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Preface

Dios te libre, lector, de prélogos largos
Francisco de Quevedo Villegas, El mundo por de dentro.

There are, so it is alleged, many ways to skin a cat. There are also many ways
to teach coding theory. My feeling is that, contrary to other disciplines, coding
theory was never a fully unified theory. To describe it, one can paraphrase what
has been written about the Enlightenment: “It was less a determined swift river
than a lacework of deltaic streams working their way along twisted channels” (E.
O. Wilson, Consilience, 1999).

The seed of this book was sown in 2000, when I was invited to teach a course
on coded modulation at Princeton University. A substantial portion of students
enrolled in the course had little or no background in algebraic coding theory, nor
did the time available for the course allow me to cover the basics of the discipline.
My choice was to start directly with coding in the signal space, with only a marginal
treatment of the indispensable aspects of ‘“‘classical” algebraic coding theory. The
selection of topics covered in this book, intended to serve as a textbook for a first-
level graduate course, reflects that original choice. Subsequently, I had the occasion
to refine the material now collected in this book while teaching Master courses at
Politecnico di Torino and at the Institute for Communications Engineering of the
Technical University of Munich.

While describing what can be found in this book, let me explain what can-
not be found. I wanted to avoid generating an omnium-gatherum, and to keep
the book length at a reasonable size, resisting encyclopedic temptations (uéya
BiBAiov péya kardr). The leitmotiv here is soft-decodable codes described
through graphical structures (trellises and factor graphs). I focus on the basic prin-
ciples underlying code design, rather than providing a handbook of code design.
While an earlier exposure to coding principles would be useful, the material here
only assumes that the reader has a firm grasp of the concepts usually presented
in senior-lever courses on digital communications, on information theory, and on
random processes.



Xiv

Each chapter contains a topic that can be expatiated upon at book length. To in-
clude all facts deserving attention in this tumultuous discipline, and then to clarify
their finer aspects, would require a full-dress textbook. Thus, many parts should
be viewed akin to movie trailers, which show the most immediate and memorable
scenes as a stimulus to see the whole movie.

As the mathematician Mark Kac puts it, a proof is that which convinces a rea-
sonable reader; a rigorous proof is that which convinces an unreasonable reader. I
assume here that my readers are reasonable, and hence try to avoid excessive rigor
at the price of looking sketchy at times, with many treatments that should be taken
modulo mathematical refinements.

The reader will observe the relatively large number of epexegetic figures, justi-
fied by the fact that engineers are visual animals. In addition, the curious reader
may want to know the origin of the short sentences appearing at the beginning of
each chapter. These come from one of the few literary works that was cited by C. E.
Shannon in his technical writings. With subtle irony, in his citation he misspelled
the work’s title, thus proving the power of redundancy in error correction.

Some sections are marked %. This means that the section’s contents are crucial
to the developments of this book, and the reader is urged to become comfortable
with them before continuing.

Some of the material of this book, including a few proofs and occasional ex-
amples, reflects previous treatments of the subject I especially like: for these I am
particularly indebted to sets of lecture notes developed by David Forney and by
Robert Calderbank.

I hope that the readers of this book will appreciate its organization and contents;
nonetheless, I am confident that Pliny the Elder is right when he claims that “there
is no book so bad that it is not profitable in some part.”

Many thanks are due to colleagues and students who read parts of this book
and let me have their comments and corrections. Among them, a special debt of
gratitude goes to the anonymous reviewers. I am also grateful to my colleagues
Joseph Boutros, Marc Fossorier, Umberto Mengali, Alessandro Nordio, and Gior-
gio Taricco, and to my students Daniel de Medeiros and Van Thanh Vu. Needless
to say, whatever is flawed is nobody’s responsibility but mine. Thus, I would ap-
preciate it if the readers who spot any mistake or inaccuracy would write to me at
e.biglieri@ieee.org. An errata file will be sent to anyone interested.

Qu’on ne dise pas que je n’ai rien dit de nouveau:
la disposition des matiéres est nouvelle.
Blaise Pascal, Pensées, 65.
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Tour d’horizon

In this chapter we introduce the basic concepts that will be dealr with in the
_balance of the book and pfovidc a short summary of major results. We first
present coding in the signal space, and the techniques used for decoding.
Next, we high]ight the basic differences between the additive white Gaussian
noise channel and different models of fading channels. The performance
bounds followmg Shannon’s results are described, along w1th the historical
development of coding theory -



2 Chapter 1. Tour d’horizon

1.1 Introduction and motivations

This book deals with coding in the signal space and with “soft” decoding. Consider
a finite set § = {x} of information-carrying vectors (or signals) in the Euclidean
N-dimensional space R?, to be used for transmission over a noisy channel. The
output of the channel, denoted y, is observed, and used to decode, i.e., to generate
an estimate X of the transmitted signal. Knowledge of the channel is reflected by
the knowledge of the conditional probability distribution p(y | x) of the observable
Y. given that x was transmitted. In general, as in the case of fading channels
(Chapters 4, 10), p(y | x) depends on some random parameters whose values may
or may not be available at the transmitter and the receiver.

The decoder chooses X by optimizing a predetermined cost function, usually
related to the error probability P(e), i.e., the probability that X # x when x is
transmitted. A popular choice consists of using the maximum-likelihood (ML)
rule, which consists of maximizing, over x € 8, the function p(y | x). This rule
minimizes the word error probability under the assumption that all code words are
equally likely. If the latter assumption is removed, word error probability is min-
imized if we use the maximum a posteriori (MAP) rule, which consists of maxi-
mizing the function

p(y [ x¥)p(x)

oy~ p(y | x)p(x) (1.1)

p(x|y) =
(here and in the following, the notation « indicates proportionality, with a propor-
tionality factor irrelevant to the decision procedure). To prove the above statements,
denote by R(x) the decision region associated with the transmitted signal x (that
is, the receiver chooses x if and only if y € R(x)). Then

Ple) £ ) P(y ¢ R(x),x)
= 1—2/92( )p(y,X)dy
= 1 X d
g /jz o p(x | y)p(y) dy

P(e) is minimized by independently maximizing each term in the sum, which is
obtained by choosing R(x) as the region where p(x | y) is a maximum over x:
thus, the MAP rule yields the minimum P(e). If p(x) does not depend on x, i.e.,
p(x) is the same for all x € 8, then the x that maximizes p(x | y) also maximizes
p(y | x), and the MAP and ML rules are equivalent.



1.1. Introduction and motivations 3

Selection of & consists of finding practical ways of communicating discrete mes-
sages reliably on-a real-world channel: this may involve satellite communications,
data transmission over twisted-pair telephone wires or shielded cable-TV wires,
data storage, digital audio/video transmission, mobile communication, terrestrial
radio, deep-space radio, indoor radio, or file transfer. The channel may involve
several sources of degradation, such as attenuation, thermal noise, intersymbol in-
terference, multiple-access interference, multipath propagation, and power limita-
tions.

The most general statement about the selection of § is that it should make
the best possible use of the resources available for transmission, viz., bandwidth,
power, and complexity, in order to achieve the quality of service (QoS) required.
In summary, the selection should be based on four factors: error probability, band-
width efficiency, the signal-to-noise ratio necessary to achieve the required QoS,
and the complexity of the transmit/receive scheme. The first factor tells us how
reliable the transmission is, the second measures the efficiency in bandwidth ex-
penditure, the third measures how efficiently the transmission scheme makes use
of the available power, and the fourth measures the cost of the equipment.

Here we are confronted with a crossroads. As discussed in Chapter 3, we should
decide whether the main limit imposed on transmission is the bandwidth- or the
power-limitation of the channel.

To clarify this point, let us define two basic parameters. The first one is the
spectral (or bandwidth) efficiency R,/W, which tells us how many bits per sec-
ond (F2) can be transmitted in a given bandwidth (W). The second parameter is
the asymptotic power efficiency v of a signal set. This parameter is defined as fol-
lows. Over the additive white Gaussian noise channel with a high signal-to-noise
ratio (SNR), the error probability can be closely approximated by a complemen-
tary error function, whose argument is proportional to the ratio between the energy
per transmitted information bit £, and twice the noise power spectral density of
the noise Ny. The proportionality factor v expresses how efficiently a modulation
scheme makes use of the available signal energy to generate a given error probabil-
ity. Thus, we may say that, at least for high SNR, a signal set is better than another
if its asymptotic power efficiency is greater (at low SNR the situation is much more
complicated, but the asymptotic power efficiency still plays some role). Some pairs
of values of R;/W and ~y that can be achieved by simple choices of S (called ele-
mentary constellations) are summarized in Table 1.1.

The fundamental trade-off is that, for a given QoS requirement, increased spec-
tral efficiency can be reliably achieved only with a corresponding increase in the
minimum required SNR. Conversely, the minimum required SNR can be reduced
only by decreasing the spectral efficiency of the system. Roughly, we may say
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S Ry,/W ~

3log, M

PSK  log, M  sin? % log, M

3 10g2 M
I M —

QAM 0g9 5 M —1
log, M 1

Table 1.1: Maximum bandwidth- and power-efficiency of some M -ary modulation
schemes: PAM, PSK, QAM, and orthogonal FSK.

that we work in a bandwidth-limited regime if the channel constraints force us to
work with a ratio R,/W much higher than 2, and in a power-limited regime if the
opposite occurs. These regimes will be discussed in Chapter 3.

1.2 Coding and decoding

In general, the optimal decision on the transmitted code word may involve a large
receiver complexity, especially if the dimensionality of S is large. For easier deci-
sions it is useful to introduce some structure in 8. This process consists of choosing
a set X of elementary signals, typically one- or two-dimensional, and generating
the elements of S as vectors whose components are chosen from X: thus, the ele-
ments of § have the form x = (z1, x2, ... ,z,) with z; € X. The collection of
such x will be referred to as a code in the signal space, and x as a code word. In
some cases it is also convenient to endow 8§ with an algebraic structure: we do this
by defining a set C where operations are defined (for example, € = {0,1} with
mod-2 addition and multiplication), and a one-to-one correspondence between el-
ements of § and C (in the example above, we may choose 8 = {+V¢&, ~VE},
where € is the average energy of 8, and the correspondence € — S obtained by
setting 0 — +v&, 1 — —V&).

The structure in & may be described algebraically (we shall deal briefly with
this choice in Chapter 3) or by a graphical structure on which the decoding process
may be performed in a simple way. The graphical structures we describe in this
book are trellises (Chapters 5, 6, and 7) and factor graphs (Chapters 8 and 9).
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Figure 1.1: Observing a channel output when x is transmitted.

We shall examine, in particular, how a given code can be described by a graphical
structure and how a code can be directly designed, once its graphical structure has
been chosen. Trellises used for convolutional codes (Chapter 6) are still the most
popular graphical models: the celebrated Viterbi decoding algorithm can be viewed
as a way to find the shortest path through one such trellis. Factor graphs (Chapter
8) were introduced more recently. When a code can be represented by a cycle-free
factor graph, then the structure of the factor graph of a code lends itself naturally to
the specification of a finite algorithm (the sum-product, or the max-sum algorithm)
for optimum decoding. If cycles are present, then the decoder proceeds iteratively
(Chapter 9), in agreement with a recent trend in decoding, and in general in signal
processing, that favors iterative (also known as turbo) algorithms.

1.2.1 Algebraic vs. soft decoding

Consider transmission of the n-tuple x = (z1, ..., z,) of symbols chosen from X.
At the output of the transmission channel, the vectory = (y1, ..., yy) is observed
(Figure 1.1).

In algebraic decoding, a time-honored yet suboptimal decoding method, “hard”
decisions are separately made on each component of the received signal y, and then
the vector X = (%1,...,4y) is formed. This procedure is called demodulation of
the elementary constellation. If X is an element of 8, then the decoder selects X =
x. Otherwise, it claims that X “contains errors,” and the structure of 8 (usually an
algebraic one, hence the name of this decoding technique) is exploited to “correct”
them, i.e., to change some components of X so as to make X an element of 8.
The channel is blamed for making these errors, which are in reality made by the
demodulator.

A substantial improvement in decoding practice occurs by substituting algebraic
decoders with soft decoders. In the first version that we shall consider (soft block
decoding), an ML or a MAP decision is made on the entire code word, rather than
symbol by symbol, by maximizing, over x € 8, the function p(y | x) or p(x | y),
respectively. Notice the difference: in soft decoding, the demodulator does not
make mistakes that the decoder is expected to correct. Demodulator and decoder
are not separate entities of the receiver, but rather a single block: this makes it
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Figure 1.2: Ilustrating error-correction coding theory.

decoder |

—# encoder |

source signals signals source
symbols symbols

Figure 1.3: Illustrating error-control coding theory.

more appropriate to talk about error-control rather than error-correcting codes.
The situation is schematized in Figures 1.2 and 1.3. Soft decoding can be viewed
as an application of the general principle [1.11]

Never discard information prematurely that may be useful in making a
decision until after all decisions related to that information have been
completed,

and often provides a considerable improvement in performance. An often-quoted
ballpark figure for the SNR advantage of soft decoders versus algebraic is 2 dB.

Example 1.1

Consider transmission of binary information over the additive white Gaussian chan-
nel using the following signal set (a repetition code). When the source emits a 0,
then three equal signals with positive polarity and unit energy are transmitted; when
the source emits a 1, then three equal signals with negative polarity are transmitted.
Algebraic decoding consists of individually demodulating the three signals received
at the channel output, then choosing a 0 if the majority of demodulated signals ex-
hibits a positive polarity, and choosing a 1 otherwise. The second strategy (soft
decoding) consists of demodulating the entire block of three signals, by choosing,
between + + + and — — —, the one with the smaller Euclidean distance from the
received signal.

Assume for example that the signal transmitted is x = (41, 41, +1), and that
the signal received is y = (0.8, ~0.1,—0.2). Individual demodulation of these
signals yields a majority of negative polarities, and hence the (wrong) decision that
a 1 was transmitted. On the other hand, the squared Euclidean distances between
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the received and transmitted signals are

d%[(0.8,-0.1,-0.2), (+1, +1,+1)] = (0.8—1)%4(—0.1~1)2+(-0.2—-1)* = 2.69
and

d%[(0.8,—0.1,-0.2), (=1, =1, =1)] = (0.841)24+(=0.141)2+(~0.24+1)* = 4.69

which leads to the (correct) decision that a 0 was transmitted. We observe that in
this example the hard decoder fails because it decides without taking into account
the fact that demodulation of the second and third received samples is unreliable, as
they are relatively close to the zero value. The soft decoder combines this reliability
information in the single parameter of Euclidean distance.

The probability of error obtained by using both decoding methods can be eas-
ily evaluated. Algebraic decoding fails when there are two or three demodulation
errors. Denoting by p the probability of one demodulation error, we have for hard
decoding the error probability

Pa(e) =3p*(1—p) +p°

where p = Q(+1/2/Ny), No/2 the power spectral density of the Gaussian noise,
and Q( -) the Gaussian tail function. For small-enough error probabilities, we have
p = exp(—1/Np), and hence

Pa(e) = 3p® ~ 3exp(—2/No)

For soft decoding, P(e) is the same as for transmission of binary antipodal signals

with energy 3 [1.1}:
6
Ps(e) =@Q <\/ Fo) ~ exp(—3/No)

This result shows that soft decoding of this code can achieve (even disregarding the
factor of 3) the same error performance of algebraic decoding with a signal-to-noise
ratio smaller by a factor of 3/2, corresponding to 1.76 dB. O

In Chapters 5, 6, and 7, we shall see how trellis structures and the Viterbi algo-
rithm can be used for soft block decoding.

Symbol-by-symbol decoding

Symbol-by-symbol soft decoders may also be defined. They minimize symbol er-
ror probabilities, rather than word error probabilities, and work, in contrast to
algebraic decoding, by supplying, rather than “hard” tentative decisions for the
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soft .
M _decoder p(wi | y)
. hard .
plai|y) — oo — maxp(zi | y)

Figure 1.4: MAP decoding: soft and hard decoder.

various symbols, the so-called soft decisions. A soft decision for z; is the a poste-
riori probability distribution of z; given y, denoted p(x;|y). A hard decision for
x; is a probability distribution such that p(z;|y) is equal either to O or to 1. The
combination of a soft decoder and a hard decoder (the task of the former usually be-
ing much harder that the latter’s) yields symbol-by-symbol maximum a posteriori
(MAP) decoding (Figure 1.4). We can observe that the task of the hard decoder,
which maximizes a function of a discrete variable (usually taking a small number
of values) is far simpler than that of the soft decoder, which must marginalize a
function of several variables. Chapter 8 will discuss how this marginalization can
be done, once the code is given a suitable graphical description.

1.3 The Shannon challenge

In 1948, Claude E. Shannon demonstrated that, for any transmission rate less than
or equal to a parameter called channel capacity, there exists a coding scheme that
achieves an arbitrarily small probability of error, and hence can make transmission
over the channel perfectly reliable. Shannon’s proof of his capacity theorem was
nonconstructive, and hence gave no guidance as to how to find an actual coding
scheme achieving the ultimate performance with limited complexity. The corner-
stone of the proof was the fact that if we pick a long code at random, then its av-
erage probability of error will be satisfactorily low; moreover, there exists at least
one code whose performance is at least as good as the average. Direct implemen-
tation of random coding, however, leads to a decoding complexity that prevents its
actual use, as there is no practical encoding or decoding algorithm. The general
decoding problem (find the maximum-likelihood vector x € § upon observation of
y = x + z) is NP-complete [1.2].

