl#c" c#O 

Now, rewrite the parity-check matrix H of e in the form 

where hi, i = 1, . . . , n is a binary (n - k)-vector. The condition for c to be a code 
word, i.e., Hc' = 0, can be expressed as 

This equation expresses the n - k linear parity checks that the symbols of c must 
satisfy. Thus, since c has w(c) ones, (3.72) shows that w(c) columns of H sum 
to the null vector. This fact, in combination with (3.71), implies that, for a linear 
code, d is the minimum number of columns of H to be added together to obtain 0. 

Example 3.14 

Consider the parity-check matrix of the Hamming code e such that 

Here the columns of H consist of all binary nonzero triples. We verify that no two 
columns sum to 0, while, for example, hl + hz + hs = 0. Thus, d = 3. This code 
has parameters (7,4,3). 0 
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Coset decomposition of a code e 
As briefly mentioned before, a linear binary code forms a vector space over the Ga- 
lois field FT; it is also a commutative additive group. We may define an (n, k', d') 
subcode (2' of the (n, k, d) code (2 (with k' 5 k, dl > d) as a subset of e that is 
itself a linear code. The cosets of the subcode e' in (3 are the codes e' + c with 
c E e ,  i.e., the cosets of the subgroup e'. Every coset of e' contains the same 
number of code words. Notice that only the coset e' + 0 is a linear code. 

Given C! and its subcode el, two code words are in the same coset if and only if 
their sum is in e' and the union of the cosets forms a partition of C!. The situation 
is summarized in the following Theorem: 

Theorem 3.7.1 Any two cosets are either disjoint or identical. 

Proof. Let x belong to the cosets e' + a and e' + b, b # a. Then c + a = 2+ b, 
with c, 2 E el, and consequently a = c + 2+ b E e' + b, which implies e' + a C 
el + b. In a similar way we obtain e' + b 2 e' + a, which yields C!' + a = C!' + b, 
thus proving the theorem. 0 

Example 3.15 

The "universe" (n, n, 1) code (3 admits as its coset the single-parity-check (n, n - 
1,2) code (5''. The two cosets of e' in C! are the two (n, n - 1,2) codes whose words 
have even parity and odd parity, respectively. We may decompose e in the form 

where E is any fixed n-tuple with weight 1. 

3.7.1 Error probability and weight enumerator 

Consider the calculation of error probability for the constellation S obtained from 
the linear binary code e. We have, using the inequality Q(x) < exp(-x2/2): 

Now, since we are considering binary antipodal signaling, from (3.11) we have 
A 

that Euclidean distance and Hamming distance are related through Ilx - x1I2 = 
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4&dH(c, i?), where c and i? are the binary code words mapped into x, 2, respec- 
tively. Thus, we can write, recalling the linearity assumption for C!, 

The value of last summation does not depend on c, and hence P ( e  I c )  = P ( e )  for 
any choice of c. In conclusion, 

Recall now that n binary symbols, each with energy E, carry k information bits, so 
Eb = (n/k)E, and hence 

p ( e )  5 e x ~ ( - w ( c )  (k /n )&b/N~)  (3.76) 
c#O 

Consider next the set of weights of the words of the linear code C!. The weight 
enumerator of C! is the polynomial in the indeterminate X defined as 

where the last summation index runs through the set of values taken on by the code 
word weights, and Ai is the number of words whose weight is i. 

From (3.75)-(3.76), we have the simple expression 

Example 3.16 
The "universe" code (n, n, l ) ,  whose words are all the binary n-tuples, has weight 
enumerator (see the Problem section) 

W(X)  = (1 + X)" 

and consequently 

P(e)  5 (1 + e-&INO ) n - l  

The single-parity-check (n, n - 1,2) code, whose words are all the n-tuples with 
an even number of Is, has weight enumerator (see the Problem section) 
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3.8 * Symbol MAP decoding 

So far, we have examined decoding of code C based on the maximum-likelihood 
rule, which consists of maximizing over x E C! the function p(y I x). This rule 
minimizes the word error probability under the assumption that all code words 
are equally likely. If the latter assumption is removed, then to minimize the word 
error probability we should use instead the maximum a posteriori (MAP) rule, 
which consists of maximizing the function p(x I y). Now, assume that we want 
to minimize the information symbol error probability, that is, the probability that a 
source symbol ui is received erroneously: in this case, we obtain symbol maximum 
a posteriori (MAP) decoding by maximizing the a posteriori probabilities (APP) 

Specifically, we decode ui into 0 or 1 by comparing the probabilities that the ith bit 
of the source sequence that generates x is equal to 0 or 1, given the received vector 
y and the fact that code C is used. The APPs p(ui I y) can be expressed as 

and ei(ui) denotes the subset of code words generated by the source words whose 
ith component is ui. Observe that, since we are interested in maximizing p(ui I y) 
over ui, we can omit constants that are the same for ui = 0 and ui = 1. For equally 
likely code words x and a memoryless channel, we may write 

Example 3.17 

Consider an AWGN channel with noise variance a2, so that 

Assume the single-parity-check (3,2,2) binary code of Table 3.2 is used, and let 
the received symbols yl, y2, y3 and the noise variance be such that 



3.9. Bibliographical notes 77 

source coded 
symbols symbols 

00 +1 +1 +1 
01 +1 -1 -1  
10 - 1 + 1 - 1  
11 -1 -1 -1 

Table 3.2: Words of  the single-pan'ty-check (3,2,2) binary code. 

We can compute p(y I x) for each code word: 

so that 

and symbol MAP decoding yields GI = 0, G2 = 0. 

The brute-force approach consisting of direct computation of (3.79) is generally 
inefficient. In Chapters 5 and 8 we shall examine more efficient algorithms. 

3.9 Bibliographical notes 

For details on modulation schemes, see, e,g., [3.2]. Our discussion on the coding 
gain and the definitions of normalized SNR and normalized data rate follow [3.5, 
3.131. The concept of Shannon Bandwidth was introduced by Massey [3.9]. Ex- 
ample 3.6 is borrowed from [3.12]. The section on geometrically uniform signals 
is taken from [3.4]. 

A thorough treatment of algebraic codes can be found in the classical work [3.8], 
a monumenturn Ere perennius to algebraic coding theory. Recent results are col- 
lected in [3.6,3.7], while [3.3] is oriented towards communications applications. 
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3.10 Problems 

1. For transmission of the M-signal constellation S = {x) over the AWGN 
channel with noise power spectral density No/2, derive the chain of upper 
bounds 

the chain of lower bounds 

(where amin is the number of signals having at least one neighbor at distance 
dE,min), and the approximation 

(where a is the average number of "nearest neighbors," i.e., of signals at a 
distance dE,min from any element of S).  

2. Consider the one-dimensional quaternary constellation S = {fa, f b), 0 < 
a 5 b, subject to the constraint of unit average energy. Compute the exact 
error probability of this constellation over the AWGN channel, and find the 
values of a, b that minimize it as a function of No. For which value of No 
does the geometry of the minimum-P(e) constellation maximize the mini- 
mum Euclidean distance? What happens as No + O? 

3. Assuming an AWGN channel with noise power spectral density No/2, com- 
pute the bit error probability Pb(e) of 4-PSK, with Gray coding as in Fig- 
ure 3.1, as a function of &,/No. 
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4. The general Bhattacharyya bound on the painvise error probability of a 
general channel described by the conditional probability density function 
p(y I x) can be derived as follows. The maximum-likelihood demodulation 
rule consists of picking the signal 2 that maximizes p(y 1 x). Now, the 
pairwise error probability is given by 

and can also be expressed in the form 

where 
1 P(Y I 2) 2 P(Y I x) 
0 otherwise 

Show, by finding a suitable upper bound to the function f (y), that the Bhat- 
tacharyya bound holds: 

Notice also how the right-hand side of this inequality is connected to the 
Bhattacharyya distance. 

5.  (a) Derive the Chemoff bound 

where X is a real random variable. This is especially useful when X 
is the sum of independent random variables. (Hint: Write P[X 5 
01 = IE [f (X)] for a suitable choice of the function f ( . ), and bound 
this function from above.) 

(b) Use the Chernoff bound to obtain an upper bound to the painvise error 
probability for the AWGN channel. Use the following result, valid for 
X N N(p, u2): 
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6. Draw the equivalent of Figure 3.6 for QAM constellations. Use the following 
approximation to error probability: 

where SNR = E/No, € the average energy of the constellation. 

7. Redraw Figure 3.4 by plotting C vs. Eb/No. 

8. Generalize (3.69) by assuming that a nonzero error probability p is tolerated. 
(Hint: A finite error probability can be obtained by this simple scheme: 
transmit with zero error probability a fraction p* of binary symbols, and 
randomly guess the balance.) It can be shown, by using Shannon's Rate- 
Distortion Theory [3.10], that the above simple scheme can be improved by 
transmitting with zero error probability a fraction 1 +p logp+ (1 - p )  log(1- 
p) of binary symbols. This leads to the results shown in Figure 1.5. 

9. Verify that for a linear code: 

(a) The all-zero n-tuple is a code word. 

(b) The sum of two code words is a code word. 

10. A (5,3, d) linear binary code is defined through the correspondence given in 
the following table: 

Find generator and parity-check matrices for this code. 

11. Consider the linear binary Reed-Muller code generated by the 4 x 8 matrix 

Prove that this code has d = 4, and compute its asymptotic coding gain. 
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Recall that a linear binary code is called systematic if G has the form G = 

[Ik i PI, where P is a k x (n - k )  matrix. The words of these codes have the 
form 

UG = [u! UP] 

that is, the first k positions of any code word coincide with the source vector 
u. 

(a) Prove that the parity check matrix of a systematic code has the form 

(c) How should one proceed if the parity-check matrix in (b) is not full- 
rank? 

Prove that, for an (n, d, k )  systematic linear code C, the following Singleton 
inequality holds: 

d l n - k + l  

(if equality holds, C is called a maximum distance [MD] code.) (Hint: Con- 
sider words having a single "I" in their first k positions.) 

Prove inequality (3.66). 

Exhibit three simple examples of binary maximum-distance codes with length 
n. It can be proved that these are the only binary MD codes: there are, 
however, nonbinary MD codes, the most celebrated among them being the 
Reed-Solomon codes [3.8]. 

Prove that the weight enumerator of the (n, n, 1) universe code is W ( X )  = 
(1 + X)",  and that the enumerator of the (n, n - 1,2) single-parity-check 
code is 

W ( X )  = 
(1 + X ) n  + (1 - X)" 

2 

Prove that the linear binary codes are geometrically uniform. 

Consider transmission over the AWGN channel with an (n, n - 1,2) binary 
single-parity-check code, and the following decoding algorithm. First, make 
separate hard decisions !ii on the received components of y ,  based on their 
polarities, and form the n-tuple Z (!il,. . . ,!in). If Z is a code word, 
then the decoder chooses ji = Z. Otherwise, the decoder inverts the polarity 
of the component of y having the smallest absolute value, and proceeds as 
above. Prove that this "Wagner rule" yields ML decoding. 
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4.1 Introduction 

The "narrowband" channel model we consider here assumes that the bandwidth 
of the signal is much narrower than the coherence bandwidth of the channel (see 
Section 2.4). In this case, then all frequency components in the transmitted signal 
are affected by the same random attenuation and phase shift, and the channel is 
frequency flat. This entails that the fading affects the transmitted signal multiplica- 
tively: that is, if x( t )  is transmitted and z( t )  denotes the additive noise, the received 
signal has the form 

y(t) = ~ ( t ) e j ' ( ~ ) x ( t )  + z ( t )  (4.1) 

Examine now the rate of variation with time of the random process ~ ( t ) e j ' ( ~ )  
modeling the fading. A possible situation is that this process is constant during the 
transmission of an elementary signal, and varies from signal to signal. We refer to 
this channel model as to the frequency-flat, slow fading channel. 

If we can further assume that the fading is so slow that we can estimate the phase 
Q with sufficient accuracy, and hence compensate for it (coherent demodulation: 
see, e.g., [4.7]), then model (4.1) can be further simplified to 

and hence, in the framework of Chapter 3, the input-output relationship describing 
the channel behavior is 

~ = R x + z ,  X E X  (4.3) 

For coded signals, the above equation becomes 

where r ,  x, z are column n-vectors and R is a diagonal matrix. In the follow- 
ing, most of the calculations will be made under the assumption that R,  and the 
elements of the main diagonal of R, have a Rayleigh pdf with E[R2] = 1, that is, 

and we refer to this model as the Rayleigh fading channel. 

4.1.1 Ergodicity of the fading channel 

The choice of the correlations among the components of the main diagonal of R 
characterize different channel models, to the extent that their channel capacities not 
only are different but also should be defined in different ways. The definition of 
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OUT 

Figure 4.1 : A fading channel. 

channel capacity for the fading channel is connected to its ergodicity. Assume first 
that the components of the main diagonal of matrix R in (4.4) are independent RVs. 
Then, when a long code word is transmitted, its symbols are likely to experience 
all states of the channel, so the code word in a sense "averages" the channel effect, 
and the channel is ergodic. Consequently, since the capacity of an AWGN channel 
with constant attenuation R is log(1 + R2 SNR) biddimension pair, the ergodic 
fading channel capacity is given by 

C = IE [log(l + R~ SNR)] biddimension pair (4.6) 

Consider instead the opposite situation of a channel whose fading is so slow 
that it remains constant for the whole duration of a code word. The model for this 
channel has a matrix R in (4.4) whose main-diagonal components are all equal, 
and independent from word to word. This channel is nonergodic, as no code word 
will be able to experience all the states of the channel, and hence (4.6) is not valid 
anymore. 

Let us elaborate on the assumption of ergodicity for a fading channel used with 
coding. The example that follows will illustrate the difficulties of defining a capac- 
ity for nonergodic channels. Consider, for motivation sake, the following simple 
model of a fading channel. A source is connected, through a random switch taking 
on both positions with equal probabilities, to one of a pair of channels; these are 
AWGN with constant attenuation. Channel 1's attenuation is such that its capacity 
is 1 bidchannel use, while Channel 2 has capacity 2 bidchannel use (Figure 4.1). 

Suppose initially that the switch changes its position every symbol period. In 
this case, average capacity makes sense because a long code word will experience 
both channels with equal probabilities, and time average and ensemble average will 
be equal due to ergodicity. 
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Assume next that the switch remains in the same position for the whole duration 
of a code word. Then the channel is nonergodic, i.e., we cannot exchange time 
averages with ensemble averages as far as its capacity is concerned. In these con- 
ditions, ensemble average does not yield channel capacity: in fact, if we transmit 
at a rate slightly lower than the average capacity C = (Cl + C2)/2 = 1.5, one 
half of the code words (those experiencing channel 1) would be transmitted be- 
yond capacity and hence have a large error probability. To achieve high reliability 
through long code words, we need to transmit at a rate lower than 1 bitkhannel 
use, which by consequence may be interpreted as the true capacity of this channel. 
Another interpretation consists of assuming that the capacity is a random variable, 
which in this example takes on values 1 and 2 with equal probabilities. This latter 
interpretation turns out to be more fruitful in practice. In fact, consider the more 
realistic situation of a fading channel modeled through a switch choosing from a 
continuum of AWGN channels whose attenuation R, 0 5 R < m, has a Rayleigh 
probability density function. With the first interpretation, the capacity of this chan- 
nel would be zero, because there is no nonzero rate at which long code words can 
be transmitted with a vanishingly small error probability. With the second interpre- 
tation, the mutual information of this channel (which we call instantaneous mutual 
information) is the random variable C(R) 4 log(1 + R 2 s m )  bivdimension pair. 
Suppose we are transmitting at rate p bits per channel use. When the transmission 
rate exceeds the capacity, we say that an information outage occurs, an event that 
has probability 

and corresponds to the long code word transmitted being received unreliably. We 
see that, in this case, only the zero rate p = 0 is compatible with infinitely reliable 
transmission (Pout = 0), so capacity is zero. This situation corresponds, as before, 
to the worst channel state (R = 0 here). In general, outage probability expresses a 
tradeoff between rate and error probability. 

In these conditions, for a nonergodic channel we may define an &-outage ca- 
pacity as the maximum rate p that can be transmitted with an outage probability 
Pout = E. Notice also that the outage probability provides an estimate of word 
error probability when the transmitted words are long enough. In fact, powerful 
error-control codes provide nearly error-free frames at transmission rates below 
instantaneous mutual information, and mostly erroneous frames at rates above it. 
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4.1.2 Channel-state information 

As we know, in fading channels more than one source of randomness is included, 
viz., the fading process and the additive noise. It may happen that the receiver or 
the transmitter or both have at least a partial knowledge of the realization of the 
fading process, which we call the channel-state information (CSI). The coding and 
decoding strategies depend crucially on the availability of CSI. 

CSI at the receiver can be obtained through the insertion, in the transmitted sig- 
nal, of suitable pilot tones or of pilot symbols, i.e., known symbols transmitted 
periodically. These allow the demodulator to take advantage of its knowledge of 
the channel fading gain and hence to adjust its parameters to optimize operation. 
On the other hand, CSI at the transmitter allows it to adjust its transmitted power, or 
its information rate, so as to adapt the transmission to channel conditions. Trans- 
mitter CSI can be relayed from the receiver through a feedback path, or, when 
transmissions in both directions are multiplexed in time, the signal from the oppo- 
site link can be used to measure the channel state. Transmit-power control turns 
out to be a most effective technique to mitigate fading. A practical problem with 
this approach comes from the difficulty of obtaining a reliable estimate of the CSI. 
In fact, unless uplink and downlink transmissions occur at the same frequency and 
in time intervals spaced by less than the coherence time of the channel, the CSI 
has to be relayed from the receiver back to the .transmitter, which decreases the 
throughput and increases the complexity of the system. 

4.2 Independent fading channel 

In the fading model (4.3), the only difference with respect to an AWGN channel 
resides in the fact that R, instead of being a constant attenuation, is an RV, whose 
value affects the amplitude, and hence the energy, of the received signal. Here we 
assume that the fading values R are independent and identically distributed, and 
also that the values taken by R are known at the receiver: we describe this situation 
by saying that we have perfect CSZ. 

Detection of an uncoded elementary constellation with perfect CSI can be per- 
formed in exactly the same way as for the AWGN channel: in fact, the constellation 
structure is perfectly known, as is the attenuation incurred by the signal. The opti- 
mum demodulation rule in this case consists again of choosing the signal in S that 
minimizes the Euclidean distance 
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A consequence of this fact is that the error probability with perfect CSI can be 
evaluated as follows. We first compute the error probability P(e I R )  obtained 
by assuming R constant in (4.3). Next we take the expectation of P(e I R) ,  with 
respect to the random variable R. The calculation of P(e I R )  is performed as if 
the channel were AWGN, but with a constellation scaled by a factor R, i.e., with 
an energy associated with each signal changed from 1xI2 into R~ 1xI2. 

The conditional error probability P(e I x ,  R )  can be bounded above by the 
union bound 

P ( ~ I X , R ) < ~ P ( X + ~ I R )  (4.9) 
P # x 

where P(x + 8 I R )  denotes the conditional pairwise error probability, i.e., the 
probability that the distance of the received signal from 8 is smaller than that from 
the transmitted signal x when R is the channel state. We have explicitly 

and hence 
P(x + 2)  =IERP(x + 8 I R )  

where the expectation is taken with respect to the fading RV R. Under the assump- 
tion of Rayleigh fading, the expectation above can be given a closed form, and we 
have 

2 
(4.11) 

1 + I X  - 8l2/4NO 

Using the approximation, valid for z + m, 

we obtain, as No -t 0, 
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Example 4.1 
With binary antipodal signals with common energy E ,  we have lx - ? I 2  = 415, and 
hence 

This equation shows how P(e) turns out to be inversely proportional to SNR. Com- 
parison of the error probability of this constellation for the AWGN channel and the 
Rayleigh fading channel (see Figure 4.2) shows that there is a considerable gap in 
performance between the two channels, which increases with SNR. As we shall see 
in the following, coding can be used to reduce this gap by a considerable amount. 
0 

Example 4.2 
If, over the AWGN channel, P(e) can be approximated by aQ(J2yEbINo), then 
over a fading channel we can use the approximation 

As a special case, for a Rayleigh fading channel we have, in closed form, 

and asymptotically 

This shows that, on the Rayleigh fading channel, all modulation schemes are equally 
bad, as their error probabilities decrease equally slowly as the SNR increases. 

4.2.1 Consideration of coding 

Consider now coded transmission. We have, using the inequality Q(z) 5 e-"'I2, 
or, equivalently, the Chernoff bound (see the Problem section of Chapter 3): 
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Figure 4.2: Comparison of error probabilities of antipodal binary modulation over 
the AWGN and the Rayleigh fading channel. Here SNR= lE(R2)&/No = &/No. 
The efect of independent Rice fading with parameter K is also shown. 

Now, the assumption of independent Rayleigh fading yields 

Further, observe that for some index i we may have iti = xi, although 2 # x.  
Specifically, 2 will differ from x in exactly dH(x,  2)  components, whose indices 
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are collected in a set 3. Thus, as N + 0 we can write 

By using the union bound as we did in the previous chapter, we see that the 
error probability is dominated by the pairwise errors with the smallest d H ( x ,  R), 
denoted by dHYmin. For small noise, this is the exponent of sNR-l. 

Notice also the effect of the product distance 

This does not depend on SNR, and its effect is to shift horizontally the curve of PEP 
vs. SNR. The smallest among the product distances can be called coding gain. 

Result (4.17) shows that a sensible criterion for the selection of a code for the 
independent Rayleigh fading channel with high SNR (low No) is the maximization 
of the minimum Hamming distance between any two code words. This selection 
criterion differs considerably from the one obtained for the AWGN channel. The 
minimum Hamming distance of the code is sometimes referred to as code diver- 
sity. Originally, the term diversity denoted the independent replicas of the transmit- 
ted signal made available to the receiver through multiple antennas, transmission 
through separate channels or separate polarizations, etc., to be described later in 
this chapter. Since the diversity order appears as the exponent of SNR-~ in the 
expression of error probability, and Hamming distance is also an exponent to er- 
ror probability when coding is used, the term code diversity was coined. Among 
codes with the same diversity, a sensible choice is to choose the one with the largest 
coding gain. 

Example 4.3 

Consider transmission of the 4-PSK constellation shown in Figure 4.3(a). This 
figure corresponds to the code with n = 2 and the four words 

(assume unit energy). Constellation (b) is obtained by rotating (a) by ~ / 8 ,  and has 
the same performance as (a) over the AWGN channel [4.7, Section 4.2.21. How- 
ever, while (a) has a minimum Hamming distance dH,,i, = l, it can be easily 
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Figure 4.3: (a) Standard 4PSK constellation. (b) 4PSK constellation after a rotation 
by ~ / 8 .  (c)-(d) Effect of  a deep fade affecting the signal component conesponding 
to the vertical axis on constellations (a) and (b), respectively. 

checked that (b) has dH,,i, = 2 and hence offers a better performance for high 
SNR over the independent Rayleigh fading channel. To illustrate this point, con- 
sider a two-dimensional transmission whereby the two components of each signal 
are independently faded. Let a deep fade affect only the second signal component: 
hence, constellation (a) collapses to a pair of points, thus losing one bit of infor- 
mation, while constellation (b) retains a separation among points even in a single 
dimension. It is instructive to evaluate the product distances of the rotated constel- 
lation, and to determine the rotation angle that minimizes the coding gain. 0 

4.2.2 Capacity of the independent Rayleigh fading channel 

Consider first the assumption of availability of channel-state information at the re- 
ceiver only. With this model we observe once again that, for every channel use, 
conditionally on the value of R, the channel is Gaussian with attenuation R. As- 
sume that the sequence of fading values R forms an ergodic process, which is veri- 
fied if the fading values are iid. The Shannon capacity is now the average capacity, 
which can be calculated by using the following equation: 

C = IE log(1 + R~ SNR) bitldimension pair (4.18) 
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Figure 4.4: Capacity of the AWGN channel and of the independent Rayleigh fading 
channel. 

where the expectation is taken with respect to the RV R. Using Jensen inequality 
E [f (X)] 5 f (lE [XI), valid for any concave fl function f and any RV X, we can 
see that, with E R2 = 1, (4.18) is always less than the capacity of the AWGN 
channel with the same average power. 

If R is Rayleigh distributed, calculation of the expectation in (4.18) yields 

1 C=--  bitldimension pair (4.19) 
2 In 2 

where 

The average capacity (4.19) is plotted in Figure 4.4. It is seen that the gap between 
the AWGN channel capacity and the capacity of the independent Rayleigh fading 
channel is much smaller than the one exhibited by the error-probability curves 
(Figure 4.2): this suggests that coding can be very beneficial to compensate for 
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fading. The gap widens as SNR increases, and reaches its asymptotic maximum 
of 2.5 dB (see Problem 1). 

We can also duplicate, for the independent Rayleigh fading channel, the cal- 
culations leading to (3.69) and deriving the minimum SNR necessary to achieve 
infinitely reliable transmission with a rate-p code. Some values of Eb/No solving 
the equation 

are shown in Table 4.1, along with the corresponding values for the AWGN chan- 
nel. 

EbIN0 (AWGN) -1.6 -1.21 -0.82 -0.55 0. 0.57 0.86 
Eb/No (Rayleigh) -1.6 -0.89 -0.23 0.18 1.0 1.77 2.16 

Table 4.1 : Minimum E b/No values allowing infinitely reliable transmission with 
rate-p codes over the AWGN and the independent Rayleigh fading channel. 

As for the codes that achieve capacity, as in the AWGN case a simple standard 
(Gaussian) code will suffice; however, it should be observed that since ergodicity 
is invoked here, the code words must be long enough to experience all the channel 
states. This implies that, according to our discussion in Chapter 2, their duration 
should be much greater than the coherence time of the channel. 

As for the constellation-constrained capacity (evaluated under the usual assump- 
tion that the signals of the elementary constellation X are used with equal proba- 
bilities), we can compute it by defining the following probability density function, 
derived from (3 S3): 

pR(y I = Ce-II~-~112/N~ 

and using this expression for capacity (see 3.51): 

This capacity can be evaluated numerically (for small I XI) or via Monte Carlo 
simulation. Figure 4.5 compares the capacity of the ergodic Rayleigh fading chan- 
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Figure 4.5: Constellation-constrained capacity of the independent Rayleigh fad- 
ing channel with coherent detection of binary, quaternary, and octonary PSK and 
perfect channel-state information. The unconstrained Rayleigh-fading channel and 
AWGN channel capacities are also shown for comparison. 

nel with that of the AWGN channel for some two-dimensional signal constella- 
tions. (Compare Figure 4.5 with Figure 3.4, where the constrained capacity for the 
AWGN is shown for the same constellations). 

No channel-state information 

In the absence of channel-state information (regarding both envelope and phase of 
the fading), we observe the received signal 

where Rexp( j0)  N Nc(O, 1). Thus, the conditional pdf of y given x ,  R, and 0 ,  is 
Gaussian: 

1 
p(y I x,  R ,  0 )  = - exp [-Iy  - R ~ " X ~ ~ / N ~ ]  (4.22) 

rN0 
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We average the pdf above over the random variable R exp(j@) by observing that 

so the conditional pdf describing the channel behavior takes the form 

where the following result, valid for a real RV X -- N ( p ,  a2), has been used: 

Over this channel we cannot use a modulation scheme whose signals have a con- 
stant magnitude and information-carrying phases. For these, the received signal 
becomes independent of the transmitted signal even in the absence of noise. We 
observe, for example, that binary antipodal signaling, which has X = {f 1), fails, 

as P(Y I +I) = P(Y I -1). 
By adding a constraint on the average transmitted power, the capacity of this 

channel can be computed. The surprising result here is that the capacity-achieving 
input distribution is discrete. No general closed-form is known for this distribution; 
however, asymptotic results are available. Specifically, for low SNR the capacity- 
achieving distribution has only two mass points, with one of the masses located at 
zero, and hence the optimum modulation scheme is on-off. 

The resulting capacity of a Rayleigh fading channel is shown in Figure 4.6, 
and compared with the capacity of the AWGN channel and of the Rayleigh fading 
channel with channel-state information at the receiver. The lack of CSI at the 
receiver is seen to be especially penalizing at high SNR values. 

Channel-state information at the transmitter and receiver 

Here we assume again that the sequence of fading values R forms an ergodic pro- 
cess. Conditional on the value of R, the capacity of the channel is log(1 + R2 SNR) 
bittdimension pair. Now the value of R is known at the transmitter, which may 
take appropriate actions to counteract the fading effects. Suppose that we allow the 
transmitted power, and hence the SNR, to vary with R, so we write S(R) in lieu 
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SNR (dB) 

Figure 4.6: Capacity of the AWGNchannel and of the independent Rayleigh fading 
channel with and without channel-state information. 

of SNR. (One may prefer thinking of S(R) as a transmitted power, which is con- 
sistent with the following if a unit noise power is assumed.) Subject to an average 
power constraint E [S(R)] 5 3, the channel capacity can be defined as [4.12]: 

C(S) 4 ma. E log ( 1  + R ~ s ( R ) )  
S(R):IE [ s ( R ) ] = ~  

The power-adaptation policy S(R) that yields the maximum in (4.23) is obtained 
by using standard Lagrange-multiplier techniques to solve the constrained-maxi- 
mization problem implied by (4.23). The results is the "water-filling7' formula 

for some cutoff value Ro. From (4.24) we see in particular that, if R is below this 
cutoff, then the best strategy is to transmit no data. 
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Ro is determined by the average-power constraint and the fading statistics. Sub- 
stitution of (4.24) into the average power constraint yields the equation that Ro 

Substitution of (4.24) into (4.23) yields the closed-form expression 

This capacity is achieved by a Gaussian code book where every symbol is gener- 
ated as -- N(0, I), then scaled in amplitude according to the power adaptation pol- 
icy (4.24). Notice also that, while the capacity with CSI at the receiver only never 
exceeds that of the AWGN channel (we observed this in Subsection 4.2.2), no such 
inequality holds for the capacity with CSI at transmitter and receiver [4.11]. Fig- 
ure 4.7 shows the effect on capacity of CSI at transmitter. The capacity of AWGN 
is also shown. We can observe that, when the SNR is very low, the capacity with 
CSI at the transmitter and receiver exceeds that of the AWGN channel. We also 
observe that, unless the SNR is very low, CSI at the transmitter increases capacity 
very little. 

4.3 Block-fading channel 

In a typical wireless system, Doppler spreads may range from 1 to 100 Hz, corre- 
sponding to coherence times from 0.01 to 1 s, while transmission rates range from 
2 . lo4 to 2 . lo6 elementary signals per second. Thus, blocks with a length L 
ranging from 2 . lo4 x 0.01 = 200 symbols to 2 . lo6 x 1 = 2 . lo6 symbols are 
affected by approximately the same fading gain.' If coding is used, then in order to 
make the fading gains affecting the symbols of x independent, interleaving must 
be introduced. 

Interleaving consists of making the channel approximately memoryless by per- 
muting the order of the transmitted elementary signals. These are dispersed over 
different coherence intervals, and hence are affected by independent fades. More 
specifically, consider an a x b matrix. After being generated, the elementary sig- 
nals are written rowwise into the matrix, then read columnwise and transmitted. 

'1n practice, to claim with a fairly high degree of confidence that the fading gain is almost constant 
throughout the block, the maximum block duration should be limited to a fraction (e.g., 114) of the 
coherence time. 
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Figure 4.7: Capacity o f  the independent Rayleigh fading channel with channel state 
information at the receiver only and with channel-state information at the receiver 
and transmitter. The capacity of the AWGN channel is also shown for comparison. 

from to channel 

Figure 4.8: A 4 x 8 interleaving matrix. 

For example, if the interleaving matrix is 4 x 8 as shown in Figure 4.8, the sig- 
nals XI, x2, . . . , x32 enter the channel in the order XI, XCJ, ~ 1 7 ~ ~ ~ 5 ~ x 2 ,  ~ 1 0 ~ x 1 8 ,  

etc. After reception, the original order of the signals is reconstituted by dein- 
terleaving, i.e., by having them written columnwise and read rowwise. Thus, if 
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BLOCK 1 BLOCK 2 BLOCK 3 BLOCK F 

Figure 4.9: The block-fading channel model: the code word length is split into F 
blocks of length v each; the fading is constant over each block. 

the same fading value affects four signals that are adjacent on the channel, say for 
instance 2 2 ,  ~ 1 0 ~ x 1 8 ~ ~ 2 6 ,  we see that it affects signals that, in their original or- 
der, are separated by at least eight positions. In order for the fading to affect each 
coded symbol independently, the size of the matrix must be made large enough. 
Notice that interleaving and deinterleaving involve a delay due to the time required 
to readlwrite the matrices: this delay is proportional to the size of the matrix. 

Now, with a code with length n, if we want each component of x to be affected 
by an independent fading gain the time interval spanned by a single interleaved 
code word x must be made at least nL. Thus, the (interleaving) delay of the system 
is large and, above all, characterized by L, a parameter that is not under control of 
the code designer. 

The trade-off involved in interleaving (which improves performance, as we shall 
see, but increases delay) is dependent on applications. In delay-tolerant systems 
(data transmission, broadcasting, etc.) deep interleaving is possible, and hence the 
independent-fading assumption is reasonable. In delay-constrained systems, like 
those transmitting real-time speech, separation of coded symbols by more than the 
coherence time of the channel is not possible, and therefore a length-n code word 
is affected by a number of independent fading gains that is less than n. In this case, 
each word is split into a number of blocks that is a fraction of n, and over each 
block the channel fading is correlated so highly that we may model it as constant. 
Note that codes designed ad hoc for correlated fading are rather unpractical, since 
optimality criteria would depend on the fading Doppler bandwidth, which in turn 
depends on the mobile speed. 

When delay constraints are present, the block-fading model turns out to be the 
sensible choice in many instances. This model assumes that the fading gain pro- 
cess is piecewise constant and can be described through a sequence of independent 
random variables, each of which is the fading gain in a block of v elementary sig- 
nals. A code word of length n is spread over F blocks of length v symbols each, 
so that n = Fv (see Figure 4.9). If v = n, and hence F = 1, we have a channel 
in which the entire code word is affected by the same fading gain. If v = 1, and 



4.3. Block-fading channel 101 

hence F = n (ideal interleaving), each symbol is affected by an independent fad- 
ing gain, which shows that the independent fading channel model examined above 
is a special case of this model. 

The delay constraint to which the communication system is subject determines 
the maximum number F of independently faded blocks over which a code word of 
length n = F v  can be spread. The choice F + oo makes the channel ergodic and 
allows channel capacity, in Shannon's sense, to be defined. 

This block-fading model can be used as an approximation whenever the fading- 
gain process can be approximated by a piecewise-constant process. It is an ex- 
act model whenever the coherence time Tc is large enough (stationary or almost- 
stationary users) and the code word is spread over a finite number F of blocks 
transmitted over independent channels. These, in turn, can be generated by trans- 
mitting blocks over frequency bands separated by at least B, (slow frequency hop- 
ping where v symbols are transmitted per hop), or over time intervals separated by 
at least T,. The first choice occurs in GSM, with F = 8 (full-rate GSM) or F = 4 
(half-rate GSM), while the second occurs in IS-136. 

4.3.1 Mathematical formulation of the block-fading model 

To describe the block-fading model mathematically, we define the code word X as 
the F x v matrix whose mth row contains the mth block x,, m = 1, . . . , F ,  with 
length v. The mth block is sent over a constant-fading channel with gain R,. The 
channel output matrix corresponding to X is given by 

where 

X =  [rl ] 
XF 

and R diag(R1, . . . , RF), while Z is an F x v matrix of independent Gaussian 
noise RVs. 

As observed before, the fully interleaved channel and the block-fading channel 
are formally very similar. The former is obtained from the latter by choosing v = 1, 
and hence F = n, while the latter corresponds to the former with X interpreted 
as a code word of length F whose components are chosen from Xu, the v-fold 
Cartesian product of X-that is, their dimensionality is v times the dimensionality 
of the elementary signals x. As usual, X is a two-dimensional signal set, such as 
QAM or PSK, so that each row of the matrix X can be seen to be a signal of a 
2v-dimensional signal set. 
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4.3.2 Error probability for the coded block-fading channel 

Based on the model developed in the previous section, we focus here on the trans- 
mission of a coded modulation scheme over a block-fading channel with perfect 
CSI at the receiver. As discussed before, a code word of length n is split into F 
blocks, each of length v. Each block represents a signal in Xu: that is, we do not 
consider explicitly the "fine grain" of the code, i.e., the fact that a block is actually 
a sequence of elementary signals. Here, a "channel use" indicates transmission of 
an element x of X", affected by an independent fading value and by AWGN. 

As we have done previously, upper bounds and approximations to error probabil- 
ity can be constructed by using the painvise error probability (PEP) P ( X  -+ 2). 
This is the probability of mistaking the transmitted code word X for a different 
coded block % when these two are the only possible outcomes of the decoder. 
Then, simple coding optimization criteria can be based on the analysis of PEP. 

PEP analyses carried out for the independent fading model can be repeated here, 
mutatis mutandis, for the new signal set Xu. Denote by IlBll the Frobenius norm 
of B (see Section B.5 of Appendix B). Based on (4.27), the PEP is given by 

so that, using once again the bound Q (x) 5 exp(-x2/2), we obtain 

where the expectation is with respect to the fading sequence R1, . . . , RF. 
For Rayleigh fading, independent from block to block, we have 

so that 
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where 3 is the set of indices i such that [(xi - Si 11 # 0, that is, such that the blocks 
xi and Si differ. Denote by DF(X, %) the number of rows in which X and % 
differ (we call this the Hamming block distance between X and %). We can write 

(Notice the similarity of the above equation with (4.17).) 

Hamming block distance and its significance. Result (4.33) shows the impor- 
tant fact that the error probability is (asymptotically for high SNR) inversely pro- 
portional to the product of the squared Euclidean distances between the signals 
transmitted in a block, and, to a more relevant extent, to a negative power of the 
signal-to-noise ratio whose exponent is the Hamming block-distance between X 
and %. 

By using the union bound as we did in the previous chapter, we see that the error 
probability is dominated by the pairwise errors with the smallest DF(X, %), say 
DF,rnin. This in turn is a nondecreasing function of F, as can be easily verified: 
thus, the presence of a delay constraint impairs the exponent of error probability. 

Example 4.4 

As an example, consider a block code with length 16, X = {f 1), and the two code 
words 

It can be seen that the Hamming block distances between these two code words 
corresponding to different values of F are Dls = 7 (corresponding to independent 
fading, i.e., full interleaving), D8 = 6, D4 = 3, D2 = 2, and Dl = 1 (correspond- 
ing to no interleaving). 0 

Example 4.5 

In Chapter 3 we have exhibited a signal constellation (the orthogonal signals) that 
asymptotically, for large alphabet size, has an error probability that tends to zero 
provided that &/No > ln 2. This threshold value corresponds to the limiting value 
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given by the capacity formula for infinite-bandwidth AWGN channel. We shall now 
see that the same constellation, when used on the block-fading channel with no 
interleaving, cannot achieve zero error probability for any finite Eb/No. 

Since for the AWGN channel the error probability of M-ary orthogonal signals 
can be written in the form 

lim P M ( e )  = [&&/No < ln2] 
M + w  

(where [A] takes value 0 if the proposition A is true, and 0 otherwise), with the 
fading gain R affecting all the transmitted components of signal x, we have 

With R a Rayleigh random variable, we have 

lim PM (e) 
M - m  

Thus, no infinitely reliable transmission is possible with finite SNR, contrary to 
what happens with ergodic fading. 0 

Singleton bound on Hamming block-distance. It can be shown that the max- 
imum Hamming block-distance achievable on an F-block fading channel can be 
obtained as follows (Generalized Singleton bound: see the Problem section). As- 
sume again that the code words are composed of F blocks from Xu, and let p 
denote the code rate, expressed in bits per elementary signal. The following in- 
equality holds (see the Problem section): 

We notice that the right-hand side of (4.35) increases with F (showing that inter- 
leaving is beneficial) and with I XI (showing that binary elementary constellations 
are worse). It decreases as the rate p increases. 

Codes meeting the equality in (4.35) are called maximum-distance (MD) codes. 

4.3.3 Capacity considerations 

As mentioned before, when the ergodicity assumption cannot be invoked, the chan- 
nel capacity may be viewed as a random entity that depends on the instantaneous 
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parameters of the fading process. In this situation we associate an outage prob- 
ability with every given rate p; since the capacity associated with the ith block, 
1 5 i 5 F ,  is the random variable C(Ri) = log(l+ RT SNR), the average instanta- 
neous mutual information is (1/F) EL, C(Ri), and hence the outage probability 

where p is the average transmission rate. 
Consider first F = 1: a stringent delay constraint prevents transmitting infor- 

mation in more than a single block, and the same fading value affects the entire 
code word. With Rayleigh fading, the probability that C(R) 5 p is given by 

as derived earlier in this chapter. Observe that, at high SNR, 

which decreases as SNR-~. We have previously observed (Example 4.2) that the 
error probability of any uncoded modulation scheme decreases as sNR-l. Thus, 
we cannot expect coding to improve significantly the error performance of this 
channel with F = 1. 

With F = 2, which corresponds to a decoding-delay constraint that is slightly 
relaxed, a code word is transmitted in two separate blocks. Using independent 
Gaussian symbols on the two blocks, the random capacity is (112) [C(Rl)+C(R2)], 
and consequently the outage probability, with Rayleigh fading and under the as- 
sumption of equal SNR on both blocks, can be computed as 

pout (p) = (4.37) 
= P[(1/2) log(1 + R: sNR) + (112) log(1 + R; sNR) 5 p] 

= P[(1+ R: sNR)(l+ R; sNR) 5 22p] 

The outage probabilities for F = 1 and F = 2 are plotted in Figure 4.10. 
The calculations done so far assumed that channel-state information was avail- 

able at the receiver only. If no CSI is made available before transmission, the 
outage-probability results still hold, as the following simple argument shows. Our 
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p (bitldimension pair) 

Figure 4.10: Outage probability for the block-fading channel with Rayleigh fading, 
F = 1 (continuous line) and F = 2 (dash-dot line). 

assumption with block fading is that the channel state remains constant as the block 
length n of the code increases. Hence, we can estimate it, using a training sequence 
whose length is proportional to ,hi, which entails no decrease in the code rate as 
n + oo. 

Consider now the more complex case of channel-state information being avail- 
able at both transmitter and receiver, so that a strategy can be used to compensate 
for the effects of fading. This is described by the function S(R), which yields for 
the ith block the random capacity log(1 + R:S(R~)). With F = 1 the optimal 
strategy is to invert the channel, that is, to choose S(R) oc 1/R2. If the constraint 
to be satisfied has the form IE[S(R)] = S, then channel inversion yields 

which corresponds to the capacity 
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Thus, if E[R-~] < m ,  capacity is nonzero, and hence the channel can support a 
finite rate with a zero outage probability. When this occurs, C is called zero-outage 
capacity. 

Example 4.6 

With Rayleigh fading we have IE[RW2] = m, that is, channel inversion requires 
transmission of an infinite average power. Thus, zero outage cannot be reached 
with finite power even in the presence of CSI at the transmitter. (Later on in this 
chapter we shall see that the introduction of receiver diversity yields a positive zero- 
outage capacity.) 

When channel inversion is not possible with finite power because IE[R-~] = m ,  
an alternative strategy is to choose S(R) inversely proportional to R~ only when 
R > R*, where R* is a suitable threshold, and S(R) = 0 otherwise. In [4.11] 
it is shown that the latter power-control policy is actually optimum, in the sense 
that it minimizes the outage probability under a long-term power constraint, i.e., a 
constraint on the power expenditure as averaged over many code words. We may 
interpret this power allocation technique by saying that, if fading is very bad, then 
the power needed to compensate for it by channel inversion would affect the aver- 
age power too much. Under these conditions, it is better to turn off transmission 
and accept an outage. 

The above solution can be generalized to higher values of F. In this case, the 
random capacity corresponding to the fading values R1, . . . , RF is given by 

and the outage probability is again minimized under a long-term power constraint 
by turning off transmission over p blocks (where p E {O,1 ,  . . . , F))  whenever 
the point in the F-dimensional space with coordinates R1, . . . , RF falls in certain 
regions whose structure depends on the channel statistics and on the power con- 
straint [4.11]. 

Figures 4.11 and 4.12 show the outage probabilities obtained by choosing the 
optimum power-allocation strategy or constant power (which corresponds to no 
CSI at transmitter) in a transmission with rate p = 0.4 bitldimension pair. With 
F = 1, it is seen that infinite SNR is required to have Pout = 0, which implies 
that the zero-outage capacity is zero here. On the other hand, the power savings 
obtained by using the optimum power-allocation strategy are dramatic (e.g., 22 dB 
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SNR (dB) 

Figure 4.1 1 : Outage probability for the block-fading channel with Rayleigh fading 
and F = 1. The rate is p = 0.4 bitldimension pair. Channel-state information is 
available at transmitter and receiver. 

for Pout = especially when we observe that CSI provides little advantage in 
terms of ergodic capacity. With F = 2, the power savings decrease, and we have 
Pout = 0 for finite SNR, indicating that the zero-outage capacity is nonzero. 

4.3.4 Practical coding schemes for the block-fading channel 

From (4.35) we observe that, for high SNR, binary signal sets (1x1 = 2) are not 
the most effective on block-fading  channel^.^ Thus, codes constructed over high- 
level alphabets should be considered [4.14,4.15]. The simplest coding scheme 
for achieving diversity F over the block-fading channel is repetition coding. For 
v = 1, this has I X I words, p = loga I X [ I F ,  and Dmi, = F. Short MD codes for 
block-fading channels with M = 2,6, and 8 can be formed by either shortening 

2~ompounding this, when the SNR is low, higher-order constellations may result in additional 
losses due their sensitivity to synchronization inaccuracies. 



4.4. Introducing diversity 109 

SNR (dB) 

Figure 4.12: Outage probability for the block-fading channel with Rayleigh fading 
and F = 2. The rate is p = 0.4 bit/dimension pair. Channel-state information is 
available at transmitter and receiver. 

or lengthening ReedSolomon codes [4.14]. An extended MD Hamming code for 
F = 6 can also be exhibited. A computer search of trellis codes suitable for this 
channel has also been performed [4.14]. 

4.4 Introducing diversity 

We have seen that the effect of fading on the performance of uncoded transmission 
requires delivering a power higher, and in some cases much higher, than that for 
an AWGN channel to achieve the same error probability. For example, passing 
from AWGN to Rayleigh fading transforms an exponential dependency of error 
probability on SNR into an inverse linear one. To combat fading, and hence to 
reduce transmit-power needs, a very effective technique consists of introducing 
diversity in the channel. Based on the observation that, on a fading channel, the 
SNR at the receiver is a random variable, the idea is to transmit the same signal 
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Figure 4.13: Illustrating diversity and combining. 

through r separate fading channels. These are chosen so as to provide the receiver 
with r independent (or close-to-independent) replicas of the same signal, giving 
rise to independent SNRs. If r is large enough, then, at any time instant, there 
is a high probability that at least one of the signals received from the r "diversity 
branches" is not affected by a deep fade and hence that its SNR is above a critical 
threshold. By suitably combining the received signals, the fading effect will be 
mitigated. 

Many techniques have been advocated for generating the independent channels 
on which the diversity principle is based, and several methods are known for com- 
bining the signals y ~ ,  . . . , y, obtained at their outputs into a single signal (Fig- 
ure 4.13). The most important among them can be categorized as follows. 

Space diversity. This consists of receiving the signal through r separate antennas, 
whose spacing is wide enough with respect to their coherence distance so as 
to obtain sufficient decorrelation. This technique can be easily implemented 
and does not require extra spectrum occupancy. (In Chapter 10 we shall 
examine in detail a situation in which multiple transmitting and receiving 
antennas are simultaneously employed.) 

Polarization diversity. If a radio channel exhibits independent fading for signals 
transmitted on orthogonal polarizations, then diversity can be obtained by 
using a pair of cross-polarized antennas in the receiver. Notice that only two 
diversity branches are available here, while any value of r can in principle be 
obtained with space diversity. On the other hand, cross-polarized antennas 
do not need the large physical separation necessary for space diversity. In 
scattering environments tending to depolarize a signal, there is no need for 
separate transmission. 
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Frequency diversity. This is obtained by sending the same signal over differ- 
ent carrier frequencies whose separation must be larger than the coherence 
bandwidth of the channel. Clearly, frequency diversity is not a bandwidth- 
efficient solution. 

Time diversity. If the same signal is transmitted in different time slots separated 
by an interval longer than the coherence time of the channel, time diver- 
sity can be obtained. Since, in mobile radio systems, slow-moving receivers 
have a large coherence time, time diversity in these conditions could only be 
introduced at the price of large delays. 

4.4.1 Diversity combining techniques 

Three main combining techniques, viz., selection, maximal ratio, and equal gain, 
will be described here. Each of them can be used in conjunction with any of the 
diversity schemes just listed. Some analyses will follow; however, it should be 
clear from the onset that the relative advantage of a diversity scheme will be lower 
as the channel moves away from Rayleigh fading towards Rice fading. In fact, 
increasing the Rice factor K causes the various diversity branches to exhibit a 
smaller difference in their instantaneous SNRs. This typically occurs when a fixed 
path becomes available in addition to scatter paths (see Section 2.3.1). Notice that 
the increased quality of the Rice channel may more than make up for the decreased 
diversity. 

We assume here that transmission is uncoded (the case of coded transmission 
will be dealt with, in a more general framework, in Chapter 10). When the elemen- 
tary signal two-dimensional x is transmitted, the received signal at the output of the 
r diversity branches can be modeled as an r-vector: the model for this single-input, 
multiple-output (SIMO) channel is 

where y is a vector whose r components are the observed channel outputs, h 
is a random r-vector modeling the fading affecting the r diversity branches (its 
entries hi = ~ ~ e j ~ i  are independent complex RVs under our assumptions), and 
z - x(0, NOIT) describes the white noise, assumed independent from branch to 
branch. 