Figure 1.5 summarizes some of Shannon’s finding on the limits of transmis-
sion at a given rate p (in bits per dimension) allowed on the additive white Gaus-



1.3. The Shannon challenge 9

BER

Figure 1.5: Admissible region for the pair BER, &,/Ny. For a given code rate p,
only the region above the curve labeled p is admissible. The BER curve corre-
sponding to uncoded binary antipodal modulation is also shown for comparison.

sian noise channel with a given bit-error rate (BER). This figure shows that the
ratio £,/Np, where &, is the energy spent for transmitting one bit of informa-
tion at a given BER over an additive white Gaussian noise channel and Ny/2 is
the power spectral density of the channel noise, must exceed a certain quantity.
In addition, a code exists whose performance approaches that shown in the Fig-
ure. For example, for small-BER transmission at rate p = 1/2, Shannon’s lim-
its dictate €,/Ny > 0 dB, while for a vanishingly small rate one must guarantee
Ey/No > —1.6 dB. Performance limits of coded systems when the channel input is
restricted to a certain elementary constellation could also be derived. For example,
for p = 1/2, if we restrict the input to be binary we must have £,/Ny > 0.187 dB.

Since 1948, communication engineers have been trying hard to develop practi-
cally implementable coding schemes in an attempt to approach ideal performance,
and hence channel capacity. In spite of some pessimism (for a long while the
motto of coding theorists was “good codes are messy”’) the problem was eventu-
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ally solved in the early 1990s, at least for an important special case, the additive
white Gaussian channel. Among the most important steps towards this solution,
we may recall Gallager’s low-density parity-check (LDPC) codes with iterative
decoding (discovered in 1962 [1.9] and rediscovered much later: see Chapter 9);
binary convolutional codes, which in the 1960s were considered a practical solu-
tion for operating about 3 dB away from Shannon’s limit; and Forney’s concate-
nated codes (a convolutional code concatenated with a Reed—Solomon code can
approach Shannon’s limit by 2.3 dB at a BER of 107°). In 1993, a new class of
codes called turbo codes was disclosed, which could approach Shannon’s bound
by 0.5 dB. Turbo codes are still among the very best codes known: they combine
a random-like behavior (which is attractive in the light of Shannon’s coding theo-
rem) with a relatively simple structure, obtained by concatenating low-complexity
compound codes. They can be decoded by separately soft-decoding their compo-
nent codes in an iterative process that uses partial information available from all
others. This discovery kindled a considerable amount of new research, which in
turn led to the rediscovery, 40 years later, of the power and efficiency of LDPC
codes as capacity-approaching codes. Further research has led to the recognition
of the turbo principle as a key to decoding capacity-approaching codes, and to
the belief that almost any simple code interconnected by a large pseudorandom
interleaver and iteratively decoded will yield near-Shannon performance [1.7]. In
recent years, code designs have been exhibited which progressively chip away at
the small gap separating their performance from Shannon’s limit. In 2001, Chung,
Forney, Richardson, and Urbanke [1.5] showed that a certain class of LDPC codes
with iterative decoding could approach that limit within 0.0045 dB.

1.3.1 Bandwidth- and power-limited regime

Binary error-control codes can be used in the power-limited (i.e., wide-bandwidth,
low-SNR) regime to increase the power efficiency by adding redundant symbols to
the transmitted symbol sequence. This solution requires the modulator to operate at
a higher data rate and, hence, requires a larger bandwidth. In a bandwidth-limited
environment, increased efficiency in power utilization can be obtained by choosing
solutions whereby higher-order elementary constellations (e.g., 8-PSK instead of
2-PSK) are combined with high-rate coding schemes. An early solution consisted
of employing uncoded multilevel modulation; in the mid-1970s the invention of
trellis-coded modulation (TCM) showed a different way [1.10]. The TCM solution
(described in Chapter 7) combines the choice of a modulation scheme with that
of a convolutional code, while the receiver does soft decoding. The redundancy
necessary to power savings is obtained by a factor-of-2 expansion of the size of the
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elementary-signal constellation X. Table 1.2 summarizes some of the energy sav-
ings (“coding gains”) in dB that can be obtained by doubling the constellation size
and using TCM. These refer to coded 8-PSK (relative to uncoded 4-PSK) and to
coded 16-QAM (relative to uncoded 8-PSK). These gains can actually be achieved
only for high SNRs, and they decrease as the latter decrease. The complexity of
the resulting decoder is proportional to the number of states of the trellis describing
the TCM scheme.

Number coding coding
of gain gain
states (8-PSK) (16-QAM)
4 3.0 4.4
8 3.6 53
16 4.1 6.1
32 4.6 6.1
64 4.8 6.8
128 5.0 7.4
256 5.4 7.4

Table 1.2: Asymptotic coding gains of TCM (in dB).

1.4 The wireless channel

Coding choices are strongly affected by the channel model. We examine first the
Gaussian channel, because it has shaped the coding discipline. Among the many
other important channel models, some arise in digital wireless transmission. The
consideration of wireless channels, where nonlinearities, Doppler shifts, fading,
shadowing, and interference from other users make the simple AWGN channel
model far from realistic, forces one to revisit the Gaussian-channel paradigms de-
scribed in Chapter 3. Over wireless channels, due to fading and interference the
signal-to-disturbance ratio becomes a random variable, which brings into play a
number of new issues, among them optimum power allocation. This consists of
choosing, based on channel measurements, the minimum transmit power that can
compensate for the channel effects and hence guarantee a given QoS.

Among the most common wireless channel models (Chapters 2, 4), we recall the
flat independent fading channel (where the signal attenuation is constant over one
symbol interval, and changes independently from symbol to symbol), the block-
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fading channel (where the signal attenuation is constant over an N-symbol block,
and changes independently from block to block), and a channel operating in an
interference-limited mode. This last model takes into consideration the fact that in
a multiuser environment a central concern is overcoming interference, which may
limit the transmission reliability more than noise.

1.4.1 The flat fading channel

This simplest fading channel model assumes that the duration of a signal is much
greater than the delay spread caused by multipath propagation. If this is true, then
all frequency components in the transmitted signal are affected by the same random
attenuation and phase shift, and the channel is frequency-flat. If in addition the
channel varies very slowly with respect to the elementary-signal duration, then the
fading level remains approximately constant during the transmission of one signal
(if this does not occur, the fading process is called fast.)

The assumption of a frequency-flat fading allows it to be modeled as a process
affecting the transmitted signal in a multiplicative form. The additional assumption
of slow fading reduces this process to a sequence of random variables, each model-
ing an attenuation that remains constant during each elementary-signal interval. In
conclusion, if x denotes the transmitted elementary signal, then the signal received
at the output of a channel affected by slow, flat fading, and additive white Gaussian
noise, and demodulated coherently, can be expressed in the form

y=Rx+z (1.2)

where z is a complex Gaussian noise and R is a Gaussian random variable, having
a Rice or Rayleigh pdf.

It should be immediately apparent that, with this simple model of fading chan-
nel, the only difference with respect to an AWGN channel, described by the input—
output relationship

y=x+=z2 (1.3)

resides in the fact that R, instead of being a constant attenuation, is now a random
variable whose value affects the amplitude, and hence the power, of the received
signal. A key role here is played by the channel state information (CSI), i.e., the
fade level, which may be known at the transmitter, at the receiver, or both. Knowl-
edge of CSI allows the transmitter to use power control, i.e., to adapt to the fade
level the energy associated with x, and the receiver to adapt its detection strategy.
Figure 4.2 compares the error probability over the Gaussian channel with that
over the Rayleigh fading channel without power control (a binary, equal-energy
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uncoded modulation scheme is assumed, which makes CSI at the receiver irrele-
vant). This simple example shows how considerable the loss in energy efficiency
is. Moreover, in the power-limited environment typical of wireless channels, the
simple device of increasing the transmitted energy to compensate for the effect of
fading is not directly applicable. A solution is consequently the use of coding,
which can compensate for a substantial portion of this loss.

Coding for the slow, flat Rayleigh fading channel

Analysis of coding for the slow, flat Rayleigh fading channel proves that Ham-
ming distance (also called code diversity in this context) plays the central role
here. Assume transmission of a coded sequence x = (1,2, ... ,Zn), Where the
components of x are signals selected from an elementary constellation. We do
not distinguish here among block or convolutional codes (with soft decoding), or
block- or trellis-coded modulation. We also assume that, thanks to perfect (i.e.,
infinite-depth) interleaving, the fading random variables affecting the various sig-
nals zj, are independent. Finally, it is assumed that the detection is coherent, i.e.,
that the phase shift due to fading can be estimated and hence removed.

We can calculate the probability that the receiver prefers the candidate code
word X to the transmitted code word x (this is called the pairwise error probability
and is the basic building block of any error probability evaluation). This probability
is approximately inversely proportional to the product of the squared Euclidean
distances between the components of x, X that differ, and, to a more relevant extent,
to a power of the signal-to-noise ratio whose exponent is the Hamming distance
between x and X, called the code diversity. This result holds under the assumption
that perfect CSI is available at the receiver.

Robustness

From the previous discussion, it is accepted that coding schemes optimum for this
channel should maximize the Hamming distance between code words. Now, if the
channel model is uncertain or is not stationary enough to design a coding scheme
closely matched to it, then the best proposition may be that of a “robust” solution,
that is, a solution that provides suboptimum (but close to optimum) performance on
a wide variety of channel models. The use of antenna diversity with maximal-ratio
combining (Section 4.4.1) provides good performance on a wide variety of fading
environments. The simplest approach to understanding receive-antenna diversity
is based on the fact that, since antennas generate multiple transmission channels,
the probability that the signal will be simultaneously faded on all channels can be
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made small, and hence the detector performance improves. Another perspective is
based upon the observation that, under fairly general conditions, a channel affected
by fading can be turned into an additive white Gaussian noise (AWGN) channel
by increasing the number of antenna-diversity branches and using maximum-ratio
combining (which requires knowledge of CSI at the receiver). Consequently, it can
be expected (and verified by analyses and simulations) that a coded modulation
scheme designed to be optimal for the AWGN channel will perform asymptotically
well also on a fading channel with diversity, at the cost only of an increased receiver
complexity.

We may also think of space or time or frequency diversity as a special case of
coding. In fact, the various diversity schemes may be seen as implementations of
the simple repetition code, whose Hamming distance turns out to be equal to the
number of diversity branches. Another robust solution is offered by bit-interleaved
coded modulation, which consists of separating encoder and modulator with a bit
interleaver, as described in Section 7.9.

1.5 Using multiple antennas

Multiple receive antennas can be used as an alternative to coding, or in conjunction
with it, to provide rate and diversity gain. Assume that ¢ transmit and r receive
antennas are used. Then, a multiplicity of transmit antennas creates a set of parallel
channels that can be used to potentially increase the data rate up to a factor of
min{¢, 7} (with respect to single-antenna transmission) and hence generate a rate
gain. The other gain is due to the number of independent paths traversed by each
signal, which has a maximum value r£. There is a fundamental trade-off between
these two gains: for example, maximum rate gain, obtained by simultaneously
sending independent signals, entails no diversity gain, while maximum diversity
gain, obtained by sending the same signal from all antennas, generates no rate
gain. This point is addressed in Section 10.14.

Recent work has explored the ultimate performance limits in a fading environ-
ment of systems in which multiple antennas are used at both transmitter and re-
ceiver side. It has been shown that, in a system with ¢ transmit and r receive
antennas and a slow fading channel modeled by an ¢ X r matrix with random i.i.d.
complex Gaussian entries (the independent Rayleigh fading assumption), the aver-
age channel capacity with perfect CSI at the receiver is about m 2 min{¢, r} times
larger than that of a single-antenna system for the same transmitted power and
bandwidth. The capacity increases by about m bit/s/Hz for every 3-dB increase in
signal-to-noise ratio (SNR). A further performance improvement can be achieved
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under the assumption that CSI is available at the transmitter as well. Obtaining
transmitter CSI from multiple transmitting antennas is particularly challenging be-
cause the transmitter should achieve instantaneous information about the fading
channel. On the other hand, if transmit CSI is missing, the transmission scheme
employed should guarantee good performance with the majority of possible chan-
nel realizations. Codes specifically designed for a multiple-antenna system use
degrees of freedom in both space and time and are called space—time codes.

1.6 - Some issues not covered in this book

1.6.1 Adaptive coding and modulation techniques

Since wireless channels exhibit a time-varying response, adaptive transmission
strategies look attractive to prevent insufficient utilization of the channel capacity.
The basic idea behind adaptive transmission consists of allocating power and rate
to take advantage of favorable channel conditions by transmitting at high speeds,
while at the same time counteracting bad conditions by reducing the throughput.
For an assigned QoS, the goal is to increase the average spectral efficiency by
taking advantage of the transmitter having knowledge of the CSI. The amount of
performance improvement provided by such knowledge can be evaluated in prin-
ciple by computing the Shannon capacity of a given channel with and without it.
However, it should be kept in mind that capacity results refer to a situation in which
complexity and delay are not constrained. Thus, for example, for a Rayleigh fading
channel with independently faded elementary signals, the capacity with channel
state information (CSI) at the transmitter and the receiver is only marginally larger
than for a situation in which only the receiver has CSI. This result implies that if
very powerful and complex codes are used, then CSI at the transmitter can buy lit-
tle. However, in a delay- and complexity-constrained environment, a considerable
gain can be achieved. Adaptive techniques are based on two steps: (a) measure-
ment of the parameters of the transmission channel and (b) selection of one or more
transmission parameters based on the optimization of a preassigned cost function.
A basic assumption here is that the channel does not vary too rapidly; otherwise,
the parameters selected might be badly matched to the channel. Thus, adaptive
techniques can only be beneficial in a situation where the Doppler spread is not
too wide. This conclusion makes adaptive techniques especially attractive in an
indoors environment, where propagation delays are small and the relative speed
between transmitter and receiver is typically low. In these conditions, adaptive
techniques can work on a frame-by-frame basis.
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1.6.2 Unequal error protection

In some analog source coding applications, like speech or video compression, the
sensitivity of the source decoder to errors in the coded symbols is typically not
uniform: the quality of the reconstructed analog signal is rather insensitive to er-
rors affecting certain classes of bits, while it degrades sharply when errors affect
other classes. This happens, for example, when analog source coding is based on
some form of hierarchical coding, where a relatively small number of bits carry the
“fundamental information” and a larger number of bits carries the “details,” like in
the case of MPEG standards.

If we assume that the source encoder produces frames of binary coded symbols,
each frame can be partitioned into classes of symbols of different “importance”
(i.e., of different sensitivity). Then, it is apparent that the best coding strategy aims
at achieving lower BER levels for the important classes while admitting higher
BER levels for the unimportant ones. This feature is referred to as unequal error
protection.

A conceptually similar solution to the problem of avoiding degradations of the
channel having a catastrophic effect on the transmission quality is multiresolution
modulation. This process generates a hierarchical protection scheme by using a
signal constellation consisting of clusters of points spaced at different distances.
The minimum distance between two clusters is higher than the minimum distance
within a cluster. The most significant bits are assigned to clusters, and the least
significant bits to signals in a cluster.

1.7 Bibliographical notes

Comprehensive reviews of coding-theory development and applications can be
found in [1.4,1.6,1.8]. Ref. [1.3] gives an overview of the most relevant information
theoretic aspects of fading channels.
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Two. Else there is danger of. Solitude.

Channel models for digital
transmission

The aim of this chapter is to examine in some detail the problem of construct
ing models for the channels to be used for digital transmission. The emphasis
here is on wireless channels, and special attention will be pa‘idﬂ to modeling of
fading. The impact of the model on the pezformance assessment of a coded
transmission system Is also discussed, -
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2.1 Time- and frequency-selectivity

We work with baseband-equivalent channel models, both continuous time and dis-
crete time. In this Chapter we use the following notations: in continuous time,
s(t), y(t), and w(t) denote the transmitted signal, the received signal, and the ad-
ditive noise, respectively. In discrete time we use the notations s(n), y(n), and
w(n), with n the discrete time. We consider only linear channels here. The most
general model is

y(t):/h(t;'r)s(t—T)dT—l—w(t) y(n) = 3" hins K)s(n—k)+w(n) 2.1)
k

where h(t;7) is the channel response at time ¢ to a unit impulse §( - ) transmitted
at time ¢ — 7. Similarly, h(n; k) is the channel impulse response at time n to
a unit impulse §(n) transmitted at time n — k. This channel is said to be fime
selective and frequency selective, where time selectivity refers to the presence
of a time-invariant impulse response and frequency selectivity to an input—output
relationship described by a convolution between input and impulse response. By
assuming that the sum in (2.1) includes L + 1 terms, we can represent the discrete
channel by using the convenient block diagram of Figure 2.1, where z~! denotes
unit delay.

Figure 2.1: Block diagram of a discrete time-selective, frequency-selective chan-
nel.

If the channel is time invariant, then A(t; 7) is a constant function of ¢t. We write
h(7) = h(0;7) for the (time-invariant) response of the channel to a unit impulse
transmitted at time 0, and we have the following model of a non-time-selective,
Jfrequency-selective channel:

y(t) = /h(T)s(t —7)dr + w(t) y(n) = Z h(k)s(n — k) +w(n) (2.2)
k
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The block diagram of Figure 2.1 is still valid for this channel, provided that we
write h(k) in lieu of h(n; k).

The model of a time-selective, non-frequency-selective channel is obtained by
assuming that h(t; 7) = h(t)d(7) (or, for discrete channels, h(n; k) = h(n)d(k)).
Then we have

() = / h(t;7)s(t — 7) dr + w(t)

/h )s(t — 1) dr 4+ w(t)
t)s(t) + w(t) (2.3)

and

y(n) = Z h(n; k)s(n — k) + w(n)
= Z h(n (n —k) 4+ w(n)

= (n)S( ) +w(n) 24

We observe that in (2.3) and (2.4) the channel impulse response affects the trans-
mitted signal multiplicatively, rather than through a convolution.

Finally, a non-time-selective, non-frequency-selective channel model is obtained
by assuming that, in (2.3), h(¢; 7) does not depend on ¢; if it has the form h(¢;7) =
hé(T) (or, for discrete channels, h(n; k) = hé(n)), we obtain

y(t) = hs(t) + w(t) y(n) = hs(n) + w(n) (2.5)

The simplest situation here occurs when h is a deterministic constant (later on we
shall examine the case of h being a random variable). If in addition w(¢) is white
Gaussian noise, the resulting channel model is called an additive white Gaussian
noise (AWGN) channel. Typically, it is assumed that ~ = 1 so that the only pa-
rameter needed to characterize this channel is the power spectral density of w(t).

2.2 Multipath propagation and Doppler effect

The received power in a radio channel is affected by attenuations that are conve-
niently characterized as a combination of three effects, as follows:

(a) The path loss is the signal attenuation due to the fact that the power received
by an antenna at distance D from the transmitter decreases as D increases.
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(b)

(©)

Empirically, the power attenuation is proportional to D*, with o an exponent
whose typical values range from 2 to 4. In a mobile environment, D varies
with time, and consequently so does the path loss. This variation is the
slowest among the three attenuation effects we are examining here.

The shadowing loss is due to the absorption of the radiated signal by scatter-
ing structures. It is typically modeled by a random variable with log-normal
distribution.

The fading loss occurs as a combination of two phenomena, whose combina-
tion generates random fluctuations of the received power. These phenomena
are multipath propagation and Doppler frequency shift. In the following
we shall focus our attention on these two phenomena, and on mathematical
models of the fading they generate.

Multipath propagation occurs when the electromagnetic field carrying the infor-
mation signal propagates along more than one “path” connecting the transmitter
to the receiver. This simple picture of assuming that the propagation medium in-
cludes several paths along which the electromagnetic energy propagates, although
not very accurate from a theoretical point of view, is nonetheless useful to un-
derstand and to analyze propagation situations that include reflection, refraction,
and scattering of radio waves. Such situations occur, for example, in indoor prop-
agation, where the electromagnetic waves are perturbed by structures inside the
building, and in terrestrial mobile radio, where multipath is caused by large fixed
or moving objects (buildings, hills, cars, etc.).

Example 2.1 (Two-path propagation)

Assume that the transmitter and the receiver are fixed and that two propagation paths
exist. This is a useful model for the propagation in terrestrial microwave radio links.
The received signal can be written in the form

y(ty=z(t)+ bzt — 1) (2.6)

where b and 7 denote the relative amplitude and the differential delay of the reflected
signal, respectively (in other words, it is assumed that the direct path has attenuation
1 and delay 0). Equation (2.6) models a static multipath situation in which the prop-
agation paths remain fixed in their characteristics and can be identified individually.
The channel is linear and time invariant. Its transfer function

H(f)=1+be 92"/
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Figure 2.2: Effect of movement: Doppler effect.

in which the term b exp(—j27 f7) describes the multipath component, has magni-
tude

|H(H)| = \/(1+bc0527rf7)2+b251n227rf7—
= /142 +2bcos2nfr

For certain delays and frequencies, the two paths are essentially in phase alignment,
so cos 2w fT = 1, which produces a large value of |[H(f)|. For some other values,
the paths nearly cancel each other, so cos 27 fT = —1, which produces a minimum
of |H(f)] usually referred to as a notch. O

When the receiver and the transmitter are in relative motion with constant radial
speed, the received signal is subject to a constant frequency shift (the Doppler
shift) proportional to this speed and to the carrier frequency. Consider the situation
depicted in Figure 2.2. Here the receiver is in relative motion with respect to the
transmitter. The latter transmits an unmodulated carrier with frequency fy. Let
v denote the speed of the vehicle (assumed constant), and - the angle between
the direction of propagation of the electromagnetic plane wave and the direction of
motion. The Doppler effect causes the received signal to be a tone whose frequency
is displaced (decreased) by an amount

fp= /o g oS Y 2.7

(the Doppler frequency shift), where c is the speed of propagation of the electro-
magnetic field in the medium. Notice that the Doppler frequency shift is either
greater or lower than 0, depending on whether the transmitter is moving toward the
receiver or away from it (this is reflected by the sign of cos 7).

By disregarding for the moment the attenuation and the phase shift affecting the
received signal, we can write it in the form

y(t) = Aexp[j2r(fo — fp)i] (2.8)
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Notice that we have assumed a constant vehicle speed, and hence a constant fp.
Variations of v would cause a time-varying fp in (2.8).

More generally, consider now the transmission of a bandpass signal z(t), and
take attenuation «(t) and delay 7(¢) into account. The complex envelope of the

received signal is _
§(t) = a(t)ePOz[t — 7(2)]

where
0(t) = 2m [(fo + fp)7(t) — fpt]

This channel can be modeled as a time-varying linear system with low-pass equiv-
alent impulse response

h(t; 7) = 20(t) €990 [t — 7(1)]

2.3 Fading

In general, the term fading describes the variations with time of the received signal
strength. Fading, due to the combined effects of multipath propagation and of rel-
ative motion between transmitter and receiver, generates time-varying attenuations
and delays that may significantly degrade the performance of a communication
system.

With multipath and motion, the signal components arriving from the various
paths with different delays combine to produce a distorted version of the transmit-
ted signal. A simple example will illustrate this fact.

Example 2.2 (A simple example of fading)

Consider now the more complex situation represented in Figure 2.3. A vehicle
moves at constant speed v along a direction that we take as the reference for angles.
The transmitted signal is again an unmodulated carrier at frequency fy. It propagates
along two paths, which for simplicity we assume to have the same delay (zero) and
the same attenuation. Let the angles under which the two paths are received be O
and ~. Due to the Doppler effect, the received signal is

y(t) = Aexp [j27rf0 (1 — %) t] + Aexp [j27rfo (1 - %cos*y) t] 2.9)

We observe from the above equation that the transmitted sinusoid is received as
a pair of tones: this effect can be viewed as a spreading of the transmitted signal
frequency, and hence as a special case of frequency dispersion caused by the channel
and due to the combined effects of Doppler shift and multipath propagation.
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Figure 2.3: Effect of a two-path propagation and movement.

Equation (2.9) can be rewritten in the form
yt) = A [exp <—j27rf0%t) + exp (—j27rf0% cos*yt)] gi2rfot (2.10)

The magnitude of the term in square brackets provides the instantaneous envelope
of the received signal:

R(t) =24

1—
cos [2%3 fo S8y t] ’
c 2

The last equation shows an important effect: the envelope of the received signal
exhibits a sinusoidal variation with time, occurring with frequency

v, 1 —cos
b Nalt
c 2

The resulting channel has a time-varying response. We have time-selective fading,
and, as observed before, also frequency dispersion. O

A more complex situation, occurring when the transmission environment in-
cludes several reflecting obstacles, is described in the example that follows.

Example 2.3 (Multipath propagation and the effect of movement)

Assume that the transmitted signal (an unmodulated carrier as before) is received
through N paths. The situation is depicted in Figure 2.4. Let the receiver be in
motion with velocity v, and let A;, 8;, and -; denote the amplitude, the phase, and
the angle of incidence of the ray from the th path, respectively. The received signal
contains contributions with a variety of Doppler shifts: in the ith path the carrier
frequency fy is shifted by

v
fiéfo—cos’yi, i1=1,2,...,N
c
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Figure 2.4: Effect of N -path propagation and movement.

Thus, the (analytic) received signal can be written in the form

N
y(t) = > Asexpj[2m(fo— fi)t + 6i] @.11)

=1

The complex envelope of the received signal turns out to be

N
R(£)e7®®) = ZAie—j'ﬁ%flt—Gz)

i=1

2.3.1 Statistical models for fading channels

As we can observe from the previous examples, our ability to model the chan-
nel is connected to the possibility of deriving the relevant propagation parameters.
Clearly, this is increasingly difficult and becomes quickly impractical as the num-
ber of parameters increases. A way out of this impasse, and one that leads to mod-
els that are at the same time accurate and easily applicable, is found in the use of
the central limit theorem whenever the propagation parameters can be modeled as
random variables (RV) and their number is large enough. To be specific, let us refer
to the situation of Example 2.3. For a large number NV of paths, we may assume
that the attenuations A; and the phases 27 f;t — ; in (2.11) are random variables
that can be reasonably assumed to be independent of each other. Then, invoking
the central limit theorem, we obtain that at any instant, as the number of contribut-
ing paths become large, the sum in (2.11) approaches a Gaussian RV. The complex
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envelope of the received signal becomes a lowpass Gaussian process whose real
and imaginary parts are independent and have mean zero and the same variance
2. In these conditions, R(¢) and ©(t) turn out to be independent processes, with
©(t) being uniformly distributed in (0, 27) and R(t) having a Rayleigh probability
density function (pdf), viz.,

T _7.2/202

— , 0<r«

pr(r)=4{ o2° 1 T=TS™ (2.12)
0, r<0

Here the average power of the envelope is given by
E[R?] = 202 (2.13)

A channel whose envelope pdf is (2.12) is called a Rayleigh fading channel. The
Rayleigh pdf is often used in its “normalized” form, obtained by choosing E[R?] =
1

pr(r) =2re™ (2.14)

An alternative channel model can be obtained by assuming that, as often occurs
in practice, the propagation medium has, in addition to the N weaker “scatter”
paths, one major strong fixed path (often called a specular path) whose magnitude
is known. Thus, we may write the received-signal complex envelope in the form

R(t)e’®® = u(t)e’®®) 4 y(2)e?PO

where, as before, u(t) is Rayleigh distributed, a(t) is uniform in (0, 27), and v(2)
and 3(t) are deterministic signals. With this model, R(¢) has the Rice pdf

r r? + 2 v
pr(r) = o exp {——%—2——} Iy (;—2—) (2.15)

for r > 0. (Ip(-) denotes the zeroth-order modified Bessel function of the first
kind.) Its mean square is E[R?] = v + 202. This pdf is plotted in Figure 2.5 for
some values of v and 02 = 1.

Here R(t) and ©(t) are not independent, unless we further assume a certain
amount of randomness in the fixed-path signal. Specifically, assume that the phase
[ of the fixed path changes randomly and that we can model it as a RV uniformly
distributed in (0, 27). As a result of this assumption, R(¢) and O(¢) become in-
dependent processes, with © uniformly distributed in (0, 27) and R(t) still a Rice
random variable.
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Figure 2.5: Rice pdf with 0? = 1.

Notice that, in (2.15), v denotes the envelope of the fixed-path component of
the received signal, while 202 is the power of the Rayleigh component (see (2.13)
above). Thus, the “Rice factor”

2

T 202

denotes the ratio between the power of the fixed-path component and the power
of the Rayleigh component. Sometimes the Rice pdf is written in a normalized
form, obtained by assuming E[R?] = v? + 20% = 1 and exhibiting the Rice factor
explicitly:

pr(r) =2r(1 + K)exp {—~(1+ K)r2 — K} I (21" K1+ K)) (2.16)

forr > 0.

As K — 0—i.e., as the fixed path reduces its power—since Ip(0) = 1, the Rice
pdf becomes a Rayleigh pdf. On the other hand, if K — oo, i.e., the fixed-path
power is considerably higher than the power in the random paths, then the Gaussian
pdf is a good approximation for the Rice density.
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Yet another statistical model for the envelope R of the fading is the Nakagami-m
distribution. The probability density function of R is

2 m 2m—1_—mr2/Q
7 r>0 2.17
pR(’ ) = F( ) (Q) € ’ = (2.17)

which has E[R?] = Q. The parameter m, called fading figure, is a ratio of mo-
ments:

Q2 1
£ __>_ 2.18
T VRY <2 (2.18)
For integer values of m, (2.17) is the pdf of the RV
(2.19)

where Xy, ..., X, are independent, Rayleigh-distributed RVs. As special cases,
the choice m = 1 yields the Rayleigh distribution, while m = 1/2 yields a single-
sided Gaussian distribution.

We observe that the Nakagami-m distribution is characterized by fwo parame-
ters, and consequently it provides some extra flexibility if the mathematical model
of the fading must be matched to experimental data.

2.4 Delay spread and Doppler-frequency spread

A simple yet useful classification of fading channels can be set up on the basis of
the definition of two quantities called coherence time and coherence bandwidth of
the physical channel.

Multipath fading occurs because different paths are received, each with a dif-
ferent Doppler shift: when the receiver and the transmitter are in relative motion
with constant radial speed, the Doppler effect, in conjunction with multipath prop-
agation, causes time- and frequency-selective fading. Consider these propagation
paths, each characterized by a delay and attenuation, and examine how they change
with time to generate a time-varying channel response. First, observe that signifi-
cant changes in the attenuations of different paths occur at a rate much lower than
significant changes in their phases. If 7;(¢) denotes the delay in the ith path, the
corresponding phase is 27 fo(t — 7;(¢)), which changes by 27 when 7;(¢) changes
by 1/ fo, or, equivalently, when the path length changes by ¢/ fo. Now, if the path
length changes at velocity v;, this change occurs in a time ¢/( fov;), the inverse of
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the Doppler shift in the ith path. Consequently, significant changes in the chan-
nel occur in a time 7, whose order of magnitude is the inverse of the maximum
Doppler shift Bp among the various paths, called the Doppler spread of the chan-
nel. The time 7, is called the coherence time of the channel, and we have

1
T, £

=5 (2.20)

The significance of 7, is as follows. Let 17, denote the duration of a transmitted
signal.! If it is so short that during transmission the channel does not change ap-
preciably in its features, then the signal will be received undistorted. Its distortion
becomes noticeable when T, is above T, which can be interpreted as the delay be-
tween two time components of the signal beyond which their attenuations become
independent. We say the channel is time selective if T, g Te.

The coherence time shows how rapidly a fading channel changes with time.
Similarly, the quantity dual to it, called coherence bandwidth, shows how rapidly
the channel changes in frequency. Consider paths ¢ and ;7 and the phase difference
between them, i.e., 27 f(7;(t) — 7;(t)). This changes significantly when f changes
by an amount proportional to the inverse of the difference 7;(t) —7;(t). If Ty, called
the delay spread of the channel, denotes the maximum among these differences, a
significant change occurs when the frequency change exceeds the inverse of T.
We define the coherence bandwidth of the channel as

1
A
B, = T 2.21)
This measures the signal bandwidth beyond which the frequency distortion of the
transmitted signal becomes relevant. In other words, the coherence bandwidth is
the frequency separation at which two frequency components of the signal undergo
independent attenuations. A signal with B, 2, B, is subject to frequency-selective
fading. More precisely, the envelope and phase of two unmodulated carriers at
different frequencies will be markedly different if their frequency spacing exceeds
B¢ so that the cross-correlation of the fading fluctuations of the two tones decreases
toward zero. The term frequency-selective fading expresses this lack of correlation
among different frequency components of the transmitted signal.

In addition to coherence time and bandwidth, it is sometimes useful to define the
coherence distance of a channel in which multiple antennas are used (see especially
Chapter 10). This is the maximum spatial separation of two antennas over which

!Since we shall be considering coded signal for most of this work, from now on we may think of
T as the duration of a code word.
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Figure 2.6: Radio-channel classification.

the channel response can be assumed constant: specifically, we say that the channel
is space selective if the separation between antennas is larger than the coherence
distance.

24.1 Fading-channel classification

From the previous discussion we have two quantities B, and 7, describing how the
channel behaves for the transmitted signal. Specifically,

(a) If B, < B,, there is no frequency-selective fading and hence no time dis-
persion. The channel transfer function looks constant, and the channel is
called flat (or nonselective) in frequency. The fading affects the transmitted
signal multiplicatively, by a factor which varies with time.

(b) If T, « T, there is no time-selective fading, and the channel is called flaz
(or nonselective) in time.

Qualitatively, the situation appears as shown in Figure 2.6. The channel flat in
t and f is not subject to fading either in time or in frequency. The channel flat in
time and selective in frequency is called an intersymbol-interference channel. The
channel flat in frequency is a good model for several terrestrial mobile radio chan-
nels. The channel selective both in time and in frequency is not a good model for
terrestrial mobile radio channels, but it can be useful for avionic communications,
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in which high speeds (and hence short coherence times) combine with long delays
due to earth reflections (and hence narrow coherence bandwidths).

The product TyBp = 1/T.B. is called the spread factor of the channel. If
T4Bp < 1, the channel is said to be underspread; otherwise, it is overspread.
Generally, if the spread factor T;Bp < 1, the channel impulse response can be
easily measured, and that measurement can be used by the receiver in the demod-
ulation of the received signal and by the transmitter to optimize the transmitted
signal. Measurement of the channel impulse response of an overspread channel
is extremely difficult and unreliable, if not impossible. Since, in general, signal
bandwidth and signal duration are such that B, T, > 1 (as otherwise there would
be no hope for reliable communication, even in a nonfaded time-invariant channel,
as, for example, the AWGN channel), it follows that a slowly fading, frequency
nonselective channel is underspread.

Finally, we say that the channel is ergodic if the signal (i.e., the code word) is
long enough to experience essentially all the states of the channel. This situation
occurs when T, > T.. Thus, we discriminate between slow and fast fading and
ergodic and nonergodic channels according to the variability of the fading process
in terms of the whole code word transmission duration.

The preceding discussion is summarized in Table 2.1. (See [2.2] for further
details.)