The optimum (maximum-likelihood) detection of x given the observation y and 
perfect knowledge of the value taken on by h (the channel-state information) con- 
sists of looking for the signal x that minimizes the norm Ily - hxll. A simpler 
way of proceeding consists of transforming, through a combiner, the vector y into 
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a scalar ij that is used for demodulation as if it were obtained at the output of 
a single-input, single-output channel. Here we examine some of these combin- 
ing techniques, focusing on the SNR obtained. Specifically, consider the SNR in 
the ith diversity branch. This SNR is R:&/No. A combination technique gen- 
erates an output whose SNR is R ~ & / N ~ ,  with R a function of R1,. . . , R,. The 
error probability can consequently be reduced to the calculation of the expectation 
IER f (R2&/No), where f (€/No) is the error probability over the AWGN channel, 
consistently with our discussion in Section 4.2. 

Maximal-ratio combining 

A family of combination techniques consists of forming a linear combination of the 
signals at the output of the r diversity branches. The problem here is to select the 
coefficients of the linear combination according to a suitable optimization criterion. 
Formally, before detection the received signal y is linearly transformed into the 
scalar y by using an r-vector a to obtain ?j aty. 

With maximal-ratio combining, the vector a is chosen so as to maximize the 
SNR at the combiner's output. Since aty = a thx  + atz, the ratio of signal energy 
to noise power spectral density at the output of the combiner is 

where the Schwarz inequality lath12 5 lla1I2 11 h 11 has been used. Now, since (4.41) 
holds with equality if and only if a = ~h for some complex scalar K, then the 
SNR (4.41) is maximized by choosing y = hty. This yields 

Maximum-likelihood detection can be performed by minimizing Ily - hxll over 
x. Now, observe that 

and that the term [ $ I 2  is irrelevant when it comes to searching for the signal x that 
minimizes the metric. Moreover, multiplication of a metric by a positive quantity 
yields an equivalent metric. Thus, we may use -2?R[y*x] + llh1121x12 instead of the 
original metric. This is equivalent to the ML metric: in fact, 
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is equivalent to -2R[Q*x] + llh1121x12. 
Note that, since R2 = lhiI2 with IE[lhi12] = 1, we have 1iI[R2] = r. 

This is due to the increase of the power captured by the r separate receivers in a 
SIMO transmission system, and shows that r-branch diversity with maximal-ratio 
combining increases the average SNR by a factor r .  In addition to this effect, the 
shape of the pdf of the fading gain changes as r increases. To isolate this last effect 
from the previous one, we may consider the normalized SNR, which is 

Using the law of large numbers, we see that as r + oo we have E ' / N ~  + €/No,  
which is the SNR one would obtain on an AWGN channel without fading: we see 
how diversity serves the dual role of capturing more power and at the same time 
reducing channel fluctuations. 

To evaluate the error performance of maximal-ratio combining, observe that, 
since R = 1 1  hll, the pairwise error probability becomes 

with the expectation being taken with respect to R. In general, a PEP can be 
evaluated by first writing down the corresponding PEP for the AWGN channel, 
next multiplying the SNR by the factor R2, and finally taking the expectation. 

If the components of vector h are independent complex Gaussian RVs with 
mean zero and common variance IE[lhi12] = 1, i = 1,. . . , r ,  then R2 is a chi- 
square distributed random variable with 2r degrees of freedom. Its probability 
density function is 

The following expectation can be computed in closed form as follows (see Sec- 
tion D. 1, Appendix D): 

where 
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Using this calculation, the PEP (4.43) can be given a closed form by identifying 

For large-enough values of P ,  we have (1+p)/2 1 and, using (4.12), (I-p)/2 - 
1/2P2. Moreover, 

Since P2 is proportional to SNR, diversity of order r makes the error probability 
decrease as SNR-'. 

Example 4.7 

Consider binary antipodal modulation with coherent detection transmitted over 
an independent Rayleigh fading channel and detected with r-branch diversity and 
maximal-ratio combining. Since lx - iI2 = 4Eb, its error probability is given by 

and this expectation can be computed by using (4.43, with 

Figure 4.14 shows this error probability for various values of r. The approxima- 
tion (4.48) is also shown. 0 

Example 4.8 

Consider a block-fading channel with F = 1, diversity order r, Rayleigh-distributed 
fading, and channel-state information available at both transmitter and receiver. The 
equivalent fading channel has a gain R whose pdf is given by (4.44), where a = l/r 
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Figure 4.14: Error probability of binary antipodal transmission with coherent de- 
tection and r-branch diversity with maximal-ratio combining. Exact values (con- 
tinuous lines) and approximate values (dotted lines) are shown. 

in order to satisfy the normalization condition E[R2]  = 1. Direct calculation shows 
that 

r 
E [ R - ~ ]  = - (4.50) 

r - 1  

so that channel inversion can be performed with finite average power, provided that 
r > 1. The resulting zero-outage capacity is given by 

C = l o g  ( I+-  Ti's) bittdimension pair (4.5 1) 

Capacity values for r = 2,4 ,8  are shown in Figure 4.15. We observe here the in- 
teresting fact that as r + oo the capacity tends to that of the AWGN channel: over 
this channel, zero-outage capacity coincides with ergodic capacity. This finding 
can be interpreted by saying that, in addition to capturing more power, receiver di- 
versity stabilizes channel fluctuations by reducing the amount of effective fading. 
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' " I  

SNR (dB) 

Figure 4.15: Zero-outage capacity of a block-fading channel with F = 1, 
Rayleigh-distributed fading and channel-state information available at both trans- 
mitter and receiver. The AWGN channel capacity is also shown for comparison. 
The signal-to-noise ratio is &/No. 

Equal-gain combining 

Maximal-ratio combining requires knowledge of channel-state information, which 
in this case corresponds to the r values of the gains of each diversity branch. Should 
this full information be unavailable, one may use a combining technique in which 
y = aty, with a the vector whose components are ai = ejei, the phases of the 
components of h. Notice that channel-state information might be estimated for 
other purposes: for example, unequal-energy constellations (typically, QAM) need 
channel gains for automatic gain control. If this is the case, maximal-ratio combin- 
ing is the natural choice. 

From (4.41), we see that 
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which shows that analysis depends on the statistics of a sum of Rayleigh (or Nak- 
agami, . . . ) random variables. Obtaining a closed-form pdf of this sum is a no- 
toriously difficult problem [4.5] (see the Bibliography section for results in this 
area). 

Selection combining 

This consists of selecting at each time, among the r diversity branches, the one 
with the largest value of signal-to-noise ratio. Its simplicity makes it often used in 
practice in conjunction with antenna diversity. In fact, the receiver only needs a sin- 
gle complete receive chain, which can be switched among the individual antennas. 
Also, like with equal-gain combining, CSI is not required. 

We assume that each diversity branch is affected by the same Gaussian noise 
power, so selecting the branch with the largest instantaneous SNR is tantamount 
to selecting the branch with the largest instantaneous power, and hence the largest 
fading gain. Hence, this combining technique is equivalent to choosing the diver- 
sity branch whose fading gain is 

This combining technique yields the following ratio of signal energy to noise power 
spectral density: 

Under our assumption of independent diversity path gains, the cumulative distribu- 
tion function of R is given by 

(in fact, R is less than f if and only if R1, . . . , R, are all less than f). The derivative 
of (4.54) yields the pdf of R. 

If the channel gains Ri are independent Rayleigh-distributed RVs, then 
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and we have, integrating by parts: 

As ,O + oo, we have the asymptotic expression (see Problem 10): 

where we see that, as with maximal-ratio combining, the error probability de- 
creases as SNR-'. 

Example 4.9 

With binary antipodal modulation as in Example 4.7, but with selection combining, 
the error probability is obtained from (4.55) with ,kl = d m .  The results for 
various values of r are shown in Figure 4.16. 0 

4.5 Bibliographical notes 

An extensive discussion, summarizing the state of the art in information-theoretic 
analyses of the fading channel, can be found in [4.9]. For a fading channel with 
no channel-state information at the transmitter, the fact that the capacity under 
an average power constraint is achieved by a discrete input distribution was proved 
in [4.1] (see also [4.19]). Under the same conditions, if the constraint is on the peak 
amplitude, then the capacity-achieving distribution is discrete with a finite number 
of points [4.18]. The calculation of outage probability for the block-fading chan- 
nel was done in [4.16] (see also [4.13]). Zero-outage capacity (or delay-limited 
capacity) is discussed in [4.9,4.11] and references therein. An extensive analysis 
of diversity techniques can be found in [4.21, Chap. 51; for recent work, see [4.20]. 
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SNR (dB) 

Figure 4.16: Error probability of binary antipodal transmission with coherent de- 
tection and r-branch diversity with selection combining. The signal-to-noise ratio 
is 1 /No. 

For a historical perspective, see the now-classic paper by Brennan, originally pub- 
lished in 1959, and recently reprinted in [4.10]. Recent analyses of equal-gain 
combining can be found in [4.24.6,4.17,4.22,4.23]. 

4.6 Problems 

1. Prove that, as SNR- co, the SNRs needed to obtain the same ergodic ca- 
pacity for the AWGN channel and the independent Rayleigh fading channel 
differ by 2.5 dB. 

2. Prove that the ergodic capacity of the independent Rayleigh fading channel 
with r-branch diversity and maximal-ratio combining tends to the capacity 
of the AWGN channel as r - co if the normalized SNR of (4.42) is used in 
the calculations. 
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3. Repeat the calculation of Example 4.7 with Nakagami-distributed fading. 
Show that for high SNRs the error probability for M t oo is inversely pro- 
portional to (&b/No)-m, where m is the Nakagami-distribution parameter. 

4. Consider the code with eight words and n = 8 whose words are all the 
permutations of (d, 0,0,0,0,0,0,0). Discuss its error performance for 
transmission on a high-SNR block-fading channel with F = 1,2,4 and on a 
high-SNR independent Rayleigh fading channel. 

5. Prove the "generalized Singleton bound (4.35). 

6. Consider transmission of QPSK over a Rayleigh fading channel with two- 
branch diversity. Compute the asymptotic (for high SNR) error probability 
with (a) maximal-ratio combining and (b) selection combining. Hint: You 
may use the integral 

e-a2x2 J;; dx = - 
2a 

and the asymptotic expansion, valid for x t 0: 

7. Consider an ergodic Rayleigh fading channel with r independent fading di- 
versity branches. Compute its average capacity with maximal-ratio combin- 
ing and with selection combining. 

8. Consider an ergodic Rayleigh fading channel with r independent fading di- 
versity branches and maximal-ratio combining. Compute its average capac- 
ity with channel state information at the receiver only and with channel state 
information at the receiver and transmitter. Choose r = 1, 2, and 3 (the 
results for r = 1 are shown in Figure 4.7). 

9. Compute the outage probability of a block-fading channel with r-branch di- 
versity and maximal-ratio combining. Assume Rayleigh fading and F = 1. 
Show in particular that Pout t 0 as r t oo. If the normalized SNR (4.42) 
is used, show that, as r + oo, Pout is equal to either 0 or 1 according to the 
value of the rate p. 

10. Derive (4.56) from (4.55). Use the expansions 
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and 
n 

where S(n, m)  are the Stirling number of the second kind, with S(m, m)  = 
1, and 

1 1. Define the €-outage capacity C, of a nonergodic fading channel as the largest 
rate p such that Pout (p )  is less than a fixed amount E. Examine the behavior 
of C,. In particular, show that 

(a) At high SNR, C, differs from the AWGN capacity by an additive term 
dependent on E but independent of SNR. 

(b) At low SNR, C, differs from the AWGN capacity by a multiplicative 
term dependent on E but independent of SNR. 

Compute the two terms above for the Rayleigh fading channel. 

12. MMSE combining consists of transforming the received signal y into the 
scalar bty,  where the r-vector b minimizes the mean-square error c2 
~ ~ [ l b t y  - xI2]. Find the vector b, and Compare this combining technique 
with MRC. 
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5.1 Introduction 

A convenient description of algebraic codes as well as of codes on a signal space 
is through a trellis: this provides at the same time a compact method of cataloging 
code words and, via the Viterbi algorithm (to be described soon), an efficient de- 
coding algorithm. 

A trellis is a directed graph where each distinct code word corresponds to a 
distinct path across it, starting from an initial vertex and ending into a final vertex. 
A trellis is described by a set C of vertices (called states), a set B of labeled edges 
(called branches), and a set L of labels, with the property that every state has a 
well-defined trellis time. Formally, we have the following definition: 

Definition 5.1.1 A trellis 7 = (C ,  B, L)  of depth n is a branch-labeled directed 
graph with the following property: the state set C can be decomposed as a union 
of disjoint subsets 

C=CoUCIU...UCn (5.1) 

such that every branch in 7 that begins at a state in Ci ends at a state in and 
every state in 7 lies on at least one pathfiorn a state in Co to a state in C,. 

The trellis 7 represents a block code of length n over X if L = X (that is, 
its branches are labeled by the elements of X), and the set of all the sequences 
of branch labels is the set of code words. It is convenient to define a "time" in the 
trellis, by assuming that the code symbols are transmitted and received sequentially 
in time. The graphical representation of a trellis has the horizontal axis associated 
with time, and the vertical axis with states. Branches connect states at two adjacent 
time instants. 

Although we shall restrict our attention to linear codes here, a trellis can also 
be used to describe nonlinear codes. Two exceedingly simple (but by no means 
insignificant) cases of trellis descriptions of binary codes are described in the ex- 
amples that follow. 

Example 5.1 ((n, 1, n) repetition code) 

Here there are only two code words, each corresponding to an n-tuple of equal ele- 
ments. The corresponding trellis is shown in Figure 5.1. 0 
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time 0 1 2 n-2 n-1 n 

Figure 5.1 : Trellis representation of the binary (n, 1, n) repetition code. 

time 0 1 2 n-2 n-1 n 

Figure 5.2: Trellis representation of the (n, n - 1,2) binary single-parity-check 
code. 

Example 5.2 ((n, n - 1,2) binary single-parity-check code) 

The trellis cataloging the 2n-" words, characterized by having an even number of 
Is, is shown in Figure 5.2. 0 

5.2 Trellis representation of a given binary code 

Here we focus our attention on the construction of the trellis describing a given 
linear binary code. Assume that the (n, k ,  d) code is systematic, i.e., its generator 
matrix has the form 

G = [Ik i PI 

where Ik is the k x k identity matrix, and P is a generic k x (n - k )  binary matrix.' 
The first k positions of the words of a systematic code include all possible binary 
k-tuples. Draw the 2k paths associated with these k-tuples, starting from a common 
initial node, as shown in Figure 5.3. 

'~ecal l  from Chapter 3 that this assumption entails no loss of generality. 
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time 0 1 k n 

Figure 5.3: Initial part of the trellis representing an (n, k, d )  linear binary code in 
systematic fonn. 

Next, "close" the trellis by associating with each code word at time k its cor- 
responding n - k redundant symbols (which are uniquely determined by the sub- 
matrix P). It can be easily seen that the trellis of Figure 5.1 corresponds to this 
construction. 

A related construction is based on the parity-check matrix H of code e :  recall 
that, given a binary n-tuple x,  this is a word of C? if and only if Hx' = 0. The 
(n - k)-tuple Hx' is the syndrome of x and cannot take on more than 2n-k values. 
Now, choose one state for each syndrome value, and label it by this value. The path 
corresponding to the code word (xl, xa, . . . , xn) is obtained as follows. Start from 
the zero state at time 0. Let the syndrome of (xl, 0,0, . . . , 0) be al. Then draw a 
branch from state 0 to state a1 and label it XI. Next, consider (xl, x2,0, . . . ,0). 
Let its syndrome be a 2 .  Draw a new branch from a1 to up and label it x2, and 
so on. The total number of trellis states at any time cannot exceed the number of 
syndrome values, viz., 1 Ci 1 5 2n-k, i = 0, . . . , n. Figure 5.2 shows an example of 
this construction: here H = [I 1 . . . 11, and hence the syndrome of an n-tuple is 
the modulo-:! sum of its elements. Its value is either 0 or 1. 

The two constructions just described lead to the following result: for linear bi- 
nary codes, the maximum number of trellis states at any given time is bounded 
above by min{2k, 2n-k). 
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5.3 * Decoding on a trellis: Viterbi algorithm 

Consider transmission of the code word x = (xl, . . . , xn). We receive y,  a cor- 
rupted version of x, at the output of a channel whose conditional probability density 
function (pdf) factors into the product involving elementary signals, i.e., 

A channel satisfying (5.2) is called stationary memoryless, because it transforms 
each elementary symbol in a way that does not depend on the other symbols and 
on the transmission instant. The task of the decoder is to make a decision on 
the transmitted x upon observation of y. The maximum-likelihood decoding rule 
consists of choosing the signal x E S that maximizes p(y I x). Now, in general, 
we cannot maximize p(y I x) by maximizing separately p(yi I xi) because the 
components of x are interrelated by the code structure (for example, in a single- 
parity-check code, the components of a code word are such that the number of 1s 
is even). Only if the signals are uncoded are we allowed to make "symbol-by- 
symbol" decisions without any loss of optimality. 

On the other hand, the solution of the maximization problem above may be 
computationally very intensive if the code has little structure, or its structure is not 
taken into account: in fact, with M code words we would have to compute M 
values of p(y I x) and find their maximum (brute-force approach). Now, M may 
be so large as to make this approach impractical. 

We now show that a way of exploiting the structure of the code for decoding is 
by taking advantage of its trellis representation. We can do this under the assump- 
tion that the "metric," i.e., the quantity whose maximization is equivalent to the 
maximization of p(y I x), is additive over the xi, that is, 

For a stationary memoryless channel, additivity is satisfied by choosing the met- 
ric m(y I x) = lnp(y ) x). In fact, 
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Note that the metric can assume different forms, according to the specific prob- 
lem at hand. For example, with AWGN channels (for the fading channels with CSI 
known at the receiver, examined in the previous chapter, the extension is straight- 
forward), we have 

P(Y I x) = c e - l l ~ - ~ l 1 2  

(c a normalization constant), and hence, by disregarding the constant In c and as- 
suming for simplicity that the elementary constellation X contains real or complex 
signals 

i=l 

Thus, we may choose 
m(yi I xi) = -1% - xi 1 2 

Moreover, observe that 

where !J? denotes real part. Here the term I Y i I 2  is irrelevant to the maximization of 
the metric and hence can be removed from consideration. Similarly, if the signals 
in the elementary constellation have one and the same energy, the term [xi l 2  is also 
irrelevant, and the metric is reduced to !J?yixf. If in addition xi = f d, no product 
is necessary for the computation of the metric. 

The Viterbi algorithm (VA) decodes a code described by a trellis when the metric 
induced by the channel is additive. 

A branch metric is associated with each branch of the trellis, in the form of a 
label. Since the metrics are additive, the metric associated with a pair of adjoining 
branches is the sum of the two metrics. Consequently, the total metric associated 
with a path traversing the whole trellis from left to right is the sum of the labels of 
the branches forming the path. The problem here is to find the path traversing the 
trellis with the maximum total metric. 

We start our description of the VA with the illustration of its key step, commonly 
called ACS (for Add, Compare, Select). Consider Figure 5.4. It shows the trellis 
states at time k (denoted ak)  and at time k + 1 (denoted ak+l). The branches 
joining pairs of paths are labeled by the corresponding branch metrics, while the 
states or, are labeled by the accumulated state metrics, to be defined soon. The ACS 
step consists of the following: For each state q + l ,  examine the branches leading 
to it and stemming from states ak (there are two such branches in Figure 5.4). 
For these branches, ADD the metric accumulated at the state from which it stems 
to the metric of the branch itself. Then COMPARE the results of these sums, 
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ADD COMPARE SELECT 

Figure 5.4: The ACS step of  the Viterbi algorithm. 

and SELECT the branch associated with the maximum value (and consequently 
discard, for each state, all other branches entering it; and, if two or more of the 
quantities being compared are equal, choose one at random). The maximum value 
is associated with the state, and forms its accumulated metric. This value is retained 
only for the next ACS step, then discarded. 

The VA consists of repeating the ACS step from the starting state to the ending 
state of the trellis. After each ACS step, the VA retains, for each state, one value 
of accumulated metric and one path, called the survivor corresponding to the state. 
Thus, at any time k we are left, for each Ok, with a single survivor path traversing 
the trellis from the initial state to ak, and with one value of accumulated metric. 
This survivor path is the maximum-metric path to the corresponding state. After 
n ACS steps, at the termination of the trellis we obtain a single n-branch path 
and a single accumulated metric. These are the maximum-metric path and the 
maximum-metric value, respe~tivel~.~ 

Figure 5.5 illustrates the determination of a maximum-metric path through a 
four-state trellis via the VA. 

To prove the optimality of the VA, it suffices to observe the following. Assume 
that the optimum path passes through a certain state a at time k. Then i ts jrst  k 
branches must be the same as for the survivor corresponding to a. In fact, if they 
were not, the optimum path would begin with a path passing through a and having 

'1n practice, since the maximum-metric path for each state can be found by retracing the branch 
decisions, one may choose to store only the branch decisions, rather than the entire path. 
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Figure 5.5: Determination of the maximum-metric path through a trellis with n = 6 
and four states via the Viterbi algorithm. 
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+ common path 

. . . . . . . ... . . , discarded path - surviving path 

Figure 5.6: Surviving paths merging into a common one at time e - D. 

a metric lower than the survivor of a, which is a contradiction. In other words, no 
path discarded in favor of a survivor can provide a contribution to the total metric 
larger than the survivors. 

The computational complexity of the VA grows with n only linearly. More 
specifically, at time i the VA requires [Xi/ storage locations, one for each state, 
with each location storing an accumulated metric and a surviving path. In terms 
of the number of computations, assuming for simplicity two branches per state, at 
time i the VA must make Bi additions, where Bi is the number of branches in the 
trellis section at time i ,  and 1 Ci 1 comparisons. 

It must be observed that in some cases the number of surviving paths that the de- 
coder must store and search may be too large for practical applications. In this case 
the Viterbi algorithm may be abandoned in favor of suboptimal algorithms, which 
search only a fraction of trellis paths (sequential algorithms, M-algorithm) [5.2]. 

5.3.1 Sliding-window Viterbi algorithm 

When the transmitted block of symbols is very long, it might be unrealistic to 
assume that the whole data sequence should be received before making a decision 
on it: in fact, this would entail a large memory and a long delay. Now, by tracing 
back all surviving paths at a given time L, it often occurs (especially with large 
SNR) that they all stem from a single path, originating at time 0 and splitting at 
a time e - D (Figure 5.6). This observation leads to the concept of the sliding- 
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window Viterbi algorithm. This algorithm consists of forcing a decision at time e 
on the symbol received at time e - D - 1; this decision is based on the comparison 
of the metrics accumulated across the sliding window of Figure 5.6. Thus, after an 
initial latency D, at every time a decision is made on a single symbol. The ensuing 
loss of optimality is reduced as D increases, because for large D there is a high 
probability that all paths surviving ate have a common part extending before e- D. 

5.4 The BC JR algorithm 

A symbol-by-symbol maximum a posteriori probability (MAP) algorithm for codes 
described on a trellis is known as the BCJR algorithm, from the names of their pro- 
posers [5.3]. Having observed y, we want to compute the soft decisions p(xi I y) ,  
whose maximization for i = 1, . . . , n, yields decisions on symbols xi that mini- 
mize symbol error probabilities. As noted in Section 3.8, since we are interested 
in maximizing p(xi I y )  over xi, we can omit constants that are the same for all 
values of xi. Observing that symbol xi is emitted as a transition takes place be- 
tween states ai-1 and ai, with possibly several transitions corresponding to the 
same symbol, we have 

where the summation is extended to all pairs of states ai-1, ai joined by a branch 
labeled by symbol xi in the trellis section Ti between times i - 1 and i (Figure 5.7). 
Now, for any time i we write y = (y<i, yi, y>i), where y<i and y>i denote the 
components of vector y with indices 1,. . . , i - 1 and i + 1,. . . , n, respectively. 
We call y<i the past observations, y,i the fiture observation, and yi the current 
observation. We can write 
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Figure 5.7: The trellis section Ti. 

The last equality comes from the trellis properties, which cause y>i to depend on 
(y<i1 yi1 u ~ - ~ ~  xi, ~ i )  only through ai, and the pair (y i ,  ai) to depend on (y<i, 
only through ai-1. Observe now that, in (5.5), the term a depends on the past val- 
ues of the observation, P on its future values, and y on its current value. The BCJR 
algorithm works by recognizing that a and P can be given expressions that are 
recursive in time. To this purpose, define 

(this is the joint probability of observations y<i and state ai-l) and 

(the joint probability of observations y,i given state ai). Moreover, 

This is the branch-transition probability of transmitting xi and observing yi when 
a transition occurs between ui-1 and ai. For stationary memoryless channels, it 
can be computed by observing that 

and 
 xi, ai I ai-1) =  xi) [(ai-1, X i ,  ai) E Ti] 

The function [ ( u ~ - ~ ,  xi, ai) E Ti] takes value 1 if the trellis section Ti is compatible 
with the transmission of symbol xi when the transition ai-1 -t ai occurs, and 
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value zero otherwise (we shall return on this notation in Chapter 8, when the BCJR 
algorithm will be rederived as a special case of a more general algorithm). In 
conclusion, we can write 

so that, finally, 

We now derive recursive formulas for the quantities defined in (5.6)-(5.8). We 
have the forward recursion 

with the initial condition ao(ao) = 1 (ao the initial state of the trellis). Similarly, 
we have the backward recursion 

with the initial value Pn(an) = 1 (an the ending state of the trellis). Combining 
the latter two recursions, we obtain the BCJR algorithm for the computation of a 
posteriori probabilities. 
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channel 
observation 3 1  9 2  93 

time 0 1 2 3 

Figure 5.8: Trellis for the (3,2,2) single-parity-check code. 

Let us specialize the BCJR algorithm to binary systematic codes; in their trellis, 
the first k branches correspond to information symbols, and the last n - k to parity- 
check symbols. Thus, two branches emanate from each node in the initial part of 
the trellis, and only one in the final part, where all transitions are determined by the 
information sequence 211,. . . , uk. We may label the branches in the first k trellis 
sections by ul, . . . , uk, and those in the remaining sections by xk+l,. . . , x,. The 
branch transition probabilities yi-l,i xi, u~) can be computed as 

Example 5.3 

As a simple illustrative example, we show how the BCJR algorithm can be used 
to compute the a posteriori probabilities p(ui I y) for the code and the channel 
observations of Example 3.17. The trellis representation of the code is shown in 
Figure 5.8. The observed data lead to the following values of the branch transitions: 

(all other ys are zero, as they correspond to triples xi, ui) not consistent with 
the trellis structure). With the initialization ao(so) = 1, ao(sl) = 0, the forward 
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recursion yields the values 

With the initialization P3(sO) = 1, P3(s1) = 0, the backward recursion yields the 
values 

Application of (5.1 1) finally yields 

P(ul = 0 I Y) rn ao(so)̂ lo,i (so, 0, so)Pi (so) = 0.1629 

P(ul = 1 I Y) ao(so)yo,i (so, 1, si)Pl (sl) = 0.0381 

P(W = 0 I Y) rn ~1(~0)~1,2(~0, 0, so)Pz(so) + ai(~i)~i,z(si, 0, si)P2(si) = 0.1666 

P(u2 = 1 I Y) ai(so)7i,a(so, 1, si)h(si) + a1(~1)%,~(~1,1, SO)P~(SO) = 0.0345 

Observe that the proportionality coefficients of the a posteriori probabilities here 
differ from those of Example 3.17. To reconcile the results obtained from the brute- 
force approach with those from the BCJR algorithm, one can verify that the ratios 
p(ui = 0 I y)/p(ui = 1 I y) are equal. 0 

5.4.1 BCJR vs. Viterbi algorithm 

Comparing the BCJR and Viterbi algorithms, we can see that both of them process 
the same channel observations. Their basic difference is in their outputs: while the 
VA decisions are hard, those of the BCJR algorithm are soft. This makes it crucial 
to use the BCJR algorithm if, after applying it, the a posteriori probabilities must 
be further processed before making hard decisions (see Chapter 9). Also, observe 
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that the VA yields the most likely sequence (which must be a code word), while 
the BCJR algorithm yields the most likely symbol, along with its reliability, at each 
time (the BCJR sequence may not be a valid code word [5.4]). 

5.5 Trellis complexity 

In general, a given code can admit more than one trellis representation. If the 
trellis is to be used for decoding, it should be clear that among the various possible 
representations we should choose the one yielding the minimum complexity of 
the algorithm. We may define here a state complexity projile as the sequence of 
the numbers of trellis states lCil at various times i = 0, . . . , n. For example, 
the state complexity profile of both trellises of Figure 5.1 and of Figure 5.2 is 
(1,2,2, . . . ,2,1). Another possible complexity measure (which measures more 
precisely the complexity of Viterbi Algorithm) is the branch complexity projile, 
defined as the sequence of the number of branches in the various trellis sections. 
This is (2,2, . . . ,2) for the trellis of Figure 5.1 and (2,4,4, . . . ,4,2) for the trellis 
of Figure 5.2. To characterize complexity by a single number we may use the 
largest entry in the state complexity profile, i.e., the maximum number of states 

We have the following definition: 

Definition 5.5.1 (Minimal trellis) A trellis 7 for a code e of length n is minimal 
if it satisjies the following property; for each i, the number of states in 7 at time i is 
less than or equal to the number of states at time i in any other trellis representing 
e. 

Notice that this definition is rather strong. In fact, given a code e ,  it is not 
obvious that there exists a minimal trellis for it: minimization of lCil may be in- 
compatible with the minimization of ICjl, j # i. However, if e is linear, then a 
minimal trellis for e can be proved to exist [5.16]. The next section shows how to 
construct it. 

5.6 Obtaining the minimal trellis for a linear code 

Here we illustrate an algorithm, due to Forney [5.16], that yields the minimal trellis 
representing a given linear code. 

We need some definitions and some additional theory first. Consider a code 
word x E e ,  whose components are thought of as being generated sequentially in 



140 Chapter 5. Trellis representation of codes 

time. For any position 1 5 e 5 n (corresponding to time, in the trellis) we refer 
to its first ! coordinates (already generated) as the past, and to the remaining n - e 
coordinates (yet to be generated) as thefitwe: 

Let e be a binary linear (n, k ,  d) code. At time e we can define the following four 
codes derived from e: 

O ef (P for past) is the set of all code words x E (2 whose future is the null 
vector, i.e, xe+l = . . . = xn = 0. ef is a subcode of e. We define its 
dimension /$ as 

k r  log, lef 1 (5.13) 

It is often convenient to look at this subcode as having length e, which is 
obtained by deleting its zero components from e + 1 to n. 

O ef (F for future) is the set of all code words x E C! whose past is the null 
vector, i.e., XI = - - .  = xe = 0. C?T is a subcode of e. We define its 
dimension k: as 

@ log, lerl (5.14) 

It is often convenient to look at this code as having length n - e, which is 
obtained by deleting its first ! zero components. 

O The "past projection code" $ is the set of all codewords obtained by zeroing 
(or deleting) all components from ! + 1 to n. 

GD The "future projection code" IPT is the set of all codewords obtained by 
zeroing (or deleting) its first ! components. 

Example 5.4 

Consider the (4,3,2) single-parity-check code, and l = 2. We have 
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so that C!: and C!; are (2,1,2) repetition codes, while ?;, ?$ are (2,2,1) universe 
codes. 0 

Now, the past coordinates influence the values that the future coordinates can 
take. This influence is characterized by the trellis state at time e. With the defini- 
tions above, observe that the generator matrix of can be decomposed as follows: 

where G: is the k: x e generator matrix of er, G: is the k: x (n - e) generator 
matrix of e:, and G;, Gz are additional matrices needed to obtain G. Specifically, 
G: and G; together generate IPr, while G: and Gz together generate e. The 
linear binary code generated by [G; G,N] is called the state code and is denoted by 
Se. Its dimension ke, also called the dimension of the state space, satisfies 

so, from (5.13) and (5.14), kt = logz ISe[. 

Example 5.4 (continued) 

We have G; = Gc = [l 11. It can be verified that the matrix 

actually generates C!. The state code Sz is (0000, 0101), and has dimension 1. 0 

The above can be interpreted by saying that any code word x E (2 (which is a 
linear combination of rows of G) can be expressed uniquely at any time e as the 
sum of a past code word xP E Cr, afuture code word xF E C!:, and a state code 
words E Ye. We write 

P x = x  + S + X  
F (5.16) 

for some xP E e: and xF E Cr, and we represent this decomposition in graphical 
form as shown in Figure 5.9. This corresponds to associating x with a trajectory 
in a trellis: for any given time e, xP is associated with the past trajectory from time 
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Figure 5.9: Graphical representation of the decomposition of the code word x as 
the sum of the past code word xP, the future code word xF, and the state code 
word s. 

state state 
(time 0) (time n) 

intermediate 
state 

(time f )  

Figure 5.10: Past and future of a code trellis at time t .  

0 to time t ,  xF with the future trajectory from time t to time n, and s with the state 
where the two trajectories meet at time t .  

Consider now the past projection of x in (5.16). This is given by the sum of the 
past projections of xP and of s. Hence, the trellis branch joining the initial state 
to state s at time t corresponds to the coset C!; + sP, where sP denotes the past 
projection of s. In a similar way, the future projection of x is given by the sum of 
the future projections of xF and of s. Hence, the trellis branch joining state s at 
time t with the final state at time n corresponds to the coset (3: + sF, where sF 
denotes the future projection of s. Thus, the code C may be described by a trellis 
diagram as shown in Figure 5.10. No other trellis for the same code can have less 
states at time &. To prove the description shown in Figure 5.10 we must prove two 
things that form the so-called Markov property of the trellis: 

O All code words x associated with the same state-code word s have the same 
set of possible future trajectories. 
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Figure 5.1 1 : Code trellis at time 1. 

O If x,  xt are associated with different state-code words s, st, then they have 
disjoint sets of possible future trajectories. 

The first item is proved by observing that for all such x the possiblefuture trajec- 
tories are given by the coset e: + sF. In the conditions of the second item, the 
possible future trajectories are given by the cosets C: + sF and C: + dF,  which 
are disjoint because the sum sF + stF is not a code word in Cr. The Markov 
property can be suggestively summarized by saying that "the states of the trellis 
are equivalence classes of past histories modulo future possibilities." 

If the decomposition illustrated in Figure 5.10 is repeated for every t ,  a full 
trellis for code C is obtained. This will be illustrated by the examples that follow. 

Example 5.5 

Here we construct the minimal trellis for the (4,3,2) single-parity-check code. For 
C = 1 we have C'f' = {0), so kr = 0, and C'f = {000,011,101,110), so kf = 2. 
Thus, kl = 3 - 2 - 0 = 1 and hence 1x1 1 = 2. The code trellis at time 1 is shown 
in Figure 5.11. Observe in particular that at time 1, i.e., after the first code symbol, 
the number of states is 2 because there are two possible pasts, each with a different 
future. 

At time e = 2 we have C'c = {00,11), so k; = 1, and C': = {00,11), so 
kr = 1. Thus, k2 = 3 - 1 - 1 = 1 and hence (C2( = 2. The code trellis at time 2 
is shown in Figure 5.12. 

At time 3 we have C'c = {000,011,101,110), so k: = 2, and C'F = {0), so 
k[ = 0. Thus, ks = 3 - 2 - 0 = 1 and hence lCsl = 2. The code trellis at time 3 
is shown in Figure 5.13. 

We can now summarize our calculations by constructing the code trellis as 
shown in Figure 5.14. 0 
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Figure 5.12: Code trellis at time 2. 

e = o  ~ = 3  e = 4  

Figure 5.13: Code trellis at time 3. 

5.7 Permutation and sectionalization 

The structure and the complexity of the trellis of a code depend on the order of 
the code symbols. It turns out that the (seemingly innocuous) operation of per- 
muting the symbols in each code word can drastically change the number of states 
in the minimal trellis representation of a given code e. Unfortunately, finding a 
permutation that minimizes the complexity of a trellis representing a linear code 
is an intractable problem, since essentially the only way to solve it is to try all the 
permutations. 

Sectionalization, which consists of grouping together two or more symbols la- 
beling each branch, can also drastically change the structure and the complexity 
of the trellis representing a given code. Sectionalization shrinks the time axis at 
the expense of increasing 1x1: for example, a binary code with length 2n may be 
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time 0 1 2 3 4 

Figure 5.14: Minimal trellis for the (4,3,2) code. 

thought of as a quaternary code of length n if pairs of consecutive bits are grouped 
together. 

Example 5.6 

Here we construct a sectionalized trellis, based on a quaternary constellation, for 
the (8,4,4) Reed-Muller code. The generator matrix of this code is 

The words of C, i.e., the linear combinations of the rows of G, are the sixteen 
8-tuples that follow: 
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ef e; + (010101) ef + (101010) ef + (111111) 
(past: 00) (past: 01) (past: 10) (past: 11) 

Table 5.1: The cosets of (3:. 

Contrary to what we have done previously, we construct a trellis for this code by 
associating two binary symbols with each trellis branch. Consider first e = 1. There 
is only one word with zero components from time 2 to time 4, namely, the all-zero 
code word. Thus, we have 

eip = {(00)) 
There are four words beginning with two zeros, so 

ef = {(oooooo), (ooiiii), (illloo), ( i iooii))  

Thus k[ = 0 and kf = 2, and from (5.15) we have 

and hence four states at time 1. The cosets of t'r are 01,10, and 11. The cosets of 
er  are listed in Table 5.1. 

The code trellis at this stage is shown in Figure 5.15. The trellis branches are 
labeled by the coset representatives: 00, 01, 10, and 11 for the past and 010101, 
101010, and 11 11 11 for the future. 

The top node at time 1 = 1 corresponds to code words whose first two symbols 
(the representative of the subcode e;) are 00 and whose future (the representative 
of the subcode er) is er. The other states have as their past the cosets of the 
subcode C!r and as their future the cosets of the subcode e r .  We have four states 
here because the pasts consist of all pairs of binary symbols. 

Take now e = 2. There are two code words in e that begin with four zeros, i.e., 
00000000 and 00001 1 1 1. Thus we have 

e; = {(oooo), (1111)). 

There are also two words that end with four zeros, namely, 00000000 and 11 110000. 
Thus 

e; = {(oooo), (1111)) 

Since k[ = 1 and k r  = 1, from (5.15) we have 
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Figure 5.15: Code trellis at time 1 .  

Here the past consists of four binary symbols, but the code structure restricts them 
to four possible combinations. The cosets of C'[ and C!F are listed in Tables 5.2 
and 5.3. The trellis at time 4 is represented in Figure 5.16. 

Table 5.2: The cosets of  (2;. 

Table 5.3: The cosets of 6'; 

Take then l = 3. There are four code words in ending with two zeros, and we 
have 

e,P = {(oooooo), (iiooii), (iiiioo), (ooiiii)}. 

There is a single code word beginning with six zeros (the all-zero word), so 
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Figure 5.16: Code trellis at time 2. 

Since k c  = 2 and k[ = 0, from (5.15) we have 

The cosets of C!F are 00, 01, 10, and 11. The cosets of C!; are listed in Table 5.4. 
The trellis at time 3 is represented in Figure 5.17. 

Table 5.4: The cosets of ef. 

Thus, there are four states at e = 2,4 and 6. Now, let a1 be a state at time 1, 0 2  

a state at time 2, and a3 a state at time 3. If there is a code word in C! that passes 
through u1, uz, and u3, then we join states 01, (TI, and us in the complete code 
trellis. The result is shown in Figure 5.18. 0 

5.8 Constructing a code on a trellis: The lulu + v 1 con- 
struction 

We show here an example of a code that can be constructed directly on a trel- 
lis. Let U be an (n ,  ku, du) linear code, and let 17 be a linear (n, kv, dy)  sub- 
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Figure 5.17: Code trellis at time 3. 

Figure 5.18: Trellis of the (8,4,4) Reed-Muller code. 

code of U with minimum distance dv > du. If a = (al , .  - - , a,) and b = 
(bl, - . . , b,), we denote here by (a, b) their concatenation, i.e., the (m + n)-vector 
(al, . . . , a,, bl, . . . , b,). The (u[u + vl construction combines U and V to yield 
a code whose words are obtained by concatenating a word u E U with the sum 
u + v ,  where v  E V :  

Theorem 5.8.1 (ulu + v( is a linear (n, k, d) code, with 

Its minimum Hamming distance is bounded below by 
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Proof. For the first part of the theorem, see [5.12, p. 761. For the second part, 
let (u, u + v) be a non-zero code word in lulu + vl. If u E V, then both u 
and u + v are words of V, and either u # 0 (in which case w(u) > dv) or 
u + v # 0 (in which case w(u + v) > dv). Thus w(u, u + v) > dv. If u 4 V 
(and consequently u # 0, because a linear code must contain the all-zero word), 
then u and u + v are both nonzero words in U, and w(u, u + v) > 2du. 

Example 5.7 

We are especially interested in codes U, V for which dv = 2du. For example, 
consider the (4,3,2) single-parity-check code 

and its (4,l, 4) "repetition" subcode V = {(OOOO), (1111)). The lulu+vl construc- 
tion gives the (8,4,4) code examined above, with words (u, u) and (u, u+  (1111)). 
If we apply again this construction with U this (8,4,4) code and V the (8,1,8) rep- 
etition code, we obtain the (16,5,8) Reed-Muller code. In [5.12, Chap. 131 it is 
shown that all Reed-Muller codes can be built in this way. 0 

In the lulu + vl construction, U is the union of M cosets of V in U: 

The trellis of lulu + vl consists of two sections joined at M intermediate states, as 
shown in Figure 5.19. The branches in each section correspond to cosets of V in 
U, and branches in the past and in the future section labeled by the same coset are 
joined at a common intermediate state. 

The distance properties of the construction can be derived directly from the trel- 
lis. Two code words that determine the same path through the trellis must differ 
in at least d(V) positions, and two code words that determine two different paths 
must differ in at least d(U) positions in each of the two branches. 
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Figure 5.19: Trellis of the lulu + vl construction. 

Figure 5.20: A dog biting its tail, a Celtic symbol for renewal and immortality. 

5.9 Tail-biting code trellises 

The "conventional" trellises used so far were defined on an ordered time axis 
(0,1, . . . , n). A tail-biting trellis (Figure 5.20) is defined on a circular time axis 
(0,1, . . . , n - I) ,  corresponding to index arithmetics performed modulo n. Graph- 
ically, this can be represented as a trellis wrapped around a cylinder, with the states 
at time n coinciding with those at time 0. The valid paths in the trellis are those 
starting and ending at the same state. A conventional trellis may be regarded as 
a special case of a tail-biting trellis with a single starting and ending state. Con- 
versely, a tail-biting trellis that has a single state at some time can be viewed as a 
conventional trellis. 

Figure 5.21 shows conventional and tail-biting trellises of the quaternary repeti- 
tion code {00,11,22,33). It can be seen that one of the versions of the tail-biting 
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Figure 5.2 1 : Trellises of the quaternary repetition code. (a) Conventional trellis. 
(b) Tail-biting trellis. (c) Another tail-biting trellis with only two states. 

Figure 5.22: Minimal tail-biting trellis of the (8,4,4) Reed-Muller code. 

trellis has fewer states than the conventional one. Another example is shown in Fig- 
ure 5.22. The interest for tail-biting trellises comes from the fact that in some cases 
the trellis complexity is lower than that of the conventional trellis (Figure 5.21 pro- 
vides a simple example). Actually, the number of states can be as low as the square 
root of the number of states in a conventional trellis. In addition, tail-biting trellises 
can be viewed as the simplest form of a factor graph with cycles (see Chapter 8). 

An exact maximum-likelihood algorithm for decoding a code on a tail-biting 
trellis has been derived [5.15]. It consists of running the VA under the assumption 
that the code starts and ends in each starting state in turn. The complexity is lCol 
times that of a single VA, where ICoI denotes the number of possible starting states. 
Thus, this algorithm shows no complexity advantage over decoding a conventional 
trellis for the same code. An efficient iterative approximate decoding method on 
a tail-biting trellis is as follows. Initialize all the metrics at time 0 to zero, use 
the Viterbi algorithm going around and around in the trellis, and stop the iterations 
according to a preset stopping rule. If the preferred path starts and ends in the same 
state, it is chosen as the decoded code word; otherwise, an error is detected. 
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5.10 Bibliographical notes 

The Viterbi algorithm was introduced in [5.17] as a method for decoding convolu- 
tional codes (Chapter 6). A survey of applications of the Viterbi algorithm, as well 
as a number of details on its implementation, can be found in [5.6]. Sequential 
algorithms and the M-algorithm are described in [5.18, Chap. 61 and [5.2]. 

The BCJR algorithm was proposed in [5.3]. It received limited attention be- 
cause of its complexity until recently, where it was applied to iterative decoding 
techniques (Chapter 8). 

The theory of trellis representation of linear block codes, after attracting some 
interest in the late 1970s [5.15,5.20], has been rekindled in recent years, when 
it was recognized that, in addition to illuminating the code structure, it may lead 
the way to efficient decoding algorithms [5.5,5.9-5.11,5.13,5.14,5.16]. Tail-biting 
trellises were also introduced in the late 1970s [5.15]. Interest in them was recently 
enhanced after the discovery that the number of states in a tail-biting trellis can be 
as low as the square root of the number of states in the conventional trellis for the 
same code [5.5,5.8,5.19]. Iterative decoding of tail-biting trellises is now better 
understood [5.1,5.7] than iterative decoding for more general graphs, that we shall 
discuss in Chapter 8. 

5.11 Problems 

1. Consider the linear binary code with parity-check matrix 

Find a four-state trellis describing the code. 

Decode the received vector y = (0.7,1.2, -0.3, -0.5) by using the 
Viterbi algorithm (assume an AWGN channel and an elementary con- 
stellation X = {f 1) with the correspondence 0 + +1, 1 --+ -1). 

Decode as above by using the BCJR algorithm. 

2. Derive the minimal trellis of the linear code whose parity-check matrix is 

Compare the resulting complexity with that of the trellis obtained by using 
the construction based on the parity-check matrix (Section 5.2). 
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3. Derive a version of the BCJR algorithm obtained by factoring the joint pdf 
p(y, q-1, ai) in the reverse direction (this is equivalent to defining a reverse 
time axis). 
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With his rent in his rears. /Give him six years 

Coding on a trellis: Convolutional 
codes 

In thc previous chapter we h a ~ c  sccn how a given block code can be repre- 
sented by using a trcllis. We now exanline the problem of'  designing v binary 
code directly on a trellis. Tllis can he done by first clloosing a trellis with a 
preassigned complexity, then labcling its branches. The trcllis is generated 
by using one or more binary shift registers. The choice of'a periodic trellis, 
which sin~pliiies the Viterbi algorithm. and o f  symhols generated as linear 
combinations o f  the contents of'the shift registers, leads to the definition o f  
convolutional codes. Invented in 1954, these codes have been very success- 
fu l  because they can be dccodcd in a simple way, have a good performance, 
and are wcll adapted to the transmission o f  continuous streams o f  data. In 
this chapter. we present the rudiments o f  an algebrrlic theory o f  convolutional 
codes, and show how code performance can be evaluated. 
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6.1 Introduction 

In the previous chapter we have seen how a given code can be represented by a 
trellis. We now examine the problem of designing a code directly on a trellis. 
Specifically, we first choose a trellis (the number of its states being constrained 
by the decoding complexity we are willing to accept) and then we label the trellis 
branches so as to design a code that is optimum under a specified criterion. To 
simplify decoding, here the trellis will be assumed to have a periodic structure 
(apart from the initial and terminal transients caused by the finite length of the 
source sequence), so that the Viterbi-algorithm operations will be the same for 
every state-transition interval. 

In this framework, we examine two design criteria. The first is based on binary 
symbols and linear encoders and leads to convolutional codes, which will be treated 
in the present chapter. In the next chapter, a more general set of elementary signals 
and encoders will be used, which gives rise to trellis-coded modulation. 

A simple way of constructing a periodic trellis with a given number of states is 
by using a memory-v binary shift register, as shown in Figure 6.1. This contains 
v+ 1 cells, or stages, and each binary symbol entering the register shifts its contents 
to the right by one place. Positions 1 to v determine the state of the register, so there 
are 2V states. Position 0 contains the source symbol that is emitted at a given time: 
this forces the transition from one state to another. A trellis describes graphically 
the transitions among states. Notice that the resulting trellis structure is determined 
by the number of cells alone. 

- state of the register - 
Figure 6.1: A binary shift register with 2V states. 

binary 
symbols 

Example 6.1 

Take v = 2. We have four possible states, labeled by the contents of cells 1 and 
2: these are 00, 01, 10, and 11. From state yz (y E {O,l) and z E {O,l)) we 
can only move to state xy, where x denotes the symbol emitted by the source and 

0 1 2 3  . . . v 
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Figure 6.2: A section of the trellis generated by a shift-register sequence with four 
states. 

forcing the transition. The resulting trellis section is shown in Figure 6.2. Here a 
dashed arrow denotes a transition driven by the binary source symbol "1," while a 
continuous arrow corresponds to a "0." 0 

6.2 Convolutional codes: A first look 

A convolutional encoder (in a simplified definition that we shall generalize and 
make rigorous later on) combines linearly (with respect to modulo-2 operations) 
the contents of a binary (v + 1)-stage shift-register (nonbinary convolutional en- 
coders can also be defined, although we shall not consider them here). We say that 
the code has constraint length v + 1, or memory v.' If for every binary source 
symbol these linear combinations generate no binary channel symbols, the result- 
ing code has rate l/no. Figure 6.3 shows two constraint-length-3 convolutional 
encoders, one with rate 112 and one with rate 113. 

The trellis diagram of the code has branches labeled by symbols generated 
by the linear combinations of the shift-register contents (no binary symbols per 
branch). Moreover, it is customary to represent by a dashed line the branches 
corresponding to transitions between states forced by a source symbol "1" entering 
the shift register, and by a continuous line those forced by a "0". Figure 6.4 shows 
the initial sections of the trellis diagram, complete with its labels, corresponding to 
the rate-113 convolutional code of Figure 6.3. 

Another representation of a convolutional encoder, which provides a useful tool 
for performance evaluation, is its state diagram, which describes the transitions 

' ~ o t e  that the definitions of constraint length and of memory are not consistent throughout the 
convolutional-code literature. 
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Figure 6.3: Two convolutional encoders with constraint length 3, having rates 112 
(left) and 113 (right). 

state 00 01 0 2  0 3  0 4  

time 0 1 2 3 4 

Figure 6.4: Trellis diagram for the rate-113 convolutional code o f  Figure 6.3. The 
boldface path corresponds to the input sequence 11 01. The initial state is chosen 
conventionally as the all-zero state. 

among states without explicitly including the time axis. The state diagram corre- 
sponding to the rate-113 convolutional code of Figure 6.3 is shown in Figure 6.5. 
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Figure 6.5: State diagram for the rate-113 convolutional code of Figure 6.3. 