B, < B, frequency-flat fading

B, % B frequency-selective channel
T < T, time-flat (slow) fading

T 2 T. time-selective (fast) channel
T.B.>1 underspread channel

T.B. <« 1 overspread channel

T, < T, nonergodic channel

T, > T, ergodic channel

Table 2.1: Classification of fading channels.

2.5 Estimating the channel

As we shall see in subsequent chapters, the performance of a transmission system
over a fading channel may be greatly improved if the value taken on by the fading
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random variable affecting the propagation is known, at the receiver only or at both
transmitter and receiver. Here we examine a technique for measuring a channel
described as in Figure 2.1. We use “probing signals,” to be transmitted in addition
to information-bearing signals each time the channel changes significantly (and
hence at least once every T¢.).

A good set of probing signals is generated by a pseudonoise (PN) sequence
u(1),...,u{NN); it has the property that its autocorrelation c(m) is approximately
an ideal impulse. For simplicity we assume here that the channel is real, that the
sequence is binary (u(j) = £A for 1 < j < N), and that we have exactly

N
A2N, m=0
_A_ ;
__z;u u(j +m) = {0 m£0 (2.22)
J:
where we take u(j) = 0 whenever j <'1 or j > N. Without noise, the channel
response to the PN sequence is the convolution

L
= h(n;k)u(n — k) (2.23)

This response can be nonzero only from time 7 = 1 to time n = N 4+ L: in this
period we assume that the channel, albeit random, remains constant, so that we can
rewrite (2.23) as

L
= h(k)u(n — k) (2.24)
k=0
with A(k), k =0, ..., L, a sequence of complex random variables. Now, correlate

the noiseless channel output 7’(n) with the PN sequence. Using (2.22) we obtain

m+N

Fl=m) 2 37 r'(nju(n—m)
PN

= > > h{ku(n - k)u(n —m)

n=m+1 k=0

L N
= D _hk)D_u(j +m - k)u())
k=0 j=1
L
= Z h(k)e(m —
k=0

= A?Nh(m) (2.25)
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which is proportional to the mth sample of the channel impulse response.
Consider now the effect of an additive white Gaussian noise w(n) with variance
o2. The noisy-channel response to the PN sequence is

y(n) = y'(n) + win) (2.26)
Correlating the channel output y(n) with the PN sequence, we obtain

m+N

p(—m) = p'(-m) + Z w(n)u(n —m) (2.27)
n=M+1

where the additional term is again a Gaussian RV with mean zero and variance

m+N m+N m+N
Z Z E[w(n)w*(n)]u(n — m)u(n’ —m) = o2 Z u?(n —m)
n=m+1ln'=m+1 n=m+1
= o2NA? (2.28)

In conclusion, we observe a correlation p(—m) which is the sum of two terms:
one is proportional to N times the impulse-response sample that we wish to es-
timate, while the other is a noise term whose variance is proportional to the PN
sequence length V. The resulting signal-to-noise ratio is proportional to N: thus,
by increasing the sequence length (and hence the measurement length) we can
make the channel measure arbitrarily good. Notice, however, that making N very
long leads to an accurate estimate but decreases the data-transmission rate. Two
techniques, used, for example, in the GSM standard of digital cellular telephony,
allow one to increase the ratio between the information symbols and the probe
symbols: the first one consists of placing the probe symbols in the middle of a data
frame, the second one of interpolating between the previous and the next channel
measurement.

2.6 Bibliographical notes

Ref. [2.2] contains an extensive review of the information-thoretical and commu-
nications aspects of fading channels. Engineering aspects of wireless channels and
modeling problems are treated, for example, in [2.3-2.5].
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Coding in a signal space

In this chapter we introduce signal constellations as sets 8 = {x} of vec-
tors in an n-dimensional space. Codes in signal spaces are defined as con-
stellations whose elements are n-tuples of “elementary signals” chosen in a
set X. We evaluate the error probability obtained when a code in a signal
space is used for transmission over the additive white Gaussian noise chan-
nel. Constellations are then compared on the basis of their bandwidth and
power efficiencies. Capacity theorems yield ultimate bounds on the achiev-
able perfonnance Next, we examine some symmeltry properties of signal
sets. A class of codes having a special algebraic . structure viz., linear bmary
codes 15 introduced and descnbed in some depth. ,,
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3.1 Signal constellations

Consider a finite signal constellation, i.e., a set § = {x} of vectors in the Euclidean
N-dimensional space RY (also called points, or signals), to be used for transmis-
sion over a noisy channel. The squared norm ||x||? will be referred to as the energy
of x.

Let M = |8| denote the number of elements of 8, i.e., the number of available
signals. Then, the maximum amount of information carried by § is log |8| bits; this
maximum information is the entropy of the constellation corresponding to equally
likely signals (see Appendix A). We assume for simplicity that |S| is a power of 2,
that is,

M =27 (3.1)

A one-to-one map, called a labeling, can be defined, which associates with every
element x € § an m-tuple of binary digits. The association of this m-tuple with x
is called modulation. Notice that choice of a labeling affects also the design of the
device (the demodulator) that transforms the received signal back into a sequence
of binary digits to be delivered to the end user.

% Measuring the information transmitted: the rate. We list here various pos-
sible definitions of the rate R at which information is transmitted over the channel.
The maximum amount of information transmitted by using the constellation § can
be measured by m 2 log M, the number of bits per signal. Since every signal
has N dimensions, we may define the transmission rate in bits per dimension as
p £ log M/N. If the speed of information transmission Rj (in bits per second) is
of concern, and an N-dimensional signal is transmitted every 7" seconds (that is, we
have T~ signals transmitted every second), we transmit at a rate N/T" dimensions
per second, or

_log M bit N dimension _ log M bit

By = N  dimension % T S T (3:2)

If, in addition, the bandwidth need of the signals selected is  Hz per dimension
per second, then the bandwidth requirement for the transmission will be N /T Hz.
Notice that, although the actual value with real-life waveforms may vary, it is often
assumed for simplicity that § = 1/2: in fact, the dimensionality of a set of signals
with duration 7" and bandwidth W is approximately N = 2WT (see [3.2, p. 80],
[3.11], and infra, Section 3.4.1).

In some cases, rather than using the number of bits carried by one signal, it
may be preferable to use the number of bits per channel use: this option should be
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chosen whenever the definition of a channel entails the transmission of more than
one signal, as in the case (to be examined later in Chapter 10) of multiple-antenna
transmitters.

The demodulation problem. If we denote by y the vector observed at the output
of the channel (in general, the dimension of y may differ from the dimension of
x), the demodulation problem consists of selecting in § an estimate of x, which we
denote X, which is optimum under some performance criterion.

The signal design problem. This is the problem of selecting, under a suitable
set of constraints (for example, the average transmitter power), the set & so that,
under a prescribed demodulation criterion, performance is maximized.

The additive white Gaussian noise (AWGN) channel is defined as the channel
that transforms x into

y=x+z 3.3)

that is, x is perturbed additively by a noise vector z independent of x and whose
components are independent, zero-mean Gaussian random variables with common
variance Ny/2 (this parameter is referred to as the power spectral density of the
white noise).

We assume that the blocks of m binary digits output by the information source
are equally likely and statistically independent, so the signals transmitted over the
channel are also equally likely and independent. Assume also that the channel is
stationary memoryless (see Section A.1 in refAppendix A)), i.e., that it processes
every signal independently and irrespectively of its transmission time. In this situa-
tion, the behavior of the channel is described by the conditional probability density
function (pdf) p(y | x), i.e., the pdf of y given that x was transmitted. (With an
additive channel described by (3.3), p(y | x) is simply the pdf of the noise z with
mean x.) Moreover, it makes sense to choose, as the performance criterion for the
demodulator, the minimization of the signal error probability, i.e., the probability
that when x is transmitted the demodulator selects X # x:

Ple) & % SOPR #x | %) (3.4)

or the bit error probability, that is, the probability that a binary digit output by the
source and mapped into x is transformed into a different binary digit.
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3.2 Coding in the signal space

For easier modulation, demodulation, and labeling of the constellation §, it is con-
venient to introduce some structure in it. This may consist of choosing a set X of
elementary signals, typically one- or two-dimensional, and § C X", that is, gener-
ating the vectors of 8 as having n components in X. This way, the elements of 8
have the form x = (x1, Z2, ... ,Zn), With z; € X. The collection of such x will
be referred to as a block code in the signal space, and x as a code word.

Example 3.1
Choose X = {+1, —1} and the following constellation of 4 signals in R3: § =
{(+1,+1,+1), (+1,-1,-1), (-1,+1,-1), (—1,—1,+1)}. The components of
each element in 8 are chosen so that the third one equals the product of the first two:
consequently, even when the source emits independent pairs of binary digits, the
elementary signals transmitted over the channel are not independent. Observe also
that in this case we may define a channel use as the transmission either of a single
=+1 or of a triplet. Finally, observe that a simple labeling of the four signals can be
obtained as follows: let a binary “0” correspond to the elementary signal “+1,” and
a binary “1” to the elementary signal “—1.” This generates the first two components
of x, while the third one is obtained as their product. (|

A special case of 8 is the “uncoded constellation” 8§ = X7, the set of all n-tuples
of elementary signals. Here |S| = |X|™, and S has n x D dimensions, where D is
the dimensionality of X.

3.2.1 Distances

A way of characterizing the quality of a code in the signal space used for transmis-
sion over a noisy channel is through the distinguishability of its elements, which in
turn leads to the definition of a distance d(x, x’) between pairs of words x, x'.

Euclidean distance

This is the quantity
de(x, x') £ |x —X/|| (3.5)

It can be seen that for a code in the signal space we have

dig(x, x') =) llei — zi? (3.6)

i=1
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The Euclidean distance is especially useful with AWGN channels with low noise
spectral density. In particular, the minimum Euclidean distance between any two
vectors in S

dE min = )I(n#l)r(l, di(x, x') (3.7)

is a parameter that, as we shall see in the following, often plays a central role in
code design, in the sense that codes with larger minimum Euclidean distance ex-
hibit a lower error probability at high SNR. Notice, however, that the above state-
ment may be deceiving if the SNR at which the constellation is used is not large
enough (see Problem 2 in the Problem section of this chapter, and our discussion
of turbo codes in Chapter 9).

Hamming distance

The Hamming distance dy(x, x’) between x and x’ is defined as the number of
components in which the two vectors differ. The minimum Hamming distance

dH,min £ H;léln, dH(X7 xl) (3-8)

also plays a central role in code design, as we shall see later on in the context of
coding for low-noise independent Rayleigh fading channels (Chapter 4).

Bhattacharyya distance

Another useful distinguishability measure is provided by the Bhattacharyya dis-
tance, which depends explicitly on the channel on which the transmission takes
place. This is defined as

o, ¥) 2 =In [/l Tl ) dy (9)

The average Bhattacharyya distance over the constellation:

B A 1 /
B2+ > dp(x, X)) (3.10)

x,x’

yields sometimes a suitable measure for signal selection.
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Example 3.2

Given two signals x and x’ with equal energies, that is ||x||? = ||x/||> = & and
scalar product (x, x’) = u€, their Bhattacharyya distance over the AWGN channel
is proportional to the signal-to-noise ratio £/4Np and to (1 — p): thus, it is maxi-
mized when 4 = —1, i.e., when the two signals are antipodal. O

% Relation between Hamming and Euclidean distance

For general constellations, there is no immediate relation between dy and dg.
However, consider the special case of the binary elementary constellation X =
{z, —z}. The squared Euclidean distance between two code words x, x’ differing
in dy(x, x') places is given by

d%(x, x') = 4&du(x, x) (3.11)

where € £ ||z||2. This result shows in particular that, for a code with a binary el-
ementary constellation, maximizing the Hamming distance is tantamount to maxi-
mizing the Euclidean distance and consequently getting a good performance over
the low-noise AWGN channel. This observation prompts us to examine in special
detail those codes based on a binary elementary constellation. Specifically, if we
represent the signals +x through two elements in the binary Galois field Fa, we
can introduce two operations (mod-2 sum and product) that allow the code to be
endowed with nice algebraic properties that facilitate the study of these “binary”
codes. Later in the Chapter we shall delve into this.

Example 3.3

Another example of a constellation in which Euclidean and Hamming distances are
proportional is shown in Figure 3.1, where the 4-PSK constellation is labeled in
such a way that the Euclidean distance is related to Hamming distance by

d%(x, x') = 2&dy(x, X') (3.12)
0

3.3 Performance evaluation: Error probabilities

Consider now demodulation, under the minimum-P(e) criterion, of a constellation
used for transmission over the AWGN channel. It is known from detection theory
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Figure 3.1: In Gray-coded 4-PSK the squared Euclidean distance is proportional
to Hamming distance.

that optimum demodulation consists of selecting as X the vector with the minimum
Euclidean distance from the observed vector y. It is convenient here to define the
Voronoi region (or decision region) associated with x € § as the set of vectors in
R¥ that are closer to x than to any other element of S:

R() = {y € R" | |y = xl| = min [ly - ¥/}

The probability of an erroneous decoding when x is the transmitted signal is then
given by

Plelx) = 1—Ply € () |x]
= 1-Px+z e R(x)

= 1- / p(z — x)dz (3.13)
R(x)

where p(z) is the pdf of the noise, so that p(z — x) is the pdf of x + z.

Since in most cases the exact expression (3.13) is too hard to compute, it is often
expedient to resort to a simple upper bound. Let P(x — X) denote the probability
that, when x is transmitted, y is closer to X than to x. This is called the pairwise
error probability (PEP) because if the transmission system uses only two signals,
viz., x and X, then P(e | x) = P(x — X). Observe that P(e | x) can be expressed
as the probability that at least one X # x is closer than x to y. Using the upper
bound to the probability of a union of events, we can write

Ple|x) <) P(x—x) (3.14)
X#£X
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Finally, the error probability P(e) is given by

P(e) = %ZP(e[x) < %ZZP(X—)Q} (3.15)

x€S XE8 XX

Now, the PEP can be éasily computed in closed form as follows:

Px—%) = P(ly—=I* <[y —xI*|x)

= P(l(x+2) = X|? < [(x+2) —x|?)

= P(lz + (x| < [|z|*)

= P((z, X —x) > ||x — %||?/2) (3.16)

Observe that the scalar product (z, X — x), being a linear transformation of the
Gaussian vector z, is itself a Gaussian RV, with mean 0 and variance Ny ||x—%||2/2.

Thus, since for a Gaussian RV X with mean 0 and variance o2 we have
T
P(X >z)=Q (;) (3.17)
we obtain ” 2l
X—X
P(x —X)= 3.18
(x—%)=Q ( e ) (3.18)

where @Q( - ) denotes the Gaussian tail function:

Q(z) £ %/ e %1% 4z

This function is related to the often-used complementary error function erfc( - ) by

Qz) = %erfc (%)

A simpler approximation (the Bhattacharyya bound) is based on the exponential
bound (which is equivalent to the Chernoff bound derived in the Problem section)

Qx)<e™? z>0 (3.19)

and yields
P(x — X) < exp {—[x — X||?/4No} (3.20)
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Example 3.4

With uncoded binary signaling (M = 2) we have P(e) = P(x — X), and con-
sequently, by choosing the antipodal signal set § = {-}—\/— , —V/€}, we obtain
from (3.18):

Ple)=Q ( JQV_i> (3.21)

O

3.3.1 Asymptotics

As Ny — 0, since Q( - ) is a decreasing function, the right-hand side of (3.15) will
be dominated by the pairs of signals at minimum Euclidean distance. By retaining
only these dominant terms, we can write

= < d in
P(e) < a P(x = X)|jx—x|=dg min = @& (;ZIHTO) (3.22)

where the notation % indicates that the inequality holds only approximately, unless
Ny is vanishingly small, and where « is a constant (see Problem 1 for its interpre-
tation as the average number of nearest neighbors in the constellation).

The above approximation (3.22) shows that for low enough Ny we may choose,
as a criterion for signal selection, and hence for code selection, the maximization
of the minimum Euclidean distance.

3.3.2 Bit error probabilities

The above calculations were based on symbol error probability. To allow com-
parisons among modulation schemes with different values of M and hence whose
signals carry different numbers of bits, a better performance measure is the bit error
probability Py(e), often referred to as bit-error rate (BER). This is the probability
that a binary digit emitted by the source will be received erroneously by the user.
In general, it can be said that the calculation of P(e) is a far simpler task than
the calculation of P,(e). Moreover, the latter depends also on the mapping of the
source bits onto the signals in the modulator’s constellation. A simple bound on
Py(e) can be derived by observing that, since each signal carries log M bits, one
symbol error produces at least one bit error and at most log M bit errors. Therefore,

P
10;3)4 < Pye) < P(e) (3.23)
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Since (3.23) is valid in general, we should try to keep P,(e) as close as possible to
its lower bound P(e)/ log M (this is sometimes referred to as error probability per
bit). One way of achieving this goal is by choosing the labeling in such a way that,
whenever a symbol error occurs, the signal erroneously chosen by the demodulator
differs from the transmitted one by the least number of bits. Since for high signal-
to-noise ratios we may expect that errors occur when a signal is mistaken for one of
its nearest neighbors, then a reasonable choice is a labeling such that neighboring
signal points correspond to binary sequences that differ by only one digit. When
this choice is made, we say that the signals are Gray labeled, and we approximate
Py (e) by its lower bound in (3.23). Figure 3.1 shows an example of Gray labeling
(see also our discussion of bit-interleaved coded modulation in Section 7.9).

3.4 Choosing a coding/modulation scheme

We now discuss some criteria that should guide the choice of a coding/modulation
scheme over the AWGN channel. These are bandwidth efficiency, power efficiency,
and error probability.

3.4.1 > Bandwidth occupancy

Since in the following we shall be interested in a comparison among coding/mod-
ulation schemes that leaves out of consideration the actual waveform shapes and
focuses instead on the geometric features of the signal constellations, it is con-
venient to use the following definition of bandwidth. The 2W T -theorem [3.2, p.
80], [3.11], states that, for large T" and W, the dimensionality of a set of signals
with duration 7" and bandwidth occupancy W is approximately N = 2WT. This
motivates our definition of the Shannon bandwidth of a signal set with NV dimen-

sions as N
W = >T (3.24)

This bandwidth can of course be expressed in Hz, but it may be appropriate in sev-
eral instances to express it in dimension pairs per second. The Shannon bandwidth
is the minimum amount of bandwidth that the signal needs, in contrast to the (sev-
eral possible) definitions of Fourier bandwidth of the modulated signal. The latter
expresses the amount of bandwidth that the signal actually uses. In most cases,
Shannon bandwidth and Fourier bandwidth differ little: however, there are exam-
ples of modulated signals (spread-spectrum signals) whose Fourier bandwidth is
much larger than their Shannon bandwidth.
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Example 3.5 (PSK)
An M-PAM has 1 dimension, so its Shannon bandwidth is W = 1/2T. An M-PSK
signal has 2 dimensions, and hence W = 1/T. O

Note that in general, for any sensible definition of the bandwidth W, we have
W = a/T, which reflects the fundamental fact from Fourier theory that the time
duration of a signal is inversely proportional to its bandwidth occupancy. The
actual value of o depends on the definition of bandwidth and on the actual shapes
of the waveforms used by the modulator.

3.4.2 % Signal-to-noise ratio

Recall that the information rate of the source, Ry, is related to the number of wave-
forms used by the modulator, M, and to the duration of these waveforms, T, by
the equality

_log M
T

This is the rate, in bit/s, that can be accepted by the modulator. The average power
expended by the modulator is

Ry (3.25)

&
Y=7

where € is the average energy of the modulator signals, i.e.,
1
€2 > Il (3.26)
x€$

Each signal carries log M information bits. Thus, defining £, as the average energy

expended by the modulator to transmit one bit, so that £ = €, log M, we have

log M
T

P=2E& =& Ry (3.27)
We define the signal-to-noise ratio as the ratio between the average signal power
and the average noise power. The latter equals (No/2) - 2W = NoW, where we
assume conventionally that the equivalent noise bandwidth of the receiving filter is
the Shannon bandwidth. We have

P _& R
NoW Ny W

SNR £ (3.28)
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3.4.3 > Bandwidth efficiency and asymptotic power efficiency

Expression (3.28) shows that the signal-to-noise ratio is the product of two quan-
tities, viz., €,/Ny, the energy per bit divided by twice the power spectral density,
and Ry/W , the bandwidth (or spectral) efficiency of a modulation scheme. In fact
the latter, measured in bit/s/Hz, tells us how many bits per second are transmitted
in a given bandwidth W . The higher the bandwidth efficiency, the more efficient is
the use of the available bandwidth made by the modulation scheme.
We also observe that R,/W may be conveniently related to the number of bits
per dimension. We have
Rb —9 logM _
w~ " N

Since p is the number of bits transmitted per dimension, we can interpret the above
equality by saying that the spectral efficiency R,/W represents the number of bits
transmitted per dimension pair (this interpretation is especially useful when we use
two-dimensional elementary constellations, which is often the case).

We now define the asymprotic power efficiency v. We have seen that, for high
signal-to-noise ratios, the error probability is approximated by a Gaussian tail func-
tion whose argument is dg, min/+/2No. Define «y as the quantity satisfying

2p (3.29)

Q_Eb — dE,min

"No T 2N,

that is,
dZ
A min
Y 18, (3.30)
so that

Ple) # aQ (ﬂ'ﬁ%’) (3.31)

In words, v expresses how efficiently a constellation makes use of the available sig-
nal energy to generate a given minimum distance. Thus, we may say that, at least
for high signal-to-noise ratios, a constellation is better than another (having a com-
parable average number « of nearest neighbors) if its asymptotic power efficiency
is greater.

For example, the antipodal constellation [3.2] § = {#+/€} has V&, = v/€ and
dE,min = 2VE, so ~ = 1. This may serve as a baseline figure. Other values of
and R,/W are shown in Table 1.1 and in Figure 3.2.
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Figure 3.2: Power efficiency vs. bandwidth efficiency of some constellations (OR-
THO stands for orthogonal constellations). Observe how, with orthogonal signal-
ing, increasing the constellation size M yields an increase of «y and a decrease of
Ry, /W . The opposite occurs with PAM, QAM, and PSK.

3.4.4 TradeofTs in the selection of a constellation

In summary, the evaluation of a constellation may be based on the following three
parameters: the error probability P(e), the signal-to-noise ratio €;,/Np necessary
to achieve P(e), and the bandwidth efficiency R,/W. The first tells us about
the reliability of the transmission, the second measures the efficiency in power
expenditure, and the third measures how efficiently the modulation scheme makes
use of the bandwidth. For low error probabilities, we may simply consider the
asymptotic power efficiency -y and the bandwidth efficiency.

The ideal system achieves a small P(e) with a low £,/Np and a high R,/W:
now, we shall evaluate bounds on the values of these parameters that can be achieved
by any modulation scheme. In addition, complexity considerations force us to
move further apart from the theoretical limits. Consequently, complexity should
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also be introduced among the parameters that force a tradeoff in the selection of a
modulation scheme.

3.5 Capacity of the AWGN channel

We now evaluate the capacity of the AWGN channel; specifically, we examine the
Gaussian channel and a code built out of one-dimensional (i.e., real) elementary
signals. For every channel use, the input is x and the output is the real random
variable ¥ = z + z. Assume initially that no constraint is put on the input and
output alphabets X and Y, except for a constraint on the energy of the input signal,
which has the form E z2. Since zllz, we have (see Appendix A for the relevant
definitions):

H(y | z) =H(z + 2z | ) = H(z | ) = H(2) (3.32)
and hence

I(z;y) = H(y)—H(y|z)

H(y) — H(z) (3.33)
Now (Theorem A.3.1, Appendix A),
H(z) = % log 27me E 22 (3.34)
and, since Ez = 0,
Ey’=E(z+2)? =E2® +E 22 (3.35)

Thus, the entropy of Y is bounded above by % log 2ne(E 22 +E 22), and in conclu-
sion

1 1
I(z;y) < 3 log 2me(Ez? + E 2%) — 3 log 27e E 22

1 E z?
= 3 log <1 + E2 ;) (3-36)

and the maximum of I(X;Y) is attained when z is a Gaussian random vector with
zero mean and variance E z2. This maximum value is the information capacity of
the Gaussian channel:

1
C= 3 log (1 + SNR) bit/dimension (3.37)

where )
E
SNR 2 E—; (3.38)
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Observation 3.5.1 If x and z are complex, then the maximum value of the mu-
tual information is achieved for « Gaussian, with zero mean, variance E|z|?, and
independent real and imaginary parts. Moreover, it is convenient to express C' in
bit/dimension pair:

C = log(1l + SNR) bit/dimension pair (3.39)

where now SNR £ E|z|?/E|z|2.

Observation 3.5.2 The SNR (3.38) can be given different expressions as follows.
Assume z to be N-dimensional. The signal variance is £, while the noise variance
is N Np/2. Since the Shannon bandwidth of a signal is W = N/2T', we may write

€ T P

NR = = = 3.40
SNR NNy/2 NgW  NgW (340)
Recalling (3.28), we can also express the SNR in the form
EvRp
SNR = 3.41
NoW (3-41)

Since SNR= 2& /(N Nyp), we see that, as N — oo, if €/Ny remains constant then
the number of bits per dimension expressed by C tends to zero, because SNR— 0.
The number NC of bits that can be reliably transmitted over NV dimensions tends
to the constant limit log(e)€ /Ny. We shall return on this in Section 3.5.1.

Sketch of the proof of the capacity theorem

The capacity (3.37) is also the maximum achievable rate for the channel. A fun-
damental theorem of Information Theory (Appendix A) shows that there exists a
sequence of codes with rate C' and block length n such that, as n — oo, the error
probability tends to 0. Here we provide a qualitative summary of the proof, in the
form originally given by Shannon.

As we are considering one-dimensional elementary signals and code words with
length n, the dimensionality of the signal constellation is n. Observe now that the
volume of a n-dimensional sphere ¥, with radius r is proportional to 7™; thus,
the volume of the shell between r — e (with 0 < ¢ < r) and r is proportional to
r™ — (r — €)". The ratio between the volume of the shell and the volume of the
sphere is
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and tends to 1 as 7 — oo, no matter what the thickness € of the shell is. This
phenomenon, called sphere hardening, is summarized by saying that the volume
of a n-dimensional sphere tends to concentrate near its surface as n — oo.

Next, consider a set of code words x whose components are subject to the energy
constraint Ez2 < &, and let the received vector be y = x + z. Let us first apply
the sphere-hardening concept to the noise vector z. As n grows to infinity, due to
the law of large numbers, the squared length of vector z tends to a constant value:

n

sz ~ nEz? = nNy/2

i=1
where z; are the independent, equally distributed random components of z. Sphere
hardening assures that, while fluctuations of the length of z are possible, they tend
to vanish as n — o0, so that x + z lies on the surface of the sphere ¥, (x), centered
at x and with radius \/nNp/2. Thus, signals differing by a Euclidean distance
less than /nNp/2 cannot be detected without ambiguity. Conversely, x can be
detected with vanishingly small ambiguity if ¥,(x) is disjoint from the spheres
associated with the other code words: in fact, ¥,(x) is contained in the Voronoi
region of x.

Further, consider the received vector y. Its squared length tends to

n
Zyiz ~ nEy? = n(Ex? + Ez?) < n(€ + No/2)
i=1
and consequently y lies within a sphere with radius y/n(€ + Ng/2). In these
conditions, the maximum number of disjoint spheres X, (x) that can be accommo-
dated inside the sphere with radius y/n(€ + Ng/2) is no more than the ratio of the

volumes
[n(€ + No/2)]"/?

= (1 +SNR)"?
o2z (SRR
This is the number |S| of code words. Thus, the rate of the code is
log |8 1
o= lo8l8l _ 5 log(1+SNR)  bivdimension (3.42)

This “sphere-packing” argument also shows that we cannot hope to send informa-
tion at a rate greater than C with low probability of error.

3.5.1 The bandlimited Gaussian channel

Assume now that the transmission of signal x takes a time 7". Assuming as usual
that the dimensionality of the constellation is N = 2WT, with W its (Shannon-)
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bandwidth occupancy, we transmit 2W dimensions per second. Thus, using (3.40),
Equation (3.37) can be rewritten in the form

C =Wlog (1 + ) bit/s (3.43)

?
NoW
which expresses the capacity of the bandlimited AWGN channel.

Notice that, as W — oo, we have

C - 3loge bit/s (3.44)
No

which shows how capacity grows linearly with signal power, rather than logarith-
mically as in (3.37). Equation (3.44) also shows that, for a given P/Nj, the capac-
ity remains bounded even though W (and hence the number of signal dimensions)
grows without bounds. This occurs because P is fixed, and hence the power per Hz
tends to zero.

If (3.41) is used, we obtain

. EvRp .
C =Wlog (l + N0W> bit/s

Since for reliable transmission we must have Ry, < C, we require that

Ry Ep Ry
W < log (1 + NoW

Solving this inequality for the minimum allowable €,/Ny, we obtain

& 2f/W _q
No = Ry/W

as plotted in Figure 3.3. The curve in this figure demarcates the region in which ar-
bitrary low P(e) can be reached: for any given Ry, /W there exists a minimum value
of €,/ Ny that must be exceeded if arbitrarily high reliability must be achieved. No-
tice that, as T increases, the required £;/Ny approaches the lower limit

li 2R/ 1 In?2 6d
W T Rgw | née -lods

Moreover, as Ry/W > 2, that is, when bandwidth is constrained, the energy-to-
noise ratio required for reliable transmission increases dramatically. The region
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Figure 3.3: Capacity limits for the bandlimited AWGN channel.

where R,/W > 2 (more than 2 bit/s/Hz, or equivalently more than 1 bit per di-
mension) is usually referred to as the bandwidth-limited region, and the region
where R,/W < 2 as the power-limited region. Figure 3.3 suggests that if the
available power is severely limited, then we should compensate for this limitation
by increasing the bandwidth occupancy, while the cost of a bandwidth limitation is
an increase in the transmitted power.

Example 3.6

In this example we exhibit explicitly an M-ary signal constellation that, with no
bandwidth constraint, has an error probability that tends to 0, as M — oo, provided
that £, /Ny > In 2, and hence shows the best possible behavior asymptotically. This
is the set of M orthogonal, equal-energy signals defined by

(x1,5%;) ={ e 7 (3.45)

This signal set has dimensionality N = M. Due to the special symmetry of this
signal set, the Voronoi regions of the signals are all congruent (more on this infra, in
Section 3.6), and hence the error probability P(e | x;) is the same for all transmitted
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signals x;. Thus, we can assume with no loss of generality that x; was transmitted,
and write P(e) = P(e | x1). The Voronoi region R(x;) is bounded by the M — 1
hyperplanes y1 = 2, y1 = ¥3, ..., ¥y1 = ym. Hence, the probability of correct
reception is given by

Pe) =Ple| x1) =Ply1 > y2,¥1 > Y3y -+, Y1 > UM | X1) (3.46)

Now, given that x; was transmitted, the RVs y;,...,yas are iid Gaussian, with
equal variance Ny /2 and mean values

Bl lx)={ 7 12 )

The events {y1 > y; | x1} are not independent; however, they are conditionally
independent given y;, so, using (3.17), we have

Plc) = E[P(y1>y2,1 >3- Y1 > Ym | X1,91)]

do-a )]

where the expectation is taken with respect to the RV y;, whose conditional pdf is

p(y1 | x1) = (mNo) ™2 exp[—(y1 — V€)?/No|

We now rewrite P(c), after observing that £ = €, log M , in the form

Pr(c) =E [1 — Q(X + /21og M - £,/No)

where X ~ N(0,1), and examine the behavior of P(c) as M — oo. Take the
logarithm of the argument of the expectation in (3.47), and observe that

Jim 1n [1 — Q(X + /2log M - £,/No)
In [1 - Q(X + /2log M - E4/No)]
= lim

M—oo (M—— 1)_1

] M (3.47)

=

Using I"Hopital’s rule, the above is equal to

5 (M - 1)2
M]Lnoo _M1+(€b/N0)/1n2

Allog M) & , | Zo/No exp (-X?/2 - X log(M)E+/No )
(log M) £ arlogM  1— Q(X + +/21og(M)Es/No)

A(log M) (3.48)

where
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Define now ¢ £ 1 — (€,/No)/In2. By observing that, as M — oo, we have
VIn M = o(in M) and Inln M = o(ln M), we can see that asymptotically

In((M —1)% /M HE/NY/ WY A(MY ~ eIn M + o(ln M) — sgn(e) - 0o

Thus,
M-1 — if
ln[l—Q(X+ 2logM'8b/N0)] _’{ ()oo :fzzg

and, in conclusion,

0 if €/No < In2
P(C)_’{ 1 if €/No > In2

which shows that the error probability tends to zero as M — oo, provided that
&/ Ny exceeds the threshold value In 2 given by the capacity formula. O

3.5.2 % Constellation-constrained AWGN channel

The calculation of the channel capacity developed above involves no constraint
on the use of an elementary constellation, except for the assumption of signals z
with limited energy. We now evaluate the capacity of the AWGN channel when a
specific elementary constellation is chosen as X. To avoid a maximization of the
mutual information over the a priori probabilities of the transmitted signals (as in-
volved by the definition of channel capacity), we make the simplifying assumption
that the elementary signals x € X are transmitted with equal probabilities. Under
our assumption of equally likely signals, the capacity of the channel is given by

C=H(z) —H(z | y) (3.49)

where H(z) is the maximum number of bits that can be carried by each elemen-
tary signal (this is log |X|). Using Bayes’s rule, and observing that the a priori
probabilities of x are equal, we obtain

H(l‘ I y) = Ez,y -IOg Rar—ll—y—)}

D IES)

= E,, [log®&* (3.50)
i )




3.5. Capacity of the AWGN channel 57

so that
> ply )
C =log|X| — Euy |log T — (3.51)
p(y | z)

This capacity can be conveniently evaluated by using Monte Carlo integration,
by picking first a value of z, then taking the expectation with respect to y given
z, and finally taking the expectation with respect to . Under our assumptions of
equally likely signals, the latter is computed as

-] = TDICTZ['] (3.52)

Notice that for the AWGN channel we have
p(y | z) = celv=el*/No (3.53)

where c is a normalization constant, which is irrelevant here. Figure 3.4 shows C
for some two-dimensional constellations as a function of the signal-to-noise ratio

oty _ &logMz i

SNR = =
NoW — Ny No

which follows from our assumption of two-dimensional signals, which entails
Ry/W = log M. The uppermost curve of Figure 3.4 describes the capacity of
the AWGN channel with no constraint on the constellation. It is seen that, for
low SNRs, the capacity loss due to the use of a specific constellation may be very
small, while it increases at high SNR. From this we can infer that binary transmis-
sion is a reasonable proposition for small SNR, whereas we should choose a large
constellation if the channel has a large signal-to-noise ratio.