6.2.1 Rate-lco/no convolutional codes 

More generally, we may define rate-ko/no convolutional codes. For these, no bi- 
nary symbols are sent to the channel for every ko input binary symbols. An ex- 
ample of a rate-213 encoder is shown in Figure 6.6. In general, in a rate-ko/no 
convolutional code we have ko shift registers with memories vl, . . . , vk,, and no 
binary adders. An overall constraint length may also be defined, but its definitions 
are not consistent throughout the literature (see [6.6, pp. 12-13]). 

6.3 Theoretical foundations 

Contrary to what we did with linear block codes, here we must distinguish between 
a code (the set of all possible encoded sequences) and the encoder chosen for that 
code. As we shall see, the same convolutional code can be generated by several 
different encoders, whose properties may be helpful (minimum overall constraint 
length, and hence minimum decoding complexity) or harmful (catastrophicity- 
see infra). 

We start by characterizing a rate-ko/no binary convolutional encoder as a linear 
causal time-invariant system over the binary field IFz having ko inputs and no out- 
puts (some additional properties are needed, as we shall see). In general, a single- 



162 Chapter 6. Coding on a trellis: Convolutional codes 

Figure 6.6: A rate-213 convolutional encoder. 

input, single-output linear causal time-invariant system is characterized by its im- 
pulse response g A (gi)Z0, with the system's output sequence x A (xi),"=-, 
being related to its input sequence u A (ui),"=-, by the convolution x = g * u. 
Explicitly, 

where sums and products are in IF2, that is, are computed modulo-2. 
It is convenient to associate with the sequences g,  x, and u their D-transforms, 

i.e., the functions of the indeterminate D (the delay operator equivalent to the 
indeterminate z-I of the z-transform) defined as 

and 
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Figure 6.7: An implementation of a causal linear time-invariant system with poly- 
nomial transfer function g (D) having degree v. 

These are related, through (6. I), by 

Note that the causality constraint (gi = 0 for i < 0) allows sequences to be repre- 
sented by the sum of their D-series without potential ambiguities: thus, for exam- 
ple, l / ( l+D)  represents the sequence ~ + D + D ~ + .  . . rather than D - ~ + D - ~ + .  . .. 
The function g(D) is called the transferfinction of the system. If g(D) is a polyno- 
mial with degree v (we write v = degg(D)), then the system whose input-output 
relationship is (6.1) can be implemented by using a shift register, as shown in Fig- 
ure 6.7. Additionally, we say that a polynomial g(D) is delay free if g(0) = 1. 

The structure of Figure 6.7, while adequate for implementing polynomial trans- 
fer functions, cannot be used if g(D) includes an infinite number of terms, i.e., if 
its corresponding sequence has no end. This may occur, for example, if g(D) is 
rational, i.e., if it has the form of a ratio between two polynomials. If this is the 
case, we do not need an infinite number of stages in the shift-register implemen- 
tation of the encoder: in fact, we can verify that the system of Figure 6.8 has the 
rational transfer function g(D) = p(D)/q(D), where 

(i.e., q(D) is delay free). If p(D), q(D) are relatively prime, then this realization 
has a feedback connection unless q(D) = 1. Conversely, every rational transfer 
function p(D) /q(D), with a delay-free q(D), can be realized in the "controller 
form" of Figure 6.8. For this reason, such a transfer function is called realizable. 
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Figure 6.8: Implementation of a system in controller fom. 

Example 6.2 

The causal transfer function 

includes an infinite number of terms. From the equality 

we obtain, summing the series (6.3), 

Thus, the system whose transfer function is g(D)  can be realized in the controller 
form of Figure 6.9. 0 

Based on these definitions, we can now describe a rate-ko/no binary convo- 
lutional encoder by giving its kono impulse responses gij(D), 1 5 i 5 ko, 
1 5 j 5 no, conveniently organized as the entries of a ko x no generator ma- 
trix G ( D ) .  If the ko-input sequence and the no-output sequence are represented 
by the vectors u ( D )  2 (ul ( D ) ,  . . . , uko ( D ) )  and x ( D )  ( x l  ( D ) ,  . . . , x,, ( D ) ) ,  
respectively, then we may write 
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Figure 6.9: An implementation of  a causal linear time-inwiant system with trans- 
ferfunction g(D)  = 1/ (1  + D + D ~ ) .  

Example 6.3 

The rate-112 convolutional encoder of Figure 6.3 has 

g i 1 ( D ) = 1 + D + D 2  9 1 2 ( 0 ) = 1 + ~ ~  

and is described by the generator matrix G(D)  = (1 + D + D2, 1 + D2). 0 

6.3.1 Defining convolutional codes 

We define now, in a natural way, a rate-ko/no convolutional code as the set of 
all possible sequences one can observe at the output of a convolutional encoder, 
which is a Lo-input, no-output system with the ko x no transfer function G ( D ) .  
We require the encoder to be realizable and delay free (that is, at least one of its 
entries p(D) /q(D)  has p(0) = 1). Moreover, since the source sequence u ( D )  
must be uniquely reconstructed from the observation of x ( D ) ,  the matrix G ( D )  
must have rank ko. 

The point here is that the same convolutional code can be generated by more 
than one encoder (encoders generating the same set of output sequences are called 
equivalent): each encoder defines a mapping between information sequences u ( D )  
and code words x ( D ) ,  but the set of code words does not depend on the mapping 
chosen. Observe in fact that if Q ( D )  denotes an invertible matrix with appropriate 
dimensions, (6.4) yields 

where u l (D)  A u ( D ) Q ( D )  and G1(D)  Q- ' (D)G(D) .  Since u ' (D)  runs 
through all possible information sequences, the encoders with generators G ( D )  
and G1(D)  are equivalent. That said, it makes sense to look for encoders with 
certain useful properties. One of them is minimum number of states, which has a 
direct bearing on the complexity of the corresponding Viterbi decoder. 
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Example 6.4 

The convolutional encoder of Figure 6.10 has the transfer function 

Now, observe that 

and that 

which shows that the left-hand side of the last equation is an invertible matrix. Thus, 
we can write 

so that the encoder can also be implemented in an equivalent form as shown in 
(1) ( 2 )  Figure 6.1 1. This encoder is systematic: in fact, its input (ui , ui ) yields the 

output (xi ( I ) ,  xi2), xi3)) with xi1) = ujl)  and xi2) = uj2). It can be seen that this 
encoder has the same number of states as that of Figure 6.10. Yet another equivalent 
encoder (but with more states) has the generator matrix 

For future reference, observe that with this encoder the input sequence 

whose Hamming weight is oo, generates the output sequence 

x(D)  = u(D)Gn(D)  = [D  1 01 

whose Hamming weight is 2. 
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Figure 6.10: A rate-213 convolutional encoder corresponding to the generator ma- 
trix (6.5). 

Figure 6.11 : A rate-213 convolutional encoder corresponding to the generator ma- 
trix G'(D)  in (6.6). 

6.3.2 Polynomial encoders 

If q(D) denotes the least common multiple of all the denominators of the entries 
of G (D) , the matrix 

yields an encoder equivalent to G ( D )  that is polynomial. Thus, every convolu- 
tional code admits a polynomial (i.e., feedback-free) encoder. 
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6.3.3 Catastrophic encoders 

Example 6.4 shows how an encoder may map an infinite-weight input sequence 
u(D) to a finite-weight output sequence. We call this encoder catastrophic because 
a finite number of errors in the decoded word can lead to an infinite number of 
errors in the corresponding information sequence u(D). In Example 6.4, if the 
transmitted word is x(D) = [D 1 01 and the decoded word is 2(D) = [O 0 01, 
then the corresponding source sequence is G(D) = [0 01, which entails an infinite 
number of errors. 

Catastrophicity is an encoder property, not a code property: every convolutional 
code admits noncatastrophic as well as catastrophic generator matrices. For rate- 
l /no codes with polynomial generators, a simple necessary and sufficient condi- 
tion for a noncatastrophic encoder is that no two polynomials have a factor in com- 
mon (see Problem 2 at the end of this chapter). More generally, it can be proved 
that if the entries of G(D) are rational, then a unique polynomial q(D) exists with 
q(0) = 1 such that we can write, for i = 1,. . . , no, 

A condition for this G (D) to be noncatastrophic is that no two polynomials pi (D) 
have a common factor other than D. 

6.3.4 Minimal encoders 

It can be shown that among all equivalent encoder matrices there exists one cor- 
responding to the minimum number of trellis states: specifically, its realization in 
controller form requires the minimum number of memory elements [6.8, Section 
2.61. 

6.3.5 Systematic encoders 

Every encoder can be transformed into an equivalent systematic rational one. It 
suffices to transform the generator matrix into the form 

where P is a ko x (no - ko) matrix with rational entries. An interesting property 
of systematic encoding matrices is that they are minimal [6.8, Section 2.101. 
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Example 6.5 

Consider the following generator matrix of a rate-213 code: 

The matrix consisting of the first two columns of G(D)  

is invertible: in fact 

Premultiplication of G(D) by T-I (D) yields a systematic generator matrix equiv- 
alent to G(D): 

6.4 Performance evaluation 

The definition of error probabilities of convolutional codes, as contrasted with 
block codes, requires some extra care because in principle we are examining code 
words with infinite length. Consider transmission of the all-zero code word x and 
the competing code word P # x. We decompose the error, made by choosing 2, as 
a set of error events, each consisting in a single subpath diverging from the all-zero 
path and merging later into it, never to split again (see Figure 6.12). Note that, 
before and after this mergence, the correct path and the erroneous path accumulate 
the same metric increments. 

The probability of error can then be written by using pairwise error probabilities 
and the union bound: 

P(e I x) 5 P(X + P) 

where the sum is extended to all possible error events (whose starting time is ir- 
relevant, since the code trellis is periodic if we disregard, as we do, the initial and 
final transients). Of course, the actual computation of P(x + 2) depends on the 
channel used for transmission. 
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events 

Figure 6.12: Trellis paths associated with code words x  and 2, and two error events. 

6.4.1 AWGN channel 

For this channel we can write, from (3.18): 

Here, under the assumption of binary antipodal signaling with X = {f d), we 
have Ilx - 2112 = 4€dH(x,  2) ,  where dH(x,  2)  denotes the Hamming distance of 
x and 2. Notice that, for all code words x', we have 

dH(x,  2) = dH(x  + x', 2 + x') 

and hence, by choosing x' = x, 

dH ( x ,  2)  = dH (0 ,  2 + X )  = wH (2 + X )  (6.9) 

Since convolutional codes are linear, 2 + x is itself a code word, and hence in (6.8) 
we may assume, without loss of generality, that x is the all-zero word. 

In conclusion, we have 

where 

This shows that the pairwise error probability depends on 2 only through its Ham- 
ming weight: thus, the union bound (6.10) can be evaluated by enumerating the 
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set W of Hamming weights of all the nonzero words of the code. Specifically, we 
have the union bound 

where v(w) is the number of nonzero code words whose Hamming weight is w. 

Weight enumerator function 

The evaluation of bound (6.12) can be considerably simplified by using bound (3. lg), 
which yields the union-Bhattacharyya bound 

To proceed further, we construct a weight enumeratorfunction of the convolu- 
tional code: this lists the weights of all the words 2 that split from the all-zero-word 
trellis path and remerge later into the same path. We do the following: we start from 
the state diagram of the code and examine all state sequences splitting from the all- 
zero state and ending in it. Every edge of the diagram is labeled XW, where X 
is an indeterminate and w is the weight of the code word segment associated with 
the edge in the original state diagram. Formally, we have w = C w, where the 
sum is extended to the trellis branches forming the code word whose weight is w. 
Figure 6.13 shows this modified state diagram for our usual rate-113 convolutional 
code (see Figure 6.5). The transfer function of the graph is the enumerator of path 
weights: 

T (X)  = v(a)Xa + v(b)xb + v(c)XC + . . . (6.14) 

If T (X)  is known, then we have, from (6.13) 

where we may want to write 

with p = ko/no the convolutional code rate (113 in our example). The minimum 
exponent of T (X)  is called the free (Hamming) distance of the code, denoted dfr,. 
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Figure 6.13: State diagram for the rate-113 convolutional code of Figure 6.5. The 
labels allow the computation of the weight enumerator function T (X) . 

This is the smallest free distance of the error events and determines the asymptotic 
(for large &/NO) error probability of the code: 

This also shows that pdfre is the asymptotic coding gain of the code. 

Computing the transfer function of a graph 

The transfer function between a pair of vertices of a directed graph is defined as the 
sum of the labels of all paths of any length connecting the two vertices. The label 
of a path is defined as the product of the labels of its edges. This transfer function 
can be computed in several ways. One consists of the progressive reduction of 
the original graph to a single edge, obtained by repeated application of elementary 
rules like those summarized in Figure 6.14. These show how a graph with more 
than one edge can be replaced by a new graph with a single equivalent edge. 

As an example, consider the graph of Figure 6.15 (a), with labels A, B,  . . . , G 
and vertices a, p, . . . , e. By using reduction rules (c) and (b) of Figure (6.14), 
this graph can first be replaced with that of Figure 6.15 (b) and then with that of 
Figure 6.15 (c). Final application of rule (a) of Figure 6.14 yields the transfer 
function: between a and E 

T ( a  + E) = 
ACG(1- E )  + ABFG 

1 - E - C D + C D E - B D F  
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Figure 6.14: Reduction rules for the computation of the transfer function of  a di- 
rected graph. 

Figure 6.15: (a) Directed graph with five vertices and seven edges; (b) first reduc- 
tion step; (c) second reduction step. 
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When the number of vertices is large, the reduction technique previously ex- 
plained becomes too complex, and we must resort to a different technique for eval- 
uating the transfer function. This technique is based on a matrix description of the 
graph: we shall explain it with reference to the graph of Figure 6.15. 

Let us define by x, the value of the accumulated path labels from any vertex 
directed towards L. The state equations for the graph of Figure 6.15 (a) are 

xp = A + Dx, 
x, = Cxp + Fxs 
xs = Bxp + Ex6 
x, = Gx, 

With this approach, we obviously have T(a -+ E )  = x,, and therefore we can 
solve the system (6.19) and verify that x, is given again by (6.18). 

The system of equations (6.19) can be given a more general and formal expres- 
sion. Define the two column vectors 

and the state transition matrix T 

O D 0 0  
C O F O  

0 E 
O G O O  

Using (6.20) and (6.21), system (6.19) can be rewritten in matrix form as 

whose formal solution is 
x = (I - T)-lxo 

or, equivalently, the matrix power series 
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Example 6.6 

From (6.18), the transfer function of the graph of Figure 6.13 is 

which yields dfree = 6, and the bound 

P(e) 5 T ( e - ' b i 3 ~ 0 )  

6.4.2 Independent Rayleigh fading channel 

Assume now a fading channel with interleaving deep enough to validate the inde- 
pendent-fading model, and with CSI known at the receiver. Here we have 

with R the diagonal matrix of the fading gains. Now, 

where 3 is the set of indices where the two vectors x and 2 differ. If the fading gains 
have a common Rayleigh pdf, the sum above is a chi-square-distributed random 
variable with 2131 = 2dH(x, 2) degrees of freedom. As in the AWGN case, the 
PEP depends only on the Hamming distance between x and 2,  so we can assume 
without loss of generality that x is the all-zero sequence and write 

where Xiw is chi-square with 2w degrees of freedom. Exact computation of the 
expectations in (6.27) can be done with the aid of (4.45)-(4.46). The asymptotic 
expression (4.48) can also be used to obtain 
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Figure 6.16: The rate-112 convolutional code used in GSM. 

and hence, if there are v(dfree) words with Hamming weight dfree, then, for high 
SNR, 

The reader can verify that, if the results of Section 4.2.1 are directly applied to this 
case, a weaker bound on P(e )  is obtained. 

6.4.3 Block-fading channel 

From the results of Section 4.3, we can easily infer that the asymptotic performance 
of convolutional codes over block-fading channels depends on Dfre,, defined as the 
minimum Hamming block distance of error events. 

Example 6.7 

As an example of a convolutional code used on a block-fading channel, we describe 
the code used in GSM. Its performance is evaluated by determining its Hamming 
block distance with F = 8. 

Consider the rate-112 binary convolutional code whose encoder is depicted in 
Figure 6.16. This is employed in full-rate GSM. Its Hamming free distance is 7, and 
the coded sequence with Hamming weight 7 is 

The coded bits are interleaved over F = 8 blocks and transmitted over channels 
whose fading gains can be assumed to be independent, so the block-fading model 
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applies. The above sequence is distributed among the eight blocks as follows: 

which shows that its Hamming block-distance is 5. This turns out to be also Df,,, 
(see [6.9]), and use of the Singleton bound (4.35) shows that no binary rate-112 
code can yield a higher distance. Hence, this code is optimum over the block-fading 
channel with F = 8. 0 

6.5 Best known short-constraint-length codes 

Computer search methods have been used to find convolutional codes optimum in 
the sense that, for a given rate and a given constraint length, they have the largest 
possible free distance. The best rate-112 and rate-113 codes are listed in part in 
Tables 6.1 and 6.2 [6.3,6.10]. The codes are identified by their generators, repre- 
sented as octal numbers. By transforming an octal number into a binary number, 
we have a sequence of 1s and Os, each of which represents the presence (or the ab- 
sence, respectively) of the connection of a cell of a shift register with one modulo-2 
adder. 

6.6 Punctured convolutional codes 

Puncturing is a procedure for obtaining, in an easy way, a convolutional code with 
a higher rate from one with a lower rate ko/no. If a fraction E of symbols are 
eliminated (punctured) from each encoded sequence, the resulting code has rate 
(Ico/no)/(l - E). For example, if 114 of the symbols of a rate-112 code are punc- 
tured, a new code with rate (1/2)(4/3) = 213 is obtained. An example will show 
how this can be done. 

Example 6.8 

Consider the four-state convolutional encoder of Figure 6.17(a). For each input bit 
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Memory v Generators in octal notation dfree 

Table 6.1: Maximum-fiee-distance convolutional codes ofrate 112 and memory v. 

Memory v Generators in octal notation d f ~  

Table 6.2: Maximum-free-distance convolutional codes of  rate 1 /3 and memory v. 

entering the encoder, two bits are sent through the channel, so the code generated 
has rate 112. Its trellis is also shown, in Figure 6.17(b). Suppose now that, for every 
four bits generated by the encoder, one (the last) is punctured, i.e., not transmit- 
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Figure 6.17: Encoder (a) and trellis (b) for a rate-1/2 convolutional code. The 
trellis (c) refers to the rate-2/3 punctured code described in Example 6.8. 

ted. In this case, for every two input bits three bits are generated by the encoder, 
thus producing a rate-213 code. The trellis for the punctured code is shown in Fig- 
ure 6.17 (c), and the letter x denotes a punctured output bit. As an example, the 
input sequence u = 101101.. . would yield x = 111000010100 for the rate-112 
code and x = 111000010 for the punctured rate-213 code. 

In decoding, the samples corresponding to punctured bit locations are provided 
to the decoder after assigning them the value of 0.0, since there is no channel 
information about these bits. 

The major upside of puncturing is that several rates can be obtained from the 
same "mother code," thus simplifying the implementation through a sort of "uni- 
versal" encoder and decoder, a fact widely exploited in circuit implementations. 
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As for the downsides to the punctured solution, there are at least two of them. 
First, punctured codes are normally worse (albeit slightly), in terms of distance 
spectrum, than the best unpunctured codes with the same rate. Second, since the 
trellis of a punctured (no, ko) code is time-varying with period ko, the decoder 
needs to acquire frame synchronization in addition to symbol synchronization. 

6.7 Block codes from convolutional codes 

Since in practice a convolutional code is used to transmit aJinite sequence of in- 
formation symbols, its trellis must be terminated at a certain time. This operation 
yields a block code. Here we study how this termination can be done, focusing 
our attention to rate-l/no convolutional codes for simplicity (the general case of 
rate-ko/no codes is left as an exercise to the willing reader). 

Let us first derive the generator matrix G of the infinite-length block code ob- 
tained as the output of a rate-l/no polynomial (i.e., nonrecursive) encoder. At each 
time t > 0, the no output symbols are a linear combination of the v+ 1 binary digits 
contained in the shift register: we write 

where gi, 1 5 i 5 v + 1, is a "generator" row vector whose no components 
describe the connections between the adders and the shift register. Specifically, the 
jth component of gi is 1 if adder j is connected to the cell i of the shift register, and 
0 otherwise. Equation (6.30) can be written in a matrix form involving the input 
sequence u = (uo ul . . .) and the output sequence x as 

where 

G, 

(the blank entries in G, are zero). 

- - 
gl g2 . .. gu+1 

gl g2 - .  . gv+1 
gl g2 - - . gu+l 

gl g2 . - .  gu+1 
... . . . . . . . . . - - 

(6.32) 
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Figure 6.18: A rate-113 polynomial convolutional encoder. 

Example 6.9 

With the rate-1/3 encoder of Figure 6.18 we have 

with 

g, A [I1 11 g2 4 [O 1 11 g3 [O 0 11 

which yields 

G ,  = 

6.7.1 Direct termination 

Consider now an input sequence with finite length N. The first N output symbols 
can be computed from (6.30) by taking 0 5 t < N, which is equivalent to writing 



182 Chapter 6. Coding on a trellis: Convolutional codes 

where 

A G N  = 

is a matrix with N rows and n o N  columns. Hence, the resulting block code has the 
same rate as the original convolutional code. This is a very natural code construc- 
tion, but it has a downside. In fact, it turns out that the last coded symbols are less 
protected from the noisy-channel effects: the BER as a function of the bit position 
in a block would typically be about constant for most bits, except for those at the 
beginning and at the end of the block. This occurs because the Viterbi algorithm 
leaves from a known starting state when it decodes the first bits, and hence yields 
a lower BER for them. The opposite occurs with the last bits in the block. 

To avoid the poor protection at the end of the block caused by direct termination, 
the most common way (the zero-tailing method) of terminating a convolutional 
code consists of having the encoder end in a predefined state (typically, the all-zero 
state). To be able to do this, the encoder appends a deterministic sequence, at the 
end of the information sequence, that fills with zeros the entire shift register of 
the encoder. This sequence need not be any longer than the memory length of the 
encoder (multiplied by ko if the code has rate ko/no). Its components generally 
depend on the encoder state at the end of the information sequence: however, for a 
polynomial generator matrix of memory u, the zero-tailing sequence is the all-zero 
v-tuple. This sequence causes a code-rate loss that may be substantial for short 
blocks: in fact, for rate-l/no codes with N information symbols, the resulting 
block length is ( N  + v)no, so the resulting code rate is N/((N + v)no) < l/no. 

Example 6.10 

Figure 6.19 shows that, to terminate the trellis by bringing the encoder back to state 
00, the last two bits fed into the shift register must be zero. If the rate of the original 
convolutional code is 112, that of the terminated block code is 5/14. I7 
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Figure 6.19: Trellis termination. 

If a system transmits short data frames, the loss due to trellis termination using 
the zero-tailing method may be unacceptable. In this case, one can resort to a 
transformation of the code trellis into a tail-biting one (see Section 5.9). With a 
tail-biting trellis the encoder starts and ends in the same state, and thus the code- 
rate loss is eliminated at the price of increased decoder complexity, due to the fact 
that the starting and ending states of the encoder are unknown to the decoder. 

Consider a polynomial encoder for a memory-v, rate-l/no code (the general- 
ization to rate-ko/no is straightforward). After N input symbols, the encoder state 
is (uN UN-1 . . . U ~ - V + ~ ) ,  which we want to coincide with the initial state. If the 
all-zero sequence is sent to an encoder with this initial state (that is, preloaded with 
these bit values from the end of the block), then the output sequence has the form 

where 

and 

is a matrix with N rows and noN columns. For a general input sequence with 
length N, due to the linearity of the code we can write the code words obtained 



184 Chapter 6. Coding on a trellis: Convolutional codes 

with the tail-biting method in the form x = uGKB, where 

GTB N - G ~ + G ; )  P 

Observe how the matrix (6.35) can be obtained from (6.34) by wrapping around 
the last v columns. Based on this observation, we may construct a convolutional 
code from a block code whose generator matrix has the form (6.35): to obtain G, 
it suffices to unwrap it and to extend it to a semi-infinite matrix. 

6.8 Bibliographical notes 

A thorough treatment of the algebraic aspects of convolutional codes can be found 
in [6.8] (see also papers [6.4,6.7]). Some information-theoretical aspects of these 
codes are examined in [6.13]. Tables of good codes can be found in [6.3,6.10]. 

In this chapter we have not covered the calculation of bit error probability. This 
can be found, for example, in [6.1, Section 11.11. The effect of trellis truncation 
on the error rate of convolutional codes is examined in [6.12]. Tail-biting convolu- 
tional codes are treated in [6.8,6.11]. 

Tables of punctured codes can be found in [6.2,6.14]. 

6.9 Problems 

1. Find a parity-check matrix for the code of Example 6.3, i.e., a matrix H(D) 
satisfying 

x(D)H'(D) = o 

2. Consider a rate-l/no convolutional code with polynomial generators. Prove 
that its encoder is catastrophic if and only if all generator polynomials have 
a common polynomial factor of degree at least one. 
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Figure 6.20: Encoder of a rate-113 convolutional code. 

3. Prove that, for a rate-l/no convolutional encoder, 

(a) Two generators G(D),  G1(D) are equivalent if and only if G(D)  = 
u(D)G1(D) for some nonzero rational function u(D). 

(b) Every generator G(D) is equivalent to a polynomial generator. 

4. Prove that a systematic encoder for a rate-l/no convolutional code with gen- 
erator G(D) = (gi (D), g2 (D), . . . , g,, (D)) may be obtained in the form 
(1, gz(D)lg1(D), . . - 7 gn,(D)lgl (D)). 

5. Consider the rate-113 convolutional code shown in Figure 6.20. 

(a) Draw a section of the trellis diagram of the code, including the branch 
labels describing the coded symbols. 

(b) Derive the weight enumerator function T(D) of the code. 

(c) Compute its free Hamming distance. 

6. Use (6.28) and the inequality 

to derive a transfer-function bound for the error probability P(e)  of a convo- 
lutional code used over the independent Rayleigh fading channel with perfect 
channel state information at the receiver. 

7. Use (3.66) to derive a bound tighter than the union-Bhattacharyya bound (6.13). 

8. Consider a convolutional encoder with feedback. Show that a finite zero- 
sequence at its input may not terminate the trellis in the null state. Examine 
the special case of systematic encoders with feedback. 

9. Generalize the transfer-function bound to error probability derived in this 
chapter to the computation of P(e) for block codes defined on a (generally 
nonperiodic) trellis. 
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and barnacled up to the eyes when he repented after seven 

Trellis-coded modulation 

In this chapter rvc introduce codes designed on a pcriodic trellis, and whose 
coded syrnbols arc not restricted to thc binary set (0. 1 )  but rather cl~oscn 
from a general elementary constellation X. The basic idea underlying Trellis- 
Coded Modulation (TCM) is to use a convolutional code to generate the re- 
dundancy necessary to achieve a coding gain, while preventing band width 
expansion by increasing tlic size o f  the constellation radier than the number 
o f  transmitted synibols. Specifically, a rate-ko/no convolutionnl code trans- 
hrms  a binary ko-tuple into a binary nu-tuple. The latter is used as the binary 
label o f  a constellation X with X = 2'1° signals. Without coding, the con- 
stellation needed would be XI, with IX'J = 2k0 signals. Thus, coding does 
not entail any bandwidth expansion i f  X, X' have the same dimensionality, 
while the convolutional code provides a coding gain. In practice. TCM uses 
no = ko + 1 ,  so 1x1 = 21X'I and data are transmitted at a rate oflog 1x1 - 1 
bits per signal. 
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7.1 Generalities 

If a convolutional code is designed by properly choosing a periodic trellis and the 
binary symbols associated with its branches, its coded signals carry information 
at a rate lower than 1 bidsignal. To introduce the redundancy needed to decrease 
the rate (and hence to obtain a coding gain), we are forced to increase the number 
of transmitted binary symbols, which entails decreasing their duration, and conse- 
quently increasing the occupied bandwidth. Since bandwidth expansion is obvi- 
ously an unwelcome effect, we may consider introducing redundancy in a different 
way. Trellis-coded modulation (TCM), described in this chapter, uses a redundant 
signal set, i.e., an elementary constellation with more signals than we would need 
if coding were not used. Specifically, TCM uses 2M signals to transmit at a rate 
of log M bidsymbol. As a result, a coding gain is obtained without any sacrifice 
in bandwidth. To understand how TCM works, consider Figure 3.4 or Figure 4.5. 
Here we see that, to transmit 1 bit per dimension pair (say), one could use 2-PSK 
and a high-enough SNR; if a lower SNR is available, then the rate decreases below 
1 (this is the "standard" coding solution). Now, observe that 1 bit per dimension 
pair could also be transmitted at a lower SNR (and hence by achieving a coding 
gain) if 4-PSK is used. The challenge here is to design coding schemes yielding 
the coding gain promised by these considerations. TCM is one such solution. 

Consider the transmission of uncoded signals chosen from XI, and let El denote 
the average transmitted energy. We have seen in Chapter 3 that the error probability 
of this uncoded system on the AWGN channel depends, asymptotically for high 
signal-to-noise ratios, on the energy per bit E/b and on Smin, the minimum Euclidean 
distance of 5 .  This dependence is summarized by the definition of asymptotic 
power efficiency, whose value is y' = Siin/4E/b here. With a coding scheme 
using the constellation X > XI, the asymptotic error probability depends on the 
average transmitted energy per bit Eb and on Sfre,, the smallest Euclidean distance 
among code words (since we are considering trellis codes here, it is appropriate 
to call it free Euclidean distance). The quality of the transmission solution can be 
expressed by its asymptotic power efficiency y = 6iee/4Eb. Since the amount of 
bits per symbol carried by uncoded and coded constellations must be the same, 
€LIEb = El/€, and we can write the coding gain in the form 

Typically, TCM has I X I = 2 1 X' I. A bigger increase is indeed possible if I X I > 
21X'I (look again at Figure 3.4 or Figure 4.3, but the performance improvement 
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Figure 7.1 : A TCM trellis section with two states and parallel transitions. 

thus obtainable does not seem to compensate for the additional complexity intro- 
duced. 

A TCM scheme is given by choosing a trellis and assigning to every transition 
between pairs of states an element from constellation X. For generality, unlike con- 
volutional codes, in which only one branch can conjoin two states, TCM accepts 
parallel transitions, i.e., the presence of two or more branches emanating from, 
and merging into, the same state. Figure 7.1 illustrates a trellis section exhibiting 
parallel branches. 

7.2 Some simple TCM schemes 

Before delving into the theory, we examine a few simple examples of TCM schemes 
and evaluate their asymptotic coding gains. Consider first the transmission of 2 bits 
per signal. Without coding, a constellation with four signals would suffice. Instead, 
consider TCM schemes with eight signals. 

With 4-PSK we have 

a value that provides a baseline for computing the coding gains. Consider next 
8-PSK, with signals labeled {071, 2,. . . ,7) as in Figure 7.2. Here, 

Two states. Consider first a trellis with two states (Figure 7.3). If the encoder is 
in state S1, it picks its signals from the subconstellation {0,2,4,6). If it is in state 
S2, it picks them from {1,3,5,7). The free distance of this TCM scheme may 
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Figure 7.2: 8-PSK as used in a TCM scheme. 

Figure 7.3: TCM scheme with a two-state trellis. The pair of paths yielding the 
free distance is shown in bold. 

be equal to the smallest distance between pairs of signals associated with parallel 
transitions (competing paths with length I), or to the smallest distance between 
pairs of paths diverging from a node and remerging after some instants (competing 
paths with length > 1). Through the use of techniques to be presented later in this 
chapter, it can be proved that the free distance is given by the pair of paths shown 
in bold in Figure 7.3. If d E ( i ,  j )  denotes the Euclidean distance between signals i 
and j ,  we have 
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Figure 7.4: Four-state TCM scheme. 

It follows that the asymptotic coding gain with respect to 4-PSK is 

Four states. More states in the TCM trellis yield a larger coding gain. Using 
again the constellation of Figure 7.2, we now consider the four-state trellis of Fig- 
ure 7.4. Here we associate the subconstellation {0 ,2 ,4 ,6 )  with states S1 and S3, 
and {1 ,3 ,5 ,7 )  with states Sz and S4. In this case the error event generating the 
free distance bf,, has length 1 (parallel transition). This is shown in bold in Fig- 
ure 7.4, along with another pair of competing paths with length 3  yielding a larger 
distance. We obtain 

2 
'free 2 
e - d,(O,4) = 4  

which entails that the asymptotic coding gain is 

Eight states. We can further increase the asymptotic coding gain by choosing 
an eight-state trellis as in Figure 7.5. To simplify Figure 7.5, the four symbols 
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Figure 7.5: Eight-state TCM scheme with 8-PSK. 

associated with the branches emanating from a node are indicated near the node. 
The first among the four symbols is associated with the uppermost transition, the 
second with the second transition from the top, etc. The pair of paths at She is also 
shown. We obtain 

and hence 
4.586 

7 = - = 2.293 +- 3.6 dB 
2 

Consideration of QAM. Consider now the transmission of 3 bits per signal and 
quadrature amplitude modulation (QAM) schemes. The octonary constellation of 
Figure 7.6 (black dots) will be used as the baseline uncoded scheme. It has 

A TCM scheme with eight states and based on this constellation is shown in Fig- 
ure 7.7. The subconstellations used are 
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Figure 7.6: The octonary QAM constellation {0,2,5,7,8,10,13,15) and the 16- 
ary QAM constellation { O , l ,  . . . ,151. 

Figure 7.7: A TCM scheme based on an eight-state trellis, M' = 8, and M = 16. 

and 

{1,3,4,6,9,11,12,14) 

The free distance is obtained from 
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so that 
2 

q = - = 2.5 + 3.98 dB 
0.8 

7.2.1 Coding gain of TCM 

The values of Sfre, that can be obtained with TCM schemes based on two-dimen- 
sional, unit-energy elementary constellations (PSK and QAM) are summarized in 
Figure 7.8. Their free distances are expressed in dB and referred to the baseline 
value 6ii, = 2, corresponding to uncoded unit-energy 4-PSK. The abscissa shows 
Rb/W, the spectral efficiency in bit/dimension pair (or in bitMHz if W is the 
Shannon bandwidth, as defined in Chapter 3). We can see how relatively large 
coding gains can be achieved by using TCM schemes with a small number of states: 
4,8, and 16. Convolutional codes are the solution of choice if bandwidth efficiency 
is not at a premium; otherwise, TCM provides higher values of Rb/W, albeit at the 
price of a smaller coding gain for a comparable complexity. 

7.3 Designing TCM schemes 

As mentioned before, to describe a TCM scheme we give its trellis and the map 
associating each branch with an elementary signal. This map must be chosen in 
order to maximize the free Euclidean distance, and hence the asymptotic coding 
gain. In the following, we elaborate on how this maximization can be achieved. 

7.3.1 Set partitioning 

Consider the evaluation of the free distance 6free, i.e., the Euclidean distance be- 
tween a pair of trellis paths diverging from a node and remerging after L instants 
(Figure 7.9). 

Let us first examine the case in which the free distance is determined by parallel 
transitions, viz., L = 1. In this case the free distance bf,, is equal to the smallest 
distance between any two signals associated with the parallel transitions. Next, 
consider L > 1; if A, B, C, D denote the subsets of signals associated with each 
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BINARY CONVOLUTIONAL CODES 

- WITH 4-PSK 
(4 - 256 S T A T E S T  

: TCM 
(4 - 256 STATES) 

8-P'SK", 7 ~ 1 2 8  256 : 
e l  ' \ :  A 64 128-QAM 

........ .:. .................. .\'. ........ A 1 6 3 2  .. 
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' \  
' \  ' \  

0 1  '\ 
64-QAM '\ 

Figure 7.8: Free distance vs. spectral efficiency of  some TCM schemes using two- 
dimensional unit-energy constellations. 

branch, and dE(X,Y) is the minimum Euclidean distance between one signal in X 
and one signal in Y, then biee can be written in the form 
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Figure 7.9: A pair o f  paths diverging and remerging with L = 1 (parallel transi- 
tions) and L > 1.  

This implies that, for a good TCM scheme, the subsets associated with the same 
originating state (A and B in Figure 7.9) or with the same terminating state (C 
and D in Figure 7.9) must be separated by the largest possible distance. These 
observations form the basis for a technique suggested by Ungerboeck [7.6] and 
called set partitioning. 

A constellation with M  signals is successively partitioned into 2 ,4 ,8 , .  . . , sub- 
constellations with size M / 2 ,  M / 4 ,  M/8 ,  . . . , respectively, having progressively 

(1) (2) (3) larger minimum Euclidean distances: Smin, Smin, Smin, . . . (see Figure 7.10). 
Three rules are applied, deemed to give rise to the best TCM schemes and called 

Ungerboeck rules: 

U1 Parallel transitions are associated with signals belonging to the same sub- 
constellation. 

U2 Branches diverging from the same node or merging into the same node are 
associated with the same subconstellation at the level above that correspond- 
ing to rule U1. 

U3 All signals are used equally often. 

All the TCM schemes examined so far in this chapter satisfy U1-U3 (except the 
one in Figure 7.3: why?). 

7.4 Encoders for TCM 

In the previous chapter, we saw how the encoder of a code on a trellis can be gen- 
erated by assigning one or more binary shift registers and a function mapping their 
contents to the elements of the signal constellation. With TCM, an encoder is 
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o o 0 o 1 g 3 o  
6 

Figure 7.10: Set-partitioning 8-PSK. 

Convolutional 

. . . m rate - 
b y  -> m+ 1 

Figure 7.1 1 : A TCM encoder. 

slightly more complex, as two blocks are present. In the first block, m-tuples of 
source bits b!'), . . him) are presented simultaneously to a convolutional encoder 
with rate m/(m + 1). The second block consists of a memoryless modulator map- 
ping the convolutionally encoded binary (m + 1)-tuples onto a signal constellation 
(see Figure 7.1 1). 
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t Uncoded 
bits 

1 Coded bits 

Figure 7.12: TCM encoder. Here the uncoded bits are explicitly shown. 

It is convenient to modify the encoder scheme of Figure 7.11 as shown in Fig- 
ure 7.12, which makes it explicit that some input binary digits may be left uncoded, 
hence generating parallel transitions (in fact, these bits, which do not pass through 
the memory elements of the convolutional encoder, cannot cause a state change). 
The convolutional code now has a rate m/(m + I), and each trellis branch is asso- 
ciated with 2m-m signals. The correspondence between convolutionally encoded 
bits and subconstellation signals is shown, for 8-PSK, in Figure 7.10. 

Example 7.1 

Figure 7.13 shows a TCM encoder and the trellis associated with it. Here m = 2 
and m = 1, so that the nodes of the trellis (corresponding as usual to the states of 
the encoder) are connected by parallel transitions, each being associated with two 
signals. 0 

7.5 TCM with multidimensional constellations 

We have seen that, with a given constellation, the performance of TCM can be im- 
proved by increasing the number of trellis states. Nonetheless, when this number 
exceeds a certain (small) value, the coding gain increases little, in accordance with 
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Figure 7.13: A TCM encoder with m = 2 and m = 1 corresponding to the trellis 
at right. 

the principle of diminishing returns. In this situation, we may choose the solu- 
tion of changing the constellation X: an option is to move from two-dimensional 
constellations to multidimensional constellations. 

Consider, in particular, signals generated by taking the N-fold Cartesian product 
of two-dimensional constellations (such as PSK or QAM). These can be obtained, 
for example, by transmitting sequentially N two-dimensional signals, each with a 
duration TIN.  The resulting signals can be interpreted as having a duration T and 
2N dimensions. 

Example 7.2 

A TCM scheme with four dimensions can be obtained by concatenating two unit- 
energy 4-PSK signals. The constellation obtained is called 2 x 4-PSK. With the 
labels shown in Figure 7.14, the 42 = 16 four-dimensional signals are 

This constellation has the same minimum Euclidean distance as 4-PSK: 

The subconstellation that follows has eight signals: 



200 Chapter 7. Trellis-coded modulation 

Figure 7.14: A two-state TCM scheme with a 2 x 4-PSK constellation. The error 
event giving rise to the free distance is also shown. 

and a minimum squared distance equal to 4. If X is partitioned into four subsets 

(00,221 (02,201 (13,311 (11,331 

then the two-state TCM scheme of Figure 7.14 has a squared Euclidean distance 
equal to 8. 0 

7.6 TCM transparent to rotations 

We now examine channels affected by a phase offset, and the design of TCM for 
these channels. Consider coherent demodulation. This requires the estimate of 
the carrier phase before demodulation. Several techniques for this estimate exist, 
based on the removal of the phase shifts caused by the data transmitted (the data 
noise). This removal generates a carrier whose phase value is affected by an am- 
biguity that depends on the rotational symmetries of the constellation used. For 
example, QAM is left invariant by a rotation by multiples of 7r/2, and M-ary PSK 
by a rotation by multiples of 27r/M. The presence of any such rotation cannot 
be directly detected by the carrier-phase recovery circuit. We model this effect by 
adding to the received signal a random, data-independent phase shift q5 taking on 
values in the set {2 .nk/~}Ei ' .  To remove this phase shift, differential encoding 
and decoding are often used. 

7.6.1 Differential encodingldecoding 

With differential encoding, the information to be transmitted is associated with 
phase differences rather than with absolute phases. Consider differential encoding 
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of PSK. The model of a channel introducing the phase ambiguity q5 can be easily 
constructed by assuming that, when the phase information sequence (On):=o is 
transmitted, the corresponding received phases are (On + q5);=0. (We neglect noise 
for simplicity.) While the received phases differ from those transmitted, we may 
observe that the phase differences between adjacent bits are left invariant. Thus, if 
the information bits are associated with these differences rather than with absolute 
phases, the value of q5 has no effect on the received information. We illustrate this 
by a simple example. 

Example 7.3 

Consider transmission of binary PSK. If the channel is affected by the phase offset 
q5 = ~ r ,  we receive (9, + ~r)r=~, and hence all received bits differ from those 
transmitted. To avoid this, transform, before modulation, the information-carrying 
phases (9n)2!0 into the dlferentially encoded phase sequence (9i)r=0 according 
to the rule 

9; = en + e;-l mod 2~ (7.2) 

where it is assumed that 9T1 = 0. Next, differentially decode the received phase 
sequence by inverting (7.2): 

where a hatAdenotes phase estimates. We have the situation illustrated in Table 7.1. 
0 

--- - 

Information digits bn 0 1 1 1 0 1 0 1 1  

Corresponding phases 0, O n 7 r 7 r O n 0 7 r 7 r  
Received phases 8, + 7r 7 r 0 0 0 7 r O n 0 0  

Detected info. digits i n  1 0 0 0 1 0 1 0 0  

Diff. encoded phases 0; 0 0 7 r 0 7 r 7 r 0 0 7 r O  
Received phases 8 ~ + ~ ~ 0 0 0 ~ ~ 0 ~  
Diff. decoded phases &I 0 7 r 7 r 7 r O 7 r O ~ 7 r  

Decoded info. digits i n  0 1 1 1 0 1 0 1 1  

Table 7.1: Effect of a rotation by 7r on uncoded and differentially encoded binary 
PSK. 
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encoder decoder 

Figure 7.15 : Differential encoding and decoding. 

To explain in general terms the differential coding/encoding procedure, we use 
D-transform notations, which correspond to describing a semi-infinite sequence 

through the power series A(D) CrZo anDn. With this notation, we 
write the transmitted phase sequence as 

and the received sequence as 

(we are still neglecting the effect of the additive Gaussian noise). 
To get rid of the ambiguity term (1 - D)  , we multiply the received signal (7.4) 

by (1 - D). This is accomplished by the dzfferential decoder. In the time domain, 
this circuit subtracts, from the phase received at any instant, the phase that was re- 
ceived in the preceding symbol period: since both phases are affected by the same 
ambiguity 4, this is removed by the difference (except for the phase at time 0). The 
received sequence is now (1 - D)O(D) + 4, which shows that the ambiguity is 
now removed (except at the initial time n = 0, as reflected by the term 4 multi- 
plying DO). Now, the information term O(D) is multiplied by (1 - D): to recover 
it exactly we must divide O(D), before transmission, by (1 - D). This opera- 
tion, corresponding to (7.2), is called differential encoding. The whole process is 
summarized in Figure 7.15. 

7.6.2 TCM schemes coping with phase ambiguities 

If TCM is employed on a channel affected by a phase offset, we must make sure 
that signal sequences affected by phase rotations are still valid sequences, i.e., cor- 
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Figure 7.16: TCM transparent to a phase rotation by T but not to a rotation by ~ / 2 .  

respond to paths traversing the trellis; otherwise, a single phase rotation might 
generate a long error sequence, because even in the absence of noise the TCM 
decoder cannot recognize what it receives as a valid TCM sequence. 

Example 7.4 

With the trellis of Figure 7.16, suppose that the all-zero sequence has been trans- 
mitted. A rotation by n introduced by the channel causes the reception of the all-2 
sequence, which is valid. On the contrary, a rotation by n/2 generates the all-1 se- 
quence, which is not a valid sequence, and hence will not be recognized as such by 
the Viterbi algorithm (see the trellis). 0 

The receiver can solve this ambiguity problem in several ways. One of these 
consists of transmitting a known "training" sequence that allows one to estimate, 
and hence to compensate for, the phase rotation introduced by the channel. An- 
other one uses a code that is not transparent to rotations. A phase error generates 
a sequence that, not being recognized as valid by the decoder, triggers a phase- 
compensation circuit. The third solution, which we shall examine in some detail, 
is based on the design of a TCM scheme based on M-PSK and transparent to ro- 
tations: for it, every rotation by ~ T / M  of a TCM sequence generates another valid 
sequence so that the decoder will not be affected. 

For a TCM scheme to be transparent to a certain set of rotations, we require the 
following: 

1. Any rotated TCM sequence is a TCM sequence. 

2. Any rotated TCM sequence is decoded into the same source-symbol se- 
quence. 
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Figure 7.17: Partition of 8-PSK transparent to rotations. 

The first property above is geometric: the coded sequences, which can be inter- 
preted as a set of points in a Euclidean space with an infinite number of dimensions, 
must be invariant with respect to a given finite set of rotations. The second property 
is rather a structural property of the encoder: in fact, it is related to the input-output 
relationship of the encoder. 

Partitions transparent to rotations. The first fundamental principle in the de- 
sign of a code transparent to rotations is the construction of a transparent partition. 

Let X be a 2N-dimensional signal constellation, {Yl, - . , YK) its partition into 
K subconstellations, and consider the rotations in the two-dimensional Euclidean 
space. The rotations of the 2N-dimensional space are obtained by considering 
a separate rotation in each two-dimensional subspace. Next, consider the set of 
rotations that leave X invariant, and denote it by R(X). If R(X) leaves the partition 
invariant, that is, if the effect of every element of R(X) on the partition is simply a 
permutation of its elements, then the partition is called transparent to rotations. 

Example 7.5 

Consider an 8-PSK constellation and its partition into four subsets of signals as in 
Figure 7.17. Let the elements of R(X),  the set (group) of rotations by multiples of 
7~14, be denoted by po, p, /4,  p,p, etc. This partition is transparent to rotations. For 
example, p,/4 corresponds to the permutation (YlY3Y2Y4), p,12 to the permutation 
(Yl&)(&&), p, to the identity permutation, etc. 0 
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Figure 7.18: Section of a two-state trellis. 

Example 7.6 

Consider the four-dimensional signal set of Example 7.2 and its partition into the 
four subconstellations 

The elements of R(X) are the pairs of rotations, each a multiple of 7r/2, denoted po, 
p n p ,  pn, and P3=/2. We can see, for instance, that the effect of p,12 on signal x y  is 
to change it into a signal ( x  + l)(y + l), with sums taken mod 4. This partition is 
transparent to rotations. 0 

'kellises transparent to rotations. Consider now the effect of a phase rotation 
on coded TCM sequences. If the partition Y of X is transparent to rotations, the 
TCM scheme becomes transparent to rotations if every rotation p E R(X) trans- 
forms a valid subconstellation sequence into a valid subconstellation sequence. 

Examine a trellis section. If all the subconstellations labeling the trellis branches 
are affected by the same rotation p, we generally obtain a different trellis section. 
Now, for the TCM scheme to be transparent to rotations, this transformed trellis 
section must be equal to the unrotated section, apart from a possible permutation 
of its states. 

Example 7.7 

Consider a section of a two-state trellis (Figure 7.18) based on the partition 
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(we use the same notations of Figure 7.17). This partition is transparent to rotations. 
We describe this trellis section by giving the set of its branches (Si, Y,, Sk), where 
Yj is the subconstellation labeling the branch joining state Sj to state Sk. This trellis 
is described by the set 

The rotations p,p and &,/2 transform 7 into 

which corresponds to the permutation (A, B )  of the states of T. Similarly, po and 
p, correspond to the identity permutation. In conclusion, this TCM scheme is trans- 
parent to rotations. 0 

It may happen that a TCM scheme satisfies the conditions of rotational invari- 
ance only for a subset of R(X), rather than for the whole of R(X).  In this case we 
say that X is partially transparent to rotations. 

Example 7.8 

Consider the TCM scheme of Figure 7.19. This has eight states, and its subconstel- 
lations correspond to the partition Y = {Yl, Y2, Y3, Y4) of Figure 7.17. This parti- 
tion, as we know, is transparent to rotations. However, the TCM scheme is not fully 
transparent. If we consider the effect of a rotation by 7~/4 (Table 7.2), we can see 
that the effect of pK/4 is not a simple permutation of the trellis states. In fact, take the 
branch (S1, Y3, S1); in the initial trellis, there is no branch of the type (Si, Y3, Si). 
This TCM scheme is partially transparent: in fact, it is transparent to rotations by 
multiples of ~ / 2 .  For instance, the effect of prl2 is described in Table 7.2: it gener- 
ates the following permutation of its states: (S1 Ss) (S2S7) (S3S6) (S4S5). 0 

Ransparent encoder. Consider finally the transparency of the encoder. We re- 
quire every rotation of a TCM sequence to correspond to the same information 
sequence. If u denotes a sequence of source symbols, and y the corresponding 
sequence of subconstellations, then every rotation p(y)  to which the TCM scheme 
is transparent must correspond to the same sequence u. 

We observe that for this condition to be satisfied it is sometimes necessary to in- 
troduce a differential encoder. This point is illustrated by the example that follows. 
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Figure 7.19: A TCM scheme not transparent to rotations. 

Example 7.9 

Consider again the eight-state TCM and the 8-PSK constellation of Example 7.7. We 
have seen in Example 7.5 that rotations by n / 2  and 3x12 generate the permutation 
(YlY2) (Y3Y4). If the encoder associates source symbols to constellations according 
to the rule: 

oo+y1  1 0 + y 2  0 1 + y 3  11+y4 

then the only effect of p,12 and of P3,/2 is to change the first bit of the pair of binary 
source symbols, while po and p, change no bit. Thus, if the first bit is differentially 
encoded, the resulting TCM scheme will be transparent to rotations by multiples of 
n / 2 .  

General considerations 

We can generally say that the constraints of transparency to rotations may entail 
a reduction of the coding gain of two-dimensional TCM. Generating an encoder 
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Table 7.2: Effect of rotations by 7r/4 and 7r/2 on the TCM scheme of Example 7.8. 

transparent to rotations may require a nonlinear convolutional code. The loss in 
performance caused by the invariance constraints is generally lower for multidi- 
mensional constellations. 

7.7 Decoding TCM 

As discussed in Section 5.3, due to the one-to-one correspondence between sig- 
nal sequences and paths traversing the trellis, maximum-likelihood (ML) decoding 
over a stationary memoryless channel consists of searching for the trellis path with 
the maximum metric m(y I x). This is done by using the Viterbi algorithm. The 
branch metrics to be used are obtained as follows. If a branch of the trellis describ- 
ing the code is labeled by signal xi, then at discrete time i the metric associated 
with that branch is m(yi I xi) if there are no parallel transitions. If a pair of nodes 
is connected by parallel transitions, with branches labeled XI, xu, . . . , in the set X*, 
then in the trellis used for decoding the same pair of nodes is connected by a single 
branch, whose metric is 

min m(yi I x) 
xEX* 
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That is, in the presence of parallel transitions, the decoder first selects the signal 
with the maximum metric among x', x", . . . , (this is a demodulation operation), 
and then associates with a single branch the metric of the signal selected. 

7.8 Error probability of TCM 

This section is devoted to the calculation of error probability of TCM. We as- 
sume transmission over the AWGN channel, and maximum-likelihood detection. It 
should not come as a surprise that, asymptotically for large SNRs, upper and lower 
bounds to error probability decrease as increases. This finding shows that the 
free Euclidean distance is a sensible parameter for comparing TCM schemes used 
over the high-SNR AWGN channel. 

No general constructive technique is available for the design of an optimal TCM 
scheme: hence, sensible designs should be based on a search among a set of 
schemes satisfying Ungerboeck rules. For this reason, it is important to ensure 
that a fast and accurate method is available for the evaluation of free distance and 
error probability. 

7.8.1 Upper bound to the probability of an error event 

A rate-m/(m + 1) convolutional code accepts blocks bi of m binary source sym- 
bols each, and transforms them into blocks ci of m + 1 binary symbols, each of 
these to be presented at the input of a nonlinear memoryless mapper (Figure 7.11). 
This mapper outputs the elementary signals xi. From now on, the binary (m + 1)- 
tuple ci will be called the label of signal xi. 

There is a one-to-one correspondence between each xi and its label ci: thus, 
two sequences XL and GL of L signals each can be equivalently described by the 
sequences C L  and eL of their labels, i.e, 

and 
A 

A A A 

CL = ( ~ k ,  Ck+l, - - .  ck+L-l) 

where 

where ei, i = k, . . . , k+ L- 1, is a sequence of binary vectors, called error vectors, 
and + denotes mod-2 addition. 
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An error event of length L, as defined in Section 6.4, occurs when the demod- 
ulator chooses, in lieu of the transmitted sequence XL, the sequence ZL # XL 
corresponding to a path along the trellis that diverges from the correct path at a 
certain instant and remerges into it exactly L time instants later. The error proba- 
bility (defined here, as we did in Section 6.4, as the probability of an error event) is 
obtained by summing over L, L = 1,2, . - . , the probabilities of the error events of 
length L, i.e., the joint probabilities that XL is transmitted and ZL # XL decoded. 

The union bound yields the following inequality for error probability: 

where IC I is the number of trellis states.' 
By exploiting once again the one-to-one correspondence between output signals 

and their labels, if CL denotes a label sequence with length L, and EL a sequence 
(with the same length L) of error vectors ei, we can rewrite (7.7) in the equivalent 
form 

where 

expresses the probability of a specific error event with length L generated by the 
error sequence EL. Although the PEP appearing in the last equation can be calcu- 
lated exactly, we shall rather use a simple upper bound, which opens the way to a 
transfer-function approach to the calculation of P(e). 

'~ivision by 1x1 does not take place for convolutional codes, since their linearity makes it possi- 
ble to assume that all error events start and end in the same state. 
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Let f (c )  denote the signal whose label is c, and f ( C L )  the signal sequence 
whose label is CL.  Using the bound Q(x)  5 exp(-x2/2), x 2 0, we obtain 

Define now the function 

This allows us to finally bound the error probability P(e) in the form 

Equality (7.12) shows that P(e) is upper bounded by a sum, extended to all pos- 
sible lengths of the error events, of functions of the vectors EL generating them. 
We shall enumerate these vectors. Before proceeding further, we observe here that 
a technique often used to evaluate enor probabilities (especially for TCM schemes 
with a large number of states, or being transmitted on non-AWGN channels) con- 
sists of including in (7.12) a finite number of terms, chosen among those with a 
small value of L. It is expected that these terms contribute to the smallest Eu- 
clidean distances, so they should provide the most relevant contribution to error 
probability. However, this technique should be used with the utmost care, because 
truncating the series does not necessarily yield an upper bound. 

Enumerating the error events 

We show now how W(EL)  can be computed. The error vectors can be enumerated 
by looking for the transfer function of an error state diagram, i.e., a graph whose 
branch labels are IC I x IC I matrices. Observe first that we can write 

Next, observe that, under our assumptions, all L-tuples of labels have the same 
probability 2-mL to be transmitted, and let us define the 1x1 x 1x1 error weight 
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matrix G(ee) as follows: The component i ,  j of G(ee) is equal to zero if no tran- 
sition is allowed between trellis states Si and Sj; otherwise, it is given by 

where X is an indeterminate and ci,j are the vectors of the labels generated by 
the transition going from state Si to state Sj. The sum in (7.14) accounts for the 
parallel transitions that may occur between these two states. 

To every sequence EL = ( e l ,  . . . , eL) of labels in the error state diagram, there 
corresponds a sequence of L matrices of error weights G(e l ) ,  . . . , G(eL),  with 

where 1 is the column vector all of whose components are 1. (Consequently, if A 
denotes a 1x1 x 1x1 matrix, then 1 'Al  is the sum of all entries of A.) The entry 
i ,  j of matrix n;=, G(ee) enumerates the Euclidean distances generated by the 
transitions from state Si to state Sj in exactly L steps. 

Now, to compute P(e) we should sum W(EL) over all possible error sequences 
EL. To this purpose, we use (7.12). 

The error state diagram. Consider now the enumeration of the error sequences 
EL. Assume first the simpler situation of no parallel transitions in the TCM trellis. 
The nonzero EL correspond to error events in the convolutional code: in fact, since 
the latter is linear, and CL and eL = CL + EL are admissible label sequences in 
an error event, then also EL = eL + CL is an admissible label sequence. Thus, 
the error sequences can be described by using the same trellis associated with the 
encoder and can be enumerated by using a state diagram that mimics that of the 
code. This diagram is called the error state diagram. Its structure is uniquely 
determined by the convolutional code underlying the TCM scheme, and differs 
from the code state diagram only in its branch labels, which are now the matrices 
Wee). 

If there are parallel transitions, each one of the ee can be decomposed in the 
form ee = (ei, e i ) ,  where ei contains m - m "unconstrained" 0s and 1s generated 
by the uncoded bits, and ei contains the 6i + 1 components that are constrained 
by the structure of the convolutional code. Thus, the set of possible sequences 
Ex (e;,:. . , ex) is the same as the set of convolutionally encoded sequences, 
and EL = CL + CL is again an admissible label sequence. In this case, the branch 



7.8. Error probability of TCM 213 

Figure 7.20: Trellis diagram of a TCM scheme with two states and m = 1 (the 
branch labels are the components of c) and error state diagram. 

labels of the error state diagram are the matrices C G(e;, e!), where the sum is 
taken with respect to all values of e:. 

Transfer-function bound. Using (7.12) and (7.15), we can write 

where 

and the matrix 

is the transfer function of the error state diagram. We call T (X) the scalar transfer 
function of the error state diagram. 

Example 7.10 

Consider the TCM scheme whose trellis diagram is shown in Figure 7.20, where 
m = 1 and M = 4 (binary source, quaternary constellation). The error state dia- 
gram is also shown in the figure. Denoting by e = (e2el) the error vector and by 
8 = 1 + e ( E  the complement of e), we can write the general form of matrix G(e) 
as follows: 
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The transfer function of the error state diagram is 

with I2 the 2 x 2 identity matrix. 
We can observe that (7.19) and (7.20) can be written without knowing the signals 

used for TCM. In fact, giving the constellation is tantamount to giving the four 
values of function f (a). In turn, these values provide those of the entries of G(e2el) 
for which the transfer function T(X)  is computed. 

Consider first 4-PAM, with the following correspondence between labels and 
signals: 

f (00) = +3 f (01) = +l f (10) = -1 f (11) = -3 

In this case we have 
1 1 1  

G(OO)=-[  2 1 1  ] 

and 

G(11) = - 
2 ' [  

which allows us to obtain, from (7.20), 

Finally, the transfer function has the form 

If we consider a unit-energy 4-PSK constellation as shown in Figure 7.21, we obtain 

and hence 
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and 

Finally, 

Figure 7.2 1 : 4-PSK signal constellation and its partition. 

so the transfer function is 

Interpretation and symmetry considerations 

Examining the matrix G defined in (7.18), we can observe that its entry i, j pro- 
vides us with an upper bound to the probability that an error event starts at node Si 
and ends at node Sj. Similarly, G 1  is a vector whose entry i is an upper bound to 
an error event starting at node Si, and 1'G is a vector whose entry j is an upper 
bound to the probability of all error events ending at node Sj. 
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By inspection of matrix G we can observe that different levels of symmetry may 
occur in a TCM scheme. Matrix G may have all its elements equal, as in (7.31). 
We interpret this by saying that all paths in the trellis bring the same contribution 
to error probability (more precisely, to the upper bound to error probability). In 
the context of the analysis of TCM, we can choose a single reference path and 
compute the error probability under the assumption that this path corresponds to 
the coded sequence that has been transmitted. A sufficient condition for this to 
occur is that all matrices G(e)  have equal components. However, this condition is 
not necessary, as we can observe by considering the 4-PAM case of Example 7.10: 
G has equal entries, although those of G(11) are not equal. 

If all matrices G(e) have equal components, then, in the calculation of the 
transfer-function bound, the error state diagram branches can be simply labeled 
by the common entry of these matrices, which yields a scalar transfer function. 
However, for this to be possible, the code needs a high degree of symmetry. Ac- 
tually, what is needed is only the following weaker form of symmetry: the sum 
of all entries of a row (or a column) of G is the same for all rows (or columns). 
With this symmetry, since all states play the same role, a single state can be chosen 
as a reference, rather that a state pair. It suffices to consider only the error events 
starting from a certain state (when all rows have the same sum) or merging into the 
same state (when all columns have the same sum). 

Algebraic conditions for a scalar transfer function. Here we derive simple condi- 
tions to have a graph whose labels are scalars rather than matrices. 

If A is a square matrix, and 1 is the eigenvector of its transpose A', that is, 

where a is a constant, then the sum of the components of any column of A does 
not depend on the column index. We say that A is column-uniform. Similarly, if 1 
is an eigenvalue of the square matrix B,  that is, if 

where ,B is a constant, then the sum of the components of any row does not depend 
on the row index. In this case we say that B is row-uniform. 

Now, the product and the sum of two (row- or column-) uniform matrices are 
uniform matrices. For example, if B1 and B2 are row-uniform with eigenvalues P1 
and P2, then B3 A B1 + B2 and B4 A BIB2 satisfy the following relationships: 
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and 
B41= PlP21 

which show that B3 and B4 are also row-uniform, with eigenvalues P1 + P2 and 
PIP2. Moreover, for a (row- or column-) uniform matrix A of order N,  we have 

It follows from this discussion that, if all matrices G(e)  are row-uniform or 
column-uniform, the transfer function (which is a sum of matrix products, as we 
can see from (7.18)) can be computed using only scalar labels in the error state 
diagram. These labels are sums of the row (or column) components (notice that, 
when scalar labels are used, the resulting transfer function should be multiplied by 
I C I to be consistent with the original definition (7.17)). In this case we say that the 
TCM scheme is uniform.2 From the definition of matrices G(e),  we can observe 
that G(e) is row-uniform if the transitions splitting from any trellis node carry the 
same label set (the order of the transitions is not relevant). G(e)  is column-uniform 
if the transitions leading to any trellis node carry the same label set. 

Asymptotics 

For large signal-to-noise ratios, i.e., when No -t 0, the only elements of the matrix 
G that contribute significantly to error probability are those proportional to  free. 
Hence, asymptotically, 

P(e)  N v (bfree)e-6;reJ4No 

where v(bfr,) is the average number of competing paths at distance &,,. 

A tighter upper bound 

A better approximation to P(e)  can be obtained by using in (7.10) the tighter 
bound (3.66). Recall that we have, exactly, 

Since the minimum value of 11 f (C L) - f (CL + EL) I I equals bfree, then, by using 
the inequality (3.66), we obtain 

2 ~ h i s  uniformity is weaker than the "geometric uniformity" introduced in Section 3.6. See [7.5]. 
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In conclusion, we obtain the following error-probability bound: 

Lower bound to error probability 

A lower bound to the probability of an error event can also be computed. Our 
calculations rely upon the fact that the error probability of a real-life decoder is 
bigger than that of an ideal decoder using side information provided by a benev- 
olent genie. The genie-aided decoder operates as follows. The genie observes a 
long sequence of transmitted symbols, or, equivalently, the label sequence 

and informs the decoder that the transmitted sequence is either C or the sequence 

where C1 is selected at random among the possible transmitted sequences at the 
smallest Euclidean distance from C (this is not necessarily dfr,, because C may 
not have a sequence C1 at free distance). 

The error probability of this genie-aided receiver is that of a binary transmission 
scheme whose only two transmitted sequences are C and C': 

Consider now the error probability of the genie-aided receiver, denoted PG (e). We 
have 

where I (C)  = 1 if C admits a sequence at distance dfr,: 

and I (C)  = 0 otherwise. In conclusion, 
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Figure 7.22: Trellis diagram of a TCM scheme with four states and m = 1, and 
corresponding error state diagram. 

is the probability that, at any time instant, a path traversing the code trellis, chosen 
at random, has another path diverging from it at this instant, and remerging later, 
such that the Euclidean distance between the two is fifr,. If all paths have this 
property, we obtain the following lower bound: 

For the validity of (7.39) we need all the trellis paths to be equivalent and each 
of them to have a path at distance Sf,,. This is obtained if every error matrix has 
equal entries. 

Example 7.11 

We develop here an example of calculation of error probability. From the theory 
above, this calculation is performed in two steps. First, we evaluate the transfer 
function of the error state diagram with formal branch labels. Next, we replace 
formal labels with actual labels and compute T ( X ) ,  P(e). 

A four-state TCM is shown in Figure 7.22 along with its error state diagram. T,, 
Tp, and T, denote the transfer functions of the error state diagram from the initial 
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node to nodes a, p, and y, respectively. We can write 

To simplify, we examine here only the case of scalar labels, for which commutativity 
holds. Denoting by go, 91, 92. and g3 the scalar labels associated with G(OO), 
G(01), G(10), and G ( l  l ) ,  respectively, we obtain the following result: 

Using (7.40), we can obtain an upper bound to the probability of an error event 
by replacing gi with the values obtained from the calculation of the error matrices 
G (  . ). This operation will be performed for a unit-energy 4-PSK with the map 

We have uniformity here, and we obtain matrices G whose associated scalar labels 
are 

go = 1 g1 =g3 = x2 = x4 
so that from (7.40) the transfer function is 

We have 6;ree = 10 (this value is obtained with E = 1). A binary PSK constellation 
with antipodal signals f 1 has distance 6ii, = 4 and energy 1' = 1, which yield a 
coding gain 

10 
q = - = 2 . 5 + 4 d B  

4 

If error probabilities are rewritten so as to show explicitly the ratio Ea/No, then, 
observing that 1 = lb = 1, we obtain the following from (7.41) and (7.16): 

The improved upper bound (7.35) yields 
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Figure 7.23: Error probabilities of a four-state TCM scheme with 4-PSK. TFB: 
Transfer-function upper bound. ITFB: Improved transfer-function bound. LB: 
Lower bound. The error probability of  uncoded 2-PSK is also shown. Here 
SNR-- &,/No. 

The lower bound (7.39) yields 

These error probabilities should be compared with those of uncoded 2-PSK, i.e., 

These four error probabilities are plotted in Figure 7.23. We observe from Fig- 
ure 7.23 that lower bound and improved upper bound are very close, and hence ap- 
proximate well the exact error probability. Unfortunately, this occurs only for TCM 
schemes built upon small constellations and for a small number of trellis states. 
Moreover, comparing the probability P(e) for uncoded 2-PSK with the two TCM 
bounds, we can observe that the coding gain is very close to 4 dB, its asymptotic 
value. 0 



222 Chapter 7. Trellis-coded modulation 

7.8.2 Computing Sfre 

The results obtained for the upper and lower bounds to error probability show that 
Sfre, plays a central role in assessing the performance of a TCM scheme. If a 
single parameter has to be chosen to evaluate the quality of a coded scheme, this is 
Sf,,. For this reason, it is sensible to look for algorithms aimed at computing this 
quantity. 

Using the error state diagram 

The first technique we shall describe for the calculation of Sfre, is based on the 
error state diagram. We have previously observed that the transfer function T ( X )  
contains information on the distance Sf,,. In previous examples we have seen that 
the value of 6;, can be obtained from the series expansion of this function: the 
smallest exponent of X in this series is However, an exact expression for 
T ( X )  may not be available. 

For this reason, we describe here an algorithm for the numerical calculation 
of Jfr,. The algorithm is based on the update of matrices D(") = (6:;)) whose 
elements are the squared minimum distances between all pairs of paths diverging at 
the initial instant and merging at time n into states i and j (here and in the following 
we simply write i ,  j to denote states Si, Sj). Two pairs of such paths are shown in 
Figure 7.24. We observe that the matrix D(") is symmetric and that its entries on 
the main diagonal are the distances between paths converging to a single state (the 
error events). 

The algorithm goes as follows. 

Step 1 For every state i ,  find the 2m states (the predecessors) from which a transi- 
tion to state i is possible, and store them in a matrix. Let 6ij = -1 for every 
i and j > i .  If there are parallel transitions, for every i let be equal to 
the smallest Euclidean distance between signals associated with the parallel 
transitions leading to state i .  

Step 2 For every state pair ( i ,  j ) ,  j > i ,  find the minimum Euclidean distance 
between pairs of paths diverging from the same initial state and merging into 
the state pair i ,  j in a single instant. Two such pairs are shown in Figure 7.25. 

( 1 )  This distance is J i j  . 

Step 3 For the two states of the pair ( i ,  j ) ,  j > i ,  find in the matrix defined at 
Step 1 the 2m predecessors i l l  . . , i2m and j l ,  . . . , j2m (see Figure 7.26). 
In general we have 22m possible paths at time n - 1 passing by i and j at 
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Figure 7.24: Two pairs of paths diverging at time n = 0 and reaching states i, j at 
the same time. 

Figure 7.25: Two pairs of paths leaving two different states and merging into the 
same pair of states in a single time instant. 
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Figure 7.26: Predecessors o f  states i, j. 

The minimum distance between pairs passing by (i, j )  at time n is 

In (7.42), the distances 6(n-1) come from the calculations performed in Step 
2, where for example 6(il + i, jl + j )  is the Euclidean distance between 
signals associated with transitions il + i and jl + j. These can be com- 
puted only once at the beginning. When one of the distances 6k-') al- 
ready computed is equal to -1, the corresponding term in the right-hand 
side of (7.42) vanishes. In fact, the value 6&-I) = -1 tells us that there is 

no pair of paths passing by states e and n at time n - 1. When i = j ,  6:;) 
represents the squared distance between two paths merging at step n and at 
state i. This is an error event. If $) < &'), then 6:;) takes the place of 
6!Y1) in matrix ~ ( n ) .  

22 
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Step 4 If 
~ ! f )  < min B$) 

23 2 

for at least one pair ( 2 ,  j ) ,  then n is changed into n + 1, and we return to Step 
3. Otherwise, the iterations are stopped, and we have 

7.9 Bit-interleaved coded modulation 

From results of Chapters 3 and 4 we can infer that, to perform well on the AWGN as 
well as on the independent Rayleigh fading channel with high SNR, a code should 
exhibit large Euclidean as well as Hamming distances. We may call such a code 
robust. Binary coding schemes are intrinsically robust, due to the proportionality 
between Hamming and Euclidean distance, but nonbinary codes may not be robust. 
In particular, TCM schemes that are optimum for the AWGN channel (in the sense 
that they maximize the free Euclidean distance) may not be optimum for the inde- 
pendent Rayleigh channel, whenever their free Hamming distance is not maximum. 
For example, many schemes that are optimum for the AWGN channel exhibit par- 
allel transitions, and hence have free Hamming distance 1: consequently, while 
they perform well on the AWGN channel, they do poorly on the Rayleigh fading 
channel. 

Now, if the channel model is nonstationary, in the sense that the propagation 
environment changes during transmission (think of a wireless telephone call ini- 
tiated indoors, and ended while driving a car on the freeway), we are interested 
in robust codes, rather than in codes that are optimum only for a specific channel. 
One such robust scheme is provided by bit-interleaved coded modulation (BICM). 
BICM separates coding from modulation and hence cannot achieve optimum Eu- 
clidean distance: however, it can achieve a Hamming distance larger than TCM. 
The idea here is to transform the channel generated by the multilevel constellation 
X into parallel and independent binary channels. Any transmission of a multilevel 
signal from X, with 1x1 = 2m, can actually be thought of as taking place over m 
parallel channels, each carrying one binary symbol from the signal label. However, 
these channels are generally not independent, due to the constellation structure. To 
make them independent, binary symbols are interleaved (with infinite depth) before 
being used as signal labels. 
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Figure 7.27: Block diagram of  a transmission system with TCM and with BICM. 
For TCM, rr denotes a symbol interleaver, while for BICM it denotes a bit inter- 
leaver. 

Example 7.12 

Consider 8-PSK: the three bits labeling each signal can be thought of as being trans- 
mitted over three nonindependent binary channels: in fact, erroneous reception of 
one bit influences the probability that the others are also received erroneously. In 
other terms, the probability that an 8-PSK symbol is received erroneously is not 
equal to the product of the probabilities of receiving each bit erroneously. The idea 
of bit interleaving is to remove the statistical connections that were created by the 
modulator among bits. 0 

The BICM block diagram is shown in Figure 7.27. In the decoder, the metrics 
must reflect the fact that we are separating bits. Suppose we transmit the code word 

and we receive y at the output of a stationary memoryless channel. With TCM, we 
decode by maximizing the metric 

with respect to x, while with BICM we must consider, instead of the symbol metric 
log p(yi I xi), the bit metric 

where X(b, j )  denotes the subset of X having bit b in position j  of its label. 
As computation of this metric may be too complex for implementation, a con- 

venient approximation here is based on 
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Figure 7.28: 16-QAM with Gray and Ungerboeck labeling. 

which yields the suboptimum metrics 

Notice that the term l o g p ( y i  I xi) is the same as that appearing in TCM metric 
computations, and hence only the set of comparisons leading to the maximiza- 
tion (7.47) adds to the complexity of BICM. 

It should be also observed that labeling plays a key role in BICM; in particular, 
empirical evidence suggests that Gray labeling should be preferred. This labeling 
is such that signals at minimum Euclidean distance differ in only one bit of their 
labels; as such, it is convenient in uncoded modulation, where one symbol error at 
high SNR causes only one bit to be in error. A formal definition of Gray labeling, 
useful for BICM, is the following: we say that x E X(b ,  i) satisfies the Gray 
condition if it has at most one x' E X ( b ,  i) at distance dE,,i,. A Gray labeling 
is one in which every x E X satisfies the Gray condition. The performance of 
BICM depends on the labeling used: in particular, Gray labeling performs better 
than Ungerboeck labeling, that is, the labeling generated by set partitioning (see 
Figure 7.28). 

Since for some constellations Gray labeling does not exist, we may define quasi- 
Gray labeling as one that minimizes the number of signals for which the Gray 
condition is not satisfied. 

Table 7.3 shows free Euclidean and Hamming distances of selected BICM and 
TCM schemes with the same state complexity. It can be seen that BICM increases 
the Hamming distance considerably, while reducing (often marginally) the Eu- 
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clidean distance. This means that BICM will outperform TCM over independent 
Rayleigh fading channels, while suffering a moderate loss of performance over the 
AWGN channel. 

Encoder BICM TCM 
memory 2 dH 2 

'free 'free d ~  

Table 7.3: Euclidean and Hamming distances of some BICM and TCM schemes 
for a 16-QAM elementary constellation. Both schemes have a transmission rate of  
3 bits per dimension pair (the average energy is normalized to 1). 

7.9.1 Capacity of BICM 

An equivalent BICM channel model consists of log I XI parallel, independent, and 
memoryless binary-input channels. A random switch, whose position selects at 
random one of the label positions with which the coded symbol is associated, mod- 
els ideal interleaving. Specifically, for every symbol q in the coded sequence c, this 
switch selects (independently from previous and future selections) a position index 
i E {1,2, . . . , log /XI), and transmits ci over the channel. The decoder knows 
the sequence of channels used for the transmission of c, and makes ML decisions 
accordingly. 

Computations [7.3] show that with Gray labeling the capacity of BICM is very 
close to the capacity of coded modulation. Similar results hold for the independent 
Rayleigh fading channel with channel-state information known at the receiver. 

7.10 Bibliographical notes 

Before the introduction of TCM by Ungerboeck [7.6], it was commonly accepted 
that a coding scheme would necessarily expand the bandwidth. Once this be- 
lief was dispelled, TCM gained quick acceptance for applications not tolerating 
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binary-input 
channels 

Figure 7.29: Equivalent parallel channel model of  BICM with ideal interleaving 
and m = log 1x1. 

a loss in spectral efficiency. An important application was in modem design for 
voice-grade telephone lines. Before the introduction of TCM, the International 
Telecommunication Union's ITU-T V.29 modem used uncoded 16-QAM to trans- 
mit 9,600 bitls. This standard was introduced in 1976. Further improvement of the 
data rate would require using a bigger signal constellation, at the price of a worse 
error probability due to power constraints. New standards (V.32, V.33, and V.34), 
introduced after 1986, included TCM with two-dimensional or four-dimensional 
QAM [7.7,7.8]. Further details on this, as well as a historical perspective of TCM, 
can be found in the review paper [7.4]. Further details on TCM can be found in the 
book [7.2]. A thorough analysis of the geometric uniformity of TCM can be found 
in [7.5]. BICM is covered in [7.3]. 

7.11 Problems 

1. Consider the TCM encoder shown in Figure 7.30 and based on the 8-PSK 
constellation of Figure7.2. Draw one section of its trellis diagram, and la- 
bel the trellis branches by the signals associated with them. Are the three 
Ungerboeck conditions satisfied? 

2. Consider the TCM scheme whose encoder and signal constellation are shown 
in Figure 7.3 1. Here the block 8 denotes a bit multiplier. Notice the presence 
of a nonlinear trellis code in lieu of a convolutional code. 
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Figure 7.30: A TCM encoder for Problem 1. 

Figure 7.3 1 : TCM encoder and signal constellation for Problem 2. 

(a) Find a set partitioning of the constellation. 

(b) Find the trellis of the encoder, and associate with each branch a source 
symbol. 

(c) Is this a good TCM scheme? 

3. A signal constellation ("asymmetric 8-PSK) is shown in Figure 7.32. Do 
"set partitioning" of the constellation. 

Figure 7.32: Asymmetric 8-PSK for Problem 3. 
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4. Asymmetric 4-PSK is shown in Figure 7.33. Design TCM schemes with 
2 and 4 states based on this constellation and transmitting 1 bit per signal. 
Discuss how the asymptotic coding gain depends on the value of angle 4. 

Figure 7.33: Asymmetric 4-PSK for Problem 4. 

5. Partition the 32-QAM "cross" constellation of Figure 7.34 into eight subcon- 
stellations such that the minimum Euclidean distance within any of them is 
2 f i  larger than the minimum Euclidean distance within the original constel- 
lation. (This partition is used in the V.32 telephone modem standard, which 
incorporates an eight-state rotationally invariant TCM scheme.) 

Figure 7.34: 32QAM "cross" constellation. 

6. Consider the TCM encoder shown in Figure 7.35. The signal constellation 
used is 16-QAM. Design the memoryless mapper, and compute the resulting 
Euclidean free distance. 

7. Consider the 16-point constellation of Figure 7.36. Design good TCM schemes 
with four and eight states for transmitting 3 bittsignal with this constellation. 
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Figure 7.35: A TCM encoder for 16-QAM. 

Compute the ratio between the square Euclidean free distance and the con- 
stellation energy. 

Figure 7.36: A 16-point signal constellation. 
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A full octavium below me! 

Codes on graphs 

This chapter introduces a new code description. We tirst develop a graphi- 
cal representation for the factorization o f  a function o f  scvcral variables into 
a product o f  functions o f  a lower number o f  variables. This representation 
allows us to derive cficient algorithn~s for computing tlw n~arginals o f  the 
original function with respect to any one of' its variables. Given a filnction 
describing mcrnbersl~ip in a codc e, its marginalization leads to a method for 
decoding e. Thus, graphical representations o f  codes providc a natural set- 
ting for the description o f  symbol-by-sym bol decoding tccl~niyucs, much as 
the code trellis is a nrrtt~ral setting for the description ot'n~aximum-likelihood 
decoding using the Viterbi algorithm. This chapter is centered on these repre- 
scntations o f  codes and 011  a general procedure (the sum-product algorithm) 
Ibr their decoding. 'l'l~c importance o f  the theory presented here lies in the 
facl that all known codes that approach capacity and are practically decodable 
admit a simple graphical representation. 
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8.1 Factor graphs 

To motivate the introduction of factor graphs in this Chapter, let us consider a 
specific problem, viz., maximum a posteriori (MAP) probability decoding of a 
given code. In previous chapters we have examined decoding of code C! based on 
the maximum-likelihood (ML) rule, which consists of maximizing, over x E C!, 
the function p(y I x). We recall from Section 1.1 that, under the assumption that 
all code words are equally likely, this rule minimizes the word error probability. 

Now, assume that we want to minimize the error probability of a single symbol 
of the code word (possibly at the price of a nonminimum word error probability). 
In this case, we must do symbol-MAP decoding, which consists of maximizing the 
a posteriori probabilities (APPs) 

Specifically, we decode xi into 0 or 1 by comparing the probabilities that the ith bit 
in x is equal to 0 or 1, given the received vector y and the fact that x must satisfy 
the constraints describing the code C!. The APP p(xi I y) can be expressed as 

and ei(xi) denotes the subset of code words whose ith component is xi. Simi- 
larly, we may want to do symbol-ML decoding, which consists of maximizing the 
probabilities' 

P(Y I xi), i = 1, - - - n (8.2) 

In this chapter we develop efficient algorithms for decoding according to crite- 
ria (8.1) and (8.2) (see Table 8.1). 

The central concept in our development is that of a marginalization, which con- 
sists of associating with a function f (xl, . . . , x,) of n variables its n marginals, 
defined as the functions 

For each value taken on by xi, these are obtained by summing the function f over 
all of its arguments consistent with the value of xi. It is convenient to introduce 

'one should observe that, if the symbol-MAP (or symbol-ML) rule is used to decode all symbols 
of x E e, theresulting word does not necessarily belong to e, and, if it does, this is note necessarily 
the word one would obtain by using the block-MAP (or block-ML) rule. [8.2] 



8.1. Factor graphs 237 

(block-)MAP 2 = m a x - l p ( x  I y )  
X 

(block-)ML 2 = r n a ~ - ~ p ( ~  I x )  
X 

sym bol-MAP & = max- lp(x i  I y )  
X i  

sym bol-ML ki  = max- lp ( y  I x i )  
X i  

Table 8.1 : Summary of different decoding rules. The maximizations are pedormed 
with respect to words and symbols compatible with code (3. 

the compact notation N xi to denote the set of indices X I ,  . . . , xi-1, Xi+l, . . . , x ,  
to be summed over, so that we can write 

If xi E X ,  i = 1 ,  . . . , n, then the complexity of this computation grows as [XIn-'. 
A simplification can be achieved when f can be factored as a product of functions, 
each with less than n arguments. Consider for example a function f ( x l ,  x2, x3 )  
that factors as follows: 

Its marginal fl ( x l )  can be computed as 

where we see that this marginalization can be achieved by computing separately 
the two simpler marginals CX2 g1 ( x l ,  x 2 )  and Cx3 g2 ( x l ,  x3 )  and finally taking 
their product. This procedure can be represented in graphical form by defining 
a factor graph describing the fact that the function f factors in the form (8.5). 
The factor graph corresponding to the function f is shown in Figure 8.1. The 
nodes here can be viewed as processors that compute a function whose arguments 
label the incoming edges, and the edges as channels by which these processors 
exchange data. We see that the first sum Cx2 g1 ( x l ,  x 2 )  can be computed locally 
at the gl node because x1 and x2 are available there; similarly, the second sum 
Cx3 g2(x1 ,  x3 )  can be computed locally at the g2 node because xl  and z3 are 
available there. 
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Figure 8.1: Factor graph of the function f (XI, x2, x3) = gl (XI, x2)92 (XI, 23). 

Formally, we describe a ("normal") factor graph as a set of nodes, edges, and 
half-edges. Every factor corresponds to a unique node, and every variable to a 
unique edge or half-edge. The node representing the function g is connected to 
the edge or half-edge representing the variable x if and only if x is an argument of 
the factor g. Half-edges are connected to only one node and terminate in a filled 
circle a. Edges represent states of the system, and filled circles represent external 
variables. In the example of Figure 8.1 we have two nodes representing the factors 
gl and g2, one edge, and two half-edges. The factors g are called localfunctions, 
or constraints, and the function f the global function. An important feature of 
factor graphs is the presence or absence of cycles: we say that a factor graph has 
no cycles if removing any (regular) edge partitions the graph into two disconnected 
subgraphs. More specifically, a cycle of length t is a path through the graph that 
includes t edges and closes back on itself. The girth of a graph is the minimum 
cycle length of the graph. 

The definition of normality assumes implicitly that no variable appears in more 
than two factors. For example, the graph of Figure 8.2 does not satisfy our defini- 
tion: in fact, the variable xl  appears as a factor of gl, g2, and g3, and as a result 
it corresponds to more than one edge. To be able to include as well in our graphi- 
cal description those functions that factor as in Figure 8.2, we need to "clone" the 
variables appearing in more than two factors. We shall explain below how this can 
be done. 

8.1.1 The Iverson function 

An important role in factor graphs is played by functions taking on values 0 or 1 as 
follows. Let P denote a proposition that may be either true or false; we denote by 
[PI the Iverson function 

[PI { 1, Pistrue 
0, P is false 

Clearly, if we have n propositions PI, . . . , Pn, we have the factorization 

[PI and P2 - - and P,] = [PI] [P2] . . . [Pn] 
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Figure 8.2: Factor graph of the function f (xl, x2, x3, x4) = 

91 ( ~ 1 ,  x2)92(x1, x3)g3(xil ~ 4 ) .  

This function has several applications in our context. In particular, it allows 
the transformation of any graph into one satisfying normality. In fact, define the 
repetition function f= as 

This transforms the branching point of Figure 8.2 into a node representing a repe- 
tition function. Thus, the graph of Figure 8.2 is transformed into that of Figure 8.3, 
which satisfies the definition of a normal factor graph. 
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Figure 8.4: A block diagram (a) and the corresponding normal graph (b). 

Another application of the Iverson function is the natural transformation of a 
block diagram into a normal factor graph. For example, an adder xl + x2 = x3 
can be represented by the Iverson function [xl + x2 = x3], which takes value 1 
if the condition XI + x2 = x3 is satisfied, and 0 otherwise. Consider the block 
diagram of Figure 8.4. The block with input-output relationship y = hl(x, u) 
can be interpreted as representing the factor [y - hl(x, u)], and the block z = 
h2 (y, v) as representing the factor [z  - h2 (y, v)] . Thus, the global Iverson function 
[y - h2 (x, u)] [Z - h2 (y, v)] takes on value 1 if and only if the values of the variables 
x, y, z, u, v are consistent with the input-output relationships of the block diagram. 
The resulting normal graph is shown in Figure 8.4(b). 

8.1.2 Graph of a code 

For our purposes, the most important application of the Iverson function is the rep- 
resentation of a block code described through the set of its parity-check equations, 
as summarized by the parity-check matrix (Section 3.7). For example, consider the 
parity-check matrix 
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defining a linear binary block code C!. This consists of the 24 binary length-7 code 
words x = (xl, x2, . . . , x7) that satisfy the three parity checks 

and membership in e is determined by verifying that each parity check is satisfied. 
Thus, the Iverson function that expresses the membership of an n-tuple x in C! is 

which, in our example, becomes 

so a linear block code can be described by a factor graph. 
A Tanner graph is a graphical representation of a linear block code correspond- 

ing to the set of parity checks that specify the code. Each symbol is represented by 
a filled circle a, and every parity check by a check node @. Each check node spec- 
ifies a set of symbols whose sum must be zero. Tanner graphs are bipartite: filled 
circles are connected only to check nodes and vice versa. For the code described 
by (8.7) we have the Tanner graph shown in Figure 8.5(a) and 8.5(b) (the bipartite 
structure of the graph is especially evident in the latter, where symbol nodes are on 
the left and check nodes are on the right). 

The normal factor graph representing a general linear binary block code C! can 
be obtained from its Tanner graph as shown in Figure 8.6. It has n variables XI, 
. . . , x,, n repetition nodes, and n - k parity-check nodes. A parity-check node 
corresponds to an Iverson function (for example, the uppermost node of Figure 8.6 
corresponds to the function [xl + x2 + x, = 01). Generally, in the normal graph 
of a linear binary code, each variable node corresponds to one bit of the code word, 
i.e., to one column of H ,  and each check node to one parity-check equation, i.e., to 
one row of H.  The edges in the graph are in one-to-one correspondence with the 
nonzero entries of H. 

The Tanner graph of a code (and hence its normal factor graph) may have cycles: 
the (7,4,3) 'Hamming code described by the parity-check matrix 
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Figure 8.5: Two equivalent forms of the Tanner graph o f  the (7,4) code. 

(a) (b) 

Figure 8.6: (a) Tanner graph of a linear binary code and (b) its normal version. 

i.e., whose code words x = (xl, x2, . . . , x7) satisfy the three parity checks 
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Figure 8.7: A Tanner graph with cycles: the (7,4,3) Hamming code. 

shows this fact (Figure 8.7). 
Notice that, since a given code can be represented by several parity-check matri- 

ces, then the same code can be represented by several Tanner graphs. It is possible 
that some representations have cycles, while others are cycle free (see the Problem 
section at the end of this chapter). 

Example 8.1 (LDPC codes) 

Figure 8.8 shows the normal graph of a regular low-density parity-check (LDPC) 
code. This is a long linear binary block code such that every code symbol is checked 
by the same number w, of parity checks, and every parity equation checks the same 
number w, of code symbols. Equivalently, the parity-check matrix H of the code 
has the same number w, of Is  in each column and the same number w, of 1s in each 
row. (We have w, = 3 and w, = 5 in Figure 8.8.) An interleaver T, which applies a 
permutation to the input symbols before they enter the modulo-2 adders, describes 
the connections between symbols and parity checks. The term low-density refers to 
the fact that the number of Is in H is small as compared to the number of entries. 
For large block lengths (say, above 1,000), LDPC codes rank among the best codes 
known. They will be studied in depth in the next chapter. 0 

Normal code graphs can now be generalized by considering codes originally 
described by a trellis (e.g., terminated convolutional codes). A trellis can be viewed 
as a set of triples (gi-l, xi, oi) describing which state transitions ai-1 + ai at time 
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Figure 8.8: Nonnal graph of a regular LDPC code with w, = 3 and w, = 5. 

i - 1, i = 1, . . . , n, are driven by the channel symbol xi. Let Ti denote the set of 
branches in the trellis at time i - 1. Then the set of branch labels in 'Ti is the domain 
of a variable xi, while the set of nodes at time i - 1 (i) is the domain of the state 
variable ai-1 (ai). The initial and final state variables take on a single value. The 
local function corresponding to the ith trellis section is 

and the whole trellis corresponds to a product of Iverson functions (Figure 8.9): 

In some cases (see Example 8.5 infra) it is convenient to include, in the descrip- 
tion of the trellis sections, also the information symbols ui that drive the transitions 
between states. If this is the case, the local function corresponding to the ith trellis 
section becomes 

[(ai-1, ui, xi1 ai) E tTi] 

Example 8.2 

Figure 8.10 shows the trellis of an (8,4,4) binary linear code and its normal factor 
graph. Here the filled circles correspond to two-bit inputs. 0 
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Figure 8.9: A section of a trellis and the node representing it in a normal graph. 

Figure 8.10: An (8,4,4) binary linear code: (a) Trellis diagram, and (b) Normal 
graph. 

Notice how in this representation the graph edges are associated with states, the 
filled dots with symbols, and the nodes with constraints. We may say that symbols 
represent visible variables, while states represent hidden variables: the latter are 
unobserved, as parts of the internal realization of the code. We may keep this 
interpretation even for codes described by normalized Tanner graphs, even though 
here the concept of state does not come naturally. In this latter case, the constraints 
are simply represented by adders. 
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Figure 8.11: Normal graph of a code defined through its tail-biting trellis. 

Since the factor graph of the trellis code consists of a chain of nodes, each cor- 
responding to a function (8.9), it is cycle free. Since we know that all codes can 
be represented by a trellis, the above shows that any of them can also be repre- 
sented by a cycle-free factor graph: however, the resulting complexity (number of 
states) might be so large that this kind of representation becomes useless (for a 
quantitative version of this statement, see [8.6]). 

Example 8.3 (Tail-biting trellises) 

Figure 8.11 shows the normal graph of a code described by a tail-biting trellis. It is 
seen that this trellis has a single cycle. 0 

Example 8.4 

This example illustrates the fact that the same code admits different graph represen- 
tations. Figure 8.12 shows the Tanner graph of the (4,1,4) binary repetition code, 
its trellis, and the graph derived from the trellis. Notice how the repetition blocks 
in the figure illustrate the fact that, in each trellis section, coded symbol, starting 
state, and ending state coincide. Figure 8.13 shows two graph representations for 
the (4,3,2) binary single-parity-check code, its trellis, and the graph derived from 
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Figure 8.12: Two graph representations of  the binary (4,1,4) repetition code. 

Figure 8.13: Two graph represen tations of the binary (4,3,2) single-parity-check 
code. 

the trellis. Notice that for both codes the two endmost states, rather than being rep- 
resented in the graph by two dangling branches, correspond to two code symbols. 
This reflects the fact that the initial and final trellis states are fixed, and, conse- 
quently, in the functions 'J; and 'T4 the arguments a0 and a4, respectively, are fixed. 
Observe finally how the normal graph of the repetition code can be obtained from 
the graph of the single-parity-check code (its dual code: see Section 3.7) by replac- 
ing the parity-check nodes with repetition nodes. This is a special case of a general 
result [8.6] connecting the graphs of dual codes. 0 
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Figure 8.14: Encoder of a turbo code. 

Example 8.5 (Turbo codes) 

Figure 8.14 shows the encoder of a turbo code, the parallel concatenation of two 
terminated convolutional codes. Here el and '22 are systematic convolutional en- 
coders. A block u of source data is fed to the encoder el, which produces the 
block cl, and to an interleaver T, which produces the permuted block TU. This 
block in turn is sent into the encoder e2 to produce the block c2. The blocks cl and 
c2 contain only the parity-check part of the code words generated by the convolu- 
tional encoders. The three blocks u, q, and c2 are multiplexed and sent through 
the transmission channel. Observe that el and e2 may be (and often are) the same 
code. Turbo codes are among the best codes known and will be studied in the next 
chapter. Their normal graph is shown in Figure 8.15. We see how the two trellises 
generating cl and c2 share, via the interleaver T, the common symbols u. 

0 

Example 8.6 (Repeat-accumulate codes) 

Figure 8.16 shows the encoder of a repeat-accumulate code. This is obtained by 
cascading two codes separated by an interleaver. The first one is an (n, 1, n) binary 
repetition code. The second one is a rate-1 convolutional code, whose generator is 
g(D)  = 1/(1 + D), corresponding to the input-output accumulation relationship 
xi = ui + xi-1. The trellis of the latter code has two states, corresponding to coded 
symbols. Originally introduced as tools for deriving coding theorems [8.3], these 
codes exhibit a surprisingly good performance on the additive white Gaussian noise 
channel. The structure of their normal graph is shown in Figure 8.17, where the 
trellis constraints xi + ui + xi-1 = 0 are shown explicitly. 0 
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Figure 8.15: Normal graph of a (truncated) turbo code. 

repeat accumulate 

Figure 8.16: Encoder of a repeat-accumulate code. 

8.2 The sum-product algorithm 

We now describe an algorithm for the efficient computation of the marginals of a 
function whose factors are described by a normal factor graph. This works when 
the graph is cycle free, and yields, after a finite number of steps, the marginal func- 
tion corresponding to each variable associated with an edge. Initially, we limit 
ourselves to stating the algorithm; the principles on which it is based will be de- 
scribed later on, in the context of its application to symbol-MAP decoding. 
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Figure 8.17: Normal graph of a rate-1 /3 repeat-accumulate code. 

In this algorithm, two messages are transmitted along each branch, one for each 
direction. Each message is a function of the variable associated with that branch, 
and depends on the direction. It is given in the form of a vector, whose components 
are all the values taken on by the corresponding variable. For messages that are 
probability distributions of binary variables, a convenient choice consists of repre- 
senting each of them as the ratio between two probabilities, or as the logarithm of 
this ratio. 

Consider the node representing the factor g(xl ,  . . . , x,) (see Figure 8.18). The 
message pg+xi (x i )  out of this function node along the edge xi is the function 

where pxe,g(~e) is the message incoming on edge xe, and the notation CNXi 
indicates that all variables are summed over except xi. In words, the message 
pg-+xi ( x i )  is the product of g and all messages towards g along all edges except 
xi, summed over all variables except xi. Half-edges, which are connected to a 
single node, transmit towards it a message with value 1. 

Two important special cases are as follows: 
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Figure 8.18: The basic step of the sum-product algorithm. 

Figure 8.19: The basic step of the sum-product algorithm when a node is a function 
of only one argument. 

1. If g is a function of only one argument xi, then the product in (8.11) is empty, 
and we simply have (see Figure 8.19) 

2. If g is the repetition function f=, then we have (see Figure 8.20) 

8.2.1 Scheduling 

The messages in the graph must be computed in both directions for each edge. Af- 
ter all of them are computed according to some schedule, the product of the two 
messages associated with an edge yields the marginal function sought. It should be 
observed here that the choice of the computational schedule may affect the algo- 
rithm efficiency. A possible schedule consists of requiring all nodes to update their 
outgoing messages whenever their incoming messages are updated. In a factor 
graph without cycles, message computation may start from the leaves and pro- 
ceed from node to node as the necessary terms in (8.1 1) become available. In the 
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Figure 8.20: The basic step of the sum-product algorithm when a node represents 
the repetition function f=. 

"flooding" schedule, the messages are transmitted along all edges simultaneously. 
For linear graphs like that shown in Figure 8.10, a natural schedule consists of a 
single forward sweep and a single backward sweep (see infra, Section 8.3.2). 

8.2.2 Two examples 

Later on, we shall prove why the sum-product algorithm (SPA) solves the mar- 
ginalization problem in the context of symbol-MAP decoding. Here we illustrate 
it in a simple case, followed by a numerical example of application. 

Example 8.7 
Consider the function 

whose factor graph is shown in Figure 8.21. Its marginalization with respect to 2 5  

can be computed as follows: 

which corresponds to the product of the two messages along edge 2 5  exchanged by 
the SPA. 0 
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Figure 8.21: Factor graph of  the function gl (x l  , x2, x5)g2 (x3,  xq, x5). 

Figure 8.22: Factor graph for the burglar alarm problem. 

Example 8.8 

Consider the burglar alarm graph [8.8,8.13], which describes a burglar alarm sen- 
sitive not only to burglary, but also to earthquakes. There are three binary variables: 
b (for "burglary"), e (for "earthquake7'), and a (for "alarm"). A value of 0 for any of 
these variables indicates that the corresponding event has not occurred, whereas a 
value of 1 indicates that it has occurred. Suppose that the alarm went off. We want 
to infer the probability of the two possible causes, namely, derive p(b I a = 1 )  and 
p(e I a = 1) .  These can be computed by marginalizing p(b, e I a = 1); since we 
have, assuming independence of e and b, 

then the factor graph appropriate to the problem is shown in Figure 8.22, where 

The data of the problem consist of the values taken on by these three functions. 
Let them be 

fb(0) = 0.9 f b ( l )  = 0.1 

and 
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Figure 8.23: Messages passed by the sum-product algorithm along the edges of  
the factor graph for the burglar alarm problem. 