3.5.3  How much can we achieve from coding?

We now examine the amount of energy savings that the use of the code § allows
one to achieve with respect to the transmission of the elementary uncoded constel-
lation X. If we plot the error probability achieved with and without coding as a
function of €;/Ny, a typical behavior of the two error-probability curves emerges
(see Figure 3.5. In particular, it is seen that, with coding, the same value of P(e)
may be achieved at a lower £,/Np than without coding. If this occurs, we say
that the coding scheme yields a coding gain, usually measured in dB. Notice that
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Figure 3.4: Capacity of some two-dimensional constellations over the AWGN
channel. The unconstrained capacity log(1 + €/Ny) is also shown

the coding gain might be negative if P(e) is not low enough: this shows that cod-
ing may improve the quality of a channel only if the channel itself is not too bad.
Also, the coding gain usually increases as P(e) decreases: the limiting value as

P(e) — 0 is called asymptotic coding gain.
The asymptotic coding gain can be evaluated by simply taking the ratio between
the values of the asymptotic power efficiency for coded and uncoded constellations.

Example 3.1 (continued)

This constellation has minimum squared Euclidean distance 8 and &, = 3/2. Thus,
its asymptotic power efficiency is 4/3. The baseline -y (uncoded binary PAM) is 1,
so the asymptotic coding gain of this constellation is 4/3. O

A way to evaluate the potential performance of an elementary constellation used
with coding consists of computing its performance with reference to a code achiev-
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O
D— -
uncoded
i coded B
10° y
r coding gain 7
@ P(e)=10"°

Figure 3.5: Illustration of coding gain.

ing capacity at a certain SNR. Define first the normalized SNR

SNR
SNR, £ C’T(p) (3.54)

Here C' denotes the capacity of the channel, interpreted as a function of SNR, such
that C~1(p) is the minimum value of SNR required to support the actual data rate p,
in bit/dimension. Thus, SNR, measures how much the SNR exceeds this minimal
value. For a capacity-achieving coding scheme, p = C, and hence SNR, = 1 (that
is, 0 dB). A practical scheme (which has p < C) requires an SNR that is larger
than SNR,, by some factor, which is precisely the normalized SNR. Thus, the value
of the normalized signal-to-noise ratio signifies how far a system is operating from
the capacity limit.

Recall that, with no constraint on the choice of the (one-dimensional) signal
constellation X, the channel capacity is given by

1
C= 5 log(1 + SNR) bit/dimension (3.55)
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where SNR = 2& /Ny. The capacity is actually achieved by a Gaussian-distributed
set of elementary signals. Now, rewrite the capacity formula (3.55) as

SNR = 2%¢ 1 (3.56)

which, in conjunction with (3.54), yields the definition of normalized SNR in the

form
SNR

SNR, £ T

(3.57)

where p is the actual rate.

Example 3.7

Consider PAM as a baseline one-dimensional constellation; this has |X| points
equally spaced on the real line, and centered at the origin. Let d denote the spacing
between two adjacent signals; then the error probability over the AWGN channel is

known to be 4
“ ( 2N0)

for the two outer points of the constellation, and

d
2Q ( 2N0)

for the |X| — 2 inner points [3.2, Section 5.2]. Hence, by observing that the average
energy of the constellation is

d2
_ 2 _
&= (IXP-1) 5

and that SNR = 2€ /Ny, the average error probability is given by

1 SNR
For uncoded PAM, p = log |X| bit/dimension. From (3.57) we have
SNR
SNRO = lfx:lz—-———l (359)

so that the error probability for PAM can be written in the form
1
2 (1 - —) Q <\/3SNRO>
|
20 (\/3 SNR,,) (3.60)

P(e)

Q



3.5. Capacity of the AWGN channel 61

Figure 3.6: Error probability of uncoded PAM vs. the normalized SNR.

where the last approximation holds for large constellation size and makes P(e) in-
dependent of |X|. With P(e) plotted versus SNR,, (Figure 3.6), it can be seen that,
for P(e) = 107%, uncoded PAM is about 9 dB away from the capacity limit, which
indicates that the use of coding can in principle buy that much. Observe also that
the available coding gain decreases as the error probability increases. |

A dual way of describing the performance of a coding/modulation scheme is to
plot its error probability versus the data rate for a fixed SNR level. The normalized
rate

A P
Po = C(SNR) (3.61)

indicates again how far (in terms of rate) a system is operating from the capacity
limit. For the AWGN channel we have

2p
P 3.62
Po= 1og(1 + SNR) (3.62)
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P(e)
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Figure 3.7: Error probability of uncoded PAM vs. the normalized rate p,.

Example 3.7 (continued)
With uncoded PAM, we have, using (3.62) and (3.58),

|| = 2° = (1 + SNR)?*/2

and

Ple) = (1= (+SNR)/%) @ (\/ ¥ ﬁ%ﬁ)

which is plotted in Figure 3.7. We observe, for example, that, at an error probability
of 10~ and SNR= 10 dB, the rate achieved is about one half of the capacity. [

3.6 Geometrically uniform constellations

Here we want to characterize the symmetries of the constellation & used for trans-
mission over the AWGN channel. In particular, we want to develop tools useful to
assess whether a given constellation has certain symmetries that are important in
communications.
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In general, the conditional error probability P(e | x) depends on x, i.e., different
x may have different error probabilities. We are interested in finding constellations
8 = {x} such that P(e | x) is independent of x. We have two options here:

(a) If the error probability is estimated via the union bound

P(elx)SZQ(”XQ;\/T’A‘O”)

X#EX

then this estimate of P(e | x) does not depend on x if the set of Euclidean
distances (including multiplicities) from x to any point of § do not depend
on x. In this case we say that 8 is distance uniform.

(b) If we use the exact expression of error probability:
Ple|x) =1—-Px+n € R(x)]

then P(e | x) does not depend on x if the Voronoi regions are all congruent.
We say that S is Voronoi uniform if all Voronoi regions are congruent.

The significance of these two properties is the following. Uniformity properties
can be used to simplify the evaluation of error probability P(e) for transmission of
S over the AWGN channel, because the union bound on P(e | x) does not depend
on the transmitted vector x if § is distance-uniform. Similarly, the exact error
probability does not depend on x if § is Voronoi uniform. Voronoi uniformity
implies distance uniformity.

In practice, it is convenient to define a higher level of uniformity, called geomet-
ric uniformity, that implies both Voronoi and distance uniformity. Let us first recall
some definitions.

Definition 3.6.1 An isometry of RY is a transformation v : RY — RV that
preserves Euclidean distances:

lu(x) = w(¥)ll = IIx -yl

Consider next a set 8 of points in RY.
Definition 3.6.2 An isometry u that leaves § invariant, i.e., such that
u(8) =8

is called a symmetry of 8. The symmetries of S form a group under composition of
isometries, called the symmetry group of § and denoted I'(S).
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I

Figure 3.8: A non-GU signal set.

We are now ready to define geometric uniformity.

Definition 3.6.3 S is geometrically uniform if, given any two points X;, X; in §,
there exists an isometry u;_,; that transforms X; in x; and leaves § invariant:

uij(Xi) = X; ui—;(8) =8

A geometrically uniform (GU) signal set can thus be generated by the action of a
group of isometries on an “initial” vector.

Example 3.8

The constellation of Figure 3.8 is not geometrically uniform: in fact its symme-
try group (which has four elements: the identity, the reflection along the horizontal
axis, the reflection along the vertical axis, and the combination of two reflections)
does not act transitively to generate the four signal points from an initial x € §. O

Example 3.9

Take the initial vector [1/+/2,1/+/2)’ and the rotation group R4 represented by the
four matrices

] [ae] [ 2] 5 el

This generates a four-point constellation (4-PSK). We learn from this example that
it may happen that the symmetry group I'(8) of a geometrically uniform signal set
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is larger than necessary to generate 8. In fact, 4-PSK has the 8-element dihedral
group Dy as its symmetry group. In addition to the rotation matrices shown above,
D4 has the matrices

o] el (o] [ 5]

Definition 3.6.4 A generating group U(S) of S is a subgroup of the symmetry
group I'(8) that is minimally sufficient to generate S from an arbitrary initial vec-
tor. Such a map from U (8) to S induces a group structure on 8, making it isomor-
phic to the generating group.

Example 3.9 (continued)

It is seen that 4-PSK can be generated not only by the rotation group E4 as above
(this group is isomorphic to the group Z4 of integers mod 4), but also by the group
of reflections about either axis, corresponding to the four diagonal matrices of Dj.
This observation shows that a signal set may have more than one generating group.
|

Example 3.10

The 8-PSK constellation is GU. One of its generating groups is Rg, the set of ro-
tations by multiples of 7 /4. The symmetry group of § is I'(§) = V Ry, the set of
all compositions of elements of Rg with elements of a two-element reflection group
V consisting of the identity and a reflection about the line between any point and
the origin. This group is isomorphic to the dihedral group Ds. Dsg is the symmetry
group of the only other two-dimensional uniform constellation with eight points,
asymmetric 8-PSK (see Figure 3.9). |

We quote from Forney [3.4]:

A geometrically uniform signal set § has the important property of
looking the same from any of its points. This property implies that any
arbitrary point of § may be taken as the “center of the universe,” and
that all the geometric properties relative to that point do not depend on
which point is chosen.
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Figure 3.9: 8-PSK and asymmetric 8-PSK.

3.6.1 Error probability

By combining the Bhattacharyya bound (3.20) with the union bound (3.15), we
obtain for a GU constellation the union-Bhattacharyya bound

Ple) < Y exp{—|x—|*/4No} (3.63)
XES\X

The last bound can be given a convenient form by defining the distance enumerator
Junction of the signal set § as the following function of the indeterminate X:

D(x)& Y Axl=r? (3.64)
xES\X

where A; is the number of signals x at Euclidean distance ||x — X|| from the refer-
ence signal X. This function does not depend on X because of the GU assumption.
With this definition, (3.63) takes the compact form

P(e) < D(exp{—1/4No}) (3.65)

A tighter bound can be obtained by observing the exact value of the pairwise
error probability (3.18). Using the inequality (see Problem section)

Q(Vz+y) < Q(Wz)e™¥/?, >0,y >0 (3.66)

and observing that for X # x we have ||x — X|| > dg min. We can bound the PEP
as follows:

of JE=XI} _ 0 B in + (I = %2 —df )
2Ny 2Ny

IA

dEmin \ d2 . /ANy —|x—%]||2/4No
Q( 2N, )e ’ ¢
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Thus,

P(e)

IA

= o)

xe8\X

dg min) /4N, —|Ix=R]I2/4N:
S Q (’_ Emln 0 e |X X” / o
/2, P

Q (%‘5) e¥Emin/™N0 D (exp{—1/4No})

3.7 Algebraic structure in S: Binary codes

Here we show how, by introducing a suitable algebraic structure in a subset S of
X", it is possible to obtain constellations that can be easily described and analyzed.

Let Fo denote the set {0,1} with mod-2 operations, and 5 the set of binary
n-tuples with mod-2 operations extended componentwise.

Definition 3.7.1 An [n, M, d] binary code C is a set of M binary n-tuples, its
words, such that d is the minimum Hamming distance between any two of them.

Based on this definition, a code § in the signal space can be generated by ap-
plying to each component of each word cf the binary code € the map {0,1} —
{#++/€} (see Figure 3.10). Under this map, the set FY is transformed into the set
{£V/E}™ of the 2" vertices of the n-dimensional hypercube of side v/€ centered at
the origin. All signals in § have the same energy n€. The binary code € maps to the
subset S of M vertices of this hypercube. Figure 3.10 shows a three-dimensional
cube and two codes, one with M = 8 and d = 1, and the other with M = 4 and
d=2.

Notice also that (3.11) holds here, so that 8 has

dE min = 4&d

Moreover, since M < 27, using (3.29) we can see that the bandwidth efficiency of

S satisfies
Ry 2logM

W T
which shows that binary codes are suitable for the power-limited regime. The
asymptotic power efficiency (3.30) takes the value

é&_d Sd log M
48b 8b n

<2

N = d (3.67)
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(a) (b)

Figure 3.10: Geometric representation of two codes withn = 3. (a) [3,8, 1] code,
whose words are all the binary triples. (b) [3, 4, 2] code, whose words are the binary
triples with an even number of “1”’ components.

where the last equality is derived from €, = n€/log M. The asymptotic coding
gain of the code is given by the ratio of -y above to the asymptotic power efficiency
of the baseline constellation 2-PAM. The latter is 1, so -y is also the asymptotic
coding gain.

To understand the limitations of binary coding, Table 3.1, taken from [3.1],
shows upper bounds to M for various values of the block length n and of the
minimum Hamming distance d.

Definition 3.7.2 If C has the form
¢ =FiG,

where G is a k x n binary matrix with n < k and rank k, called the generator
matrix of C, then C is called an (n,k,d) linear binary code. The code words of
a linear code have the form uG, where u is any binary k-tuple of binary source
digits.

It follows from the definition that the words of code € are all the linear combina-
tions (with coefficients 0 or 1) of the k rows of G; the code forms a linear subspace
of F} with 2* elements. Figure 3.11 represents the coding chain for linear binary
codes. The binary source symbols are grouped in blocks of &, then sent into the
encoder. This transforms each of them in a word ¢ € €. The mapper transforms c
into an element x in 8.

The code rate is p = k/n bit/dimension, which yields a bandwidth efficiency
2k /n, with a loss k/n with respect to the efficiency of X = {£1}, i.e., 2-PAM
(that is, the use of this code entails a bandwidth expansion by a factor of n/k). The
asymptotic power efficiency (3.67) (and hence the asymptotic coding gain with
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d=4 6 8 10 12 14
n==06 4 2

7 8 2
8 16 2 2
9 20 4 2
10 40 6 2 2
11 72 12 2 2
12 144 24 4 2 2
13 256 32 4 2 2
14 512 64 8 2 2 2
15 1024 128 16 4 2 2
16 2048 256 32 4 2 2
17 3276 340 37 6 2 2
18 6552 680 72 10 4 2
19 13104 1288 144 20 4 2
20 26208 2372 279 40 6 2
21 43689 4096 512 48 8 4
22 87378 6941 1024 88 12 4
23 173491 13774 2048 150 24 4
24 344308 24106 4096 280 48 6
25 599185 48148 6425 549 56 8
26 1198370 86132 10336 1029 98 14
27 2396740 162400 17804 1764 169 28
28 4793480 291269 32205 3200 288 56

Table 3.1: Upper bounds to the number M of code words for binary codes with
length n and minimum Hamming distance d.

map

c=uG e @C{0,1}" xe8C{£/e}"

u; €{0,1}  ue{0,1}*
Figure 3.11: Transmission of linearly encoded symbols.

respect to binary PAM) becomes

k
7=-d (3.68)
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Example 3.11

Let the generator matrix of a (4, 3, d) binary code be

1
G=1{0
0

O = O
—= OO
=

The eight words of this code are obtained by multiplying all the binary triples by G:

(000)G=(0000) (B01G=(011) (010)G=(0101)

(011)G=(0110) (100)G=(1001) (101)G=(1010)

(110)G=(1100) (111)G=(1111)

and are characterized by having an even number of “1” components. Binary codes
with this property are called single-parity-check codes. One can easily verify that
d = 2 in this case, so the asymptotic coding gain is 6/4 = 1.76 dB. O

Capacity limits

Using the capacity formula, we can derive the minimum value of £, /NN that allows
transmisston with vanishingly small error probability under the constraint that the
code rate is p. Since for one-dimensional signals we have SNR= 2p&; /Ny, from

1 &
<-log(1+202
p<zlos (142052 )

we obtain the capacity limit
& _ 227 -1
= >

3.69
N2, (3.69)

As an example, for infinitely reliable transmission with rate-1/2 codes we need
&y/No > 0dB. For unconstrained rate (i.e., for p — 0), we obtain the known result
Ep/No > In2 = —1.6 dB. Some additional values are tabulated in Table 4.1.

The capacity limit is often used to evaluate the quality of a practical code. The
value of €, /Ny necessary to achieve a small error probability (e.g., 1075) is com-
pared to (3.69) for the same rate. If these two values are close enough, we say that
the code performs “close to capacity.”
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Systematic codes

Definition 3.7.3 A linear code is called systematic if its generator matrix has the

form G = [I;,: P|, where P is a k x (n — k) matrix. The words of these codes
have the form

uG = [u: uP] (3.70)

that is, their first k positions are a copy of the source k-tuple.

The assumption that a code generated by G is systematic does not entail any loss
of generality. In fact, by combining linearly the rows of G (and possibly permuting
its columns, which corresponds to changing the order of the components of all code
words), we can give G the form (3.70). A general algorithm to do this is Gauss-
Jordan elimination (Section B.3, Appendix B).

Parity-check matrix

Definition 3.7.4 An alternative definition of a linear code is through the concept
of an (n — k) x n parity-check matrix H. A code C is linear if

HC' =0,
where the prime ' denotes transposition of all code words.

This definition follows from the observation that, if G denotes the (n — k)-
dimensional vector space orthogonal to € (which is another code called the dual of
©), and h,, ..., h, j are n-vectors spanning it, then for any ¢ and for any binary
n-tuple y we have h;y’ = 0 if and only if x € €. The matrix H whose rows are
the vectors above is the parity-check matrix of C, and the vector Hy’ is called the
syndrome of r: this is the null vector if and only if y is a code word. H describes
the n — k linear constraints (“‘parity checks”) that a binary n-tuple must satisfy to
be a code word. To avoid redundant constraints, the n — k rows of H are assumed
to be linearly independent.

Example 3.12
Consider a linear binary (n, n — 1, d) code with
H=[11...1]
The syndrome of the binary n-vector y = (y1, y2, - .., Yn) is given by

Hy =yi1 +y2+...+yn
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which is zero if and only if there are an even number of 1s among the components
of y. € has d = 2 and is a single-parity-check code. O

Example 3.13

The (n, 1, n) binary repetition code, consisting of two words, namely, the all-zero
and the all-1 binary vectors, has the parity-check matrix

1
H= In— 1 :
1
where I denotes the k x k identity matrix. For n = 4, we obtain

1 0 01
H=|(01 0 1
0 011

and the syndrome Hy’ is null if and only if 43 + y4 = y2 +y4 = y3 +y4 = 0, i.e,,
Y1 = Y2 = Y3 = Y4. |

Observation 3.7.1 From the definitions of G and H it follows that
HG' =0 and GH' =0,

where 0 denotes an all-zero matrix with suitable dimensions.

Error detection

The concept of syndrome of an n-tuple is convenient to define a procedure called
error detection. If hard decisions Z; (see Section 1.2.1) are separately made on the
components of a code word observed at the output of a noisy channel, the resulting
vector X £ (1, ..., 2,) may not be a code word, thus indicating that “the channel
has made errors.” To verify if a binary n-tuple is a code word, it suffices to compute
its syndrome.
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Hamming distance and Hamming weight

From the definition of a linear code, it follows that d, the minimum Hamming
distance of a code C, equals the minimum Hamming weight of the words of C,
i.e., the minimum number of “1”’s contained in each nonzero code word. In fact, if
w(c) denotes the Hamming weight of ¢, we have, for the Hamming distance of the
code words ¢/, ¢”:

dg(c/, ") = w(d + ") = w(c)

where ¢ £ ¢’ + ¢” is (because of the linearity of the code) another word of € (see
the Problem section). Thus,

in dg(c’,c”) = mi 3.71
i, u(c’,c’) Icr;g’W(C) (3.71)

Now, rewrite the parity-check matrix H of € in the form
H=[h; --- h,]

where h;, 7 = 1,...,n is abinary (n — k)-vector. The condition for ¢ to be a code
word, i.e., H¢ = 0, can be expressed as

S hici=0 (3.72)
=1

This equation expresses the n — k linear parity checks that the symbols of ¢ must
satisfy. Thus, since ¢ has w(c) ones, (3.72) shows that w(c) columns of H sum
to the null vector. This fact, in combination with (3.71), implies that, for a linear
code, d is the minimum number of columns of H to be added together to obtain 0.

Example 3.14

Consider the parity-check matrix of the Hamming code € such that

00
H=]|0 1
1 0

— O
OO -

1 1
0 1
1 0

[Er—

Here the columns of H consist of all binary nonzero triples. We verify that no two
columns sum to 0, while, for example, h; + hs + hs = 0. Thus, d = 3. This code
has parameters (7,4, 3). O
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Coset decomposition of a code €

As briefly mentioned before, a linear binary code forms a vector space over the Ga-
lois field F%; it is also a commutative additive group. We may define an (n, k', d')
subcode €' of the (n, k,d) code C (with ¥’ < k, d’ > d) as a subset of C that is
itself a linear code. The cosets of the subcode €’ in € are the codes €' + ¢ with
c € G, i.e., the cosets of the subgroup C’. Every coset of €’ contains the same
number of code words. Notice that only the coset €’ + 0 is a linear code.

Given C and its subcode €', two code words are in the same coset if and only if
their sum is in €’ and the union of the cosets forms a partition of €. The situation
is summarized in the following Theorem:

Theorem 3.7.1 Any two cosets are either disjoint or identical.

Proof. Let x belong to the cosets @ +aand €'+ b, b # a. Thenc +a=<¢+b,
with ¢, € € €/, and consequently a = ¢+ ¢+ b € €’ + b, which implies €' + a C
€’ + b. In a similar way we obtain €' + b C €’ + a, which yields €’ + a = €’ + b,
thus proving the theorem. d

Example 3.15

The “universe” (n,n,1) code € admits as its coset the single-parity-check (n,n —
1,2) code €. The two cosets of €’ in € are the two (n, n — 1,2) codes whose words
have even parity and odd parity, respectively. We may decompose € in the form

C=CuU{C+e)

where C is any fixed n-tuple with weight 1. O

3.7.1 Error probability and weight enumerator

Consider the calculation of error probability for the constellation S obtained from
the linear binary code C. We have, using the inequality Q(z) < exp(—z?%/2):

Ple|x) < Y Px—3%) <Y e Ix%IF/1m (3.13)
X#£x XF#x

Now, since we are considering binary antipodal signaling, from (3.11) we have
that Euclidean distance and Hamming distance are related through ||x — X||? =
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4&dy(c, ), where ¢ and ¢ are the binary code words mapped into x, X, respec-
tively. Thus, we can write, recalling the linearity assumption for C,

Ple]c) < ) e m(e@E/MNo = N " gmuleh)e/No (3.74)
¢#c c*#0
The value of last summation does not depend on ¢, and hence P(e | ¢) = P(e) for
any choice of ¢. In conclusion,

P(e) < ) " exp(—w(c)€/No) (3.75)
c#0
Recall now that n binary symbols, each with energy €, carry k information bits, so
&y = (n/k)E, and hence

P(e) < Y exp(—w(c)(k/n)€y/No) (3.76)
c#£0
Consider next the set of weights of the words of the linear code C. The weight
enumerator of € is the polynomial in the indeterminate X defined as

W(X) 2> x9© =>"A,X (3.77)
cel i
where the last summation index runs through the set of values taken on by the code

word weights, and A; is the number of words whose weight is <.
From (3.75)—(3.76), we have the simple expression

Ple)<W (e‘g/NO) —1=W (e—’“/"'eb/NO) —1 (3.78)

Example 3.16

The “universe” code (n,n, 1), whose words are all the binary n-tuples, has weight
enumerator (see the Problem section)

WX)y=01+X)"
and consequently
Ple) < (1+ e-S/No)" ~1
The single-parity-check (n,n — 1, 2) code, whose words are all the n-tuples with
an even number of 1s, has weight enumerator (see the Problem section)
1+X)"+(1-X)
2

W(X) =
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3.8 % Symbol MAP decoding

So far, we have examined decoding of code € based on the maximum-likelihood
rule, which consists of maximizing over x € C the function p(y | x). This rule
minimizes the word error probability under the assumption that all code words
are equally likely. If the latter assumption is removed, then to minimize the word
error probability we should use instead the maximum a posteriori (MAP) rule,
which consists of maximizing the function p(x | y). Now, assume that we want
to minimize the information symbol error probability, that is, the probability that a
source symbol u; is received erroneously: in this case, we obtain symbol maximum
a posteriori (MAP) decoding by maximizing the a posteriori probabilities (APP)

p(ui | y), i=1,...,k

Specifically, we decode w; into O or 1 by comparing the probabilities that the ith bit
of the source sequence that generates x is equal to O or 1, given the received vector
y and the fact that code C is used. The APPs p(u; | y) can be expressed as

plus|y)= > px|y) (3.79)

xeC; (ul)

and C;(u;) denotes the subset of code words generated by the source words whose
ith component is u;. Observe that, since we are interested in maximizing p(u; | y)
over u;, we can omit constants that are the same for u; = 0 and u; = 1. For equally
likely code words x and a memoryless channel, we may write

pluily)oc > plylx)= >, prgla:]) (3.80)

x€C;(u;) x€C;(u;) j=1

Example 3.17

Consider an AWGN channel with noise variance ¢2, so that
p(y; | z;) o exp{—(y; — =;)*/20°} & f(z;, y;)

Assume the single-parity-check (3, 2,2) binary code of Table 3.2 is used, and let
the received symbols y;, 2, y3 and the noise variance be such that

f(#+1,41) =098 f(—1,41) =0.20
f(+1,92) =099 f(~1,y2) =0.18
f(+1,y3) =055 f(—1,y3) = 0.67
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source coded
symbols symbols

00 +1 4+1 41
01 +1 -1 -1
10 -1+1-1
11 -1 -1-1

Table 3.2: Words of the single-parity-check (3, 2,2) binary code.

We can compute p(y | x) for each code word:

+1 +1 +1 —0.98 x0.99 x 0.55 = 0.5336
+1 -1 -1 —0.98x0.18 x 0.67 = 0.1182
-1 -1 +4+1-—0.20x0.18 x 0.55 = 0.0198
-1 4+1 -1—0.20x0.99 x 0.67 = 0.1327

so that
plur =0]y) x 0.5336 +0.1182 = 0.6518
plur =1]y) x0.0198 +0.1327 = 0.1525
pluz =0|y) x 0.5336 + 0.1327 = 0.6663
plug =11]y) o< 0.1182+ 0.0198 = 0.1380
and symbol MAP decoding yields 4; = 0, tia = 0. O

The brute-force approach consisting of direct computation of (3.79) is generally
inefficient. In Chapters 5 and 8 we shall examine more efficient algorithms.

3.9 Bibliographical notes

For details on modulation schemes, see, e,g., {3.2]. Our discussion on the coding
gain and the definitions of normalized SNR and normalized data rate follow 3.5,
3.13]. The concept of Shannon Bandwidth was introduced by Massey [3.9]. Ex-
ample 3.6 is borrowed from [3.12]. The section on geometrically uniform signals
is taken from [3.4].

A thorough treatment of algebraic codes can be found in the classical work [3.8],
a monumentum eere perennius to algebraic coding theory. Recent results are col-
lected in [3.6,3.7], while [3.3] is oriented towards communications applications.
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3.10 Problems

1. For transmission of the M -signal constellation 8§ = {x} over the AWGN
channel with noise power spectral density Ng/2, derive the chain of upper
bounds

P(e) < - ZZQ (dE(X x))

X X#xX

< (M-1)Q (dEZI]r;,())

the chain of lower bounds
1 ming.«x dg (X, X) )
P > J—
© = 530

Qmin dE, min
> -
- M @ (\/21\}0)

2 dE min
> - i
- M @ (\/ 2Ny
(where amin is the number of signals having at least one neighbor at distance
dE, min), and the approximation

~ dE,min )
Ple) L @ 4
0200 (2
(where « is the average number of “nearest neighbors,” i.e., of signals at a
distance dg, min from any element of 8).

2. Consider the one-dimensional quaternary constellation 8§ = {%a, £b}, 0 <
a < b, subject to the constraint of unit average energy. Compute the exact
error probability of this constellation over the AWGN channel, and find the
values of a, b that minimize it as a function of Ny. For which value of N
does the geometry of the minimum-P(e) constellation maximize the mini-
mum Euclidean distance? What happens as Ng — 0?

3. Assuming an AWGN channel with noise power spectral density Np/2, com-
pute the bit error probability P,(e) of 4-PSK, with Gray coding as in Fig-
ure 3.1, as a function of €,/Ny.
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4.

5.

The general Bhattacharyya bound on the pairwise error probability of a
general channel described by the conditional probability density function
p(y | x) can be derived as follows. The maximum-likelihood demodulation
rule consists of picking the signal X that maximizes p(y | x). Now, the
pairwise error probability is given by

P(x —X) =P{p(y | X) 2 p(y | x) | x}
and can also be expressed in the form

HX*®=/fWMyHMy

where
a1 plylX)>py|x)
fly) = { 0 otherwise

Show, by finding a suitable upper bound to the function f(y), that the Bhat-
tacharyya bound holds:

P@ﬁﬂé/ﬁ@&Mﬂﬂ@

Notice also how the right-hand side of this inequality is connected to the
Bhattacharyya distance.

(a) Derive the Chernoff bound

ngmgmmEF*ﬂ

A>0

where X is a real random variable. This is especially useful when X
is the sum of independent random variables. (Hint: Write P[X <
0] = E[f(X)] for a suitable choice of the function f(-), and bound
this function from above.)

(b) Use the Chernoff bound to obtain an upper bound to the pairwise error
probability for the AWGN channel. Use the following result, valid for
X ~N(p,0?):

E[exp(AX)] = exp(—Au + A26?%/2)
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10.

11.

Draw the equivalent of Figure 3.6 for QAM constellations. Use the following
approximation to error probability:

SNR

where SNR = &£/Nj, € the average energy of the constellation.

. Redraw Figure 3.4 by plotting C' vs. £,/Ny.

. Generalize (3.69) by assuming that a nonzero error probability p is tolerated.

(Hint: A finite error probability can be obtained by this simple scheme:
transmit with zero error probability a fraction p* of binary symbols, and
randomly guess the balance.) It can be shown, by using Shannon’s Rate—
Distortion Theory [3.10], that the above simple scheme can be improved by
transmitting with zero error probability a fraction 1+ plog p+(1—p) log(1—
p) of binary symbols. This leads to the results shown in Figure 1.5.

Verify that for a linear code:

(a) The all-zero n-tuple is a code word.

(b) The sum of two code words is a code word.

A (5,3, d) linear binary code is defined through the correspondence given in
the following table:

uy U2 Uus 1 T2 T3 T4 Ts
1 1 O 1 0 1 0 1
1 0 1 6o 1 0 1 O
0O 1 O o 1 1 0 O

Find generator and parity-check matrices for this code.

Consider the linear binary Reed-Muller code generated by the 4 x 8 matrix
1
G=

S = O =
— O =

1 1 11
0 1 11
0 0 11
1 0 01

OO O -
— O

Prove that this code has d = 4, and compute its asymptotic coding gain.
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12.

13.

14.

15.

16.

17.
18.

Recall that a linear binary code is called systematic if G has the form G =

[I; : P], where P isa k x (n — k) matrix. The words of these codes have the
form

uG = [u: uP]

that is, the first k£ positions of any code word coincide with the source vector
u.

(a) Prove that the parity check matrix of a systematic code has the form
H=[P: I,

(c) How should one proceed if the parity-check matrix in (b) is not full-
rank?

Prove that, for an (n, d, k) systematic linear code C, the following Singleton
inequality holds:
d<n—-k+1

(if equality holds, € is called a maximum distance [MD] code.) (Hint: Con-
sider words having a single “1” in their first k£ positions.)

Prove inequality (3.66).

Exhibit three simple examples of binary maximum-distance codes with length
n. It can be proved that these are the only binary MD codes: there are,
however, nonbinary MD codes, the most celebrated among them being the
Reed-Solomon codes [3.8].

Prove that the weight enumerator of the (n,n, 1) universe code is W (X) =
(1 + X)™, and that the enumerator of the (n,n — 1,2) single-parity-check

code is
A+xX)"+(1-X)"

2

W(X) =
Prove that the linear binary codes are geometrically uniform.

Consider transmission over the AWGN channel with an (n,n — 1, 2) binary
single-parity-check code, and the following decoding algorithm. First, make
separate hard decisions &; on the received components of y, based on their
polarities, and form the n-tuple X = (Z1,...,%,). If X is a code word,
then the decoder chooses X = X. Otherwise, the decoder inverts the polarity
of the component of y having the smallest absolute value, and proceeds as
above. Prove that this “Wagner rule” yields ML decoding.
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4.1 Introduction

The “narrowband” channel model we consider here assumes that the bandwidth
of the signal is much narrower than the coherence bandwidth of the channel (see
Section 2.4). In this case, then all frequency components in the transmitted signal
are affected by the same random attenuation and phase shift, and the channel is
frequency flat. This entails that the fading affects the transmitted signal multiplica-
tively: that is, if z(¢) is transmitted and z(¢) denotes the additive noise, the received

signal has the form _
y(t) = R()eI®Dx(t) + z(t) (4.1)

Examine now the rate of variation with time of the random process R(t)e/®®
modeling the fading. A possible situation is that this process is constant during the
transmission of an elementary signal, and varies from signal to signal. We refer to
this channel model as to the frequency-flat, slow fading channel.

If we can further assume that the fading is so slow that we can estimate the phase
© with sufficient accuracy, and hence compensate for it (coherent demodulation:
see, e.g., [4.7]), then model (4.1) can be further simplified to

y(t) = Ra(t) + 2(t) 4.2)

and hence, in the framework of Chapter 3, the input—output relationship describing
the channel behavior is
y= Rz + z, reX 4.3)

For coded signals, the above equation becomes
r=Rx+z 4.4

where r,x,z are column n-vectors and R is a diagonal matrix. In the follow-
ing, most of the calculations will be made under the assumption that R, and the
elements of the main diagonal of R, have a Rayleigh pdf with E[R?] = 1, that is,

pr(r) =2re™™, >0 4.5)

and we refer to this model as the Rayleigh fading channel.

4.1.1 Ergodicity of the fading channel

The choice of the correlations among the components of the main diagonal of R
characterize different channel models, to the extent that their channel capacities not
only are different but also should be defined in different ways. The definition of
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AWG

/ (=1 blt/C
IN —> » OQUT
random
switch
—>

_ C=2 bit/ch. use

Figure 4.1: A fading channel.

channel capacity for the fading channel is connected to its ergodicity. Assume first
that the components of the main diagonal of matrix R in (4.4) are independent RVs.
Then, when a long code word is transmitted, its symbols are likely to experience
all states of the channel, so the code word in a sense “averages” the channel effect,
and the channel is ergodic. Consequently, since the capacity of an AWGN channel
with constant attenuation R is log(1 + R% SNR) bit/dimension pair, the ergodic
fading channel capacity is given by

C =E[log(1+ R*SNR)]  bit/dimension pair (4.6)

Consider instead the opposite situation of a channel whose fading is so slow
that it remains constant for the whole duration of a code word. The model for this
channel has a matrix R in (4.4) whose main-diagonal components are all equal,
and independent from word to word. This channel is nonergodic, as no code word
will be able to experience all the states of the channel, and hence (4.6) is not valid
anymore.