By representing a function g of a binary argument as the two-component vector 
(g(O), g(l)), the SPA goes as follows: 

The messages passed along the graph edges are summarized in Figure 8.23. Thus, 
we have 

and 
p(e I a = 1) cc (.9 x .0377, .1 x .1822) = (.03393, .01822) 

After proper rescaling of these vectors (we account for the fact that they are proba- 
bility vectors) we obtain the final result: 
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8.3 * Decoding on a graph: Using the sum-product algo- 
rithm 

Consider now the problem mentioned at the beginning of this chapter, viz., symbol- 
MAP decoding of a code C! defined on a graph. Specifically, we transmit x and 
observe a sequence y at the output of a channel; the APP p(x I y) is proportional 
(see (1.1)) to the product p(y I x)p(x). Now, for a stationary memoryless channel, 
we have 

n 

P(Y I X) = I'I P(Y~ I xi) (8.13) 
i=l 

while, assuming that the a priori distribution of the transmitted code words is uni- 
form, we have 

1 
P(X) = - [X E el 

lei 
and [x E C!] factors according to the graph of the code. 

Thus, the APPs can be computed by marginalizing the function 

This is done by applying the SPA to the graph of the code (which describes the 
factorization of [(xl, . . . , xn) E C!]) in which the filled dots are replaced by the 
function nodes p(yi I xi) (each of these to be interpreted as a function of xi with 
parameter yi). The resulting graph describes the factorization of (8.15). As an 
example, Figure 8.24 shows the graph to be used for symbol-MAP decoding of a 
block code described by a normalized Tanner graph. 

For systematic codes, whose code words we express in the form 

we can write, instead of (8.14), 

so that the APPs are obtained by marginalizing the function 
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Figure 8.24: Normal factor graph for the calculation of the APPs p(xi I y ) . 

and the graph of Figure 8.24 should be modified accordingly, by introducing a 
priori information about the source symbols ui. 

The above can be extended to the computation, for a state variable aj, of the 
APP 

where now ej (aj) denotes the set of code words consistent with oj, i.e., whose jth 
state is aj. 

8.3.1 Intrinsic and extrinsic messages 

In a terminology that is often used, the message depending only on the channel 
observation generated by symbol xi (and possibly on its probability distribution if 
the code is systematic and (8.16) is used) is called intrinsic. The message in the 
opposite direction, whose multiplication by the intrinsic message yields the APP 
of xi, is called extrinsic. This depends on the code structure and on the observation 
of all components of y except yi. Extrinsic information plays a central role in the 
"turbo algorithm," to be described in Section 9.2.1. 

Example 8.9 

The single-parity-check binary code with length 3 has words x = (xl, x2, x3) with 
x3 = XI+ x2. It can be decoded using the graph of Figure 8.25. Information on xl 
can be gathered from the observation of yl (intrinsic message), and also from the 
observation of y2, y3, because we have XI = x2 + 23 (extrinsic message). 0 
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Figure 8.25: Graph of the binary (3,2,2) single-parity-check code for symbol- 
MAP decoding. 

Figure 8.26: Illustrating the BCJR algorithm on a linear graph. (a) A section of the 
graph. (b) Messages exchanged by the BCJR algorithm. 

8.3.2 The BCJR algorithm on a graph 

As emphasized before, application of the sum-product algorithm depends on the 
choice of a computational schedule. Sometimes, this choice follows quite naturally 
from the graph structure, as is the case with linear graphs derived from a trellis 
(see the example of Figure 8.10). Here, the schedule consists of a single forward 
sweep and a single backward sweep, which makes the SPA equivalent to the BCJR 
algorithm introduced in Section 5.4. We now prove the latter statement. 

Consider a segment of the graph as shown in Figure 8.26(a), and the correspond- 
ing messages exchanged in the application of SPA, with the notations indicated in 
Figure 8.26(b). Direct use of (8.11) yields the messages 
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and 

where 

In conclusion, the APP of xi is given by 

in agreement with the results of Section 5.4. Notice that the values of p(xi) may 
not be available, in which case they are substituted with a constant (see the next 
chapter, where the BCJR algorithm is applied to iterative decoding of turbo codes). 

8.3.3 Why the sum-product algorithm works 

We now prove that the sum-product algorithm achieves the marginalization of a 
function represented by a factor graph without cycles. We consider in particular 
the calculation of APPs in a decoding problem. 

The algorithm is based on two principles, called the past-future decomposition 
and the sum-product decomposition. For the first principle, observe that, if an edge 
is cut in a graph without cycles, then the graph is partitioned into two disconnected 
subgraphs. Consider the edge corresponding to state uj, and the value Sj taken on 
by uj. Then, similarly to what we did in Chapter 5, a code e can be decomposed 
as the Cartesian product of two "past7' and "future" projection codes, denoted here 
'P;(sj) and P?(s~), respectively. If for a moment we think of the code words of 
e as paths traversing a trellis, then at time j the code !P;(Sj) corresponds to the 
set of subpaths merging into Sj, and 'Pf(Sj) to the set of subpaths emanating from 
Sj (Figure 8.27 illustrates this). 
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Figure 8.27: Decomposing a code at state aj. The code words corresponding to 
paths through Sj are the Cartesian product of two projection codes, the 'bast" 
Y:(Sj) and the '~uture" PF(Sj). 

We now use the Cartesian-product distributive law, which states the following: 
If A and 'B are disjoint discrete sets, and a(a), P(b) are two functions defined on 
A and 23, respectively, then 

This law, on which several "fast algorithms" are based [8.1], says that, rather than 
computing the sum of IA x 'B I = lAl - I'B I products, we can (and it is faster to) 
compute a single product of separate sums over A and 'B. 

Now apply this law to (8.17). After defining x P  and xF as code words of 
'P:(aj) and 'Pr(oj), lP, gF as their index ranges, and yP, yF as the projections 
of y to gP, lF, respectively, we obtain 

The SPA computes the two functions in (8.22) separately, then multiplies them. In 
practice, each function will be represented as a vector whose components corre- 
spond to the values taken by Sj, with the multiplication occurring componentwise. 

Application of the Cartesian-product distributive law to (8. Is), which involves 
symbol variables rather than state variables, is simpler. In fact, one of the two 
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Figure 8.28: Illustrating the sum-product decomposition principle. 

factors in the product is just p(xi I y) ,  and we have 

where y,i is a shorthand notation to indicate the vector y with its ith component 
removed. 

Consider now the second principle, the sum-product decomposition. This deals 
with the computation of p(a j  I y P )  and p(a j  I y F )  in (8.22) from analogous 
quantities that are one step further upstream. Consider the edge labeled aj, em- 
anating from the node corresponding to constraint ee, that we interpret here as a 
code (for example, for normal graphs derived from Tanner graph, the nodes may 
only represent repetition functions or modulo-2 adders, which we interpret as repe- 
tition codes and single-parity-check codes, respectively). For notational simplicity, 
renumber the edges entering this node 01, . . . , aj,, as shown in Figure 8.28. Next, 
observe that, since the graph is cycle free, each of the edges entering the node 
has its own distinct past, whose union must be the projection code P:(aj). For 
each word of code ei corresponding to aj, the set of possible pasts is the Cartesian 
product of possible pasts of the other states, i.e., al,  . . . , ajt, and the total set of 
possible pasts is the disjoint union of these Cartesian products. Using once again 
the Cartesian-product distributive law, we have 

where the factors in the product are known and hence can be used to compute 

~(.j I yP). 
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8.3.4 The sum-product algorithm on graphs with cycles 

If the code graph is finite and has no cycles, the sum-product algorithm, applied 
in conjunction with a suitable computational schedule that is usually easy to find, 
yields the required exact APP distribution of the code word symbols in a finite 
number of steps. On a graph with cycles, the sum-product algorithm can still be 
applied by implementing the sum-product step (8.11) at any node, using the in- 
coming messages that are actually available and initializing all unknown messages 
to the constant function. However, the algorithm may not converge at all, or it 
may converge to an incorrect APP distribution: the derivation of conditions for 
convergence is a topic of current research. Fortunately, in many practical cases 
the algorithm does converge and yields the correct answer: for this reason it is 
commonly used to decode powerful codes such as the turbo codes and low-density 
parity-check codes to be studied in next chapter. 

Regrettably, codes whose Tanner graphs have no cycles are rather poor: in [8.4] 
it is shown that, if C! is an (n, k ,  d)  cycle-free linear code with rate p = k / n  2 0.5, 
then d 5 2. On the other hand, if C! has a rate lower than 0.5, then d < 2/p.  

In a code whose graph is not cycle-free, the presence of short cycles should 
be avoided, as they hinder convergence [8.14]: if the girth of the factor graph is 
very large, the loop-free approximation can be made. In [8.14], it is proved that 
the assumption of a graph without cycles holds asymptotically, as n grows large, 
for LDPC codes, while for turbo codes it has only a heuristic justification. The 
presence of the interleaver should be exploited to maximize the girth of the factor 

graph. 

8.4 Algorithms related to the sum-product 

The formulation of the sum-product algorithm described above is based on the fact 
that two operations are available (sum, product) and that distributivity holds: 

An immediate generalization of the sum-product algorithm can be obtained when- 
ever we can define two operations that are distributive. For example, assuming that 
the quantities we are operating on are nonnegative, the operators max and product 
are such that 

max{ab, ac)  = a max{b, c )  

Similarly, the operators min and sum are such that 
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while the operators rnax and sum yield 

For every specific distributive law we are using, a version of the sum-product algo- 
rithm can be derived. For example, from the latter property a max-sum algorithm 
can be obtained by changing sums into rnax and products into sums. This allows 
one to marginalize a function f (xl, . . . , xn) by computing the equivalent of (8.3) 
as 

fi(xi) 4 m a  f (XI, - - .  xn) 
N X i  

(8.25) 

where the function f is "factored" as a sum of functions: (8.5) corresponds to 

The basic step of the max-sum algorithm then becomes, upon modification of (8.1 I), 

Notice that the definition of the Iverson function must also be generalized: in gen- 
eral, we have a null element z for the "sum" and an identity u for the "product," 
such that x + z = x, u . x = x, and z . x = z for all x. We define [PI as taking the 
value u when P is true, and z otherwise. For example, in the max-sum context we 
have z = -00 and u = 0. The situation is summarized in Table 8.2. 

sum product 1 0 
min sum 0 00 

max sum 0 -00 

max product 1 0 

Table 8.2: Multiple aspects of the sum-product algorithm. 

8.4.1 Decoding on a graph: Using the max-sum algorithm 

We now show how the max-sum algorithm can be used to decode a code described 
by a factor graph by a variant of ML decoding. Observe that we have, for a station- 
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Figure 8.29: A step o f  the max-sum algorithm applied to the node [xl + x2 + x3 = 

01 

ary memoryless channel, 

Denote, as before, by ei(xi)  the subset of code words whose ith component is xi. 
Now, ML decoding of e consists of finding the code word whose symbols & are 
solutions of 

-1 iii = max - lp(y 1 x )  = max logp(y I x )  
x€ei(xi) XE ei (xi) 

Since logp(y I x )  "factors" as in (8.27), the max-sum algorithm can be applied to 
the factor graph of the code. In fact, observe that we can write, by appropriately 
defining the Iverson function, 

As an illustration, consider the basic step of the max-sum algorithm for a @ 

node with three branches emanating from it, as shown in Figure 8.29 (the case 
with more than three branches can be derived as a simple exercise). We have 

Again, since Exl + 2 2  + x3 = 01 takes on value -co when xl + x2 + x3 # 0, 
and 0 otherwise, the maximum value of the term in curly brackets occurs when the 
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constraint X I  + x2 = 2 3  is satisfied, so 

P @ + x 3 ( ~ 3 )  = max { ~ - l X l ~ @ ( ~ l )  + P x z + @ ( x 2 ) )  
21 ,x21r1+x2=x3 

In words, for a value of x3 the outgoing message is the maximum of the sums of the 
incoming messages over the set of all incoming pairs X I ,  xa consistent with x3.2 
For example, with the incoming message from each edge xi being represented by 
the two-component vector 

( P X i + @ ( O ) ,  P X i + @ ( l ) )  

we have the situation of Figure 8.29. 
Similarly, the outgoing messages from a repetition node are determined accord- 

ing to the rule, derived from (8.12), 

We should also observe the following. Consider decoding of (2. Taking the 
logarithm of the function marginalized by the SPA, we have the approximation 
(see Problem 6 below) 

which expresses how the max-sum algorithm turns out to be an approximation of 
the sum-product algorithm as far as decoding is concerned. 

Example 8.10 
We now provide an example of decoding a linear binary code using the max-sum 
algorithm. We choose the code whose Tanner graph is shown in Figure 8.5. The 
normal form of the graph used for decoding is shown in Figure 8.30. The values 
of the input variables are shown in Figure 8.31, in the form of the two-component 
vector ( 1 0 g ~ ( ~ i  I xi = O ) ,  logp(yi I xi = 1)). Since for binary messages only the 
difference between the two components is significant in this algorithm, the symbol 
with the lowest value of logp(yi I xi) is assigned zero value. The centripetal mes- 
sages associated with each edge are also shown (notice how these messages can be 
computed in parallel). Figure 8.32 shows the centrifugal messages, and Figure 8.33 

2 ~ t  may be observed that this step is reminiscent of the ACS step in the Viterbi algorithm. This 
is not a coincidence: a variant of the Viterbi algorithm can be expressed as a max-sum algorithm on 
a factor graph derived from a code trellis. Not only the BCJR algorithm, but also the Fast-Fourier 
Transform (FFT) algorithm and the Kalman filtering algorithm turn out to be special cases of the 
SPA [8.1,8.11]. 
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Figure 8.30: Normal graph o f  a binary code, as transformed for the application of 
the max-sum algorithm. 

the final values obtained by summing the latter with the centripetal messages of Fig- 
ure 8.3 1. 

At this point, we can do ML decoding (see Figure 8.33): the most likely code 
word is 10101 10 and has weight 15. However, the max-sum algorithm tells us more: 
it computes the relative weights of all possible symbol values. The magnitudes of 
the weight differences (the soft information) 

tell us that the decisions on x3 and x7 are the most reliable, while those on XI, X Z , X ~ ,  
and x6 are the least reliable. This additional information may prove useful, for ex- 
ample to monitor the channel quality. 0 

8.5 Bibliographical notes 

In his landmark 1981 paper [8.15], Tanner introduced the graphical-model descrip- 
tion of codes and proved the optimality of the sum-product algorithm for cycle-free 
graphs. In Tanner's original formulation, all variables were code symbols. Wiberg 
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Figure 8.31: Max-sun? decoding of  a binary code: initial values and centripetal 
messages, computed according to Figure 8.29. 

Figure 8.32: Max-sum decoding o f  a binary code: centrifugal messages. 
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Figure 8.33: Max-sum decoding of a binary code: final values of the messages and 
M L  decoding. 

et al. [8.16,8.17] introduced state variables in the model. The sum-product al- 
gorithm was discovered by Gallager in [8.9] as a decoding algorithm for LDPC 
codes, but it took a long time (and the invention of turbo codes) for its full poten- 
tial to be appreciated. Tanner [8.15] introduced the min-sum algorithm. In [8.17] 
it was observed how the Viterbi and BCJR algorithms can be reinterpreted in the 
message-passing context of the SPA. Reference [8.1] describes how the SPA can 
be described in the context of "belief propagation in Bayesian networks" [8.13], 
a theory developed with applications to artificial intelligence. Factor graphs were 
expounded in [8.10]. Normal graphs were introduced by Forney [8.6]. 

Our presentation of the material in this chapter is essentially based on [8.1,8.5, 
8.10-8.121. Our analysis of the sum-product algorithm on cycle-free graphs is 
derived from [8.7] 

8.6 Problems 

1. Consider the function f (xl, . . . , x6), with each xi taking on 1x1 values, and 
its factorization 
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We are interested in the marginal 

Compare the complexity of the direct calculation of (8.32) with the complex- 
ity of its calculation based on factorization (8.31). 

2. Using the sum-product algorithm, compute the message po shown in Fig- 
ure 8.34. Assume xo, X I ,  and x2 to be binary variables taking values in 
(0, I), and g(xo,x1,x2) = xo - 2 1  .x2- 

Figure 8.34: A segment of a factor graph. 

3. Consider the binary code whose Tanner graph is shown in Figure 8.35. 

(a) Draw the normal graph of the code. 

(b) Find the parity-check matrix H of the code. 

(c) List all code words. 

(d) Find the minimum Hamming distance. 

(e) Decode a code word using the max-sum algorithm with input data 

4. (Soft channel equalization.) Consider the transmission of n independent bi- 
nary symbols x = ( x l ,  . . . , z,) on a common channel, and the observation 
of a noisy vector y whose components are known functions of all symbols 
(for example, linear combinations with known coefficients). The channel is 
described by the function p(y I x). Draw a factor graph for the estimation 
of the APPs p(xi, y), and sketch the corresponding sum-product algorithm. 
How do the factor graph and the SPA change if x is a word of the block code 
e? 
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Figure 8.35: Tanner graph for Problem 3. 

Figure 8.36: Sum-product algorithm applied to a check node. The variables are 
binary, and the messages represent probabilities. 

5. Consider the application of the sum-product algorithm to the graph fragment 
with a check node as shown in Figure 8.36. The variables are binary, and the 
messages represent probabilities. Prove that 

6. This problem shows how the max-sum algorithm can be viewed as an ap- 
proximation of the sum-product algorithm. Define the function 

max* (x, y )  4 ln(ex + eY) 

(a) Prove that 
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so that 

Y) Y) 

(b) Find upper and lower bounds to the error involved in the approximation 
above. 

(c) Extend (a) to more than two variables. 

7. Consider the (5,2,3) code C' whose parity-check matrix is 

The Tanner graph of this code has cycles. Prove that they can be removed by 
considering a suitable code equivalent to C'. 
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you did your strong nine furlong mile in slick and slapstick record time 

LDPC and turbo codes 

Classes o f  codes defincd on grapt~s exist that can approach Shannon's cn- 
pacity bound quite closely, and with a reasonable decoding complexity. All 
these codes are obtained by connecting sinlple conlponent codes through an 
interleavcr. Decoding consists o f  itcrativc decodings o f  thcsc simple codcs. 
In this chapter we describe in some detail turbo codes and low-density parity- 
check codes. with spccial attention to ttlcir pertorrnance and their decoding 
algorithms. Their distance properties are also given some attention. 
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9.1 Low-density parity-check codes 

A low-density parity-check (LDPC) code is a long linear binary block code whose 
parity-check matrix H has a low density of 1s. Specifically, H is sparse, and 
contains a small fixed number w, of 1s in each column and a small fixed number 
w, of Is in each row. If the block length is n, we say that H characterizes an 
(n, w,, w,) LDPC code. These codes may be referred to as regular LDPC codes to 
distinguish them from irregular codes, whose values of w, and w, are not constant. 
The matrix H of the latter has approximately w, 1s in each row and w, 1s in each 
column. 

The normal graph of a (regular) LDPC code is shown in Figure 9.1. With this 
representation, we have that an LDPC code is a binary linear code such that every 
coded symbol participates in exactly w, parity-check equations, while each one 
of the m sum-check equations involves exactly w, bits. For consistency, we have 
nw, = mw,. 

Figure 9.1: Normal graph of a regular (n, w,, w,) LDPC code. 

It follows from the definition of an LDPC code that H has nw,/w, rows: in 
fact, the total number of 1s in H is nw,; dividing by w,, we obtain the number of 
rows. Since H is in general an m x n matrix, if H has full rank the code rate is 

The above equality yields the constraint w, < w,. Notice that the actual rate p of 
the code might be higher than m l n  = w,/w, because the parity-check equations 
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summarized by H might not be all independent. We call p* 1 - w,/w, the 
design rate of the code. 

Example 9.1 

The parity-check matrix of a (20,3,4) LDPC code with p* = 114 is shown below. 

In this example we observe that H can be viewed as composed of three subma- 
trices, each of which contains a single "1" in each column. The second and third 
submatrices are obtained from the first submatrix by permuting the column order. 0 

9.1.1 Desirable properties 

While the ultimate quality of an LDPC code is defined in terms of its rate, cod- 
ing gain, and complexity, some simple considerations may guide the selection of a 
candidate code. First, for good convergence properties of the iterative decoding al- 
gorithm, the Tanner graph of the code should have a large girth. In particular, short 
cycles must be avoided. (Observe that the shortest possible cycle in a bipartite 
graph has length 4, as shown in Figure 9.2 along with the structure of the parity- 
check matrix that generates it.) Next, regularity of the code eases implementation. 
Finally, for small error probability at high &/No on the AWGN channel, the min- 
imum Hamming distance of the code must be large. This is especially interesting, 
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Figure 9.2: Four-cycle in a Tanner graph, and corresponding parity-check matrix. 

because LDPC codes are known to achieve a large value of d~,,~, .  Roughly speak- 
ing, if wc > 2 this minimum distance grows linearly with the block length n, and 
hence a large random LDPC code will exhibit a large dH,,in with high probability. 
More specifically, it has been proved [9.12,9.18] that, for a large enough block 
length n, an LDPC code exists with rate p 2 1 - 1/X, and minimum distance 
dH,,in 2 Sn, for any 6 < 0.5 that satisfies the inequality 

9.1.2 Constructing LDPC codes 

Several techniques for the design of parity-check matrices of LDPC codes have 
been proposed and analyzed. They can be classified under two main rubrics: ran- 
dom and algebraic constructions. Here we provide an example of each. 

Random constructions 

These are based on the generation of a parity-check matrix randomly filled with 
0s and Is, and such that the LDPC properties are satisfied. In particular, after one 
selects the parameters n, p*, and w,, for regular codes the row and column weights 
of H must be exactly w, and w,, respectively, with w, and w, small compared 
to the number of columns and rows. Additional constraints may be included: for 
example, the number of 1s in common between any two columns (or two rows) 
should not exceed one (this constraint prevents four-cycles). 

In general, randomly constructed codes are good if n is large enough, but their 
performance may not be satisfactory for intermediate values of n [9.11,9.16]. Also, 
usually they are not structured enough to allow simple encoding. 
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A method for the random construction of H was developed by Gallager in [9.12]. 
The transpose of the matrix H of a regular (n, w,, w,) has the form 

where H1 has n columns and nlw, rows, contains a single 1 in each column, and 
contains 1s its ith row from column (i - l)wr + 1 to column iw,. Matrices Hz to 
H,, are obtained by randomly permuting (with equal probabilities) the columns 
of HI. The matrix H of Example 9.1 is generated in this way, although there the 
permutations are not random. 

Another algorithm for the generation of the parity-check matrix of an (n, w,, w,) 
LDPC code works as follows: 

Step 1 Set i = 1. 

Step 2 Generate a random binary vector with length nw,/w, and weight w,. This 
is the ith column of H. 

Step 3 If the weight of each row of H at this point is 5 w,, and the scalar product 
of each pair of columns is 5 1 (four-cycle constraint), then set i = i + 1. 
Otherwise, go to Step 2. 

Step 4 If i = n, then stop. Otherwise, go to Step 2. 

Since there is no guarantee that there are exactly w, 1s in each row of H ,  this 
algorithm may generate an irregular code. If a regular code is sought, suitable 
modifications to the procedure should be made. 

Algebraic constructions 

Algebraic LDPC codes may lend themselves to easier decoding than random codes. 
In addition, for intermediate n, the error probability of well-designed algebraic 
codes may be lower [9.1,9.20]. 

A simple algebraic construction works as follows [9.10,9.13]. Choose p > 
(w, - 1) (w, - I), and consider the p x p matrix obtained from the identity matrix 
I, by cyclically shifting its rows by one position to the right: 
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The eth power of J is obtained from I, by cyclically shifting its rows by l? mod p 
positions to the right. After defining JO A I,, construct the matrix 

This matrix has wcp rows and w,p columns. The number of 1s in each row and 
column is exactly w, and we, respectively. Hence, this construction generates a 
(w,p, we, w,) LDPC code. It can be proved that no four-cycles are present. 

Combining random and algebraic constructions 

A technique that combines random and algebraic construction is proposed in [9.20]. 
Start with the m x n parity-check matrix H(0) of a good "core" LDPC code. Next, 
substitute for each 1 in H(0) a pl x pl permutation matrix chosen randomly. We 
obtain the new mpl x npl parity-check matrix H(1). Since the probability of 
repeating the same permutation matrix in the construction of H( l )  is l/pl!, it is 
suggested to choose pl  2 5. The construction is repeated by substituting for each 
1 in H ( l )  a pa x pa random permutation matrix, which yields the mplpz x nplp2 
parity-check matrix H(2). This procedure can be repeated. In [9.20], it is shown 
that this construction preserves the girth and the minimum Hamming distance of 
the core code. 

9.1.3 Decoding an LDPC code 

Decoding can be performed using the sum-product or the max-sum algorithm, 
as indicated in the previous chapter. Here, however, since the Tanner graph of 
the code has cycles, the algorithm is not exact, nor does it necessarily converge 
in a finite number of steps. An iterative algorithm can be devised that computes 
alternatively the messages associated with both directions of each branch, and stops 
according to a preassigned criterion. A possible stopping rule is the following: set 
Pi = 1 if p(xi = 1 I y) > p(xi = 0 I y), and Pi = 0 otherwise. If the vector 
^ A  A x = (xl, . . . , 2,) is a code word (i.e., all parity checks are satisfied) then stop. 
Otherwise, keep on iterating to some maximum number of iterations, and then stop 
and declare a failure. 

Figure 9.3 represents, in a schematic form, the two basic message-passing steps 
when an iterative version of the sum-product algorithm is used for decoding an 



9.1. Low-density parity-check codes 279 

Figure 9.3: Decoding an LDPC code: message-passing from a symbol node to a 
check node, and vice versa. 

LDPC code. We assume here that the messages are normalized so as to represent 
probabilities, and use a result from Problem 4 of Chapter 8. The algorithm starts 
with the intrinsic probabilities vi p(yilxi), and with uniform messages coming 
out of check nodes: pe = (0.5,0.5) for all l .  Application of the SPA first computes 
the messages passing from symbol nodes to check nodes, and then from check 
nodes to symbol (repetition) nodes. These two steps represent a single iteration of 
the SPA. 

Figure 9.4 shows the performance of two LDPC codes. 

A simple suboptimum decoding algorithm: bit flipping 

An LDPC code can be suboptimally decoded by a simple iterative technique called 
the bit-Jlipping algorithm. First, the symbols are individually "hard decoded" by 
transforming the channel observations into 1s and 0s so that the received vector 
y is transformed into the binary vector b. Consider the syndrome Hb', whose 
components are the results of the sums computed in the right part of the graph. 
Each component of b affects w, components of the syndrome. Thus, if only one bit 
is in error, then w, syndrome components will equal 1. The bit-flipping algorithm 
is based on this observation and works as follows. Each iteration step includes 
the computation of all check sums, as well as the computation of the number of 
unsatisfied parity checks involving each of the n bits of b. Next, the bits of b are 
flipped when they are involved in the largest number of unsatisfied parity checks. 
The steps are repeated until all checks are satisfied, or a predetermined number of 
iterations is reached. 
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Figure 9.4: Performance of rate-114 codes. Code B 19.71 is an irregular LDPC code 
with n = 16,000. Code C 19.181 is a regular LDPC code with n = 40,000. For ref- 
erence's sake, Code A is a turbo code with n = 16,384 (see Figure 9.17 for further 
details). The leftmost curve is the Shannon limit for p = 114 and unconstrained 
AWGN channel, as derived in Problem 8 o f  Section 3 (see also Figure 1 S). 

Example 9.2 

For illustration purposes, consider the rate-113 code (not exactly an LDPC code, 
since n is not large enough to yield a sparse H) with parity-check matrix 

corresponding to the Tanner graph of Figure 9.5. Let the observed vector be 

The binary 6-tuple obtained by hard decoding is (001000). This is not a code word. 
The first iteration shows that the parity checks that fail are 1 and 4-a finding that is 



9.2. Turbo codes 281 

interpreted as indicating the presence of an error among the symbols whose nodes 
are connected to adders 1 and 4. Now, symbol 4 corresponds to no failed check, 
symbols 1, 2, 5, and 6 correspond to one failed check, and symbol 3 to two failed 
checks. We flip the third bit, thus obtaining the code word (OOOOOO), which is ac- 
cepted, as all parity checks are satisfied. 0 

Figure 9.5: Tanner graph of an LDPC code. 

9.2 Turbo codes 

The general scheme of a turbo code based on parallel concatenation of two convo- 
lutional codes was shown in Figure 8.14. There, el and e2 are binary terminated 
convolutional codes or block codes, realized in systematic form. Let the generator 
matrices of el and e2 be G1 = [I PI] and G2 = [I P2], respectively. If the 
vector to be encoded is u, the first encoder outputs [u el], with cl 4 up1. The 
interleaver rr applies a fixed permutation to the components of u and sends rru to 
the second encoder, which generates [xu c2], with c2 (ru)P2. 

If el and e2 have rates pl and pp, respectively, the turbo-code rate is given by 

To prove this, neglect the effect of the trellis termination, and observe that if k bits 
enter the encoder of Figure 8.14, then u contains k bits, cl contains k/pl - k bits, 
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Figure 9.6: Encoder of a parallel-concatenated turbo code with recursive compo- 
nent encoders, and p = 113. 

and cg contains k/p2 - k bits. The ratio between k and the total number of encoded 
bits yields (9.3). Note that if pl = p2 we simply have 

The most popular turbo-code design has pl = p2 = 112 (typically obtained with 
el = e2), and hence p = 113 [9.3,9.4]. If the even bits of c l  and the odd bits of 
c2 are punctured, then pl = p2 = 213, and p = 112. 

The most common form of convolutional encoder used in general is nonsystem- 
atic and polynomial (as, for example, the rate-112 encoder of Figure 6.3). Such an 
encoder cannot be used as a constituent of a turbo code, which requires system- 
atic encoders. Nonrecursive (i.e., feedback-free) encoders should also be ruled out 
because the resulting turbo code would exhibit poor distance properties. A turbo 
encoder including two systematic recursive codes is shown in Figure 9.6. 

Serially concatenated turbo codes 

A serially concatenated turbo code is obtained by cascading two convolutional en- 
coders as shown in Figure 9.7. (2, is called the outer code and ei the inner code. 
Their rates are p, and pi, respectively. In practice, the outer code may be chosen 
as nonrecursive and nonsystematic or recursive and systematic; however, ei should 
be recursive and systematic for better performance. The rate p of the concatenated 
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Figure 9.7: General scheme of a serially concatenated turbo code. 

code is simply given by the product of the two rates: 

P = PoPi (9.5) 

For example, the rate p = 112 can be obtained by choosing two component 
codes with rates po = 213 and pi = 314. Notice that this choice involves con- 
stituent codes with higher rates and complexity than for a rate-112 turbo code with 
parallel concatenation. 

9.2.1 n r b o  algorithm 

Although, in principle, turbo codes can be optimally decoded by drawing their trel- 
lises and using the Viterbi algorithm, the complexity of the resulting decoder would 
be generally prohibitive. Using an iterative version of the sum-product algorithm 
(the turbo algorithm) provides instead extremely good performance with moderate 
complexity. This algorithm is conceptually similar to the message-passing algo- 
rithm described for LDPC codes, consisting of iterative exchanges of messages 
from symbol nodes to check nodes and vice versa (see Figure 9.3). With turbo 
codes, the more complex structure of their factor graph (which includes convolu- 
tional codes in lieu of symbol nodes and check nodes: see Figure 8.15) calls for a 
more complex algorithm. In fact, it requires the separate decoding of the compo- 
nent codes: each decoder operates on the received data, forms an estimate of the 
transmitted message, and exchanges information with the other decoder. After a 
number of iterations, this estimate is finally accepted. The algorithm is run for a 
fixed number of iterations or can be stopped as soon as a code word is obtained 
(see supra, Section 9.1.3). 

Figure 9.8 summarizes the general principle, whereby two decoders (one for el 
and one for (55) exchange messages back and forth: this decoding mechanism is 
reminiscent of the working of a turbo-charged engine, which suggested the name 
turbo for the algorithm. Although relatively little is known about its theoretical 
convergence properties (which will be examined infra, in Section 9.2.4), its behav- 
ior with graphs having cycles is surprisingly good. 

To describe the turbo algorithm, we first examine the behavior of the two de- 
coders of Figure 9.8, and, in particular, the messages they exchange under the SPA. 
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channel 
observation 

channel 
observation 

Figure 9.8: General scheme of turbo decoding algorithm. Here yl and yz are 
channel observations generated by two independent encodings of the same block 
U .  

Consider a linear binary block code C! with length n and with k information sym- 
bols (if a convolutional code is used, let its termination generate a block code with 
the above parameters). Here we compute explicitly the a posteriori probabilities of 
the code symbols, examining separately systematic and nonsystematic codes. 

SISO decoder: systematic codes 

If the code is systematic, the first k entries of each word x coincide with the infor- 
mation symbols u. We write x = (ul,. . . , uk, xk+l, . . . , xn), and we have 

Hence, under our usual assumption of a stationary memoryless channel, 

To compute the APPs of the information symbols ui, i = 1, . . . , k ,  (and hence 
to soft-decode C?) we combine, according to (9.6), the a priori infomation p(ul), 
. . ., p(uk) on the source symbols and the channel information p(y I x) into one 
intrinsic message (Figure 9.9). 

To describe the message-passing turbo algorithm, it is convenient to introduce a 
soft-input, soft-output (SISO) decoder, as shown in Figure 9.10. This is a system 
that, based on (9.6), has two sets of inputs: (a) the n conditional probabilities whose 
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Figure 9.9: (a) Factor graph for the systematic code (2. (b) Messages exchanged by 
the sum-product algorithm applied to the computation o f  the APPs p(ui ly). 

channel 
observations APPs 

P(Y I X) ~ ( u i  I Y), 1 L i  L k 

e(ui), 15 i 5 k 
a priori extrinsic 

information information 

Figure 9.10: Soft-input, soft-output decoder for systematic codes. 

product forms p(y I x), and (b) the k a priori probabilities p(uj). It outputs (c) the 
k APPs p(ui / y) and (d) the k extrinsic messages (the extrinsic information). This 
block may be implemented using the BCJR algorithm, or, if this is computationally 
too intensive, an approximate version of it. 

SISO decoder: nonsystematic codes 

In this case, with the assumption of a stationary memoryless channel, the APP 
p(x I y) takes the form 

This equation implies the assumption that the symbols xi are all independent so that 
p(x) can be factored as the product of individual probabilities p(xi). A priori, this 
assumption does not seem to make sense: however, we shall see in the following 
that, in turbo decoding algorithms, the role of these probabilities will be taken by 
the extrinsic messages e(xi). Since one of the effects of a long interleaver is to 
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Figure 9.1 1: (a) Factor graph for the nonsystematic code (3. (b) Messages ex- 
changed by the sum-product algorithm applied to the computation o f  the APPs 

 xi I Y). 

channel 
observations APPs 

P(Y I 4  xi I Y), 1 L i L n 

 xi), 15 i L e(xi), 1 2  i 5 n 
a priori extrinsic 

information information 

Figure 9.12: Sofi-input, soft-output decoder for nonsystematic codes. 

make the random variables e(xi) independent (at least approximately), the above 
assumption becomes realistic for long enough blocks. The corresponding factor 
graph is shown in Figure 9.1 1, while Figure 9.12 illustrates the SISO decoder. 
This system has two sets of inputs: (a) the n conditional probabilities p(yj I xj), 
and (b) the n a priori probabilities p(xj). Its outputs are: (c) the n APPs p(xi 1 y) 
and (d) the n extrinsic messages e(xi). (Notice that the a priori probabilities are 
unknown here.) 

Turbo algorithm for parallel concatenation 

Having defined SISO decoders, we can now specialize the general iteration scheme 
of Figure 9.8. If codes el and e2 are connected together, they may exchange extrin- 
sic information, as suggested in Figure 9.13. The complete scheme of Figure 9.14 
shows how two SISO decoders combine into the turbo algorithm. The algorithms 
starts by soft-decoding e l ,  which is done by the SISO decoder 'Dl. At this step, 
the a priori probabilities of each bit are initialized to 112. The output APPs are not 
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Figure 9.13: Exchange of  extrinsic information between two codes. 

channel I channel I - 
-L--- -. -- A,- -..-,-a :-.. & =i I APP 

Figure 9.14: General scheme of  an iterative turbo decoder for parallel concatena- 
tion. P/S denotes a parallel-to-series converter; Dl and D2 are soft-input, soft- 
output decoders for code el and code e2, respectively; 7r denotes the same inter- 
leaver used in the encoder; and T-' denotes its inverse. 

used, while the extrinsic messages, suitably normalized to form probabilities, are 
used, after permutation, as a priori probabilities in D2, the SISO decoder for e2. 
The extrinsic messages at the output of D2 are permuted and used as a priori prob- 
abilities for Dl. These operations are repeated until a suitable stopping criterion is 
met. At this point the output APPs are used to hard-decode the information bits. 
Notice that in the iterations the channel information gathered from the observation 
of y,, yl, and y2 does not change: only the a priori information inputs to the 
decoders vary. 

By this algorithm, the operation of the individual SISO decoders is relatively 
easy, because el and e2 are weak codes. As such, neither el nor e2 can individu- 
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Figure 9.15: General scheme of an iterative turbo decoder for serial concatenation. 
P/S denotes a parallel-to-series converter; Di and 'Do are soft-input, soft-output 
decoders for inner code ei and outer code e0, respectively; T denotes the same 
interleaver used in the encoder; and T - I  denotes its inverse. 

ally achieve a high performance. It is their combination that makes for a powerful 
code and at the same time allows the decoding task to be split into simpler opera- 
tions. 

Turbo algorithm for serial concatenation 

We assume here that the inner code is systematic, while the outer code is nonsys- 
tematic. Recalling Figure 9.7, let u, v denote input and output of e0, respectively; 
w ?rv the permuted version of v; and (w, c)  the output of ei. Finally, let 
y = (yw, yc) denote the observed vector. The block diagram of a turbo decoder 
for serially concatenated codes is shown in Figure 9.15. The operation of this 
decoder is similar to that of Figure 9.14; however, the two SISO decoders are dif- 
ferent here: 'Di has the structure illustrated in Figure 9.10, while 'Do corresponds 
to Figure 9.12. 

9.2.2 Convergence properties of the turbo algorithm 

Figure 9.16 shows qualitatively a typical behavior of the bit error rate of an iter- 
atively decoded turbo code. Three regions can be identified on this chart. In 
the low-SNR region, the BER decreases very slowly as the iteration order and the 
SNR increase. For intermediate values of SNR, the BER decreases rapidly as the 
SNR increases and improves with increasing the number of iterations. This water- 
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iteration 
order 

WATERFALL 

Figure 9.16: Qualitative aspect of the BER curves vs. &,/NO and the number of 
iterations for turbo codes. 

fall region is where turbo codes are most useful, as their coding gain approaches 
the theoretical limit. Finally, for large SNR, an errorJloor effect takes place: the 
performance is dictated by the minimum Hamming distance of the code, the BER- 
curve slope changes, and the coding gain decreases.' 

Figure 9.17 shows the performance of three turbo codes in the waterfall re- 
gion. Their error probabilities are compared with the Shannon limits for the uncon- 
strained AWGN channel, as derived in Problem 8 of Section 3 (see also Figure 1.5). 

'1t has been argued [9.15] that the presence of this error floor makes turbo codes not suitable 
for applications requiring extremely low BERs. Their poor minimum distance, and their natural 
lack of error-detection capability, due to the fact that in turbo decoding only information bits are 
decoded (but see [9.26] for an automatic repeat-request scheme based on punctured turbo codes), 
make these codes perform badly in terms of block error probability. Poor block error performance 
also makes these codes not suitable for certain applications. Another relevant factor that may guide 
in the choice of a coding scheme is the decoding delay one should allow: in fact, turbo codes, as well 
as LDPC codes, suffer from a substantial decoding delay, and hence their application might be more 
appropriate for data transmission than for real-time speech. 
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Figure 9.17: Performance of three turbo codes with block length 16,384, obtained 
by parallel concatenation of two convolutional codes. Code A has p = 1/4,16+ 16 
states, and is decoded with 13 iterations. Code B has p = 113, 16 + 16 states, and 
is decoded with 11 iterations. Code C has p = 112, 2 + 32 states, and is decoded 
with 18 iterations. 

9.2.3 Distance properties of turbo codes 

As just observed, for intermediate SNRs the good performance of turbo codes does 
not depend on their minimum-distance properties: it is rather affected by their 
small error coefficient (small number of nearest neighbors) in their low-weight 
words. For high SNRs, on the other hand, the error probability curve of turbo 
codes exhibits a "floor" caused by a relatively modest minimum distance.* 

Let n denote the block length of the component codes (and hence the interleaver 
length), and B the number of parallel codes (B = 2 in all preceding discussions, 

' ~ n  error floor may also occur with LDPC codes, caused by near-code words, i.e., n-tuples with 
low Hamming weight whose syndrome has also a low weight. See [9.19]. 



9.2. 'lbrbo codes 291 

but we can think of a more general turbo coding scheme). Moreover, let the compo- 
nent codes be recursive. Then it can be shown [9.14] that the minimum Hamming 
distance grows like nlw2jB. More precisely, given a code (2, let e ( d )  denote the 
set of its nonzero words with weight 1, . . . , d .  If we choose at random a parallel 
concatenated code e using B equal recursive convolutional codes and the block 
length is n, then as n + oo we have, for every E > 0, 

P [ I  e ( n1-2/B-~ ) I=o]-1  and P[le(n1-2/B+')I=0]+0(9.8) 

Notice how this result implies that a turbo code with only two parallel branches 
has a minimum distance that does not grow as any power of n, whereas if three 
branches are allowed, then the growth is n1l3 .3 

For serially concatenated codes, the minimum-distance behavior is quite differ- 
ent. Let us pick at random a code from an ensemble of serially concatenated turbo 
codes. Moreover, let do denote the free Hamming distance of the outer code. Then 
as n - oo we have, for every E > 0, 

We see that if the outer code has a large do we can achieve a growth rate close to 
linear with n. 

9.2.4 EXIT charts 

Since the turbo algorithm operates by exchanging extrinsic messages between two 
SISO decoders, its convergence may be studied by examining how these evolve 
with iterations. A convenient graphical description of this process is provided by 
EXIT charts [9.28], which yield quite accurate, albeit not exact, results, especially 
in the waterfall region of the error-probability curve of turbo codes. An EXIT 
chart is a graph that illustrates the input-output relationship of a SISO decoder 
by showing the transformations induced on a single parameter associated with in- 
put and output extrinsic probabilities. The upside of EXIT-chart analyses is that 
only simulation of the behavior of the individual decoders is needed, instead of 
computer-intensive error counting with the full decoding procedure. 

Let us focus on the binary alphabet X = {f 1) and assume an AWGN channel 
so that the observed signal is 

y = x + z  

3 ~ o r  B = 2, an upper bound to the minimum distance of a turbo code for all possible interleavers 
is derived in [9.5]. 
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with z N N(0) a:). Since 

the log-likelihood ratio (LLR) 

takes value 
2 

A(y) = -(x + z )  4 
and hence, given x, A is conditionally Gaussian: we write 

In summary, we may say that A(y) I x -- N(p, a2)  and that it satisfies the consis- 
tency condition [9.25] 

p = xa2/2 (9.12) 

The above allows us to write 

EXIT-chart techniques are based on the empirical evidence that extrinsic mes- 
sages, when expressed in the form of log-likelihood ratios, approach a Gaussian 
distribution satisfying the consistency condition (9.12). In addition, for large block 
lengths (and hence large interleavers) the messages exchanged remain approxi- 
mately uncorrelated from the respective channel observations over many itera- 
tions [9.28]. Under the Gaussian assumption, the extrinsic messages are charac- 
terized by a single parameter, which is commonly and conveniently chosen to be 
the mutual information exchanged between the LLR and the random variable x 
(see [9.29] for experiments that justify this choice): 

with p(A) = 0.5[p(Alx = -1) + p(Alx = +I)] under the assumption that x 
takes on equally likely values. In particular, if A is conditionally Gaussian, and the 
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Figure 9.18: Plot of the function 5(a2) defined in (9.15). 

consistency condition (9.12) is satisfied, then I(x;  A) does not depend on the value 
of x, and we have explicitly I(x; A) = J(a2) ,  where 

where E is taken with respect to the pdf N (xa2/2, a2). The function ~ ( a ~ )  
(plotted in Figure 9.18) is monotonically increasing, and takes values from 0 (for 
a + 0) to 1 (for a -+ m). If the assumption of conditional Gaussianity on A is 
not made, a convenient approximation of I(%; A), based on the observation of N 
samples of the random variable A, is based on (9.15): 

Recall now that we have four different messages at the input and output of a 
SISO decoder: a priori, channel observation, soft-decision, and extrinsic. We de- 
note these messages by pa, pO, pd, and pe, respectively, and by I", 1°, I ~ ,  and l e ,  
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Figure 9.19: Computing the transfer function T .  GRNG is a Gaussian random 
noise generator. 

respectively, the mutual informations exchanged between their LLRs and x. We 
describe the behavior of a SISO processor used in iterative decoding by giving its 
extrinsic information transfer (EXIT) function 

Figure 9.19 schematizes the Monte Carlo derivation of the EXIT chart for a given 
code. Choose first the values of Ia  and IO. The random vector u of uncoded f 1 
symbols is encoded to generate the vector x. A Gaussian random noise generator 
outputs, for each component x of x, the LLR A0 such that 

where a: = J - I  ( I0 ) .  Similarly, another Gaussian random noise generator outputs, 
for each component u of u, the LLR ha such that 

where a: = J-'(I"). These two LLRs correspond to messages entering the SISO 
decoder. This outputs the LLRs Ad and he. Only the latter is retained, and N 
values of it are used to approximate Ie through (9.16), so no Gaussian assumption 
is imposed on he. 

Once the transfer functions of both decoders have been obtained, they are drawn 
on a single chart. Since the output of a decoder is the input of the other one, the 
second transfer functions is drawn after swapping the axes, as shown in the exam- 
ple of Figure 9.20 (here the two decoders are equal). The behavior of the iterative 
decoding algorithm is described by a trajectory, i.e., a sequence of moves, along 
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Figure 9.20: EXIT chart for a rate-112 convolutional code and two values o f  
Eb/N0. 

horizontal and vertical steps, through the pair of transfer functions. Iterations start 
with no a priori knowledge, so I" = 0. Due to the channel observations, the corre- 
sponding value of Ie at the output of the first SISO decoder increases with Eb/No. 
The resulting extrinsic message is fed to the second decoder, which corresponds to 
moving along a horizontal line joining the two transfer functions. We thus obtain 
the value of Ie at the output of the second decoder. The corresponding message 
is fed back to the first decoder, whose output yields the value of Ie obtained by 
joining the two curves with a vertical line, and so on. 

~ i g u r i  9.20 shows two examples of convergence behavior. For &/No = 0.65 dB, 
the two curves intersect, the trajectory is blocked, and we experience no conver- 
gence to large values of mutual information (which correspond to small error prob- 
abilities). For Eb/No = 1 dB, instead, we have convergence. 

Estimates of the error probability of a coded system can be superimposed on 
EXIT charts to offer some extra insight into the performance of the iterative de- 
coder. If the LLR Ad is assumed to be conditionally Gaussian, with mean pd = 
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xai/2 and variance a:, the bit error rate (BER) can be approximated in the form 

Since Ad = A0 + Aa + Re, the assumption of independent LLRs leads to 

a: = a,2 + a: + a,2 
which in turn yields 

Notice that, due to (9.1 I), we have 

where p is the rate of the concatenated code. Figure 9.21 superimposes the EXIT 
chart corresponding to tb /No = 1 dB onto a set of constant-BER curves. A com- 
parison of this figure with Figure 9.22, obtained by Monte Carlo simulation, shows 
a good match between the "true" BERs and those predicted by EXIT charts. In ad- 
dition, observing the evolution of the constant-BER curves, one can observe how 
traversing the bottleneck region between the two curves corresponds to a slow con- 
vergence of the BER. Once the bottleneck is passed, faster convergence of BER is 
achieved. 

Accuracy of EXIT-chart convergence analysis 

In the upper portion of the EXIT chart, extrinsic messages become increasingly 
correlated, and the true evolution of Ie deviates from the behavior predicted by the 
chart. As correlations depend also on the interleaver size, it is expected that EXIT 
analyses become more accurate as this size increases. 

9.3 Bibliographical notes 

Low-density parity-check codes were introduced by Gallager in his doctoral the- 
sis [9.12], and rediscovered in the mid-1990s [9.18]. Reference [9.21] reviews 
techniques for constructing LDPC codes whose graphs have large girths. LDPC 



9.3. Bibliographical notes 297 

Figure 9.2 1 : EXIT chart as in Figure 9.20, for &/No = 1 dB, superimposed to 
constant-BER curves. 

decoding algorithms are analyzed in [9.12,9.18]. LDPC codes over nonbinary al- 
phabets are examined in [9.8]. Turbo codes, and their iterative decoding algorithm, 
were first presented to the scientific community in [9.4]. The iterative (turbo) de- 
coding algorithm was shown in [9.17] to be an instance of J. Pearl's belief propa- 
gation in graphs [9.22]. Our presentation of SISO decoders follows [9.23]. 

The capacity-approaching codes described in this chapter are now finding their 
way into a number of practical applications, ranging from UMTS to wireless local- 
area networks, deep-space communication, and digital video broadcasting. A list 
of practical implementations of LDPC codes can be found in [9.24]. 

Richardson and Urbanke [9.6] have introduced the study of the evolution of the 
probability distribution of the exchanged messages as a tool to study the conver- 
gence behavior of turbo algorithms. EXIT charts, which characterize these distri- 
butions using a single parameter, were advocated in [9.28]. Application of EXIT 
charts to LDPC codes, a topic not considered here, is described in [9.2]. 

Computation of bounds to the error probability of turbo codes can be found 
in [9.9,9.27]. 
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Figure 9.22: Convergence of a turbo code based on two equal convolutional codes 
as in Figure 9.20 with block length lo5 (simulation results). 

9.4 Problems 

1. Once the matrix H of an LDPC code is selected, show how the generator 
matrix G can be obtained. Consider separately the cases of H having or not 
having full rank. Is G a sparse matrix? 

2. Derive EXIT charts for some simple convolutional codes assuming I" = 0. 
Interpret the shape of the functions. 

3. Extend the EXIT-chart analysis to the frequency-flat, slow independent Ray- 
leigh fading channel. 
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What signifieth whole that but, be all the prowess o f  ten, 

Multiple antennas 

This chapter focuses on the main theoretical aspects o f  transmission systems 
where more than one antenna is used at both ends oi'a radio link and 11ence 
where one channel use involves sending signals simultaneously through sev- 
eral propagation paths. The use o f  multiple transmit and receive antennas al- 
lows one to reach capacities that cannot be obtained with any otl~er technique 
using present-day technology, and is expected to make it possible to increase 
the data rates in wireless networks by orders o f  magnitude. After describing 
system and channel models, we compute the capacities that can bc achieved, 
and we show how "space-time" codes can be designed and how suboptimum 
architectures can be employed to simplifj/ the receiver. Finally, we examine 
the basic trade-off bctwcen the data-rate gain, made possible by simultaneous 
transmission by several antennas, and the diversity gain, achieved by sending 
the same signal through several independently faded paths. 



302 Chapter 10. Multiple antennas 

10.1 Preliminaries 

We consider a radio system with t antennas simultaneously transmitting one sig- 
nal each, and with r antennas receiving these signals (Figure 10.1). Assuming 

Figure 10.1: Transmission and reception with multiple antennas. The channel 
gains are described by the r x t  matrix H .  

two-dimensional elementary constellations throughout, the channel input-output 
relationship is 

y = H x + z  (10.1) 

where x E Ct, y  E Cr, H  E Crxt  (i.e., H  is an r x t  complex, possibly ran- 
dom, matrix, whose entries hij describe the gains of each transmission path from a 
transmit to a receive antenna), and z  is a circularly symmetric, complex Gaussian 
noise vector. The component xi, i = 1, . . . , t, of vector x  is the elementary signal 
transmitted from antenna i ;  the component yj, j = 1, .  . . , r ,  of vector y is the 
signal received by antenna j. We also assume that the complex noise components 
affecting the different receivers are independent with variance No, i.e., 

where I, is the r x r identity matrix, and the signal energy is constrained by 
~ [ x t x ]  = tE, where E denotes the average energy per elementaq signal. The 
additional assumption that IE[lhij 1 2 ]  = 1 for all i, j,' yields the average signal-to- 

 h he assumption of equal second-order moments for the channel coefficients facilitates the anal- 
ysis but is somewhat restrictive, as it does not allow consideration of antennas differing in their 
radiation patterns. 



10.1. Preliminaries 303 

noise ratio (SNR) at the receiver (see (3.28)) 

with Rb the bit rate and W the Shannon bandwidth of the elementary signals. 
Since we assume here N = 2, we have Rb/W = log M ,  with M the size of the 
elementary constellation, and hence 

Then, rather than assuming a power or energy constraint, we may refer to an SNR 
constraint, i.e., 

qxtx] 5 <No (10.5) 

For later reference, we define 

Explicitly, we have, from (10. I), 

which shows how every component of the received signal includes a linear combi- 
nation of the signals emitted by each antenna. We say that y is affected by spatial 
inteqerence, generated by the signals transmitted from the various antennas. This 
interference has to be removed, or controlled in some way, in order to separate the 
single transmitted signals. We shall see in the following how this can be done: 
for the moment we may just observe that the tools for the analysis of multiple- 
antenna transmission have much in common with those used in the study of other 
disciplines centering on interference control, such as digital equalization of linear 
dispersive channels (where the received signals are affected by intersymbol inter- 
ference: see, e.g., [10.4]) or multiuser detection (where the received signals are 
affected by multiple-access interference: see, e.g., [10.61]). Notice, however, the 
peculiar feature of multiple-antenna systems, which allow for coordination among 
transmitted signals: this can be exploited to simplify the receiver's operation. 

10.1.1 Rate gain and diversity gain 

The upsides of using multiple antennas can be summarized by defining two types 
of gain. As we shall see in the following, in the presence of fading, a multiplicity 
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Figure 10.2: Spatial multiplexing and diversity obtained by transmission and re- 
ception with multiple antennas. 

of transmit antennas creates a set of parallel channels, that can be used to poten- 
tially increase the data rate up to a factor of min{t, r )  (with respect to single- 
antenna transmission) and hence generate a rate gain. This corresponds to the 
spatial multiplexing illustrated by Figure 10.2. Here the serial-to-parallel converter 
S P  distributes the stream of data across the transmit antennas; after reception, the 
original stream is reconstituted by the parallel-to-serial converter p/s2 The other 
gain is due to the combination of received signals that are independently faded 
replicas of a single transmitted signal, which allows a more reliable reception. We 
call diversity gain the number of independent paths traversed by each signal, which 
has a maximum value rt. We hasten to observe here that these two gains are not 
independent, but there is a fundamental trade-off between the two: and actually it 
can be said that the problem of designing a multiple-antenna system is based on 
this trade-off. As an example, Figure 10.3 illustrates the diversity-rate trade-off for 
a multiple-input multiple-output (MIMO) system with t = 2 transmit and r = 2 
receive antennas. Figure 10.3(a) assumes the channels are orthogonal so that the 
rate is maximum (twice as large as the single-channel rate), but there is no diver- 
sity gain, since each symbol traverses only one path. Figure 10.3(b) assumes that 
the transmitter replicates the same signal over the two channels so that there is no 

 ere we limit ourselves to considering only transmissions with the same rate on all antennas. 
However, different (and possibly adaptive) modulation rates can also be envisaged. 
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Y-Y YxY 
Y-Y YAY 

Figure 10.3: Diversity-rate trade-off with r = t = 2. (a) Transmission of two 
signals over two orthogonal channels. (b) Transmission of one signal over four 
paths. 

rate gain, but the diversity is now four, since the signal traverses four independent 
paths. We shall discuss this point in more depth in Section 10.14. 

The problems we address in this chapter are the following: 

1. What is the limiting performance (channel capacity) of this multiple-antenna 
system? 

2. What is its error probability? 

3. How can we design "space-time" codes matched to the channel structure? 

4. How can we design architectures allowing simple decoding of space-time 
codes, and what is their performance? 

10.2 Channel models 

Here we focus on two models simple enough to allow tractable analysis. 
For fast, frequency-nonselective channels, we have, if the index n denotes dis- 

crete time, 

Yn = Hnxn + zn (10.8) 

with Hn, -00 < n < co, an ergodic random process. This channel is consequently 
ergodic. 
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For slow, frequency-nonselective channels, the model becomes 

and each code word, however long, experiences only one channel state. This fading 
model is nonergodic. 

10.2.1 Narrowband multiple-antenna channel models 

Assume that the r x t channel matrix H remains constant during the transmission of 
an entire code word. Analysis of this channel requires the joint pdf of the rt entries 
of H.  A number of relatively simple models for this pdf have been proposed in the 
technical literature, based on experimental results and analyses. Among these we 
consider the following: 

Rich scattering The entries of H are independent, circularly symmetric complex 
zero-mean Gaussian random variables. 

Completely correlated The entries of H are correlated, circularly symmetric com- 
plex zero-mean Gaussian random variables. To specify this model, the cor- 
relation coefficients of all pairs of elements are required. 

Separately correlated The entries of H are correlated, circularly symmetric com- 
plex zero-mean Gaussian random variables, with the correlation between two 
entries of H separated in two factors accounting for the receive and transmit 
correlation: 

E[(H)i,j (HI;, j/] = (R)i,il (TIjjj/ (10.10) 

for two Hermitian, nonnegative definite matrices R (r  x r )  and T (t x t).  This 
model is justified by the fact that only the objects surrounding the receiver 
and the transmitter cause the local antenna-elements correlation, while they 
have no impact on the correlation at the other end of the link. In other words, 
this model does not account for correlation between transmit and receive 
antennas: for this to be actually negligible, the distance between transmitter 
and receiver must be large. The channel matrix can be expressed in the form 

where Hu is a matrix of uncorrelated, circularly symmetric complex zero- 
mean Gaussian random variables with unit variance, and denotes ma- 
trix square root.3 For a fair comparison of different correlation cases, one 

3 ~ h e  square root of matrix A 2 0 whose singular-value decomposition (SVD: see Appendix B) 
is A = U D V ~  is defined as A UD~/ 'V~.  
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should assume that the total average received power is constant, i.e., 

Since H is not affected if T is scaled by a factor a # 0 and R by a factor 
a-l, one can assume, without loss of generality, that 

Uncorrelated keyhole The rank of H may be smaller than min{t, r). A special 
case occurs when H has rank one (a keyhole channel). Assume H = h,hi, 
with the entries of the vectors h, and ht being independent, circularly sym- 
metric complex zero-mean Gaussian random variables. This model applies 
in the presence of walls where the propagating signal passes through a small 
aperture, such as a keyhole. In this way, the incident electric field is a lin- 
ear combination of the electric fields arriving from the transmit antennas and 
irradiates through the hole after scalar multiplication by the scattering cross- 
section of the keyhole. As a result, the channel matrix can be written as the 
product of a column vector by a row vector. Similar phenomena arise in 
indoor propagation through hallways or tunnels. 

Rice channel The channel models listed above are zero-mean. However, for cer- 
tain applications, the channel matrix H should be modeled as having entries 
whose means are nonzero. 

10.2.2 Channel state information 

As we discussed in Chapter 4, a crucial factor in determining the performance of 
transmission over a channel affected by fading is the availability, at the transmitting 
or at the receiving terminal, of channel-state information (CSI), that is, the value 
taken on by the fading gains in a transmission path. In a fixed wireless environment, 
the fading gains can be expected to vary slowly, so their estimate can be obtained 
by the receiver with a reasonable accuracy, even in a system with a large number of 
antennas, and possibly fed back to the transmitter. In some cases, we may assume 
that a partial knowledge of the CSI is available. One way of obtaining this estimate 
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is by periodically sending pilot signals on the same channel used for data (these 
pilot signals are used in wireless systems also for acquisition, synchronization, 
etc.). We shall address this issue in Section 10.7. 

10.3 Channel capacity 

In this section we evaluate the capacity of the MIMO transmission system de- 
scribed by (10.1). Several models for the matrix H can be considered: 

(a) H is deterministic. 

(b) H is a random matrix, and each channel use (viz., each transmission of one 
symbol from each of the t transmit antennas) corresponds to an independent 
realization of H (ergodic channel). 

(c) H is a random matrix, but once it is chosen it remains fixed for the whole 
transmission (nonergodic channel). 

When H is random (cases (b) and (c) above) we assume here that its entries 
are iid and - l\lc(O, I), i.e., Gaussian with zero-mean, independent real and imag- 
inary parts, each with variance 112. Equivalently, each entry of H has uniform 
phase and Rayleigh magnitude. This choice models Rayleigh fading with enough 
separation between antennas such that the fades for each T X M  antenna pair are 
independent. We also assume, unless otherwise stated, that the CSI (that is, the 
realization of H )  is known at the receiver, while only the probability distribution 
of H is perfectly known at the transmitter (the latter assumption is necessary for 
capacity computations, since the transmitter must choose an optimum code for that 
specific channel). 

10.3.1 Deterministic channel 

Assume first that the nonrandom value of H is known at both transmitter and re- 
ceiver. We derive the channel capacity by maximizing the average mutual infor- 
mation I(x; y) between &put and output of the channel over the choice of the dis- 
tribution of x. Singular-value decomposition of the matrix H yields (Section B.6.4 
of Appendix B) 

H = U D V ~  (10.14) 

where U E (Cr X T  and V E ( C t x t  are unitary, and D E Rr X t  is diagonal. We can 
write 

y = UDV~X + z (10.15) 
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Figure 10.4: Illustration of water-filling. The height of each patch is A;'. The 
region is Aooded to a level p by using the total amount of water <. 

Premultiplication of (10.15) by ~t shows that the original channel is equivalent to 
the channel described by the input-output relationship 

where y A u t y ,  k V ~ X  (so that IE[ktk] = ~ [ x t x ] ) ,  and 2 A U ~ Z  
%(0, NoI,). Now, the rank of H is at most m A minit, r), and hence, at most, 
m of its singular values are nonzero. Denote these by a, i = 1,. . . , m, and 
rewrite (10.16) componentwise in the form 

which shows how this channel is equivalent to a set of m parallel independent 
channels, each corresponding to a nonzero singular value of H. In addition, we see 
that, for i > m, & is independent of the transmitted signal, and It.i plays no role. 

Maximization of the mutual information requires independent &, i = 1, . . . , m, 
each with independent Gaussian, zero-mean real and imaginary parts. Their SNRs 
should be chosen, as indicated in Section A.5 of Appendix A, via water-jilling 
(Figure 10.4): 

1 1 < -E liI2 = ( p  - A; )+ " No 
(10.18) 

where (.)+ A max(0, .). With p chosen so as to meet the SNR constraint, we see 
that the SNR, as parametrized by p, is 
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and the capacity takes on the value (in bits per dimension pair) 

Observation 10.3.1 Since the nonzero eigenvalues of H ~ H  are the same as those 
of H H ~ ,  the capacities of the channels corresponding to H and to Ht are the same. 
A sort of "reciprocity" holds in this case. 

Example 10.1 

Take t = r = m, and H = I,. Due to the structure of H, there is no spatial 
interference here, and transmission occurs over m parallel additive white Gaussian 
noise (AWGN) channels, each with S M  Elm and hence with capacity log(l+C/m) 
bitldimension pair. Thus, 

C = m log(1 + </m) (10.21) 

We see here that we have a rate gain, since the capacity is proportional to the num- 
ber of transmit antennas. Notice also that, as m -+ oo, the capacity tends to the 
limiting value C = < log e. 

Example 10.2 

Consider as H the all- 1 matrix, a limiting case of spatial interference. Its SVD is 

Here we have m = 1 , f i  = a, and hence XI = rt. Thus, for E > 0, 

and hence the capacity is 

C = log [(c + i) rt] = log(1 + rt E) 
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The signals achieving this capacity can be described as follows. Vector 2 has only 
one component, and 

Thus, the components of x = V2 are all equal, i.e., the transmit antennas all send 
the same signal. Each transmit antenna sends an energy E. Because of the structure 
of H, the signals add coherently at the receiver, so at each receiver we have the 
voltage t f i  and hence the energy t2&. Since each receiver sees the same signal, 
and the noises are uncorrelated, the overall SNR is rt2&/No = rtc, as shown by 
the capacity formula (10.24). In this case we see no rate gain, but a diversity gain is 
obtained through proper combination of the received signals. 0 

10.3.2 Independent Rayleigh fading channel 

We assume here that H is independent of both x and z, with entries N NJO, I), 
and that for each channel use an independent realization of H is drawn so that the 
channel is ergodic. If the receiver has perfect CSI, the mutual information between 
the channel input (the vector x) and its output (the pair y, H), is (Appendix A) 

Since H and x are independent, then I(x; H) = 0, and hence 

where H denotes a realization of the random matrix H. The maximum of the 
mutual information I(x; y, H), taken with respect to the distribution of x, yields 
the channel capacity C. From the results of Appendix A we know that the capacity, 
achieved by a transmitted signal x Nc(O, (</t)It), is equal to 

The exact computation of (10.28) will be examined soon. For the moment, note 
that, if r is fixed and t + oo, the strong law of large numbers yields 
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Thus, as t -+ oo, the capacity tends to 

logdet (I, + CI,) = log(l+ 

= r l o g ( l + < )  (10.30) 

and hence increases linearly with r ,  thus exhibiting a rate gain (compare this result 
with (10.24), where C increases with r only logarithmically). 

One may be tempted to interpret the above result by qualifying fading as bene- 
ficial to MIMO transmission, since independent path gains generate r independent 
spatial channels. Actually, high capacity is generated by a multiplicity of nonzero 
singular values in H, which is typically achieved if H is a random matrix, but not 
if it is deterministic. 

Exact computation of C 

Exact calculation of (10.28) yields 

m-1 m e+p+n-m 
c = log (e) "! C C  C (-l)e+p(' + P + n - m)! 

(10.31) 
(n - I)! e=o p=o p=o !!p! 

where 

is the exponential integral function of order n. 

Proof 

Observe first that, since the matrices HHt and H ~ H  share the same set of eigenval- 
ues, we have 

Next, define the m x m matrix 

where again m 4 min{t, r). This is a nonnegative definite random matrix and thus 
has real, nonnegative random eigenvalues. The joint pdf of the ordered eigenvalues 
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of W is known (see Appendix C, Equation (C.28)). The expectation to be computed 
can be expressed in terms of one of the unordered eigenvalues of W (say, XI) as 
follows: 

To compute the marginal pdf of XI, use 

To perform this computation, we resort to an orthogonalization of the power se- 
quence 1, A, X2, . . . , Am-l in the Hilbert space of real functions defined in (0, m) 
with inner product 

(f, g) A JW f ( x ) ~ ( x ) x " - ~ ~ % A  (10.35) 
0 

Explicitly, we express the pdf (10.34) in terms of the polynomials 

k ! 
4k+l (A) Ln-"(A) (10.36) ( k t n - m ) !  

Here, LE(A) is an associated Laguerre polynomial [10.54], defined as 

The polynomials q5i (A) satisfy the orthonormality relation 

In order to calculate (10.34), we first observe that the term njm=i+l (Ai - Aj) ap- 
pearing in (C.28) can be expressed as the determinant of the Vandermonde matrix 
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so we can write 

with rm(a)  4 r ( a  - i). Next, with row operations we transform matrix 
D(X1, X 2 , .  . . , Am) into 

so the determinant of D equals (apart from multiplicative constants generated by 
the row operations) the determinant of 6 ,  that is, 

det 6(xl,. . . , Am) = x(-l)"(") n $ai ( X i )  

where the summation is over all permutations of (1, . . . , m ) ,  and 

0, a is an even permutation 
~ ( 0 )  = 1, otherwise 

Thus, with c(m, n )  a normalization constant, we have 

and, integrating over X p ,  . . . , Am, we obtain 

where the second equality follows from the fact that, if ai = Pi for i 2 2, then also 
a1 = pl (since both a and P are permutations of the same set) and thus a = P. The 
last equality follows from the fact that $ ~ ( ~ ~ ) X ; " - ~ e - ' l  integrates to unity, which 
entails c(m, n )  = l l m ! .  In conclusion, the capacity can be given the form 
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where m min{t, r), n 4 max{t, r). 
Consider now the Christoffel-Darboux identity, valid for orthonormal polyno- 

mials [10.54]: 

where Ak denotes the coefficient of xk-I in +k(x). Taking the limit as y --, x, the 
above identity yields 

When specialized to associated Laguerre polynomials, (10.36) and (10.37) yield 

where we used the relation [Lg(x)]' = L:ft(x) [10.54]. Then, we can rewrite 
Equation (10.45) as 

and further expand it using (10.37) as follows: 

Finally, using the equality (from [10.50]) 

we obtain (10.31). 
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Some capacity values for < = 20 dB are plotted in Figure 10.5 and 10.6. Special 
cases, as well as asymptotic approximations to the values of C, are examined in 
the examples that follow. 

Figure 10.5: Capacity (in bitls/Hz, or bitldimension pair) o f  the ergodic Rayleigh 
MIMO channel with < = 20 dB. 

Example 10.3 (r >> t )  
Consider first t = 1, so that m = 1 and n = r. Application of (10.3 1) yields 

r 

c = 10g(e) C e ' l ' ~ ~  (I/<) . (10.52) 
k=l 

This is plotted in Figure 10.7. An asymptotic expression of C, valid as r -+ oo, 
can be obtained as follows. Using in (10.52) the approximation, valid for large k, 

1 
ex& (x) N - 

x + k  
we obtain 
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Figure 10.6: Capacity (in bit/s/Hz, or Wdimension pair) of  the ergodic Rayleigh 
MIMO channel with C = 20 dB. 

This approximation to the capacity is also plotted in Figure 10.7. We see here that 
if t = 1 the capacity increases only logarithmically as the number of receive anten- 
nas is increased-hardly an efficient way of enhancing capacity. In addition, this 
capacity is much smaller than that of a system with t = r .  Increasing T generates 
an increase of SNR from C to rC, but no rate gain. 

For finite t > 1 (and r -+ m), we set W = H ~ H  + rIt as .  Hence, the 
following asymptotic expression holds: 

C = log det (It + (C/ t )W) t + (C/t)r) (10.55) 

Example 10.4 (t >> r )  

Consider first r = 1, so that m = 1 and n = t. Application of (10.31) yields 
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Figure 10.7: Capacity (in bit/s/Hz, or bit/dimension pair) o f  the ergodic Rayleigh 
MIMO channel with t = 1 (continuous line). The asymptotic approximation C N 

log(1 + Cr) is also shown (dotted line). 

This is plotted in Figure 10.8. Proceeding as in Example 10.2, an asymptotic ex- 
pression of C as t -+ co can be obtained, yielding C log(1 + <). This ap- 
proximation to the capacity is also plotted in Figure 10.8. Since log(1 + C) is the 
capacity of the AWGN channel, we can see that letting t -+ m closes the gap be- 
tween the AWGN channel and the independent Rayleigh fading channel. Since this 
gap is not wide (see Figure 4.6), having a large t when r = 1 corresponds to an 
inefficient expenditure of spatial resources (recall that we are assuming no CSI at 
the transmitter). 

For finite r > 1 (and t -, co), we have the result (10.29). 0 

Example 10.5 (r = t )  

With r = t we have m = n = r, so application of (10.3 1) yields 
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Figure 10.8: Capacity (in bit/s/Hz, or bit/dimension pair) o f  the ergodic Rayleigh 
MlMO channel with r = 1 (continuous line). The asymptotic approximation C 
log(1 + <) is also shown (dotted line). 

The capacity is plotted in Figure 10.9. 

The results of Figure 10.9 show that capacity increases almost linearly with 
m A min{t, r) .  This fact can be analyzed in a general setting by showing that, 
when t and r both grow to infinity, the capacity per antenna tends to a constant. To 
prove this, observe that (10.33) becomes 

where v A Xl/m is now a random variable whose pdf is known (see Theo- 
rem C.3.2, Appendix C): as m t oo and nlm approaches a limit T > 1, 

with 
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Figure 10.9: Capacity with independent Rayleigh fading and t = r antennas. 

for v- < Y < v+. With the aid of some algebra, expectation in (10.56) can be 
computed in closed form [10.43,10.62], yielding 

C 
- w (log(w+<) + (1 - a) log(1- w-) - (w-a) loge) .max{l, l l a }  (10.58) 
m 

where 

w* A (w f 4 2 = q Z ) / 2  (10.59) 

and 
A 1 1  ~ = 1 + - + -  (10.60) 

a 5 
This asymptotic result can be used to approximate the value of C for finite r, t ,  

by setting a = t lr .  This approximation provides values very close to the true 
capacity even for small r and t ,  as shown in Figures 10.10 and 10.1 1. The figures 
show the asymptotic value of Clm (for t ,  r + oo with t lr  -+ a )  versus a and the 
nonasymptotic values of C / m  corresponding to r = 2 and 4, respectively. 
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Figure 10.10: Asymptotic ergodic capacity per antenna ( C l m )  with independent 
Rayleigh fading as t ,  r t co and t / r  + cr (solid curves). The exact ergodic 
capacity per antenna for r = 2 is also shown for comparison ( x ) .  

Observation 10.3.2 We can observe, from (10.58) and a modicum of algebra, 
that, for large SNR, i.e., for < + co, the ergodic capacity is asymptotically equal 
to m log <: comparing this result with the asymptotic capacity of the single-input, 
single-output channel C N log < (see Section 4.2.2), we see that use of multiple 
antennas increases the capacity by a factor m. That is, multiple antennas generate 
m independent parallel channels and hence a rate gain m. This explains why m 
is sometimes called the number of degrees of freedom generated by the MIMO 
system. 

Observation 10.3.3 For the validity of (10.58), it is not necessary to assume that 
the entries of H are Gaussian, as needed for the preceding nonasymptotic results: 
a sufficient condition is that H have iid entries with unit variance (Appendix C, 
Theorem C.3.2). 



322 Chapter 10. Multiple antennas 

Figure 10.11 : Same as Figure 10.10, but r = 4. 

Observation 10.3.4 The reciprocity valid for deterministic channels (Observa- 
tion 10.3.1) does not hold in this case. If C(r, t ,  C )  denotes the capacity of a chan- 
nel with t transmit and r receive antennas, and SNR C ,  we have 

C(a, b, (b) = C(b, a,  ( a )  (10.61) 

Thus, for example, C(r, 1, () = C(1, r, r ( ) ,  which shows that with transmit rather 
than receive diversity we need r times as much transmit power to achieve the same 
capacity. 

Observation 10.3.5 Choose t = r = 1 as the baseline; this yields one more bit 
per dimension pair for every 3 dB of SNR increase. In fact, for large C, 

c = log(1 + C )  -- log C 
and hence, if < -+ 2C we have 

log@[) = 1 + log < (10.63) 

For multiple antennas with t = r ,  (10.56) shows that for every 3 dB of SNR in- 
crease we have t more bits per dimension pair. 
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10.4 Correlated fading channels 

The separately correlated MIMO channel model was introduced in Section 10.2.1. 
The entries of the channel matrix are correlated, circularly symmetric, complex 
zero-mean Gaussian random variables, and the channel matrix can be written as 

where H, is a matrix of independent, circularly symmetric complex zero-mean 
Gaussian random variables with unit variance. Calculation of the ergodic capacity 
in this case is an open problem, its solution being known only for some special 
cases. A lower bound C* to capacity can be obtained under the constraint that 
the signals across the transmit antennas are independent (if the correlations among 
the entries of H are unknown at the transmitter, then independent signal are the 
sensible choice, and hence C* yields the actual capacity). We have 

In the special case t = r ,  for high SNR the following asymptotic approximation 
can be derived [10.50]: 

C* N m log(</t) + log(m!) + logdet (TR)  (10.66) 

This result can be interpreted by saying that, when t = T = m, the asymptotic 
loss in C* due to correlation is log det (TR) /m bit/s/Hz. To prove that correlation 
actually causes a loss, let ti, i = 1, . . . , m, denote the positive eigenvalues of T, 
and recall the trace constraint (10.13). We obtain 

1 
det (T)'lrn = n ,:Irn 5 - ti = 1 

i i 

Since a similar result applies to R, we obtain 

- log det (TR)  /m > 0 

with equality if and only if T = R = I,. This confirms that, under the "fair com- 
parison" conditions dictated by (10.13), the asymptotic power loss due to separate 
correlation is always nonnegative and is zero only in the uncorrelated case. This 
proves the following asymptotic (in the SNR) statements: 

(Separate) correlation degrades system performance. 
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0 The linear growth of capacity with respect to the minimum number of trans- 
midreceive antennas is preserved. 

The above can be extended to the case t # r [10.50]. 

Example 10.6 

Consider the case of a constant separately correlated m x m MIMO fading channel 
with correlation matrices 

and 
1 ER ... ER 

ER ER . . . 
Some algebra leads to the asymptotic approximation 

When m is large, the asymptotic capacity loss is about 

10.5 A critique to asymptotic analyses 

The previous results derived under the assumption r + OCJ should be taken cum 
grano salis. Our assumption that the entries of the channel-gain matrix H are 
independent random variables becomes increasingly questionable as T increases. 
In fact, for this assumption to be justified, the antennas should be separated by 
some multiple of the wavelength, which cannot be obtained when a large number of 
antennas is packed in a finite volume. Thus, as r increases, the effects of correlation 
invalidate the assumption of independent channel gains. In addition, if the variance 
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of the entries of H does not depend on r, increasing r leads to an increased total 
received power, which becomes physically unacceptable beyond a certain value. 
It follows that capacity calculations for large r and a finite volume become quite 
involved. A simple, yet instructive, analysis is possible if the effects of varying 
correlation are disregarded and a MIMO system is assumed whereby not only the 
total transmit power remains constant as t increases but also the average received 
power remains constant when r increases [10.16]. This is obtained by rescaling H 
by a factor r-lI2 so that the capacity (10.28)-(10.33) becomes 

C  = IE b d e t  (I, + $HHt)] = 5IE log (1 + ih.) (10.69) 
i=l 

One simple heuristic way of dealing with this situation consists of rewriting C in 
the form 

and observing that, due to the strong law of large numbers, ( 1 l r ) H t ~  + It almost 
surely. Thus, 

C + t log(1 + <It) (10.70) 

that is, the channel is transformed into a set o f t  independent parallel channels, each 
with capacity log(1 + [It). As t also grows to infinity, from (10.70) we obtain 

C +  < loge (10.71) 

a conclusion in contrast with our previous result that capacity increases linearly 
with the number of antennas. 

10.6 Nonergodic Rayleigh fading channel 

When H is chosen randomly at the beginning of the transmission, and held fixed 
for all channel uses, average capacity has no meaning, as the channel is nonergodic. 
In this case the quantity to be evaluated is, rather than capacity, outage probability, 
that is, the probability that the transmission rate p exceeds the mutual information 
of the channel. The instantaneous mutual information is the random variable 

C' C(H) = log det (I, + ?HHt) (10.72) 

and the outage probability is defined as 
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The maximum rate that can be supported by the channel with a given outage prob- 
ability is referred to as outage capacity. 

The evaluation of (10.73) should be done by Monte Carlo simulation. However, 
one can profitably use an asymptotic result which states that, as t and r  grow to 
infinity, the instantaneous mutual information C(H) tends to a Gaussian random 
variable. Thus, by computing its asymptotic mean p c  and variance a:, one can 
characterize its asymptotic behavior. The value of this asymptotic result is strongly 
enhanced by the fact that C(H) is very well approximated by a Gaussian random 
variable even for small numbers of antennas. Thus, the outage probability for any 
pair t ,  r  is given by 

where 

A a; = - log e - log(1- q i r i / ~  

expressed in bitldimension pair and (bitldimension pair12, respectively, with w 4 m, ,O a-l ,  and 

Figure 10.12, which plots Pout versus < for r  = t = 4 and two values of SNR, 
shows the quality of the Gaussian approximation for r  = t = 4 and a Rayleigh 
channel. 

Based on these results, we can use (10.74) to approximate closely the outage 
probabilities as in Figures 10.13 and 10.14. These figures show the rate that can be 
supported by the channel for a given SNR and a given outage probability, that is, 
from (10.74): 

P = PC - UCQ-~  (pout) (10.76) 

Notice how, as r, t increase, the outage probabilities curves come closer to each 
other: this fact can be interpreted by saying that, as r  and t grow to infinity, the 
channel tends to an ergodic channel. 

Figure 10.15 shows the outage capacity (at Pout = 0.01) of a nonergodic Ray- 
leigh fading MIMO channel. 
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Figure 10.12: Outage probability for r = t = 4 and a nonergodic Rayleigh channel 
vs. p, the transmission rate in bits per dimension pair. The continuous line shows 
the results obtained by Monte Carlo simulation, while the dashed line shows the 
normal approximation. 

10.6.1 Block-fading channel 

Here we take the approach of choosing a block-fading channel model, introduced 
in Section 4.3 and shown in Figure 10.16. Here the channel is characterized by 
the F matrices Hk, k = 1, . . . , F ,  each describing the fading gains in a block. The 
channel input-output equation is 

for k = 1, . . . , F (block index) and n = 1,. . . , N (symbol index along a block), 
yk, zk E (Cr, and xk E (Ct .  Moreover, the additive noise zk [n] is a vector of circu- 
larly symmetric complex Gaussian RVs with zero mean and variance No: hence, 

It is convenient to use the SVD 

where Dk is an r x t real matrix whose main-diagonal entries are the ordered 
singular values 6 2 . . . 2 &, with Xk,+ the ith largest eigenvalue of the 
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Figure 10.13: Transmission rate that can be supported with r = t = 4 and a given 
outage probability b y  a nonergodic Rayleigh channel. The results are based on the 
Gaussian approximation. 

Hermitian matrix H~H!, and rn rnin{r, t}. Since U k  and V k  are unitary, by 
premultiplying yk[n] by U! the input-output relation (10.77) can be rewritten in 
the form 

y k  [n] = Dkgk [n] + s k  [n] (10.79) 

where yk[n] A ~ ! ~ k [ n ] ,  jZLM A v!xk[n], &[n] A u!zr;[n], and %[n] - 
NJO, NOIT) since 

No delay constraints. When the random matrix process {H~):=~ is iid, as F -+ 
oo the channel is ergodic, and the average capacity is the relevant quantity. When 
the entries of the channel matrices are uncorrelated, and perfect CSI is available to 
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Figure 10.14: Transmission rate that can be supported with r = t = 16 and a give 
outage probability by a nonergodic Rayleigh channel. The results are based on the 
Gaussian approximation. 

the receiver only, this is given by 

If perfect CSI is available to transmitter and receiver, 

where p is the solution of the water-filling equation 

For all block lengths N = 1,2, . . ., the capacities (10.80) and (10.81) are achieved 
by code sequences with length FNt  with F -+ m. Capacity (10.80) is achieved 
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Figure 10.15: Outage capacity (at Pout = 0.01) with independent Rayleigh fading 
and r = t antennas. 

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK F 

- 
N 

Figure 10.16: One code word in an F-block fading channel. 

by random codes whose symbols are iid complex Nc(O, [It). Thus, all antennas 
transmit the same average energy per symbol. Capacity (10.81) can be achieved by 
generating a random code with iid components -- Nc(O, 1) and having each code 
word split into F blocks of N vectors gk[n] with t components each. For block k, 
the optimal linear transformation 

t-m 

A is computed, where ck,+ = ( p  - l /Xk, i )+.  The vectors xk[n] = W k x k [ n ]  are 
transmitted from the t antennas. This optimal scheme can be viewed as the con- 
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catenation of an optimal encoder for the unfaded AWGN channel, followed by 
a linear transformation ("beamforming") described by the weighting matrix W k  
varying from block to block [10.6]. 

Delay constraints. Consider now a delay constraint that forces F to take on a 
finite value. Define A 4 { x ~ , ~ } ~ ~ ~ , ~ = ~ ,  I? 4 { ~ k , ~ } ~ ~ ~ , ~ = ~ ,  the instantaneous 
mutual information 

and the instantaneous SNR per block 

Assuming that the receiver has perfect knowledge of the CSI (and hence of A), 
we can define a power allocation rule depending on A such that Ck,i and CF are 
functions of A. We may consider two power constraints: 

The optimum power allocation rules minimizing the outage probabi 

Pout (p ( I ( 4  r )  < p) 

ility 

under constraints (10.86) and (10.87) are derived in [10.6] and summarized in the 
following. 

1. With the short-term power constraint, we have 

where 

(a) The (k, i)-th SNR is given by 
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where 

and F(5)  is the unique set of indexes ( k ,  i )  such that l / X k , i  5 pSt ( A ,  C )  
for all ( k ,  i )  E 3(<) and l / X k , i  > pSt (A,  C )  for all ( I c ,  i )  4 F(C). 

The set 
%n(p, C )  ' { A  : I ( A ,  rst (4 C ) )  2 P )  (10.92) 

is called the power-on region. 

is called the outage, or power-ofi region. 

G ( A )  is an arbitrary power allocation function satisfying the short- 
term constraint, i.e., CF(G) < C .  

2. With the long-term power constraint, we have 

where 

(a) The ( k ,  2)-th SNR is given by 

where 

and F ( p )  is the unique set of indexes (k, i )  such that l / X k , i  5 pit (A,  p) 
for all ( k , i )  E ~ ( p )  and l / X k , i  > p l t ( n , p )  for all ( k , i )  4 ~ ( p ) .  

(b) The set 

is called the power-on region. 
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(c) The set 

is called the outage, or power-08 region. 

(d) The threshold <* > 0 is set in order to satisfy the long-term contraint 
(10.87) with equality, i.e., it is the solution of 

where [A] A 1 if A is true, and 0 otherwise. 

In other words, the outage probability is minimized under a long-term power 
constraint by setting a threshold C*. If the instantaneous SNR per block 
necessary to avoid an outage exceeds I*, then transmission is turned off 
and an outage is declared. If it is below I*, transmission is turned on and 
power is allocated to the blocks according to a rule that depends on the fading 
statistics only through the threshold value C* (see [10.6]). 

Figure 10.17 illustrates the concept of an outage region for a single transmit and 
receive antenna system (t = r = 1) with F = 2, p = 1 bitldimension pair, and 
< = 1 dB. The outage region is the inner region corresponding to smaller values 
of the channel matrix eigenvalues (G, k = 1,2) reflecting the occurrence of a 
deep fade. 

It is interesting to note that the short-term and long-term outage regions Xoff (p, <) 
and Xzff (p, 5.) exhibit the same functional dependence on p and C in spite of their 
very different definitions of (10.93) and (10.98) [10.6]. This is again illustrated by 
Figure 10.17. The figure also shows that though the outage regions Xoff (1, lo0.') 
and Xzff (l,lOO. ) coincide, the boundaries of constant- 131 regions differ in the two 
cases (short-term and long-term) [10.6]. 

Another important concept related to outage probability is given in the following 
definition [10.6,10.59]: 

Definition 10.6.1 The zero-outage capacity, sometimes also referred to as delay- 
limited capacity, is the maximum rate for which the minimum outage probability is 
zero under a given power constraint. 

It was shown in [10.6] that, under a long-term power constraint, the zero-outage 
capacity of a block-fading channel is positive if the channel is regular. A regular 
channel is defined as follows. 



334 Chapter 10. Multiple antennas 

...... short-term 
- - .  long-term 

: I 
: I 

Figure 10.17: Outage region ROE (p,  C) of a single transmit and receive antenna 
system (t = r = 1 )  with F = 2, p = 1 bitYdimension pair, and C = 1 dB. 
The boundaries of  constant-IF1 regions are also indicated, for the short-term and 
long-term constraints, as dotted and dashed lines, respectively. 

- Boundary of outage region 

Definition 10.6.2 A block-fading channel is said to be regular if the fading distri- 
bution is continuous and 

I E [ ~ / ~ F ]  < co (10.99) 

where IF is the geometric mean of the Xk, i :  

where, as usual, m A min{t, r ) .  

Example 10.7 

The Rayleigh fading channel with F = m = 1 is not regular, and its zero-outage 
capacity is null. The Rayleigh block-fading channel is regular if mF > 1 (see [10.6] 
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for a proof). For example, if F  > 1  and m = 1, we have 

E[ l /XF]  = ( E [ x ~ ~ ' ~ ] ) ~  = [r(l - 1 / ~ ) ] ~  < rn 

0 

10.6.2 Asymptotics 

Under a long-term power constraint and with optimal transmit power allocation, 
the zero-outage capacity of a regular block-fading channel as C + oo is given 

As m + oo and n + a > 0, the limiting value of the normalized zero-outage ca- 
pacity per degree of freedom C/m coincides with the limiting normalized ergodic 
capacity [ 10.61. 

10.7 Influence of channel-state information 

As we have seen, in a system with t transmit and r receive antennas and an ergodic 
Rayleigh fading channel modeled by a t x r matrix with random iid complex Gaus- 
sian entries, the average channel capacity with perfect CSI at the receiver is about 
m min{t, r )  times larger than that of a single-antenna system for the same 
transmitted power and bandwidth. The capacity increases by about m bitls/Hz for 
every 3-dB increase in SNR. Due to the assumption of perfect CSI available at the 
receiver, this result can be viewed as a fundamental limit for coherent multiple- 
antenna systems. 

Perfect CSI at the receiver 

The most commonly studied situation is that of perfect CSI available at the receiver, 
which is the assumption under which we developed our study of multiple-antenna 
systems above. 

No channel state information 

Fundamental limits of noncoherent communication, i.e., one taking place in an 
environment where estimates of the fading coefficients are not available, will now 
be derived. Consider a block-fading channel model. To compute the capacity 
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of this channel, we assume that coding is performed using blocks, each of them 
consisting of t N  elementary symbols being transmitted by t antennas in N time 
instants. Each block is represented by the t x N matrix X. We further assume 
that the r x N noise matrix Z has iid Nc(O, No) entries. The received signal is the 
r x N matrix 

Y = H X + Z  (10.102) 

and the entries of Y have the explicit expression 

Given X, these are random variables whose mean value is zero and whose covari- 
ance is 

Now, under the assumptions that H and Z are temporally and spatially white, that 
is, 

we have 

The previous equality expresses the fact that the rows of Y are independent, while 
the columns have a nonzero correlation. This observation allows us to write down 
the relation connecting the rows (Y)i of Y with those of H ,  denoted (H)i, and 
those of Z, denoted (Z)i, so that 

Each row of Y is a zero-mean Gaussian vector with covariance matrix 
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and, writing the pdf of matrix Y as the product of the pdfs of its rows, we obtain 

We observe the following: 

(a) The pdf of Y depends on its argument only through the product Y ~ Y ,  which 
consequently plays the role of a sufficient statistic. If N < r,  the N x N 
matrix Y ~ Y  provides a representation of the received signals that is more 
economical than the r x N matrix Y. 

(b) The pdf (10.109) depends on the transmitted signal X only through the N x 
N matrix X ~ X .  

Observation (b) above is the basis of the following theorem, which says that there 
is no increase in capacity if we have t > N, and hence there is no point in making 
the number of transmit antennas greater than N if there is no CSI. In particular, 
if N = 1 (an independent fade occurs at each symbol period), only one transmit 
antenna is useful. Note how this result contrasts sharply with its counterpart of CSI 
known at the receiver, where the capacity grows linearly with min{t, r) .  

Theorem 10.7.1 If the entries of H are iid, then the channel capacity for t > N 
equals the capacity for t = N. 

Proof 

Suppose that the capacity is achieved for a particular pdf of matrix X with t > N. 
Recalling (b) above, the capacity is determined by the matrix XtX: if we prove that 
an X can be found that generates the same matrix with only N transmit antennas, 
then the theorem is proved. Now, perform the Cholesky factorization (Section B.6.1, 

t Appendix B) X ~ X  = LL , with L an N x N lower-triangular matrix. Using N 
transmit antennas with a signal matrix that has the same pdf as Lt, we obtain the 
same pdf that achieves capacity. In fact, if X satisfies that average-power constraint 

so does ~ t .  
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From [10.37], the signal matrix that achieves capacity can be written in the form: 

where Q, is a t x N matrix such that 9Q,t  = It. Moreover, Q, has a pdf that is 
unchanged when the matrix is multiplied by a deterministic unitary matrix (this is 
the matrix counterpart of a complex scalar having unit magnitude and uniformly 
distributed phase). D is a t x t real nonnegative diagonal matrix independent of 
a, whose role is to scale X to meet the power constraint. In general, the opti- 
mizing D is unknown, as is the exact expression of capacity. However, for the 
high-SNR regime (< >> I), the following results are available (see [10.37,10.66], 
but also [10.34] for the observation that they depend critically on the assumed fad- 
ing model): 

(a) If N >> t and t 5 min{N/2, r), then capacity is attained when D = 
J-I~, so x = JCNNo/t Q,. 

(b) For every 3-dB increase of <, the capacity increase is t*(l  - t*/N), where 
t* min{t, r, [N/2J). 

(c) If N 2 2r, there is no capacity increase by using r > t. 

An obvious upper bound to capacity can be obtained if we assume that the receiver 
is provided with perfect knowledge of the realization of H. Hence, the bound to 
capacity per block of N symbols is 

< C' < Nlogdet [ I ~  + t ~ t ~ ]  

We can reasonably expect that the actual capacity tends to the right-hand side of 
previous inequality, because a certain (small) fraction of the coherence time can be 
reserved for sending training data to be used by the receiver for its estimate of H. 

10.7.1 Imperfect CSI at the receiver: General guidelines 

Assume now that the receiver has some knowledge, albeit imperfect, of the CSI. 
Let the CSI be obtained by transmitting a preamble in the form of a known t x Np 
code matrix Xp with total energy Tr (X~X;) = tNpEp, with Ep the average sym- 
bol energy. Since to estimate the r x t matrix H we need at least r t  measurements, 
and each symbol time yields r measurements at the receiver, we need Np 2 t. 
Moreover, the matrix Xp must have full rank t, since otherwise t linearly indepen- 
dent columns would not be available to yield r t  independent measurements. As 
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t a consequence, XpXp must be nonsingular. The corresponding received signal is 
denoted by 

Yp = HXp + Zp (10.113) 

Among the several receiver structures that can be envisaged, we focus on the 
following: 

(a) The simplest receiver inserts directly the maximum-likelihood (ML) esti- 
mate of the channel into the ML metric conditioned on H. The detection 
problem consists of computing first 

H 4 arg maxp(Yp I XPl H) (10.1 14) 
H 

and then 
Z 4 arg max,(x) 

X 

where 

,(X) 4 IIY - ~ ~ 1 1 ~  (10.116) 

Since (10.116) is commonly referred to as a mismatched metric, we call this 
a mismatched receiver. 

(b) The receiver estimates the channel matrix H from Yp and Xp by an ML 
criterion and uses this result to detect the transmitted signal X. The detection 
problem consists of computing 

and 

where p(Y I X, H = H) denotes the probability density function of Y 
given X and H, with H equal to H. 

(c) The receiver detects the transmitted signal X by jointly processing Y, Yp, 
and Xp without explicit estimation of H. In this case, the detection problem 
can be written as 

since, conditionally on H, X, and Xp, the received signals Y and Yp are 
independent. 
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Approach (a) is the simplest. Approach (b) is more efficient (see [10.14] for the 
single-input, single-output case) and allows one to study the impairments caused 
by imperfect knowledge of H and by the presence of noise in the received pilot 
signal Yp. Approach (c) is optimum: disregarding CSI recovery, it focuses on the 
detection of the transmitted signal X. In the following, we examine the second and 
third receivers under the simplifying assumption X,X; = NpEpIt (for results not 
depending on this assumption, see [10.55]). 

Approach (b): Receiver based on channel estimate 

The ML estimate of H based on the observation of Yp is obtained by maximizing 
p(Yp I H, Xp) or, equivalently, by minimizing llYp - HXpII with respect to H ,  
yielding 

H = Y~X;(X~X;)-' = H + E (10.120) 

where 
E z ~ x ~ ( x ~ x ~ ) - ~  (10.121) 

is the matrix error on the estimate H. Now, H and E are independent, and, denot- 
ing by (-)i the ith row of a matrix (.), we can write 

Thus, the rows of E are independent vectors of zero-mean circularly symmetric 
complex Gaussian random variables with covariance matrix 

With our assumption on Xp, the entries of E are independent, circularly symmetric 
complex Gaussian random variables with mean zero and variance N0/(NpEp)._ 

We now calculate the ML metric from the a posteriori probability p(Y I X ,  H). 
First, we note that it can be written as 

where Hi and Yi denote the ith rows of H and Y ,  respectively, since it is plain to 
see that, conditionally on X, Yi depends only on Hi and Zi. Thus, we can apply 
the following theorem [lo. 1 11: 
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Theorem 10.7.2 Let zl and z2 be circularly symmetric complex Gaussian ran- 
t dom vectors with zero means andfull-rank covariance matrices Eij 4 E[ziz,]. 

Then, conditionally on z2, the random vector zl  is circularly symmetric complex 
Gaussian with mean E 12Egtz2 and covariance matrix 22 - El2X;;X21. 

Letting 

A 

zl = Y! = X ~ H ~  + ~f and z2 = ~ f  = ~ f  + E ~  (10.125) 

in Theorem 10.7.2, we have 

Then the conditional probability density function of Yf, given X and Hi, is a 
circularly symmetric complex Gaussian distribution, with 

mean = p ~ t ~ f  (10.126) 

covariance matrix = NOIN + (1 - [)xtx (10.127) 

where 

As a result, we have 

etr (-(Y - < H X ) ( N ~ I ~  + (1 - J)X~X)-'(Y - p i i ~ ) t )  
P(Y I x , ~ )  = det (r(NoIN + (1 - [)X~X))T 

(10.129) 
corresponding to the metric 

p(X) = Tr ((Y - EHX)(IN + (1 - E)X~X/NO)-'(Y - EHX)~)  

+rNo lndet (IN + (1 - [)xtx/&) (10.130) 

Approach (c): Optimum receiver 

In this case the receiver detects the transmitted word X maximizing the probabil- 
ity density function p(Y, Yp I X, Xp) without any prior estimate of the channel 
matrix H. We use the following theorem [10.44, Appendix B]: 
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Theorem 10.7.3 Given a Hermitian square matrix A such that I + A > 0, a 
size-compatible complex matrix B, and a matrix Z of iid zero-mean circularly 
symmetric complex Gaussian random variables with unit variance, the following 
identity holds: 

lE[etr ( -ZAZ~ - Z B ~  - B Z ~ ) ]  = det (I + A)-'etr [B(I + A ) - ~ B ~ ]  (10.131) 

where etr ( . ) A exp[Tr ( . ) I .  
Applying Theorem 10.7.3, we obtain 

- ( y x t  + ypx$It + (YYt + Y~Y$))/NO)] 

= ( T ~ ~ ) - ( ~ p + ~ ) ' d e t  [ I ~  + ( x x t  + N ~ € ~ I ~ ) / N ~ ]  -' 

etr ( ( Y x t  + ypx;)[1t + ( X X ~  + N ~ € ~ I ~ ) / N o ] - ~  

The logarithm of (10.132) yields the corresponding metric to be minimized by the 
optimum receiver: 

p(X) = r lndet [ I ~  + ( x x t  + N ~ E ~ I ~ ) / N o ]  (10.133) 

-Tr { ( Y x t  + Y P x $ ) ~ t  + ( x x t  + N~E~I~)/NO]- '  

( x Y t  + xpy$)/N;} 

From this result we can verify the fact, a priori rather surprising, that the metrics 
(10.133) and (10.130) are equivalent (see [10.55] for details). 

Example 10.8 

Figure 10.18 shows the word-error probability versus the fraction of pilot symbols 
N,/(N, + N) at fixed &/No = 10 dB. It refers to a t = 2, r = 4 MIMO system 
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[fraction of pilot symt 

Figure 10.18: Word error probability of a t = 2, r = 4, independent Rayleigh fad- 
ing MIMO channel with a trellis space-time code versus the fiaction of pilot sym- 
bols Np/ (Np + N )  at &/NO = 4 dB. Solid curves with show the performance 
with the suboptimum metric ( 1  0.1 16). Solid curves with 0 show the performance 
with the ML metric (1  0.130). The lowest straight line shows the performance of a 
genie-aided receiver with perfect CSI. 

with a trellis space-time code (see infra) and word length N = 130. The ML re- 
ceiver performance is close to that of a "genie-aided receiver having perfect CSI, 
and the optimum number of pilot symbols is about 4 for the ML receiver and 16 for 
the mismatched receiver. 0 

10.7.2 CSI at transmitter and receiver 

It is also possible to envisage a situation in which channel state information is 
known to the receiver and to the transmitter: the latter can take the appropriate 
measures to counteract the effect of channel attenuations by suitably modulating 
its power. To assure causality, the assumption of CSI available at the transmitter 
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is valid if it is applied to a multicarrier transmission scheme in which the avail- 
able frequency band (over which the fading is selective) is split into a number of 
subbands, as with OFDM. The subbands are so narrow that fading is frequency 
flat in each of them, and they are transmitted simultaneously, via orthogonal sub- 
carriers. From a practical point of view, the transmitter can obtain the CSI either 
from a dedicated feedback channel (some existing systems already implement a 
fast power-control feedback channel) or by time-division duplex, where the uplink 
and the downlink time-share the same subchannels and the fading gains can be 
estimated from the incoming signal. 

10.8 Coding for multiple-antenna systems 

Given that considerable gains are achievable by a multiantenna system, the chal- 
lenge is to design coding schemes that perform close to capacity: space-time trellis 
codes, space-time block codes, and layered space-time codes have been advo- 
cated. 

A space-time code word with block length N is described by the t x N matrix 
X A (x[l], . . . , x[N]). The code has M words. The row index of X indicates 
space, while the column index indicates time: to wit, the ith component of the t- 
vector x[n], denoted xi [n], is a complex number representing the two-dimensional 
signal transmitted by the ith antenna at discrete time n, n = 1, . . . , N,  i = 1, . . . , t. 
The received signal is the r x N matrix 

where Z is matrix of zero-mean circularly symmetric complex Gaussian RVs with 
variance No. Thus, the noise affecting the received signal is spatially and tempo- 
rally independent, with IE[ZZ~] = NNoI,, where I, denotes the r x r identity 
matrix and ( a ) +  denotes Hermitian transposition. The channel is described by the 
r x t matrix H. Here we assume that H is independent of both X and Z, it remains 
constant during the transmission of an entire code word, and its realization (the 
CSI) is known at the receiver. 

10.9 Maximum-likelihood detection 

Under the assumptions of known CSI and additive white Gaussian noise, ML 
decoding corresponds to choosing the code word X that minimizes the squared 
Frobenius norm IIY - HX 11 2. Explicitly, ML detection and decoding corresponds 
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to the minimization of the quantity 

10.9.1 Pairwise error probability 

For computations, since calculation of exact error probability is out of the question, 
we resort to the union bound 

The pairwise error probability (PEP) P(X -+ $) admits a closed-form expression: 

P(X -t 2) A P(llY - ~ $ 1 1 ~  < llY - ~ ~ 1 1 ~ )  
= P(IIHA + z1I2 < 1 1 ~ 1 1 ~ )  
= P((HA + Z, HA + Z) - (Z, Z)) < 0) 
= P ( I I H A ~ ~ ~  + 2(HA, Z)) < 0) (10.137) 

where A 4 X - 2. The variance of the Gaussian random variable u A (A, Z) 
can be obtained as follows. Setting A = A1 + jA2 and Z = Z1 + jZ2 (where 
Al, A2, Z1, and Z2 are real matrices), we have 

since Z1 and Z2 are independent and have zero mean. Then the pairwise error 
probability becomes 

By writing 

I I H A ~ ~ ~  = n (H'HAA*) (10.140) 
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we see that the exact pairwise error probability, and hence the union bound to P(e), 
is given by the expected value of a function of the t x r matrix H ~ H .  This matrix 
can be interpreted as representing the effect of the random spatial interference on 
error probability: in particular, if H ~ H  = It, then (10.139) becomes 

This is the PEP we would obtain on a set of t parallel independent AWGN chan- 
nels, each transmitting a code word consisting of a row of X, with ML detection 
consisting of minimizing llY - X1I2. 

A useful approximation to the pairwise error probability (10.139) can be com- 
puted by substituting exponential functions for Q functions. This is obtained by 
applying the bound, asymptotically tight for large arguments: 

Under the assumption of Rayleigh fading, that is, when hij N NJO, I), with in- 
dependent entries in the matrix H ,  we can compute the exact expectation of the 
right-hand side of (10.142) using Theorem C.3.1 of Appendix C. We obtain 

P(X  -f 2) < det [ I ~  + A A ~ / ~ N O ]  -' 

10.9.2 The rank-and-determinant criterion 

Since the determinant of a matrix is equal to the product of its eigenvalues, (10.143) 
yields 

t 

where X j  denotes the jth eigenvalue of A A ~ .  We can also write 

where a is the index set of the nonzero eigenvalues of A A ~ .  Denoting by v the 
number of elements in a, and rearranging the indexes so that XI, .  . . , A, are the 
nonzero eigenvalues, we have 
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the coded system is 
possible pairs X, 2 
probability depends 

From this expression we see that the total diversity order of 
rumin, where vmin is the minimum rank of A A ~  across all 
(rvmin is the diversity gain). In addition, the painvise error 
on the power r of the product of eigenvalues of A A ~ .  This 

does not depend on the SNR (which is proportional to y), and displaces the error 
probability curve instead of changing its slope. We call this the coding gain. Thus, 
for high enough SNR we can design a space-time code for which we choose as a 
criterion the maximization of the coding gain as well as of the diversity gain. 

Notice that if vmin = t, i.e., PA+ is full rank for all code word pairs, we have 

t n $ = det [A At ]  
j=1  

An obvious necessary condition for A A ~  to be full rank is that N 2 t (the code 
block length must be at least equal to the number of transmit antennas). 

Observation 10.9.1 Note that, based on the above discussion, the maximum 
achievable diversity gain is tr .  In Section 10.14 we shall discuss how this gain 
is generally not compatible with the maximum rate g-' sin m. 

10.9.3 The Euclidean-distance criterion 

Observe that the term in the right-hand side of (10.143) can be written as a negative 
power of 

det (It + y ~ ~ t )  = 1 + yTr ( A A t )  + . . . + ytdet ( p a t )  (10.148) 

We see that if y << 1 then the left-hand side of (10.148), and hence the PEP, de- 
pends essentially on Tr ( A A ~ ) ,  which is the squared Euclidean distance between 
X and 2, while if y >> 1 it depends essentially on det ( A A ~ ) ,  that is, on the 
product of the eigenvalues of A A ~ .  This suggests that, for low SNR, the upper 
bound (10.148) to error probability depends on the Euclidean distance between 
code words, as one would expect because the system performance is dictated by 
additive noise rather than by fading. Conversely, as the SNR increases, the fading 
effects become more and more relevant, and the rank and determinant of A A ~  
dictate the behavior of the PEP. 

A different perspective can be obtained by allowing the number r of receive 
antennas to grow to infinity. To do this, we first renormalize the entries of H so 
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that their variance is now l/r rather than 1: this prevents the total receive power 
from diverging as r t oo. We obtain the following new form of (10.143): 

P ( X  -, a) 5 det [ I ~  + A A t / 4 r ~ o ]  (10.149) 

which yields, in lieu of (10.148): 

det (It + ( y / r ) ~ ~ t )  = 1 + (y/r)Tr ( A A t )  +. . . + ( ~ / r ) ~ d e t  ( A A t )  (10.150) 

This shows that as r t oo the rank-and-determinant criterion is appropriate for a 
SNR increasing as fast as r ,  while the Euclidean-distance criterion is appropriate 
for finite sNRs.~ This situation is illustrated in the example of Figure 10.19, which 
shows the union upper bound on the word-error probability P(e) of the space- 
time code obtained by splitting evenly the code words of the (24,8,12) extended 
Golay binary code between two transmit antennas (the calculations are based on the 
techniques described in Appendix D). This space-time code has the minimum rank 
of A equal to 1, and hence a diversity gain r. Now, it is seen from Figure 10.19 how 
the slope predicted by (10.143), and exhibited by a linear behavior in the P(e)-vs.- 
&/No chart, can be reached only for very small values of error probability (how 
small generally depends on the code under scrutiny). To justify this behavior, 
observe from Figure 10.19 that for a given value of r the error-probability curve 
changes its behavior from a waterfall shape (for small to intermediate SNR) to a 
linear shape (high SNR). As the number of receive antennas grows, this change of 
slope occurs for values of P(e) that are smaller and smaller as r increases. Thus, to 
study the error-probability curve in its waterfall region, it makes sense to examine 
its asymptotic behavior as r t oo. The case r t oo, t < oo can easily be dealt 
with by using the strong law of large numbers: this yields H ~ H  + It a.s., It the 
t x t identity matrix. As r t oo, 

and hence 

This result shows that, as the number of receiving antennas grows large, the union 
bound on the error probability of the space-time code depends only on the Eu- 
clidean distances between pairs of code words. This is the result one would get with 

40ther design criteria can also be advocated. See, e.g., [10.27]. 
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Figure 10.19: Word-enorprobability of the binary (24,8,12) extended Golay code 
with binary PSK over a channel with t = 2 transmit antennas and r receive anten- 
nas with M L  decoding. 

a transmission occurring over a nonfading additive white Gaussian noise (AWGN) 
channel whose transfer matrix H has orthogonal columns, i.e., is such that H ~ H  
is a scalar matrix. In this situation the smallest error probability, at the expense 
of a larger complexity, can be achieved by using a single code, optimized for the 
AWGN channel, whose words of length tN  are evenly split among the transmit 
antennas. Within this framework, the number of transmit antennas does not affect 
the PEP but only the transmission rate, which, expressed in bits per channel use, 
increases linearly with t. 

For another example, observe Figure 10.20. This shows how for intermedi- 
ate SNRs the Euclidean-distance criterion may yield codes better than the rank- 
and-determinant criterion. It compares the simulated performances, in terms of 
frame-error rate, of the four-state, rate-112 space-time code of [10.56] and a com- 
parable space-time code obtained by choosing a good binary, four-state, rate-214 
convolutional code [10.15] and mapping its symbols onto QPSK (the first and sec- 
ond encoded bits are Gray mapped onto the QPSK symbol transmitted by the first 
antenna, while the third and fourth encoded bits are Gray mapped onto the QPSK 
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Figure 10.20: Word-error probability of two space-time codes with four states, rate 
112, and QPSK. Number of transmit antennas: t = 2; number ofreceive antennas: 
r = 2,4,8.  Continuous line: code from [lO.56]. Dashed line: code obtained from 
a binary convolutional code good for the AWGN channel [10.15]. 

symbol transmitted by the second antenna). The frame length N is 130 symbols for 
both codes, including one symbol for trellis termination. The decoder has perfect 
CSI, and uses the Viterbi algorithm. It is seen that, in the error-probability range 
of these two figures, the "standard convolutional code generally outperforms the 
space-time code of [10.56] even for small values of r. 

10.10 Some practical coding schemes 

10.10.1 Delay diversity 

One of the first coding schemes proposed is called delay diversity. This is a rate- 
l l t  repetition code, each symbol of which is transmitted from a different antenna 
after being delayed. For example, with t = 2, the transmitted code matrix is 
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transmitter combiner 

Figure 10.21: Alamouti code with t = 2 and r = 1. 

We can see that each symbol traverses rt paths, so diversity rt is achieved. On the 
other hand, this comes at the cost of having a rate of only one symbol per channel 
use. Also, observe that delay diversity transforms the frequency-flat channel into an 
intersymbol-interference (and hence frequency-selective) channel. Optimum de- 
tection can be accomplished by using the Viterbi algorithm or spatial-interference- 
canceling techniques (see infra, our discussion of V-BLAST). 

10.10.2 Alamouti code 

We first describe this code by considering the simple case t = 2, r = 1, which 
yields the scheme illustrated in Figure 10.21 [10.1]. The code matrix X has the 
form 

This means that, during the first symbol interval, signal xl is transmitted from 
antenna 1, while signal x2 is transmitted from antenna 2. During the next symbol 
period, antenna 1 transmits signal -x;, and antenna 2 transmits signal x;. Thus, 
the signals received in two adjacent time slots are 

where hl,  h2 denote the path gains from the two transmit antennas to the receive 
antenna. The combiner of Figure 10.21, which has perfect CSI and hence knows 
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transmitter combiner 

Figure 10.22: Alamouti code with t = 2 and r = 2. 

the values of the path gains hl and ha, generates the signals 

and 

so that 

and similarly 

22 = (lh1I2 + lh2I2)x2 + (h;21 - hlz;) (10.155) 

Thus, xl is separated from x2. Provided that each transmit antenna transmits the 
same power as the single antenna for t = 1, this code has the same performance as 
one with t = 1, r = 2, and maximal-ratio combining (Section 4.4.1). To prove the 
last statement, observe that if the signal x l  is transmitted, the two receive antennas 
observe hlxl + 21 and h2x1 + 22, respectively, and after maximal-ratio combining 
the decision variable is 

This code can be generalized to other values of r. For example, with t = r = 2 
and the same transmission scheme as before (see Figure 10.22), if yl17 912, yal, y22, 
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denote the signals received by antenna 1 at time 1, by antenna 1 at time 2, by an- 
tenna 2 at time 1, and by antenna 2 at time 2, respectively, we have 

The combiner generates 

and 
22 = h;2~11- hi1972 + ha2921 - h21~2*2 

which yields 

As above, it can be easily shown that the performance of this t = 2, r = 2 code 
is equivalent to that of a t = 1, r = 4 code with maximal-ratio combining (again, 
provided that each transmit antenna transmits the same power as with t = 1). 

A general code, with t = 2 and r unrestricted, can also be exhibited: it has the 
same performance of a single-transmit-antenna code with 2r receive antennas and 
maximal-ratio combining. 

10.10.3 Alamouti code revisited: Orthogonal designs 

We can rewrite the transmitted signal in the Alamouti code with t = 2 and r = 1 
in the following equivalent form: 

Now, if we define 

we see that 

[;;I = [;; -:;I [::I + [t:] 
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Recalling (lO.l39)-(lO. l4O), this shows that the error probability for this Alamouti 
code is the same as without spatial interference, and with a signal-to-noise ratio 
increased by a factor (lhl l 2  + lh2 1 2 ) .  For this reason the Alamouti code is called 
an orthogonal design. There are also orthogonal designs with t > 2. For example, 
with t = 3, r = 1, and N = 4, we have 

so that the equation Y = HX + B can be rewritten in the equivalent form 

where 

and B is a noise 4-vector. In this case we can verify that 

Notice that with this code we transmit three signals in four time intervals (that is, 
314 signals per channel use), while the original Alamouti codes transmit 1 signal 
per channel use. It has been proved that orthogonal designs with t > 2 cannot 
transmit more than 314 signals per channel use [10.63]. 

10.10.4 Linear space-time codes 

Alamouti codes and orthogonal designs share the property of having simple de- 
coders due to the linearity of their space-time map from symbols to transmit anten- 
nas. Schemes with this property form the class of linear space-time codes. These 
can be used for any number of transmit and receive antennas and may outperfom 
orthogonal designs. 

In these codes, the L symbols x i , .  . . , X L  are transmitted by t antennas in N 
time intervals. The code matrix X has the form 

L 

x = c ( a e ~ e  + j&Bd (10.160) 
e=i 
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where ae and be are the real and imaginary part of xe, respectively, and Ae, Be, 
! = 1, . . . , L, are t x N complex matrices. 

Example 10.9 

With Alamouti codes we may write 

which shows them to be a special case of linear space-time codes. 0 

Define the column vectors 

and the Nr x 2L matrix 

Then we can write the received signal in the form 

Notice that, since L signals are transmitted and y has Nr components, to be able 
to recover X from y we must have L 5 Nr. 

The observed signal y can be decoded as follows. Perform the QR factorization 
of H (Section B.6.2, Appendix B): 

where Q is unitary and R is an upper triangular matrix. Thus, if we make a linear 
transformation on y consisting of its premultiplication by ~ t ,  we obtain (disre- 
garding noise for simplicity) a vector hi, whose last entry is proportional to PL. 
From this, DL can be detected. The next-to-last entry is a linear combination of 
a~ and PL: thus, since PL has already been detected, and hence its contribution 
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to spatial interference can be canceled, we may use this entry to detect a L .  The 
third-from-last entry is a linear combination of DL-1, a ~ ,  and DL. This can be used 
to detect DL-1, and so on. This nulling-and-canceling idea will be reprised infra, 
with some additional details, in our discussion of zero-forcing V-BLAST. More 
generally, our treatment of V-BLAST can be applied, mutatis mutandis, to linear 
space-time codes. 

10.10.5 Trellis space-time codes 

Trellis space-time codes are trellis-coded modulation (TCM) schemes, in which 
every transition among states, described by a trellis branch, is labeled by t signals, 
each being associated with one transmit antenna. Trellis space-time codes can 
achieve higher rates than orthogonal designs, but they suffer from a complexity 
that grows exponentially with the number of transmit antennas. 

Example 10.10 

Examples of space-time codes are shown in Figures 10.23 and 10.24 through their 
trellises. The code in Figure 10.23 has t = 2, has four states, uses a quaternary 
constellation (whose signals are denoted 0,1,2,3), and transmits one signal (2 bits) 
per channel use. Its diversity is 2r. Label xy means that signal x is transmitted by 
antenna 1, while signal y is simultaneously transmitted by antenna 2. The code in 
Figure 10.24 has again t = 2, has eight states, uses an octonary constellation (whose 
signals are denoted 0,1, . . . ,7), and transmits one signal (3 bits) per channel use. 
Its diversity is 2r. 0 

10.10.6 Space-time codes when CSI is not available 

In a rapidly changing mobile environment, or when long training sequences are 
not allowed, the assumption of perfect CSI at the receiver may not be valid. In 
the absence of CSI at the receiver, unitary space-time modulation has been ad- 
vocated [10.30, 10.381. This is a technique that circumvents the use of training 
symbols. Here the information is carried on the subspace spanned by orthonormal 
signals that are transmitted. This subspace survives multiplication by the unknown 
channel-gain matrix H. A scheme based on differential unitary space-time sig- 
nals is described in [10.32]. High-rate constellations with excellent performance, 
obtained via algebraic techniques, are described in [10.29]. 
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Figure 10.23: A 4-PSK trellis space-time coding scheme with t = 2 and diversity 

Figure 10.24: An 8-PSK trellis space-time coding scheme with t = 2 and diversity 
2r. 

1011 Suboptimum receiver interfaces 

The capacity results described above show that extremely large spectral efficien- 
cies can be achieved on a wireless link if the number of transmit and receive anten- 
nas is large. Now, as t and r increase, the complexity of space-time coding with 
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maximum-likelihood detection may become too large. This motivates the design 
of suboptimal receivers whose complexity is lower than with ML detection and yet 
that perform close to it. In a receiver we distinguish an inte$ace, which is a system 
accepting as its input the channel observation Y and generating a "soft estimate" 
? of the code matrix X, and a decoder, whose input and output are 9 and the 
decoded matrix %, respectively. 

We describe here some of these interfaces, categorized as linear and n~nl inear .~  

10.12 Linear interfaces 

A linear interface makes a linear transformation A of the received signal, under 
the assumption of perfect CSI at the receiver. A = A(H) is a t x r matrix chosen 
so as to allow a simplification of the metrics used in the Viterbi algorithm em- 
ployed for decoding. The conditional PEP for this linear interface with the metric 
llAY - X1I2 is givenby 

By reproducing computations done to derive (10.138), we obtain that (AZ, A) is a 
zero-mean circularly symmetric complex Gaussian RV with variance No [ ( A ~ A  1 1  2. 

Thus, the unconditional PEP becomes 

10.12.1 Zero-forcing interface 

A zero-forcing interface consists of choosing A = H+,  where the superscript + 

denotes the Moore-Penrose pseudoinverse of a matrix (Section B.7, Appendix B). 
For future reference, we note that we have 

'other reduced-complexity receiver interfaces can be envisaged. For example, in [10.39] a 
scheme is advocated where r' < r antennas are used, by selecting the r' best received signals. 
As long as r' 2 t ,  the capacity achieved by this system is close to that of a full-complexity system. 
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If we assume r > t, then H ~ H  is invertible with probability 1, and we have 

which shows that the spatial interference in completely removed from the received 
signal, thus justifying the name zero forcing associated with this interface. The 
metric used here is then IIH+Y - X1I2. 

From (10.161), the conditional PEP becomes 

where, due to (10.162), 

This expression shows how the price paid for nulling the spatial interference is 
noise enhancement. 

10.12.2 Linear MMSE interface 

Here we choose the matrix A so as to minimize the mean-square value of the 
spatial interference plus noise. Define the mean-square error (MSE) as 

E ~ ( A )  IE[IIAY - x1I2] 
= IE[Tr ((AH - It)X + AZ)((AH - It)X + ~ ~ ) ~ ] ( 1 0 . 1 6 8 )  

Using the simplifying assumption of iid zero-mean components of x (with second 
moment E), we obtain the following expression: 

The variation of E ~ ( A )  with respect to A is then given by 
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The corresponding stationary point obtained by nulling this variation yields the 
MMSE solution: 

where 6, 4 No/&. From (10.162) we obtain 

P ( X  + %) = IE Q [ ( 
llA1I2 + 2(( (HtH + S , I ~ ) - ~ H ~ H  - I t ) X ,  A) 

J ~ N ~ ~ ~ H ( H ~ H  + SsIt)-1A112 
(10.172) 

Notice that, as 6, + 0 (vanishingly small noise), the right-hand side of (10.172) 
tends to the PEP of the zero-forcing interface, as it should. 

10.12.3 Asymptotics: Finite t and r  -+ oo. 

Here we consider the case r  >> t by examining the asymptotic performance ob- 
tained when r  -+ co, while t remains constant. By the strong law of large numbers 
we can write, as r + co, 

HtH + rIt  as.  (10.173) 

and we have previously seen from (10.152) that with ML detection the painvise 
error probability tends to that of a nonfading AWGN channel (no spatial interfer- 
ence). Using (10.173) in (10.167) and in (10.172), we see that, asymptotically, ZF 
and MMSE interfaces do not entail any loss of performance with respect to ML. 

10.12.4 Asymptotics: t ,  r  -+ oo with t / r  + cu > 0. 

Things change if both t and r  grow to infinity while their ratio tends to a constant 
positive value a.  In this case an SNR loss is expected, as we are going to illustrate 
for the ZF interface (see [10.9] for the MMSE case). 

Theorem C.3.2 of Appendix C shows that, as t ,  r  + oo with t l r  -+ a, the 
cumulative empirical eigenvalue distribution of H t H l r  converges to a function 
F (A; a )  whose derivative is given by: 

where A* A (& f I ) ~ .  In particular, when a  = 0 or oo, the pdf f (A; a)  tends to 
S(X - 1) or b(X), respectively. 

The asymptotic PEP of the ML and ZF receivers can now be calculated by using 
Theorem C.3.3 of Appendix C, where the role of the matrix sequences A, and B, 
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is played by W HtHlr and A A ~  as r  -t oo. Then for the ML receiver we 
have 

- - rt 
-T(WAA~) 
2No 
rt 

-+ -E[T(w)]T(AA~)  (a.~. as t ,  r  t oo, t lr t a )  
2No 

where T ( A )  4 Tr ( A ) / n  for an n x n matrix A. Since 

we obtain, as. as t ,  r  + oo, tlr + a, 

and hence 

For the ZF receiver we have, from (lO.l67), 

Since 
b 1 E [ T ( W - ' ) I  - l A-'f ( A ;  a )  d A  = - 

1 - a  

we obtain, a.s. as t ,  r  - oo, tlr + a, 

and hence 

P(X + %) + Q (/-) 
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Figure 10.25: Word error probability of  the binary (8,4,4) Reed-Muller code with 
binary PSK over a channel with t = 2 transmit antennas and r receive antennas 
with ML, MMSE, and ZFinterfaces (computer simulation results). 

Thus, the asymptotic SNR loss with respect to the ML interface is equal to (1 - 
a)-' for the ZF interface, which predicts that the choice r = t with a large number 
of antennas yields a considerable loss in performance. From the above we may 
expect that these linear interfaces exhibit a PEP close to ML only for r >> t; other- 
wise, the performance loss may be substantial. This is validated by Figure 10.25, 
which shows the error probability of a multiple-antenna system where the binary 
(8,4,4) Reed-Muller code is used by splitting its code words evenly between two 
transmit antennas. The word-error probabilities shown are obtained through Monte 
Carlo simulation. Binary PSK is used, and the code rate is 1 bit per channel use. 
It is seen that for r = 2 both MMSE and ZF interface exhibit a considerable per- 
formance loss with respect to ML, while for r = 8 the losses are very moderate. 
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Figure 10.26: General structure of a nonlinear intehce. 

10.13 Nonlinear interfaces 

The task of reducing the spatial interference affecting the received signal can be 
accomplished by first processing Y linearly and then subtracting from the result 
an estimate of the spatial interference obtained from preliminary decisions on the 
transmitted code word. The metric used for decoding is llT - XI[, where k is the 
soft estimate of X given by 

~ A G Y - L %  (10.183) 

for a suitable choice of the two matrices G and L (Figure 10.26). The diagonal 
entries of the matrix L must be zero in order to have only spatial interference 
subtracted from G Y .  

10.13.1 Vertical BLAST interface 

One nonlinear interface is called vertical BLAST (this stands for Bell Laboratories 
Layered Space-Time Architecture). With V-BLAST, the data are divided into t 
substreams to be transmitted on different antennas. The receiver preprocesses lin- 
early the received signal by forming the matrix G Y ,  which has t rows. Then it first 
decodes one of the substreams after reducing the spatial interference coming from 
the others. Next, the contribution of this substream is subtracted from the received 
signal, and the second substream is decoded after reducing the remaining spatial 
interference. This process is repeated t times. 

Different implementations of the basic V-BLAST idea are possible, two of them 
being the zero-forcing ZF V-BLAST interface and the minimum-mean-square-error 
MMSE V-BLAST interface. These arise from the minimization of the mean-square 
error of the spatial interference without or with noise, respectively. 

It should be observed that the performance of V-BLAST depends on the order 
in which the substreams are decoded (in the algorithm above, the actual number- 
ing of the rows of G Y  is arbitrary), and on the data rate associated with each 
substream. Several strategies are possible here (see [10.10] and references therein, 
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and [10.22,10.65,10.67]): the decoding order may be predefined, and the data rates 
may be the same; or an ordering may be chosen so as to maximize an SNR-related 
parameter, with equal data rates; or different data rates may be assigned to different 
substreams. 

ZF V-BLAST When the presence of noise is disregarded, the MSE of the distur- 
bance can be written as 

Under the approximations 

(which are justified by the assumption of having % w X unless the error probabil- 
ity is high) we obtain 

since E[XX~] = NEIt. From the QR decomposition of H  (Section B.6.2 of 
Appendix B), 

H = Q  R - v- 
r x t  ,,t t x t  

(where R is an upper triangular matrix), we see that the MSE E ~ ( G ,  L) vanishes 
by setting 

The block diagram of Figure 10.26 illustrates that ZF V-BLAST corresponds to 
having a strictly upper triangular matrix L. Explicitly, the steps of the ZF V- 
BLAST algorithm proceed as follows. Denoting by (A)i the ith row of matrix 
A, by (A)ij its entry in ith row and jth column, and by the result of decoding, 
we have 

(?It = (GY)t - cgt 
( y t - 1  = (GY)t-1 - ( ~ ) t - l , t ( Q t  /. =+ (XI,-1 
(Y)t-2 = (GY)t-2 - (L)t-a,t(X)t - (~ ) t - -2 , t - i (2 ) t - i  * ( 2 ) t - 2  
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The soft estimate of X can be written as 

The three terms in the last expression are: O the useful term (which is free of spatial 
interference, thus justifying the name zero forcing associated with this interface); 
O the interference due to past wrong decisions; and O colored noise. 

MMSE V-BLAST This minimizes the MSE of the disturbance Zf - X, taking 
into account the presence of noise. Again, under the approximations (10.185), we 
can write the MSE as 

where 6, No/€.  The minimum MSE can be found in two steps: 

i) Minimizing e2(G, L) over the set of matrices G E CtXr leads to 

The corresponding minimum MSE is 

ii) Next, &kmS,(L) is minimized over the set of t x t strictly upper triangular 
matrices (i.e., such that [LIij = 0 whenever i 2 j). This can be done by 
using the Cholesky factorization H ~ H  + &It = S ~ S ,  where S is an upper 
triangular matrix (Section B.6.1 of Appendix B). After using basic multipli- 
cation properties of triangular matrices, we obtain the following result: 
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The minimum is attained by setting L = diag-I (S)S - It. Thus, e2(G, L) is 
minimized by setting 

and 
t 

As a result, the soft estimate ? can be written as 

where the three terms in the last expression are: O the (biased) useful term; O the 
interference due to past wrong decisions; and O colored noise. 

10.13.2 Diagonal BLAST interface 

Consider the transmission scheme of Figure 10.27, referred to as Diagonal BLAST 
(D-BLAST). Here, a ,  b, c, . . ., denote different data substreams. As discussed in 
Section 10.14 infra, this scheme differs from V-BLAST because each symbol in 
a data substream is transmitted by a different antenna and hence achieves a larger 
diversity. To obtain this, the information stream is demultiplexed into t substreams, 
which are transmitted by t antennas through a diagonal interleaving scheme. The 
interleaver is designed so that the symbols of a given substream are cyclically sent 
over all the t antennas in order to guarantee the necessary diversity order. Diag- 
onals are written from top to bottom, and the letters in each rectangle denote the 
corresponding code symbol index, i.e., indicate the sequence in which diagonals 
are filled. Each rectangle in Figure 10.27 may actually contain an arbitrary number 
R 2 1 of coded symbols. Each column of t symbols of the diagonal interleaver 
array is transmitted in parallel, from the t antennas. 

To illustrate the operation of D-BLAST, consider a simple case with two trans- 
mit antennas. The transmitted matrix has the form 
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transmission time 

Figure 10.27: An example of diagonal interleaving with t = 8. 

where xij is the signal transmitted by the ith antenna in the jth substream. The 
receiver first detects 211, which is not affected by spatial interference. Then, it 
detects x2l; this is affected by the spatial interference caused by xl2, which can 
be reduced or nulled, by using, for example, a zero-forcing filter. Next, the esti- 
mates of xll and x21 are sent to the decoder of the first substream. Once this first 
substream has been decoded, its contribution is subtracted out before decoding the 
second substream, and so forth. Notice that D-BLAST entails a rate loss due to 
the overhead symbols necessary to start the decoding process (these are shaded in 
Figure 10.27). 

10.13.3 Threaded space-time architecture 

To avoid the rate loss implied by D-BLAST, the latter architecture can be general- 
ized by wrapping substreams around, as shown in Figure 10.28. This figure shows 
a simple special case of threaded layering, whereby the symbols are distributed 
in the code word matrix so as to achieve full spatial span t (which guarantees the 
right spatial diversity order) and full temporal span N (which guarantees the right 
temporal diversity order in the case of fast fading) [lo. 191. 

10.13.4 Iterative interface 

An alternative to BLAST consists of performing an iterative spatial interference 
cancellation. Referring again to the block diagram of Figure 10.26, at iteration k ,  
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transmission time 

Figure 10.28: An example of threading with t = 8 (each letter represents a layer). 

k = 0,1, . . ., an estimate of the spatial interference is generated in the form 

wck) = (GH - diag (GH))%(~)  (10.197) 

Here %lc) is the decoded word at iteration k ,  computed by minimizing the metric 
l~k(~)  - xIl2, where 

-Z;(k+l) = -Z; - w(k) 

= -Z; - (GH - diag (GH))%(~) (10.198) 

and for k = 0 we define 4 0. It can be easily seen that, if decoding is perfect 
(that is, if %(k) = X for some Ic) ,  then 

?ck) = diag (GH) X + GZ (10.199) 

which shows that the spatial interference is completely removed. 

10.14 The fundamental trade-off 

As we briefly mentioned in Section 10.1.1, the use of multiple antennas provides 
at the same time a rate gain and a diversity gain. The former is due to the fact 
that multiple, independent transmission paths generate a multiplicity of indepen- 
dent "spatial" channels that can simultaneously be used for transmission. The latter 
is obtained by exploiting the independent fading gains that affect the same signal 
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and that can be averaged through to increase the reliability of its detection. Here 
we examine how these two performance measures are related by fundamental lim- 
its that reflect the ubiquitous trade-off between rate and transmission quality of a 
transmission system. 

We focus our attention on the nonergodic fading channel of Section 10.6, with 
channel state information available at the receiver only, and to a high-SNR situ- 
ation. The latter restriction refers to a system whose performance is not power 
limited. We have seen (Section 4.2.2 and Observation 10.3.2) that, as the SNR 
C + oo, the capacity C(C) of an ergodic Rayleigh fading channel with SNR C 
grows as mlog C, with m A min{t, r). Recalling the high-SNR expression of 
the capacity of the single-antenna ergodic Rayleigh fading channel, which is log C, 
the result above can be interpreted by saying that the maximum number of inde- 
pendent parallel channels (or, in a different parlance, the number of degrees of 
freedom) created by t transmit and r receive antennas equals m, which is the max- 
imum rate gain we can achieve. Consider next the number of independently faded 
paths: in our model this is equal to tr ,  which is indeed the maximum achievable 
diversity gain with maximum-likelihood detection (Observation 10.9.1). 

We discuss here the fact that, while both gains can be achieved by MIMO sys- 
tems, higher rate gains come at the expenses of diversity gains. We start our dis- 
cussion by defining precisely what we mean by rate gain and diversity gain in the 
present context. In a situation where different data rates are involved, a sequence 
of codes with increasing rate, rather than a single code, must be considered. For 
a fair comparison among codes with different rates, the rate gain is defined by the 
ratio between the actual code rate p(C) and the capacity of the scalar channel at 
that SNR: 

A P(C> p = lim - 
C+m C(C) 

This indicates how far the system is operating from the capacity limit. Notice that 
the capacity increases with the SNR C, so to approach capacity the code rate p(C) 
must also increase with C; if a single code were used, the rate gain would vanish, 
because, as < increases, the ratio (10.200) would tend to zero. As for the diversity 
gain 6, this is defined as the exponent of C-' in the expression of the average error 
probability of the system: formally, 

A 6 = - lim 1% P(4 
C+m log< 

The main point here is that the maximum values of rate gain and diversity gain 
cannot be achieved simultaneously; p and 6 are connected by a trade-off curve that 
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Figure 10.29: Diversity-rate trade-off for multiple-antenna systems with t transmit 
and r receive antennas. 

we are going to introduce and discuss. This curve plots, as a function of the rate 
gain p, the maximum achievable diversity gain, denoted b* (p) .  

The trade-off curve, in the special but important case of a code with length 
N 2 t + r - 1,6 is given by the piecewise-linear function connecting the points 
(R, b*(~)), K E {O,l, . . . , m), where 

b * ( ~ )  A (t- ~)(r - K) (10.202) 

as shown in Figure 10.29. We see that the maximum values that p and b can 
achieve are m and tr, respectively, as discussed before. Equation (10.202) also 
shows that the maximum diversity gain can only be achieved for zero rate gain, 
and the maximum rate gain can only be achieved for zero diversity gain. More 
generally, (10.202) shows that, out of the total number o f t  transmit and r receive 
antennas, K transmit and R receive antennas are allocated to increase the rate, and 
the remaining t - R and r - R create diversity. 

Proof 

Under the above assumptions, and asymptotically as C 4 co, the outage probability 
(see Section 10.6) corresponding to an information rate p = p log C can be written 

6 ~ e e  [10.67] for lower values of N. Here, it suffices to observe that no more diversity gain can 
be obtained if the block length of the code exceeds t + r - 1, which consequently expresses the 
infinite-block-length performance. 
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pout (a,  C) ( C log(l+ XiO 5 plop C (10.203) 
i= 1 

where Xi is the ith ordered eigenvalue of the matrix H H ~ .  If p 2 m the outage 
probability is always 1 (since log C dominates asymptotically the other terms as 
C --t co), so we restrict ourselves to the case p < m. The joint pdf of the Xi's is 
given by (C.28) of Appendix C. Defining the new variables ai A - log Xi/  log C, 
we can write the outage probability (10.203) as follows: 

Since C 4 oo, several simplifications can be used: 

0 The Iverson function in the integral tends to the following limit: 

0 Since e ~ p ( - C - ~ i )  0 for ai < 0 and exp(-C-"" -- 1 for ai > 0, the 
integration domain where the integrand is not asymptotically small reduces to 
R?. 

0 ((.-"i - <-aj)2 4 C-2aj, since ai > aj for i < j except for a set of measure 
zero. 

Collecting the above observations, we obtain, as C -+ oo, 

m 

exp ( - ln c x ( n  - m + 2i - l ) a i  d a  (10.206) 
i= l 

Using Laplace's method of asymptotic multidimensional integral approximation 
(see, e.g., [10.12]), it can be shown that 

where 
m ... 

A 
out P min x ( n  - m + 2i - l ) a i  (10.208) ( ) = a l > . . . ~ a m ~ o , ~ E l ( ~ - a i ) + ~ p  . 

2= 1 
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The minimization above is a linear programming problem with nonlinear constraints, 
equivalent to the computation of 

- *  A a = arg max x(n - m + 2i - l)ai (10.209) 
fiiI...IfimIl, C,(fii)+I~ i=1 

In order to compute (10.209), one sets &i = 1 for i = m, m - 1,. . . , m - LpJ + 1. 
Next, one has to set am- L,, = p - Lpj < 1. This corresponds to setting 

i = 1, ..., m -  LpJ - 1 
- (p -  LpJ) i = m -  Lpj (10.210) 

i = m -  Lpj + l . . . , m  

As a result, we can write the following expression for the diversity: 

which, for integer p, yields 

In this case, Cii represents an indicator of the usage of the ith equivalent channel: 
6i = 0 means that the ith channel is not used, and vice versa for = 1. In fact, 
if bi = 0 and hence ai = 1, the ith eigenvalue Xi = c-a* -t 0 as c 4 oo. 
That implies a rate loss due to the inability of using the ith channel. Meanwhile, 
the diversity dout (p)  is increased by (n - m + 2i - 1) units as shown by (10.206). 

This diversity-rate trade-off curve can be used to compare different schemes and 
to interpret their behavior, as shown in the examples that follow. In particular, we 
shall see how orthogonal schemes are attractive when high diversity gain is sought, 
while BLAST interfaces favor rate gain. 

2 x 2 schemes 

Consider two transmit and two receive antennas, and a block length chosen to corn 
ply with the condition of validity of (10.202), viz., N 2 t + r - 1. The maximum 
diversity gain is tr = 4, achieved if each transmitted signal passes through all four 
propagation paths. The maximum rate gain is t = r = 2. The optimal trade-off 
curve for this system is shown by the continuous line of Figure 10.30. 

A simple scheme that achieves maximum diversity is a repetition code: 
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Figure 10.30: Diversity-rate trade-off for 2 x 2 systems. Continuous line: Optimal 
trade-OK Dotted line: Alamouti code. Dashed line: Repetition code. 

where x1 is a signal from a suitable constellation (we may think of this scheme 
as an inner code concatenated with an outer code that generates xl). Figure 10.30 
shows the trade-off curve for this "repetition" system. Since it takes two channel 
uses to transmit one symbol, the maximum rate gain is 112. When maximum 
diversity is achieved, the rate gain is 0. In fact, if a data rate plog < must be 
supported, the size of the constellation from which xl is drawn must increase, and 
consequently the minimum distance decreases, as does the achievable diversity 
gain. 

The Alamouti code can also be used on this channel. Here 

This achieves full diversity gain. Two symbols are transmitted every two channel 
uses, and hence the maximum rate gain is 1. Its trade-off curve is shown in Fig- 
ure 10.30. Notice that, although both the repetition and Alamouti code achieve 
the optimum diversity at p = 0, their behavior is markedly different when the 
diversity-rate trade-off is taken into consideration. 
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Orthogonal designs 

Consider first the special case t = 2, with X given again by (10.214). The optimal 
trade-off can be computed, and yields 

More generally, since orthogonal designs with full rate (that is, p = 1) do not 
exist for t > 2, one can observe that their maximum rate gain is strictly less than 
1. Hence, although they achieve maximum diversity at p = 0, they are strictly 
suboptimum in terms of the diversity-rate trade-off. 

Zero-forcing vertical BLAST 

Consider now zero-forcing vertical BLAST (ZF V-BLAST), with m transmit and 
receive antennas and independent substreams transmitted by each antenna. Its per- 
formance, as discussed in Section 10.13.1, depends on the order of detection of 
the substreams and on the data rates of the substreams. For all versions of V- 
BLAST, the trade-off curve is suboptimal, especially for low rate gains: in fact, 
every transmitted substream experiences only m independent fading gains, and, 
even with no spatial interference between substreams, the trade-off curve cannot 
exceed J ( K )  = m - K. 

Zero-forcing diagonal BLAST 

This system, which has coding over signals transmitted on different antennas, 
promises a higher diversity gain. Here, if the rate loss caused by the overhead sym- 
bols is disregarded, the trade-off curve connects the points (m - K ,  K ( K  + 1)/2), 
K = 0, . . . , m. Observe that the maximum diversity gain is now m(m + 1)/2, 
better than for V-BLAST but still short of the theoretical maximum m2. It is rec- 
ognized [10.2,10.67] that this performance loss is caused by the zero-forcing step. 
If MMSE filtering is used instead of ZF, then D-BLAST achieves the optimum 
trade-off curve (apart from the rate loss mentioned before). This behavior can be 
justified by observing that D-BLAST achieves the optimum mutual information of 
the MIMO channel for any realization of channel H [10.42, Sec. 12.4.11 

10.15 Bibliographical notes 

In this chapter we have focused on narrowband channels only. For treatments of 
MIMO broadband fading channels, and in particular of the impact of frequency 
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selectivity on capacity and on receiver structures, see, e.g., [10.2,10.13]. The rich- 
scattering MIMO channel model was introduced and extensively studied in [10.20, 
10.211. The separately correlated channel model is studied in [10.40,10.51]. The 
keyhole model is discussed in [lo. l7,lO.24]. Rician MIMO channels are examined 
in [10.53]. In [10.60], the authors show how the properties of the physical MIMO 
channel are reflected into the random-matrix model. 

Capacity calculations closely follow [10.58]. Equation (10.28) was obtained by 
refining a result in [10.50], which in turn was derived by elaborating on (10.45), 
derived in [10.58]). An alternative expression for the asymptotic capacity variance 
in the form of an integral is obtained in l10.31). The limits on communication over 
a MIMO channel without CSI were derived by Marzetta and Hochwald [10.30, 
10.371. Nonergodic channels and their outage probability were originally exam- 
ined in [10.20, 10.21, 10.23, 10.581. The asymptotic normality of the instanta- 
neous mutual information C(H)  was obtained independently by several authors 
under slightly different technical assumptions [10.25, 10.31, 10.41, 10.48, 10.521 
(see also [10.5]). 

Delay diversity was proposed in [10.49,10.64]. Space-time trellis codes were 
introduced in [10.57]. To avoid the rate loss of orthogonal designs, algebraic codes 
can be designed that, for any number of transmit and receive antennas, achieve 
maximum diversity, such as Alamouti codes, while the rate is t symbols per channel 
use (see [10.36] and references therein). Linear codes, called linear dispersion 
codes, were introduced in [10.28], while a more general treatment can be found 
in [10.35]. Differential space-time coding has been advocated for noncoherent 
channels: see, e.g., [10.32,10.33]. 

Deeeper discussions of iterative interfaces can be found in [10.7, 10.8,10.45- 
10.471 and references therein. 

Our discussion of the fundamental trade-off follows [10.67]. 

10.16 Problems 

1. Consider the deterministic MIMO channel. Express its capacity under the 
constraint that equal energies are transmitted over all channels associated 
with nonzero singular values of H. Using Jensen's inequality, prove that, 
among all channels with the same "total power gain" ~ I H I ~ ~ ,  the one whose 
singular values are all equal has the largest constrained capacity. 

2. Consider an ergodic fading MIMO channel with Elhij12 = 1 and CSI at 
the receiver only. Show that, at low SNR, its capacity exceeds that of the 
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AWGN channel by a factor that depends on r ,  but neither on t nor on the 
fading correlation. 

3. Prove (10.139). 

4. Show that the Alarnouti code with r = 2 is also an orthogonal design. 

5. Recast V-BLAST as a special case of linear space-time codes by computing 
the matrices A!, Be, e = 1,. . . , L. 

6. Consider a MIMO system with t antennas all transmitting the same symbol 
x E C. Assume that the channel matrix H has independent and identically 
distributed entries, and that its realization (the CSI) is known at the trans- 
mitter and at the receiver. The transmitted symbol is weighted by vector 
( g ~ ) t / a ,  where g E (Cr and a A lgHl is a normalization factor, so that the 
received signal has the form 

The receiver estimates x by forming 2 = g y .  Compute the vector g that 
maximizes the SNR of estimate 2. 

7. Prove that, for an uncorrelated keyhole channel, the constrained capacity C* 
defined in Section 10.4 satisfies 

(This result shows that this channel, regardless of the number of antennas, 
yields no rate gain). 

8. Consider a MIMO system with r = 1, and the following transmission scheme. 
The receiver broadcasts a known probe symbol xo. Transmitter i, 1 I i I t ,  
receives hixo + zi, zi a noise term (assume for simplicity that = No 
for all i), and sends its information symbol x in the form (hf x i  + z:)x. As- 
suming binary PSK signaling and an independent Rayleigh fading channel, 
compute numerically the error probability of this scheme as a function of t 
and of the ratio between the transmitted energy per bit and the energy of the 
probe signal. 
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There's Ada, 

Facts from information theory 

In this appendix we review the basic definitions and provide some facts from 
information theory that arc nccdcd in the rest o f  the book. In particular, we 
compute the capacity ol'MIMO channels. 
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A.l Basic definitions 

We start with the definition of quantity of information carried by a signal x, chosen 
from an constellation X and transmitted with probability p(x). The information 
content of signal x, denoted by I(x), increases with the uncertainty of its transmis- 
sion: 

A 1 I(x) = log - 
~ ( 4  

where log, here and throughout this book, denotes logarithm to base 2. This infor- 
mation is measured in bits. One bit of information is conveyed, for example, by 
the transmission of one out of two equally likely signals. 

Denote by Ex the expectation taken with respect to the probability measure p(x) 
on X, that is, 1E, [f (x)] A Cz p(x) f (x) for any function f (x). Then the average 
information content of x is 

This is called the entropy of X, and is measured in bit/signaL1 

Example A. l  

If the source constellation consists of M  equally likely signals, then p(x)  = 1 / M ,  
and we have 

- 1 
H(x)  = - log M  = log M  bittsignal 

i=l 
M  

When X consists of two signals with probabilities p  and 1  - p, the entropy of x  is 

1 1 
H(x)  = plog - + (1 - p) log - P H ( p )  

P  1 - P  

It can be seen that the maximum of the function H ( p )  defined in (A.3) occurs for 
p  = 0.5, that is, when the two signals are equally likely. More generally, it can be 
proved that, if x  is chosen from a finite constellation 2 ,  then its entropy is maximum 
when p(x)  is uniform, i.e., p(x)  = 1/IXJ. 0 

  he notation here is not felicitous, as H(x) is not a function of x, but rather of X and of the 
probability measure defined on X. However, it has the advantage of simplicity, and should not be 
confusing. 
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A communication channel is the physical medium used to connect a source of 
information with its user. The channel accepts signals x belonging to the input 
constellation X, and outputs signals y  belonging to the output constellation Y (un- 
less specified otherwise, we assume that both X and Y are discrete). A channel is 
characterized by the two constellations X and Y and by the conditional probabili- 
ties p ( y  I x )  of receiving the signal y  given that the signal x has been transmitted. 
( p ( y  1 x )  may be a probability or a probability density function, according to the 
structure of the input and output constellations.) A channel is called stationary 
memoryless if 

n 

P ( y l , . . . , Y n  I ~ 1 , . . . 7 x n )  = n P ( y i  I x i )  (A-4) 
i=l 

where X I ,  . . . , xn and y l ,  . . . , y, represent n consecutive transmitted and received 
signals, respectively. 

Given the input and output channel constellations X and Y, and their probabilis- 
tic dependence specified by the channel transitionfunction p ( y  I x ) ,  we can define 
five entropies, viz., 

(a) The input entropy H ( x ) ,  

1 
H ( x )  A Ex log - bidsignal 

~ ( 4  

which measures the average information content of the input constellation, 
that is, the information we want to transfer through the channel. 

(b) The output entropy H ( y ) ,  

1 
H( y )  4 IE, log - 

P(Y bidsignal 

which measures the average information content of the signal observed at 
channel output. 

(c) The joint entropy H ( x ,  y ) ,  

1 
H ( x ,  Y )  A Ex,, 1% Po bidsignal pair 

which measures the average information content of a pair of input and out- 
put signals. This is the average uncertainty of the communication system 
formed by the input constellation, the channel, and the output constellation 
as a whole. 
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(d) The conditional entropy H ( y  I x),  

which measures the average information quantity needed to specify the out- 
put signal y when the input signal x  is known. In other words, this measures 
the average residual uncertainty on signal y when signal x  is known. 

(e) The conditional entropy H(x I y ) ,  

which measures the average information quantity needed to specify the input 
(or transmitted) signal x  when the output (or received) signal y is known. 
Equivalently, this is the average residual uncertainty on the transmitted signal 
x  when the received signal y is observed at the output of the channel: thus, 
this conditional entropy (often called channel equivocation) represents the 
average amount of information that has been lost on the channel. (A limiting 
case is the noiseless channel, for which the channel output equals its input, 
so we have H(x I x)  = 0. Another limiting case is the infinitely noisy 
channel, for which input and output are statistically independent, and hence 
H(x I Y )  = H(x).) 

Using these definitions, the following equations and inequalities can be proved: 

These are summarized in Figure A. 1. Inequalities (A. 11) and (A. 12) become equal- 
ities if xlLy, that is, p(x, y )  = p(x)p(y). 

As mentioned before, the conditional pdf p(y  I x),  x  E X, y E 3,  characterizes 
a stationary memoryless channel. If X and Y are finite constellations, the values 
of p(y  I x)  can be arranged in a matrix P whose entries are (P),,y = p(y  I x). 
An important channel example occurs when P is such that at the same time all its 
rows are permutations of the first one and all its columns are permutations of the 
first one. In this case the channel is said to be symmetric. A central property of the 
symmetric channel is that H(Y I X )  is independent of the input probabilities p(x) 
and hence depends only on the channel matrix P. 
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Figure A. 1: Relationships among dzyerent entropies and mutual information. 

Example A.2 (Binary symmetric channel) 

An important special case of a symmetric channel occurs when 1x1 = 1Y1 = 2, and 

This is called the Binary Symmetric Channel (BSC).  

A.2 Mutual information and channel capacity 

A part of the information H ( x )  transmitted over a noisy channel is lost. This part 
is measured by the channel equivocation H(x I y). Thus, it seems natural to define 
an average information flow through the channel, called the mutual information 
between x  and y  and denoted I(x;  y ) ,  as 

I(x;  y )  H ( x )  - H(x I y )  bitlsignal (A. 13) 

Using (A. 10) (see also Figure A. I), the following alternative forms can be derived: 

Comparing (A.13) with the first equality of (A.14), it is apparent that I(x;  y )  = 

I (y ;  2 ) .  
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Example A.3 

Consider again the two limiting cases of a noiseless channel and an infinitely noisy 
channel. In the first case, we observe y = x, so there is no uncertainty left on x: 
we have H(x I y) = 0, and hence from (A.13) we have I(x; y) = H(x): the mutual 
information is exactly the entropy of the source, as nothing is lost over the channel. 
In the second case, y is independent of x: no information on x can be gathered by 
observing y, and hence H(x I y) = H(x) (after observing y, the uncertainty on x is 
the same as without any observation). We have I(x; y) = 0 (all information is lost 
over the channel). 0 

Example A.4 

Let us consider again the BSC and see how I(x; y) depends on the probability 
distribution of the input signals. Direct calculation gives 

where the function H(p) was defined in (A.3). The maximum value of I(x; y), 
irrespective of the value of p, is obtained when the input signals are equally likely. 
Thus, equally likely input signals yield the maximum information flow through a 
BSC. This is given by 

max I(x; y) = 1 - H(p) = 1 + p logp + (1 - p) log(1- p) (A. 16) 
P(X) 

where the maximum is taken with respect to all possible probability distributions of 
the input signals. If the channel is not symmetric (for example, transmitted 0s are 
more affected by noise than the Is), then the more "robust" input signals should be 
transmitted more often for maximum information transfer. 0 

In general, the maximum value of I(X; Y) for a given memoryless channel is 
called its capacity and is denoted by C. 

Example A S  

In the BSC, capacity is maximum when p is equal to 0 or equal to 1, since both these 
situations lead to a noiseless channel. For p = 0.5, the capacity is zero, since the 
output signals turn out to be independent from the input signals, and no information 
is transferred through the channel. 0 
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A.2.1 Channel depending on a parameter 

Suppose that the channel depends on a random parameter H independent of x  and 
y. The following equality can be proved: 

I(x;  y,  H )  = I(x;  H )  + I(x;  y 1 H )  (A. 17) 

A.3 Measure of information in the continuous case 

Assume now that x  is a continuous RV taking values in X with pdf p(x) .  The 
entropy of X can still be defined formally through (A.2); however, some differences 
arise, the main one being that H ( x )  may be arbitrarily large, positive, or negative. 
As we did for discrete X and Y, we can define, for two continuous random variables 
x  and y  having a joint probability density function p(x ,  y ) ,  the joint entropy H(x,  y )  
and the conditional entropies H(x 1 y )  and H(y  I x ) .  If both H(x)  and H(y)  are 
finite, the relationships represented pictorially in Figure A.l still hold. As in the 
discrete case, the inequalities (A. 11) and (A. 12) become equalities if x  and y  are 
statistically independent. 

In the discrete case, the entropy of x  is a maximum if all x  E X are equally 
likely. In the continuous case, the following theorems hold. 

Theorem A.3.1 Let x  be a real, zero-mean continuous RV with pdf p(x) .  Ifx has 
Jinite variance a:, then H(x )  satisjies the inequality 

(A. 18) 

with equality ifand only i f x  - N(0 ,  a:). 

A case more general than the above is obtained by considering, instead of a 
scalar random variable x, a complex random vector x: 

Theorem A.3.2 Let x be a zero-mean complex random vector with covariance 
matrix R,. Then H ( x )  satisJies the inequality 

H(x) 5 log det(reR,) (A. 19) 

with equality if and only if x Nc (0, Rx). 
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Proof 

Let XG K(0,  RxG), and calculate its entropy by using the pdf (C.24): 

H(xG) = IE [log det (*RxG ) + xLR;; xG log e] 

= log det (.rrRxG) + IE [xLR;;x~] log e 

= log det (.rrRx,) + Tr (R;;IE[XGXL]) loge 

= log det (neRx, ) (A.20) 

Let p(x) and pG(x) be the pdfs of x and XG, respectively. The theorem follows by 

where we used the equality IE [logpG(x)] = lE [lOgpG(xG)] and In u I u - 1 for 
u > 0, with equality if and only if u = 1.2 Notice that equality holds if and only if 
p(x) = pG(x), i.e., if and only if x is circularly symmetric Gaussian. 0 

A.4 Shannon theorem on channel capacity 

The celebrated Shannon theorem on channel capacity states that the information 
capacity of a channel is also the maximum rate at which information can be trans- 
mitted through it. Specifically, if the channel capacity is C then a sequence of 
rate-C codes with block length n exists such that as n + oo their word-error prob- 
ability tends to zero. Conversely, if a sequence of rate-p codes with block length n 
has word-error probabilities tending to 0 as n -+ co, then necessarily p 5 C. 

Quantitatively, we can say that if we transmit data over a noisy channel, then 
there exists a code with block length n and rate p bitldimension for which the error 

'1n fact, the function f (u) A In u - u + 1 has derivative f '(u) = u-I - 1, which is positive for 
0 < u < 1 and negative for u > 1. Hence, it lias a maximum at u = 1, i.e., f (u) 5 f (1) = 0. 
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Figure A.2: Reliability function and cutoff rate of a channel. 

probability is bounded above by 

where E(p), the channel reliability&nction, is a convex U, decreasing, nonnega- 
tive function of p for 0 5 p 5 C, and C is the channel capacity. We notice that 
E(p) can be taken as a measure of the channel quality when a rate-p code is to 
be used on it: in fact, the larger the value of E(p), the smaller the upper bound to 
error probability for any given block length n. From (A.22) we can also see that 
by increasing the block length n the error probability can be decreased at will, pro- 
vided that the transmission occurs at a rate strictly less than C. Thus, computing 
C we obtain a range of rates for which reliable transmission is possible, and hence 
an indication of the quality of the channel when coding is to be used on it. 

Another parameter for the comparison of coding channels is offered by the so- 
called cutoflrate of the channel. This is obtained by lower-bounding the reliability 
function E(p) with a straight line with slope -45" and tangent to E(p) (see Fig- 
ure A.2). 

The intercept of this line over the abscissa and the ordinate axis is po. Thus, we 
have 

P(e) 5 2-n(p0-p), p 5 PO (A.23) 

It is seen that while C yields a range of rates where reliable transmission is pos- 
sible, po yields both a range of rates and an exponent to error probability, i.e., an 
indication of how fast P(e) tends to zero when n is increased. Moreover, it is 
generally easier to compute than the capacity. For a long time it was widely be- 
lieved that po was also the rate beyond which reliable transmission would become 
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very complex, so po was considered as a practical bound to the transmission rate. 
However, the discovery of classes of codes that admit a practical decoding algo- 
rithm and yet have performance close to capacity (LDPC codes, turbo codes) has 
somewhat diminished the importance of po as a performance parameter. 

A S  Capacity of the Gaussian MIMO channel 

Let the channel input-output relationship be 

where H is a constant r x t matrix whose realization is called the channel-state 
information (CSI), x is a t-vector, and y and z are r-vectors. Assume xllz and 
z - NJO, NOIT). From the mutual information 

we seek the channel capacity under the constraint 

For a given R,, the covariance matrix of y is Ry = H&H~ + NoI,, and H(y) is 
maximum for y N Nc(O, Ry) (Theorem A.3.2). Moreover, the maximum mutual 
information is given by 

I(Rx) = log det (I, + N;'R,H~H) (A.27) 

The channel capacity can be calculated according to different assumptions: 

(a) The receiver has perfect CSI and the transmitter has no CSI. 

(b) The receiver and the transmitter have perfect CSI. 

With assumption (a), the transmitter divides the available power evenly among the 
transmit antennas, and the capacity is 

c C, = logdet (I, + ;HtH) 

where < A tE/No. With assumption (b), the capacity can be written as 

C,,,, = maw log det (I, + N;'&H~ H) (A.29) 
~ , 2 o , T r [ ~ , ] ~ t &  
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From Hadamard's inequality (B.23) and the orthogonal diagonalization 

(where U is unitary and D diagonal), we have 

log det (I, + N;'&Ht H) = log det (I, + f i ~ )  
< C ( 1  + ( i i i i  (A.30) 

(D)i,i>O 

where fi 4 U ~ G U ,  with equality if and only if fi is diagonal. Since constraint 
(A.26) translates into Tr (fi) < tE, the maximization problem admits the water- 
Jilling solution [A. 11: 

(fi)i,i = (P  - (~1::) + 
(A.3 1) 

with p obtained as the solution of 

The channel input pdf achieving capacity is circularly Gaussian: 

A.5.1 Ergodic capacity 

Consider the separately correlated fading channel described in Section 10.2.1, with 
channel matrix given by (10.1 1). Assume that the receiver has perfect CSI but the 
transmitter has no CSI. Here we calculate the average capacity under the power 
constraint I E [ l l ~ 1 1 ~ ]  5 tE = <No in the case T = It. This derivation follows the 
guidelines of [A.6] for the case of R = I, and [A.4] in the more general setting of 
R # I,, although we restrict ourselves to consideration of iid, - &(O, 1) entries 
of H,. 

From the expression of the mutual information (A.25), capacity is given by 

C =  max IE[log det (I, + N;'HR~H~)] (A.33) 
RX>0,Tr[Rx]ltE 

Using the orthogonal diagonalization Rx = U D U ~  (with matrix U unitary and D 
diagonal), we notice that capacity can also be obtained as follows: 

C = max IE[logdet (I, + HDHt)] 
D>O,T~[DIIC 
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where the maximum is sought over the set of diagonal matrices with nonnegative 
diagonal entries and trace upperbounded by <. The equivalence derives from the 
fact that H, and H,U (and hence H and H U )  have the same joint pdf. Let us 
write 

Q(D) IE [log det (I, + HDH~)]  (A.35) 

Since the log-det function is concave EA.1, Th. 16.8.11, we have, for every vector 
(ai) S U C ~  that ai > 0 and Ci ai = 1, 

2 C a iE [log det (I, + H D ~ H ~ ) ]  
i 

Now, let Pi denote the ith permutation matrix (i = 1, . . . , t!). For a given matrix 
D such that Tr D = c, define Di  P iDPi ,  i.e., the diagonal matrix obtained by 
applying the ith permutation on the diagonal elements. We notice that 

(a) Q(Di) = Q (D), since 

IE [logdet (I, + HP~DP:H~)] = IE [log det (I, + HDH~)]  

as H and HPi have the same joint pdf. 

(b) Xi Di/t! = (p/t)It, since every diagonal entry of D appears the same num- 
ber of times at each position of the matrix sum. 

Hence. we have 

which proves that the maximum Q(D), i.e., capacity, is attained for D = (c/t)It, 
i.e., uniform power allocation. 
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Bett, 

Facts from matrix theory 

In this appendix we collect some useful definitions and properties about ma- 
trices. As we assume that the reader has somc familiarity with this topic, 
results are stated without proof 
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B.1 Basic matrix operations 

A real (complex) m x n matrix is a rectangular array of mn real (complex) num- 
bers, arranged in m rows and n columns and indexed as follows: 

We write A = (aij) as shorthand for the matrix (B-I), and sometimes we use 
the notation A E Rmxn or A E (Cmxn to indicate a real or complex matrix, 
respectively. If m = n, A is called a square matrix; if n = 1, A is called a column 
vector, and if m = 1, A is called a row vector. We denote column vectors using 
boldface lowercase letters, such as x, y, . . . . 

Standard operations for matrices are the following: 

(a) Multiplication of A by the real or complex number c. The result, denoted by 
cA, is the m x n matrix with entries caij. 

(b) Sum of two m x n matrices A = (aij) and B = (bij). The result is the 
m x n matrix whose entries are aij + bij. The sum is commutative, i.e., 
A + B = B + A .  

(c) Product of the m x k matrix A by the k x n matrix B. The result is the 
m x n matrix C with entries 

When A B  = BA,  the two matrices A and B are said to commute. The 
matrix product is not commutative (i.e., in general A B  # BA), but it is 
associative (i.e., A(BC) = (AB)C) and distributive with respect to the 
sum (i.e., A ( B  + C )  = A B  + A C  and (A + B ) C  = A C  + BC). 

The notation is used to denote the kth power of a square matrix A (i.e., 
the product of A by itself performed k - 1 times). If we define the identity 
matrix I 4 (dij) as the square matrix all of whose elements are 0 unless 
i = j ,  in which case they are equal to 1, multiplication of any square matrix 
A by I gives A itself, and we can set 
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(d) The transpose of the m x n matrix A with entries aij is the n x m matrix 
with entries aji, which we denote by A'. If A is a complex matrix, its con- 
jugate A* is the matrix with elements and its conjugate (or Hermitian) 
transpose ~t A (Af)* has entries a;,. The following properties hold: 

(e) Given a square matrix A,  there may exist a matrix, which we denote by A-l, 
such that AA-' = A-lA = I. If A-' exists, it is called the inverse of A, 
and A is said to be nonsingular. We have 

B.2 Some numbers associated with a matrix 

(a) Dace. Given a square n x n matrix A, its trace (or spur) is the sum of the 
elements of the main diagonal of A: 

The trace operation is linear; that is, for any two complex numbers a ,  P, and 
two square n x n matrices A,  B,  we have 

In general, Tr (AB) = Tr (BA) even if A B  # BA.  In particular, the 
following properties hold: 

73- (ABC) = Tr (CAB) = Tr (BCA) ( B . 9  

and 
x'y = Tr (xy') 

(b) Determinant. Given an n x n square matrix A, its determinant is the number 
defined as the sum of the products of the elements in any row of A with their 
respective cofactors yij : 

n 

det A A agyij ,  for any i = 1,2 , .  . . , n (B.7) 
j=1 
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The cofactor of aij is defined as yij (-l)'+jmij, where the minor mij 
is the determinant of the (n - 1) x (n - 1) submatrix obtained from A by 
removing its ith row and jth column. The determinant has the following 
properties: 

det A = 0 if one row of A is zero 

or A has two equal rows (B.8) 
det A' = det A (B-9) 

det A+ = (detA)* (B.10) 

det (A-l) = (det A)-' (B.ll) 

det (AB) = det A .  det B (B. 12) 

det (cA) = cn - det A for any number c (B.13) 

A matrix is nonsingular if and only if its determinant is nonzero. 

(c) Rank. The rank of an m x n matrix A is the maximum number of linearly 
independent columns or rows. The rank has the following properties: 

rank (A) 5 min(m, n) (B. 14) 

rank (A + B) 5 rank (A) + rank (B) (B.15) 

rank(AB) 5 min(rank(A), rank (B)) (B.16) 

(d) Eigenvalues. Given an n x n square matrix A and a column vector u with n 
entries, consider the set of n linear equations 

Au = Xu (B. 17) 

where X is a constant and the entries of u are unknown. There are only n 
values of X (not necessarily distinct) such that (B. 17) has a nonzero solution. 
These numbers are the eigenvalues of A, and the corresponding vectors u 
are the eigenvectors associated with them. Note that if u is an eigenvector 
associated with the eigenvalue X then, for any complex number c, cu is also 
an eigenvector. 
The polynomial a(X) det(X1 - A) in the indeterminate X is called the 
characteristic polynomial of A. The equation 

det (XI - A) = 0 (B.18) 
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is the characteristic equation of A, and its roots are the eigenvalues of A. 
The Cayley-Hamilton theorem states that every square n x n matrix A sat- 
isfies its characteristic equation. That is, if the characteristic polynomial of 
A is a(X) = An + alAn-l + . - .  + a n ,  then 

a(A) 9 An + a l ~ n - l  + . - - + anI = 0 (B. 19) 

where 0 is the null matrix (i.e., the matrix all of whose elements are zero). 
The monic polynomial p(A) of lowest degree such that p(A) = 0 is called 
the minimal polynomial of A. 

The following properties hold: 

(i) If f (x) is a polynomial in the indeterminate x, and u is an eigenvector 
of A associated with the eigenvalue A, then 

That is, f (A) is an eigenvalue of f (A) and u is the corresponding 
eigenvector. 

(ii) The product and the sum of the eigenvalues A1, . . . , An of the n x n 
matrix A satisfy 

n 

det (A) = n Xi (B.21) 
i=l 

and 

(iii) From (B.21), it is immediately seen that A is nonsingular if and only 
if none of its eigenvalues is zero. 

(iv) The eigenvalues of Am, m a positive integer, are A?. 

(v) If A is nonsingular, then the eigenvalues of A-l are A-l, and the 
eigenvectors are the eigenvectors of A. 

(vi) The eigenvalues of A + a21 are Xi + a2, and the eigenvectors are the 
eigenvectors of A. 

(vii) The two matrices A A ~  and A ~ A  share the same set of nonzero eigen- 
values. 
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B.3 Gauss- Jordan elimination 

The Gauss-Jordan algorithm transforms a given matrix into row echelon form by 
using elementary row operations. A matrix is said to be in row echelon form if the 
following conditions are satisfied: 

0 If a row does not consist entirely of zeros, then the first nonzero entry in the 
row is a 1. 

0 The rows all of whose entries are zero are grouped at the bottom of the 
matrix. 

0 In any two successive nonzero rows, the leading 1 in the lower row occurs 
farther to the right than the leading 1 in the upper row. 

B.4 Some classes of matrices 

Let A be an n x n square matrix. 

(a) A is called symmetric if A' = A. 

(b) A is called Hermitian if ~t = A. 

(c) A is called orthogonal if A-' = A'. 

(d) A is called unitary if A-' = At. 

(e) A is called diagonal if its entries aij are zero unless i = j .  A useful notation 
for a square diagonal matrix is 

A = diag (all, aaa,. . . , ann) 

This definition also holds for nonsquare matrices. 

(f) A is called scalar if A = cI for some constant c; that is, A is diagonal with 
equal entries on the main diagonal. 

(g) A symmetric real matrix A is called positive (nonnegative) dejnite if all its 
eigenvalues are positive (nonnegative). Equivalently, A is positive (nonneg- 
ative) definite if and only if for any nonzero column vector x the quadratic 
form x t ~ x  is positive (nonnegative). If A is nonnegative definite, then the 



B.5. Scalar product and Frobenius norms 403 

number of positive eigenvalues equals rank (A), and the remaining eigenval- 
ues are zero. If A is positive definite (we write A > 0), then all its eigenval- 
ues are positive. The Hadamard inequality states that, for every nonnegative 
definite matrix A, 

det A < n(~)ii 

with equality if and only if A is diagonal. 

Example B.l 

Let A be Hermitian. Then the quadratic form f x t ~ x  is real. In fact 

f * = ( x t ~ x ) *  = xrA*x* = (A*x*)'x = x t ~ t x  

Since A+ = A, this is equal to x t ~ x  = f ,  which shows that f is real. 

Example B.2 

Consider the random column vector x = [xl , xz , . . . , xN]' and its correlation 
matrix 

R E [xxt] (B.25) 

It is easily seen that R is Hermitian. Also, R is nonnegative definite; in fact, for any 
nonzero deterministic column vector a, 

with equality only if atx = 0 almost surely; that is, the components of x are lin- 
early dependent. 0 

B.5 Scalar product and Frobenius norms 

Given two m x n matrices A and B, their scalar product is defined as 

m n 

(A, B) CCaijb:j 
i=l j=1 

The scalar products has the properties 
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(c) The scalar product of the n x 1 vector x by itself, 

is a Hermitian matrix. 

(d) Two vectors x, y such that (x, y) = 0  are called orthogonal. If in addition 
llx 11 = 1 1  y 11 = 1, they are called orthonormal. 

We define the Frobenius (or Euclidean) norm of A as 

The Frobenius norm has the properties 

(a) A = O  ifandonlyif IlAll = O  

B.6 Matrix decompositions 

B.6.1 Cholesky factorization 

Given a Hermitian n x n matrix A,  its Cholesky factorization is 

where L is lower triangular (that is, (L)ij = 0  unless j > i) and has nonnegative 
diagonal entries. 
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B.6.2 QR decomposition 

An m x n matrix A, m 2 n, can be decomposed in the form 

A = Q R  (B.30) 

where R is an upper triangular n x n matrix, and Q is m x n with orthonormal 
columns: Q ~ Q  = I,. When A has rank n, all diagonal entries of R are positive. 

Notice that Q is not necessarily unitary. To make it a unitary m x m matrix 
we can append to it an additional m - n orthonormal columns q,+l,. . . , q,. 
Correspondingly, we append rows of zeros to R so that 

B.6.3 Spectral decomposition 

If we define the n x n matrix U whose columns are the orthonormalized eigen- 
vectors of the square matrix A,  and the n x n diagonal matrix of its eigenvalues 
diag (A1, . - - , A,), then we have the decomposition 

Notice that a square U may not exist: for example, the matrix 

has only one nonzero eigenvector, u = (1 0)'. In this case the singular-value 
decomposition (see below) can be used instead of the spectral decomposition. A 
simple sufficient condition for the spectral decomposition to exist is that A be 
positive definite. 

B.6.4 Singular-value decomposition 

Singular-value decomposition (SVD) of the m x n matrix A yields 

A = U [ B  O ] V ~  (B.33) 

where U is a unitary m x m matrix, V is a unitary n x n matrix, and B is m x n 
diagonal, with nonnegative entries a1 2 a 2  2 . . . 2 0, called the singular values 
of A. The singular values are the square roots of the eigenvalues of AA+, and the 
number of their nonzero values equals the rank of the matrix A. The columns of U 
are the eigenvectors of A A ~ ,  and the columns of V are the eigenvectors of A t  A. 

The SVD of a matrix expresses the fact that any linear transformation can be 
decomposed into a rotation, a scaling operation, and another rotation. 



406 References 

B.7 Pseudoinverse 

Given an m x  n matrix A whose SVD is (B.33), its (Moore-Penrose) pseudoinverse 
A+ is defined as 

A+ A V ]  for m s n  

where 
- 1 - 1 C+ = diag (o;', 0, , . . . , op , 0, . . . , 0) 

and p is the number of nonzero singular values of A. 
The pseudoinverse has the following properties: 

AA+A = A A+AA+ = A+ (AA+)+ = AA+ (A+A)~  = A+A 
(B.35) 

Moreover, if the m x n matrix A has full rank (i.e., rank (A) = min(m, n)), then 

A+ is the unique solution to the approximation problem 

min [ [ A X  - I,JI (B. 37) 

where the minimum is taken over all complex n x m matrices X ,  and I, denotes 
the m x m identity matrix. 
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Celia, 

Random variables, vectors, and 
matrices 

In this appendix we collect some ficts about complex random variables, ran- 
dom vectors, and random matrices. In particular, we list some results on the 
probability distribution o f  the eigenvalues o f  large random matrices. 
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C.l Complex random variables 

A complex random variable (RV) has the form 

where X and Y are real RVs with mean values p x  and py  and variances V[X], 
V[Y], respectively; Z can also be viewed as a two-dimensional vector RV (see 
infra). The mean value and the variance of Z are defined as p z  k IE[Z] and 
V[Z] A IE[IZ - pz 12], respectively. We also have, directly from the definitions, 

and 
2 V[Z] = qx2] + IE[y2] - p: - py  

so that 
V[Z] = V[X] + V[Y] 

The cross-covariance of the two complex RVs W and Z is defined as 

As a special case of this definition, we have the covariance of Z: 

Moreover, we have 
Rwz = R>w 

If X is real Gaussian with mean p and variance a2, i.e., its pdf is 

?e write X N N(p, a2),  a notation stressing the fact that the pdf of X is com- 
pletely specified by p and a2. If the real and imaginary parts of the complex RV 
Z are independent with the same variance a2/2, and p IE(Z) E C, then we say 
that Z is circularly symmetric, and we write Z N 3\1,(p, a2). Its pdf is the product 
of its real and imaginary part: 

1 - I z - , . ' ~~ /u~  
~ ( 4  = 2 e  (C.9) 

1 To avoid any confusion, observe that if Z A X + Y, then (C.4) holds only for uncorrelated X 
and Y, while if Z A X + jY then it holds in general. 
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C.2 Random vectors 

A random vector is a column vector x = (XI, X2,. . . , Xn)' whose components 
are random variables. 

C.2.1 Real random vectors 

A real random vector is a column vector x = (XI, X2, . . . , X,)' whose compo- 
nents are real random variables. Its mean value is defined as 

The expectation of the squared norm of x, 

is often referred to as the average energy of x. The covariance matrix of x is 
defined as the (nonnegative-definite) n x n matrix 

Notice that the diagonal elements of R, are the variances of the components of x. 
The n x n matrix 

C, A IE [xxl] (C.13) 

is called the correlation matrix of x. We observe that the trace of C, equals the 
average energy of x: 

The cross-covariance matrix of the two random vectors x and y, with dimensions 
n and m, respectively, is defined as the n x m matrix 

RrJ A IE [(x - aX)(y - ay)'1 = [xYII - aXa; (c.15) 

Real Gaussian random vectors 

A real random vector x = (XI, . . . , Xn)' is called Gaussian if its components are 
jointly Gaussian, that is, if their joint pdf is 
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where R, is a nonnegative definite n x n matrix, the covariance matrix of x. We 
write x N N(px, R,), which stresses the fact that the pdf of a real Gaussian 
random vector is completely specified by its mean value and its covariance matrix. 

C.2.2 Complex random vectors 

A complex random vector is a column vector z = (Z1, Z2, . . . , Zn)' whose com- 
ponents are complex random variables. The covariance matrix of z is defined as 
the nonegative-definite n x n matrix 

The diagonal entries of R, are the variances of the entries of z. If z = x + jy,  

R, = (Rx + q )  + j(Ryx - Rxy) (C. 18) 

Thus, knowledge of R, does not yield knowledge of R,, Ry,  Ryx, and G y ,  i.e., 
of the complete second-order statistics of z. The latter is completely specified if, 
in addition to R,, the pseudocovariance matrix 

is also known [CS]. We have the following relations: 

(C. 19) 

Proper complex random vectors, endowed with the additional property 

(see [ C S ]  for a justification of the term), are completely specified by R, as far as 
their second-order statistics are concerned. 

Similar properties can be derived for the n x n matrix C, 4 ~ [ z z t ] ,  which is 
called the correlation matrix of z. 
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Complex Gaussian random vectors 

A complex random vector z = x+ jy E Cn is called Gaussian if its real part x and 
imaginary part y are jointly Gaussian, or, equivalently, if the real random vector 

is Gaussian. 
Unlike real Gaussian random vectors, their complex counterparts are not com- 

pletely specified by their mean values and covariance matrices (the pseudocovari- 
ance matrices are also needed). In fact, to specify the pdf of z, and hence of i ,  we 
need, in addition to IE [z], the covariance matrix of 5: 

which is completely specified by & and g. In order to be able to uniquely 
determine R,, Ry,  and Rxy fiom &, we need to restrict our attention to the 
subclass of proper Gaussian random vectors, also called circularly symmetric. The 
covariance matrix of i can be written as follows: 

Hence, a circularly symmetric complex Gaussian random vector is characterized 
by pz and %. We write2 z N 3\1,(pZ, &). The probability density function of z 
is given by 

The following theorem [C.5] describes important properties of circularly sym- 
metric Gaussian random vectors. 

2 ~ h i s  notation is meant to avoid confusion with the real case and as areminder that, in our context, 
circular symmetry is a property of Gaussian complex random vectors. 
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Theorem C.2.1 If z N Nc(pz, K), then every afine transformation 

yields a circularly symmetric Gaussian RV y - 3\C,(Apz + b, A&A~).  Ifzl and 
22 are independent, circularly symmetric Gaussian RVs, the linear combination 
alzl + ~ 2 2 2 ,  where a1 # 0 and a2 are complex numbers, is circularly symmetric 
Gaussian. 

C.3 Random matrices 

A random matrix is a matrix whose entries are random variables. Consequently, a 
random matrix is described by assigning the joint probability density function (pdf) 
of its entries, which is especially easy when these are independent. For example, an 
m x n matrix A, m 5 n, whose elements are independent identically distributed 
N(0,l) real RVs has pdf [C.2] 

An m x n matrix B with iid complex Gaussian 3\1,(0,1) entries has pdf [C.2] 

We have the following theorem [C.4]: 

Theorem C.3.1 If A is a given m x m Hermitian matrix such that I ,  + A > 0 
and B is an m x n matrix whose entries are iid as 1V',(O, I), then 

IE[etr (-ABB~)] = det (I, + A)-n (C.27) 

The eigenvalues of a random matrix are also random variables and hence can 
be described by their joint probability density function. An important special case 
occurs is that of a complex Wishart matrix, that is, a random complex Hermitian 
square m x m matrix W A B B ~ ,  with B as in (C.26). The pdf of the ordered 
eigenvalues X = (A1, . . . , A,), 0 5 X1 5 . . . 5 Am, of W is given by [C.2, C.81 

where r,(a) A n:i1 r ( a  - i). The joint pdf of the unordered eigenvalues is 
obtained from (C.28) by dividing it by m!. 
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It is interesting to observe the limiting distribution of the eigenvalues of a Wishart 
matrix as its dimensions grow to infinity. To do this, we define the empirical distri- 
bution of the eigenvalues of an n x n random matrix A as the function F(X) that 
yields the fraction of eigenvalues of A not exceeding A. Formally, 

1 
F(A) - I { &  ( A )  : &(A)  < A )  I (C.29) 

n 

The empirical distribution is generally a random process. However, under certain 
mild technical conditions [C.7], as n -+ oo the empirical distribution converges to 
a nonrandom cumulative distribution function. For a Wishart matrix we have the 
following theorem, a classic in random-matrix theory [C.2]: 

Theorem C.3.2 Consider the sequence of n x m matrices A,, with iid entries hav- 
ing variances lln; moreovel; let m = m(n), with limn,, m(n)/n = c > 0 and 

A jinite. Next, let B, = A,A~. As n -+ oo, the empirical eigenvalue distribution of 
B, tends to the probability density function 

with A* (fi f I ) ~ .  

The theorem that follows [C.l] describes an important asymptotic property of a 
class of matrices. This is a special case of a general theory described in [C.3]. 

Theorem C.3.3 Let ( H , ( S ) ) ~ ~ ~  be an independent family of n x n matrices whose 
entries are iid complex Gaussian random variables with independent, equally dis- 
tributed real and imaginary parts. Let A, (s) 4 f ( H ,  (s)tH, (s))  where f is a 
real continuous function on R. Let (Bn (t))tET be a family of deterministic matri- 
ces with eigenvalues X I  (n, t ) ,  . . . , A, (n, t )  such that for all t E 'J 

sup rn* X i  (n, t )  < oo 
n z  

and (B,(t), ~ i ( t ) ) ~ ~ ~  has a limit distribution. Then A,(s) converges in distri- 
bution almost surely to a compactly supported probability measure on R for each 
s E S and, almost surely as n -+ oo, 
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Delia, 

Computation of error 
probabilities 

Here we provide some useful formulas for the calculation o f  error probabili- 
ties. We first give a closed-form expression for the expectation of  a function 
o f  ;I chi-square-distributed random variable. Next, we describe a technique 
for the evaluation o f  pairwise error probabilities. Based on numerical inte- 
gration, it allows the computation o f  pairwise error probabilities within any 
degree o f  accuracy. 
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D.l Calculation of an expectation involving the Q func- 
tion 

Define the random variable 
n 

where Xi 4 Aa:, A a constant and Qi, i = 1,. . . , n, a set of independent, identi- 
cally Rayleigh-distributed random variables with common mean value x A E a:. 
The RV X is chi-square-distributed with 2n degrees of freedom, i.e., its probability 
density function is 

We have the following result rD.4, p. 7811: 

where 

Moreover, for large enough x, we have 

and 

so that 

D.2 Numerical calculation of error probabilities 

Consider the evaluation of the probability P A P(v > x), where v and x are 
independent random variables whose moment-generating functions (MGFs) 

@,(s) 4 E[exp(-SV)] and @, (s) E[exp(-sx)] 
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are known. Defining A i? x - v, we have P = P(A < 0). We describe a method 
for computing the value of P based on numerical integration. Assume that the 
MGF of A,  which, due to the independence of v and x, can be written as 

is analytically known. Using the Laplace inversion formula, we obtain 

1 JC+jm @A ( s )  ds 
P(A  < 0) = -- 

~ X J  c-jm S 

where we assume that c is in the region of convergence (ROC) of <Pa(s). This 
is given by the intersection of the ROC of @, (s) and the ROC of a,(-s). Inte- 
gral (D.7) can be computed exactly by using the method of residues rD.3, D.81. 
This method works well when the integrand exhibits simple poles, but it becomes 
long and intricate when multiple poles or essential singularities are present. Here 
we describe a general approach based on numerical calculation of the integral. 

Expand the real and imaginary parts in (D.7). We have the following result: 

The change of variables w = c d G / x  yields 

and this integral can be approximated numerically by using a Gauss-Chebyshev 
numerical quadrature rule with L nodes rD.61. We have 

where 7 k  4 tan((k - 1 / 2 ) n / ~ ) ,  and EL -+ o as L -+ 00. In numerical calcula- 
tions, a rule-of-thumb choice yields L = 64. 
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Example D.1. 

As a special case of the above, consider the calculation of the expectation 

where Q(y) is again the Gaussian tail function, i.e., Q(y) A B(v > y) with v 
N(0, I), and J is a nonnegative random variable. Defining A A J - v2, we have 
P = (1/2)P[A < 01. Thus, 

Here the ROC of @A (s) includes the complex region defined by (0 < R(s) < 1/21. 
Therefore, we can safely assume 0 < c < 112: a good choice is c = 114, corre- 
sponding to an integration line in the middle of the minimal ROC of GA(s). The 
latter integral can be evaluated numerically by using (D.9). 0 

D.3 Application: MIMO channel 

Here we apply the general technique outlined above to calculate pairwise error 
probabilities for MIMO channels affected by fading. 

D.3.1 Independent-fading channel with coding 

The channel equation can be written as 

yi = Hixi + zi i =  1, ..., N (D. 11) 

where N is the code block length, Hi E (Crt is the ith channel gain matrix, xi E 

(Ct is the ith transmitted symbol vector (each entry transmitted from a different 
antenna), yi E (Cr is the ith received sample vector (each entry received from 
a different antenna), and zi E (Cr is the ith received noise sample vector (each 
entry received from a different antenna). We assume that the channel gain matrices 
Hi are elementwise independent and independent of each other with [HiIjk 
3\1,(0,1). Also, the noise samples are independent with [ z ] ~  N &(O, No). 
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It is straightforward to obtain the PEP associated with the two code words X = 
A 

( x l , .  . . , x N )  and X = . . , GN) as follows: 

Setting 

a straightforward computation yields 

(D. 12) 

(D. 13) 

(D. 14) 

and the result of Example D. 1 applies. 

D.3.2 Block-fading channel with coding 

Here we assume that the channel gain matrices Hi are independent of the time 
index i and are equal to H: under this assumption the channel equation is 

where H E Crt, X = ( x l , . .  . , x N )  E CtN, Y E CTN,  and Z E CrN.  We assume 
iid entries [HIij Nc(O, 1 )  and i.i.d. [ZIij - Nc(O, No). We obtain 

A 

where A X - X. 
Setting 
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we can evaluate the PEP by resorting to (D. 10). Apply Theorem C.3.1. First, notice 
that J can be written in the form 

where hi denotes the ith row of matrix H. Setting z = [hl, . . . , h,]t, we have 
p = 0 and X = ~ ~ [ z z t ]  = I,,. Finally, setting A = [I, @I ( A A ~ ) ] / ( ~ N ~ )  in 
(C.27), we obtain 

(s) IE[exp(-st)] = IE[exp(-szt Az)] 
= det (I + SEA)-' 

= det [ I ~  + s A A t / 2 ~ o ]  -' (D.19) 

and the result of Example D.l applies. 
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Notations and Acronyms 

US a.s., Almost surely RV, Random variable 

us ACS, Add-compare-select 

us APP, A posteriori probability 

us AWGN, Additive white Gaussian noise 

US BER, Bit error rate 

us BICM, Bit-interleaved coded modulation 

us BSC, Binary Symmetric Channel 

US cdf, Cumulative distribution function 

US CSI, Channel state information 

us FER, Frame-error rate 

US GSM, Global system for mobile com- 
munications (a digital cellular telephony 
standard) 

us GU, Geometrically uniform 

u s  iid, Independent and identically dis- 
tributed 

us IS-136, An American digital cellular 
telephony standard 

us LDPC, Low-density parity-check 

m LLR, Log-likelihood ratio 

In, Natural logarithm 

log, Logarithm in base 2 

MD, Maximum-distance 

us ML, Maximum-likelihood 

us MGF, Moment-generating function 

uw MIMO, Multiple-input, multiple-output 

us MMSE, Minimum-mean-square error 

us MPEG, A standard algorithm for coding 
of moving pictures and associated audio 

IS MRC, Maximum-ratio combining 

MSE, Mean-square error 

us pdf, Probability density function 

us PEP, Painvise error probability 

uw PN, Pseudonoise 

us ROC, Region of convergence 

us RX, Reception 

us SIMO, Single-input, multiple-output 

SISO, Soft-input, soft-output 

us SNR, Signal-to-noise ratio 

uw SPA, Sum-product algorithm 

us TCM, Trellis-coded modulation 

TX, Transmission 

us UMTS, A third-generation digital cellu- 
lar telecommunication standard 

us VA, Viterbi algorithm 

us CNZi f (XI,. . . , xn), Sum with respect 
of all variables except xi 

a*, Conjugate of complex number a 

uw (a)+ A rnax(0, a), Equal to a if a > 0, 
equal to 0 otherwise. 

US A+, (Moore-Penrose) pseudoinverse of 
matrix A 

us A', Transpose of matrix A 

uw A+, Conjugate (or Hermitian) transpose 
of matrix A 

u s  I I A 11, Frobenius norm of matrix A 

us C, The set of complex numbers 

dE, Euclidean distance 

us dH, Hamming distance 

uw deg g(D), Degree of polynomial g(D) 

bij, Kronecker symbol (hij = 1 if i = j, 
= 0 otherwise) 

IE[X], Expectation of the random vari- 
able X 

us etr  (.) exp(Tr (.)) 

us IF2, The binary field {O,l) equipped with 
modulo-:! sum and product. 

y, Asymptotic power efficiency of a sig- 
nal constellation - 71, Asymptotic coding gain 

w I,, The n x n identity matrix 



3, Imaginary part 

log, bgarithm to base 2 

US &(x) A (27~)-'/~ Jzw exP(-z2/2) dz, 
The Gaussian tail function 

Rb, Transmission rate, in bit/s 

= R, Real part 

W, The set of real numbers 

W+, The set of nonnegative real numbers 

V[X], Variance of the random variable X 

W ,  Shannon bandwidth 

W H ,  Hamming weight 

uzr A, Equal by definition 

X N N(p, u2), X is a real Gaussian RV 
with mean p and variance u2 

Notations and acronyms 

X N Nc(p, u2), X is a circularly dis- 
tributed complex Gaussian RV with mean 
p and IE[Ix~~]  = u2 

uzr XlLY, The RVs X and Y are statisti- 
cally independent 

a cc b, a is proportional to b 

US r(x) A J,O" ux-l e -U du, The Gamma 
function 

US p, Transmission rate, in bit/dimension 

= Tk (A), Trace of matrix A 

vec(A), The column vector obtained by 
stacking the columns of A on top of each 
other 

[A], Equal to 1 if proposition A is true, 
equal to 0 if it is false 

uzr A \ a, The set A without its element a 



Index 

A 
A posteriori probability, 76 
Adaptive coding and modulation, 15 
Alarnouti code, 351, 353,354,373, 375 

B 
Bandwidth, 38 

equivalent noise, 47 
Fourier, 46 
Shannon, 46,5 1,194 

BCJR algorithm, 134, 138, 257, 264, 267, 
285 

for binary systematic codes, 137 
Beamforming, 33 1 
Belief propagation, 267 
BICM, 225 

capacity, 228 
Bit error rate, 45 
Bound 

Bhattacharyya, 44 
Chernoff, 89 
Singleton, 104, 120 
union, 43 
union-Bhattacharyya, 66 

C 
Capacity 

of memoryless channels, 388 
delay-limited, 333 
of MIMO channels, 14 

Catastrophicity, 161, 168 
Cayley-Hamilton theorem, 401 
Channel, 38.5 

&-outage capacity, 86 
flat in frequency, 31 
flat in time, 31 
additive white Gaussian noise, 39 
AWGN, 11,12,21 

bandlimited, 53 

capacity, 50 
binary symmetric, 387, 388 

capacity, 388 
block fading, 327,335 

regular, 334 
block-fading, 100, 176 
capacity, 8, 50,70, 388, 390 

constellation-constrained, 56,94 
ergodic, 115 
zero-outage, 115 

continuous 
entropy, 389 

continuous-time, 20 
cutoff rate, 391 
discrete-time, 20 
entropy 

conditional, 386 
input, 385 
joint, 385 
output, 385 

equivocation, 386 
ergodic, 32, 85, 101, 305, 311, 328 

capacity, 85 
fading, 11 

capacity, 92, 96, 98 
Rayleigh, 84 

frequency flat, slow, 84 
frequency-selective, 20, 351 
impulse response, 20 
infinitely noisy, 388 
inversion, 106 
linear, 20 
memoryless, 39 
MIMO, 302 

capacity, 305,308,310-312,314,316- 
325,338,392,393 

completely correlated, 306 
reciprocity, 310, 322 



rich scattering, 306 
separately correlated, 306, 323 
uncorrelated keyhole, 307 

mutual information 
instantaneous, 86, 325 

narrowband, 84 
noiseless, 388 
non-time-selective, frequency-selective, 

20 
non-time-selective, non-frequency-selective, 

21 
nonergodic, 32,85, 86, 306, 325 
overspread, 32 
Rayleigh fading, 91 
reliability function, 391 
Rice, 307 
space-selective, 3 1 
state information, 12, 87, 95, 106, 307, 

335,338,343,356,392 
stationary memoryless, 129, 255, 284, 

385 
time-invariant, 20 
time-selective, 20, 30 
time-selective, frequency selective, 21 
transition function, 385 
underspread, 32 
wireless, 11 

Chi-square pdf, 113, 175 
Cholesky factorization, 337,365,404 
Code 

algebraic, 67 
binary, 42,67 
block, 40 
capacity-approaching, 10 
concatenated, 10 
convolutional, 10, 158, 165, 194,350 

best known, 177 
nonlinear, 208 
punctured, 177 
state diagram, 159 
tail biting, 183 
trellis, 159 
trellis termination, 18 1, 182 

diversity, 13 
Hamming, 73,241 
in a signal space, 4 
in the signal space, 40 
LDPC, 10,243,274 

irregular, 274 
parallel concatenated, 248 
random, 8 
Reed-Muller, 145 
ReedSolomon, 10 
Reed-Muller, 362 
Reed-Solomon, 109 
repeat-accumulate, 248 
repetition, 6,72, 126,246,247 
single-parity-check, 72, 143,246, 247 
space-time, 15,344,350 

linear, 354 
trellis, 356 

systematic, 71, 127,255 
trellis 

factor graph, 246 
turbo, 10,248,281 
universe, 74,75 
word, 4,40 

future, 141 
past, 141 
state, 141 

Coding 
error-control, 6 
error-correcting, 6 
gain, 11,57,91, 188, 194 

asymptotic, 58 
Coherence 

bandwidth, 30 
distance, 30 
time, 30 

Concatenation 
parallel, 28 1, 29 1 
serial, 282,291 

Constellation 
dimensionality, 40 
distance-uniform, 63 
geometrically uniform, 62,64,65 
multidimensional, 199 
Voronoi-uniform. 63 

D 
Decoder 

SISO, 284,295 
Decoding 

algebraic, 5 
iterative, 10 
MAP, 236 



Index 425 

soft, 5 
symbol MAP, 76 
symbol-by-symbol, 7 

Delay 
constraint, 101, 105,331 
operator, 162 
spread, 30 

Demodulation, 5 3 9  
coherent, 84 

Demodulator, 38 
Differential 

decoding, 201 
encoding, 200-202 

Distance 
Bhattacharyya, 41 
enumerator function, 66 
Euclidean, 13,40,42,74,347 

minimum, 41,45 
free, 188,222 
Hamming, 13,41,42,73,74 

block, 103 
minimum, 41,91 

Diversity, 109 
code, 91 
combining, 1 11 

equal-gain, 116 
maximal-ratio, 112 
selection, 117 

delay, 350 
frequency, 1 1 1 
polarization, 110 
space, 110 
time, 11 1 

Doppler 
shift, 23 
spread, 30 

Doppler shift, 23 

E 
Efficiency 

bandwidth, 48,49, 194 
power, 48,49,67,69, 188 

Encoder 
catastrophic, 168 
convolutional, 164, 197,248 
minimal, 168 
polynomial, 167 
systematic, 166, 168 

TCM, 196 
turbo, 282 

Entropy, 384 
continuous channels, 389 

Error 
detection, 72 
event, 169,210,222 
floor, 289,290 
state diagram, 222 

Errorprobability, 12,39,42,44,49,210,295, 
391 

bit, 39,45 
block-fading channel, 102 
fading channels, 88 
in TCM, 209,210 
of convolutional codes, 169 
pairwise, 13, 66, 170,345 

MIMO channel, 41 8 
symbol, 7 
word, 7 

Euclidean distance, 21 1 
criterion, 348,349 

EXIT chart, 292,295,296 
Extrinsic message, 256,285,292,296 

F 
Factor graph, 236,237 

cycles, 238,243,251,261 
normal, 238-241 

Fading, 22,24 
figure, 29 
frequency-selective, 30 
models, 26 

Frobenius norm, 102,344,404 

G 
Gain 

diversity, in MIMO systems, 14, 304, 
347,368,369 

rate, in MIMO systems, 14, 304, 368, 
369 

Galois field, 74 
Gauss-Chebyshev quadrature rule, 417 
Gauss-Jordan elimination, 402 
Gauss-Jordan elimination, 71 
Gaussian random vector, 409 
Gaussian tail function, 44,418 
Generator matrix, 68, 127, 164, 168 
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Geometric uniformity, 62,217 

H 
Hadamard inequality, 393,403 
Hamming 

block distance, 176 
distance 

minimum, 289 
weight, 170 

Hard decision, 5 

I 
Information 

measure, 384 
mutual, 387 
outage, 86 
rate, 38 

Interference 
intersymbol, 303, 351 
multiple-access, 303 

Interleaver, 10,98,248, 281,285,290 
Intrinsic message, 256,284 
Iverson function, 238, 240, 241, 244, 262, 

263 

J 
Jensen inequality, 93 

L 
Labeling 

Gray, 46,227 
quasi-Gray, 227 
Ungerboeck, 227 

Laplace inversion formula, 417 

M 
MAP rule, 76 
Marginalization, 8,236 
Matrix 

column-uniform, 21 6 
definite, 402 
determinant, 399 
diagonal, 402 
Hermitian, 402 
orthogonal, 402 
QR decomposition, 405 
random, 412 

eigenvalues, 412 
rank, 400 

row echelon form, 402 
row-uniform, 216 
scalar product, 403 
singular-value decomposition, 405 
spectral decomposition, 405 
symmetric, 402 
trace, 399 
uniform, 216 
unitary, 402 
Wishart, 412, 413 

Max-sum algorithm, 262 
Modulation, 38 

binary antipodal, 114 
multilevel, 10 
multiresolution, 16 

Moment generating function, 416 
Moore-Penrose pseudoinverse, 358,406 
Multipath propagation, 12,22 

N 
Nakagami pdf, 29 

0 
Orthogonal design, 353,354,374,375 
Outage 

capacity, 326,333 
probability, 86, 105,325,326, 331,333 

P 
Parity-check matrix, 71, 128,240,243 
Path loss, 21 
Power constraint 

long-term, 331,332 
short-term, 331 

Pseudo-noise sequence, 33 
PSK 

M-ary, 47 
asymmetric, 65 
binary, 201 
octonary, 65 
quaternary, 42,64,65,78 

Q 
QR decomposition, 405 

R 
Random vector 

circularly symmetric, 41 1 
complex Gaussian, 41 1 
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proper complex, 410 
Rank-and-determinant criterion, 346,349 
Rayleigh 

fading, 12 
pdf, 27,84 

normalized, 27 
Receiver 

interface, in MIMO, 358,363 
D-BLAST, 366,374 
iterative, 367 
MMSE, 359,360 
V-BLAST, 363-365,367,374 
zero-forcing, 359, 360 

Region 
decision, 43 
Voronoi, 43 

Repetition function, 239,251 
Rice 

factor, 28 
pdf, 27 

normalized, 28 

S 
Set partitioning, 196 

transparent to rotations, 204 
Shadowing, 22 
Shift register, 159 
Signal 

binary, 45 
constellation, 2, 38 
design, 39 
elementary, 4 
energy, 38 
labeling, 38 

Signal-to-noise ratio, 47,49, 303 
Signals 

binary antipodal, 42,45,89,96 
orthogonal, 54, 103 

Singular-value decomposition, 308,405 
Sphere 

hardening, 52 
packing, 52 

Subcode, 74 
cosets, 74 

Sum-product algorithm, 249,278 
Syndrome, 71, 128,279 
System 

bandwidth-limited, 10,54 

power-limited, 54 

T 
Tanner graph, 241,255 
TCM 

coding gain, 194 
encoder, 196 

transparent to rotations, 206 
transparent to rotations, 203 
trellis 

transparent to rotations, 205 
Transfer function of a graph, 172 
Trellis, 126, 158 

branch metric, 130 
complexity, 139 
in TCM, 189 
minimal, 139,143 
of a block code, 126, 127 
of a convolutional code, 158, 159 
parallel transitions, 189, 191, 194, 196, 

198,208,209,212 
permutation, 144 
sectionalization, 144 
tail-biting, 15 1,246 

Trellis-coded modulation, 188 
Turbo algorithm, 283,286,288 

convergence, 288 

u 
Unequal error protection, 16 
Ungerboeck rules, 196,209 
Union bound, 210 

v 
Viterbi algorithm, 129, 130, 138, 152, 158, 

208,267,358 
ACS step, 130 
optimality, 13 1 
sliding window, 133 

W 
Water filling, 97, 309 
Weight 

enumerator, 75 
enumerator function, 171 
Hamming, 73 

z 
Zero-outage capacity, 107 