Let us elaborate on the assumption of ergodicity for a fading channel used with
coding. The example that follows will illustrate the difficulties of defining a capac-
ity for nonergodic channels. Consider, for motivation sake, the following simple
model of a fading channel. A source is connected, through a random switch taking
on both positions with equal probabilities, to one of a pair of channels; these are
AWGN with constant attenuation. Channel 1’s attenuation is such that its capacity
is 1 bit/channel use, while Channel 2 has capacity 2 bit/channel use (Figure 4.1).

Suppose initially that the switch changes its position every symbol period. In
this case, average capacity makes sense because a long code word will experience
both channels with equal probabilities, and time average and ensemble average will
be equal due to ergodicity.
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Assume next that the switch remains in the same position for the whole duration
of a code word. Then the channel is nonergodic, i.e., we cannot exchange time
averages with ensemble averages as far as its capacity is concerned. In these con-
ditions, ensemble average does not yield channel capacity: in fact, if we transmit
at a rate slightly lower than the average capacity C = (Cy + Cs)/2 = 1.5, one
half of the code words (those experiencing channel 1) would be transmitted be-
yond capacity and hence have a large error probability. To achieve high reliability
through long code words, we need to transmit at a rate lower than 1 bit/channel
use, which by consequence may be interpreted as the true capacity of this channel.
Another interpretation consists of assuming that the capacity is a random variable,
which in this example takes on values 1 and 2 with equal probabilities. This latter
interpretation turns out to be more fruitful in practice. In fact, consider the more
realistic situation of a fading channel modeled through a switch choosing from a
continuum of AWGN channels whose attenuation R, 0 < R < oo, has a Rayleigh
probability density function. With the first interpretation, the capacity of this chan-
nel would be zero, because there is no nonzero rate at which long code words can
be transmitted with a vanishingly small error probability. With the second interpre-
tation, the mutual information of this channel (which we call instantaneous mutual
information) is the random variable C(R) = log(1 + R2SNR) bit/dimension pair.
Suppose we are transmitting at rate p bits per channel use. When the transmission
rate exceeds the capacity, we say that an information outage occurs, an event that
has probability

Pou = P[C(R) < p] = 1 — exp[—(SNR) 1 (2 — 1)} “4.7)

and corresponds to the long code word transmitted being received unreliably. We
see that, in this case, only the zero rate p = 0 is compatible with infinitely reliable
transmission (P, = 0), so capacity is zero. This situation corresponds, as before,
to the worst channel state (R = 0 here). In general, outage probability expresses a
tradeoff between rate and error probability.

In these conditions, for a nonergodic channel we may define an e-outage ca-
pacity as the maximum rate p that can be transmitted with an outage probability
P,yt = €. Notice also that the outage probability provides an estimate of word
error probability when the transmitted words are long enough. In fact, powerful
error-control codes provide nearly error-free frames at transmission rates below
instantaneous mutnal information, and mostly erroneous frames at rates above it.
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4.1.2 Channel-state information

As we know, in fading channels more than one source of randomness is included,
viz., the fading process and the additive noise. It may happen that the receiver or
the transmitter or both have at least a partial knowledge of the realization of the
fading process, which we call the channel-state information (CSI). The coding and
decoding strategies depend crucially on the availability of CSI.

CSI at the receiver can be obtained through the insertion, in the transmitted sig-
nal, of suitable pilot tones or of pilot symbols, i.e., known symbols transmitted
periodically. These allow the demodulator to take advantage of its knowledge of
the channel fading gain and hence to adjust its parameters to optimize operation.
On the other hand, CSI at the transmitter allows it to adjust its transmitted power, or
its information rate, so as to adapt the transmission to channel conditions. Trans-
mitter CSI can be relayed from the receiver through a feedback path, or, when
transmissions in both directions are multiplexed in time, the signal from the oppo-
site link can be used to measure the channel state. Transmit-power control turns
out to be a most effective technique to mitigate fading. A practical problem with
this approach comes from the difficulty of obtaining a reliable estimate of the CSI.
In fact, unless uplink and downlink transmissions occur at the same frequency and
in time intervals spaced by less than the coherence time of the channel, the CSI
has to be relayed from the receiver back to the .transmitter, which decreases the
throughput and increases the complexity of the system.

4.2 Independent fading channel

In the fading model (4.3), the only difference with respect to an AWGN channel
resides in the fact that R, instead of being a constant attenuation, is an RV, whose
value affects the amplitude, and hence the energy, of the received signal. Here we
assume that the fading values R are independent and identically distributed, and
also that the values taken by R are known at the receiver: we describe this situation
by saying that we have perfect CSI.

Detection of an uncoded elementary constellation with perfect CSI can be per-
formed in exactly the same way as for the AWGN channel: in fact, the constellation
structure is perfectly known, as is the attenuation incurred by the signal. The opti-
mum demodulation rule in this case consists again of choosing the signal in 8 that
minimizes the Euclidean distance

ly — Rz| (4.8)
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A consequence of this fact is that the error probability with perfect CSI can be
evaluated as follows. We first compute the error probability P(e | R) obtained
by assuming R constant in (4.3). Next we take the expectation of P(e | R), with
respect to the random variable R. The calculation of P(e | R) is performed as if
the channel were AWGN, but with a constellation scaled by a factor R, i.e., with
an energy associated with each signal changed from |z|? into R?|z|?.

The conditional error probability P(e | z, R) can be bounded above by the
union bound

Ple|z,R)<> Pz —#|R) (4.9)
AT
where P(x — % | R) denotes the conditional pairwise error probability, i.e., the
probability that the distance of the received signal from & is smaller than that from
the transmitted signal z when R is the channel state. We have explicitly

Pz —%|R)=Q <%) (4.10)

and hence
P(z - ) =ErP(zx — % | R)

where the expectation is taken with respect to the fading RV R. Under the assump-
tion of Rayleigh fading, the expectation above can be given a closed form, and we

have
1 \z — 2[2/4N,
P ==(1- .
(z=2)=3 ( \/1+ |z — 2|2/4N, @.11)

Using the approximation, valid for z — oo,

1
S (4.12)

1—
14z 2z

we obtain, as Ny — 0,

Pz — &) ~ (4.13)

[ — 82/No
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Example 4.1

With binary antipodal signals with common energy €, we have |z — £|? = 4€, and
hence

e\ 1 E/N
‘”@=ERQ(VHPN)::§P_V1+55%

This equation shows how P(e) turns out to be inversely proportional to SNR. Com-
parison of the error probability of this constellation for the AWGN channel and the
Rayleigh fading channel (see Figure 4.2) shows that there is a considerable gap in
performance between the two channels, which increases with SNR. As we shall see
in the following, coding can be used to reduce this gap by a considerable amount.
O

1
4/ No

(4.14)

Example 4.2

If, over the AWGN channel, P(e) can be approximated by aQ(1/2vE€/Np), then
over a fading channel we can use the approximation

P(e) ~ aErQ@ ( 27R2§>
Ny

As a special case, for a Rayleigh fading channel we have, in closed form,

_a [ v€p/No
Ple) = 2 (1 V1 +78b/No)

>
4’)’ 8;, / N 0
This shows that, on the Rayleigh fading channel, all modulation schemes are equally
bad, as their error probabilities decrease equally slowly as the SNR increases. [

and asymptotically
P(e) ~

4.2.1 Consideration of coding

Consider now coded transmission. We have, using the inequality Q(z) < e~*/2,
or, equivalently, the Chernoff bound (see the Problem section of Chapter 3):

exp(—[|R(x - %)||*/4No) (4.15)

IA
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P(e)

SNR (dB)

Figure 4.2: Comparison of error probabilities of antipodal binary modulation over
the AWGN and the Rayleigh fading channel. Here SNR= E(R?)E/No = &/Ny.
The effect of independent Rice fading with parameter K is also shown.

Now, the assumption of independent Rayleigh fading yields

P(X — }/E) < ERl,...,Rn !exp (— Z Riz|.'17i - i‘i|2/4N0>]

i=1

n
= TIEn loxp (~R2zi - 2. /4o)]
i=1

n

1
= 4.16
11;[11+|$1—1%1|2/4N0 ( )

Further, observe that for some index 7 we may have Z; = x;, although X # x.
Specifically, X will differ from x in exactly dy(x, X) components, whose indices
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are collected in a set J. Thus, as N — 0 we can write

P(x — %) Hlxz-le2/4No

i€d
9 N 1 _dH(x’SE)
1)z — il (ZN‘) 4.17)
i€l 0

By using the union bound as we did in the previous chapter, we see that the
error probability is dominated by the pairwise errors with the smallest di(x, X),
denoted by di, min. For small noise, this is the exponent of SNR™L.

Notice also the effect of the product distance

dr(x, %) 2 [ o — @l
ie]

This does not depend on SNR, and its effect is to shift horizontally the curve of PEP
vs. SNR. The smallest among the product distances can be called coding gain.

Result (4.17) shows that a sensible criterion for the selection of a code for the
independent Rayleigh fading channel with high SNR (low ) is the maximization
of the minimum Hamming distance between any two code words. This selection
criterion differs considerably from the one obtained for the AWGN channel. The
minimum Hamming distance of the code is sometimes referred to as code diver-
sity. Originally, the term diversity denoted the independent replicas of the transmit-
ted signal made available to the receiver through multiple antennas, transmission
through separate channels or separate polarizations, etc., to be described later in
this chapter. Since the diversity order appears as the exponent of SNR™! in the
expression of error probability, and Hamming distance is also an exponent to er-
ror probability when coding is used, the term code diversity was coined. Among
codes with the same diversity, a sensible choice is to choose the one with the largest
coding gain.

Example 4.3

Consider transmission of the 4-PSK constellation shown in Figure 4.3(a). This
figure corresponds to the code with n = 2 and the four words

(cos(2k + 1) /4,sin(2k + 1)7w/4)3 o

(assume unit energy). Constellation (b) is obtained by rotating (a) by /8, and has
the same performance as (a) over the AWGN channel [4.7, Section 4.2.2]. How-
ever, while (a) has a minimum Hamming distance dy min = 1, it can be easily



92 Chapter 4. Fading channels

Figure 4.3: (a) Standard 4PSK constellation. (b) 4PSK constellation after a rotation
by /8. (c)—(d) Effect of a deep fade affecting the signal component corresponding
to the vertical axis on constellations (a) and (b), respectively.

checked that (b) has du min = 2 and hence offers a better performance for high
SNR over the independent Rayleigh fading channel. To illustrate this point, con-
sider a two-dimensional transmission whereby the two components of each signal
are independently faded. Let a deep fade affect only the second signal component:
hence, constellation (a) collapses to a pair of points, thus losing one bit of infor-
mation, while constellation (b) retains a separation among points even in a single
dimension. It is instructive to evaluate the product distances of the rotated constel-
lation, and to determine the rotation angle that minimizes the coding gain. O

4.2.2 Capacity of the independent Rayleigh fading channel

Consider first the assumption of availability of channel-state information at the re-
ceiver only. With this model we observe once again that, for every channel use,
conditionally on the value of R, the channel is Gaussian with attenuation R. As-
sume that the sequence of fading values R forms an ergodic process, which is veri-
fied if the fading values are iid. The Shannon capacity is now the average capacity,
which can be calculated by using the following equation:

C =E log(1 + R*SNR) bit/dimension pair (4.18)
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Figure 4.4: Capacity of the AWGN channel and of the independent Rayleigh fading
channel.

where the expectation is taken with respect to the RV K. Using Jensen inequality
E[f(X)] < f(E[X]), valid for any concave N function f and any RV X, we can
see that, with ER? = 1, (4.18) is always less than the capacity of the AWGN
channel with the same average power.

If R is Rayleigh distributed, calculation of the expectation in (4.18) yields

1 1 1 1 . . . .
C=- 517 &P ( SNR) Ei <_ﬁ) bit/dimension pair (4.19)

T 14
Ei(a:)é/ S at

oo t

where

The average capacity (4.19) is plotted in Figure 4.4. It is seen that the gap between
the AWGN channel capacity and the capacity of the independent Rayleigh fading
channel is much smaller than the one exhibited by the error-probability curves
(Figure 4.2): this suggests that coding can be very beneficial to compensate for
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fading. The gap widens as SNR increases, and reaches its asymptotic maximum
of 2.5 dB (see Problem 1).

We can also duplicate, for the independent Rayleigh fading channel, the cal-
culations leading to (3.69) and deriving the minimum SNR necessary to achieve
infinitely reliable transmission with a rate-p code. Some values of £;,/Ny solving
the equation

1 1 1
- — VEi[-——
P = om2 P (2p8b/N0) ‘( 2p8b/N0>

are shown in Table 4.1, along with the corresponding values for the AWGN chan-
nel.

p 0 1/8 1/4 /3 1/2 2/3 3/4
€,/ No (AWGN) -16 -121 -082 -055 0. 057 0.86
€s/No (Rayleigh) ~16 -—089 —0.23 0.18 1.0 177 2.16

Table 4.1: Minimum &,/Ny values allowing infinitely reliable transmission with
rate-p codes over the AWGN and the independent Rayleigh fading channel.

As for the codes that achieve capacity, as in the AWGN case a simple standard
(Gaussian) code will suffice; however, it should be observed that since ergodicity
is invoked here, the code words must be long enough to experience all the channel
states. This implies that, according to our discussion in Chapter 2, their duration
should be much greater than the coherence time of the channel.

As for the constellation-constrained capacity (evaluated under the usual assump-
tion that the signals of the elementary constellation X are used with equal proba-
bilities), we can compute it by defining the following probability density function,
derived from (3.53):

pr(y | z) = ce™Iv-Rell*/No (4.20)

and using this expression for capacity (see 3.51):

> pr(y| )

z'eX

4.21
PRy | @) @20

C = log, |X| - Ezy,r |logy

This capacity can be evaluated numerically (for small |X|) or via Monte Carlo
simulation. Figure 4.5 compares the capacity of the ergodic Rayleigh fading chan-
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Figure 4.5: Constellation-constrained capacity of the independent Rayleigh fad-
ing channel with coherent detection of binary, quaternary, and octonary PSK and
perfect channel-state information. The unconstrained Rayleigh-fading channel and
AWGN channel capacities are also shown for comparison.

nel with that of the AWGN channel for some two-dimensional signal constella-
tions. (Compare Figure 4.5 with Figure 3.4, where the constrained capacity for the
AWGN is shown for the same constellations).

No channel-state information

In the absence of channel-state information (regarding both envelope and phase of
the fading), we observe the received signal

y=Re®z +n

where R exp(j©) ~ N¢(0, 1). Thus, the conditional pdf of y given z, R, and ©, is

Gaussian:

1 .
Py |2, R,0) = —-exp [~ly — Re’®af*/No] (4.22)
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We average the pdf above over the random variable R exp(j©) by observing that
(£ y— ROz ~ N(y, |z)
so the conditional pdf describing the channel behavior takes the form

p(ylz) = Elp(y|z, R, 0O)]
:EPngm]

7['N0
LU S Iylz]
= ——-——————-—-X — —————————
7 No + 22 OP | T Ny + |22

where the following result, valid for a real RV X ~ N(u, 02), has been used:

E [a—1/2e—X2/a] _ 1 e—pz/(a+202)

Vo + 202

Over this channel we cannot use a modulation scheme whose signals have a con-
stant magnitude and information-carrying phases. For these, the received signal
becomes independent of the transmitted signal even in the absence of noise. We
observe, for example, that binary antipodal signaling, which has X = {#£1}, fails,
asp(y | +1) = p(y | —1).

By adding a constraint on the average transmitted power, the capacity of this
channel can be computed. The surprising result here is that the capacity-achieving
input distribution is discrete. No general closed-form is known for this distribution;
however, asymptotic results are available. Specifically, for low SNR the capacity-
achieving distribution has only two mass points, with one of the masses located at
zero, and hence the optimum modulation scheme is on—off.

The resulting capacity of a Rayleigh fading channel is shown in Figure 4.6,
and compared with the capacity of the AWGN channel and of the Rayleigh fading
channel with channel-state information at the receiver. The lack of CSI at the
receiver is seen to be especially penalizing at high SNR values.

Channel-state information at the transmitter and receiver

Here we assume again that the sequence of fading values R forms an ergodic pro-
cess. Conditional on the value of R, the capacity of the channel is log(1+ R? SNR)
bit/dimension pair. Now the value of R is known at the transmitter, which may
take appropriate actions to counteract the fading effects. Suppose that we allow the
transmitted power, and hence the SNR, to vary with R, so we write S(R) in lieu
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Figure 4.6: Capacity of the AWGN channel and of the independent Rayleigh fading
channel with and without channel-state information.

of SNR. (One may prefer thinking of S(R) as a transmitted power, which is con-
sistent with the following if a unit noise power is assumed.) Subject to an average
power constraint E [S(R)] < S, the channel capacity can be defined as [4.12]:

S) & E log (1 + R%S(R 4.23
) S(R):ﬁg‘?{Rn:S 8 ( (R)) *23)

The power-adaptation policy S(R) that yields the maximum in (4.23) is obtained
by using standard Lagrange-multiplier techniques to solve the constrained-maxi-
mization problem implied by (4.23). The results is the “water-filling” formula

11
— =, R>R
S(R)={ R R¥Y =7
0, R < Ry

(4.24)

for some cutoff value Ry. From (4.24) we see in particular that, if R is below this
cutoff, then the best strategy is to transmit no data.
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Ry is determined by the average-power constraint and the fading statistics. Sub-
stitution of (4.24) into the average power constraint yields the equation that Rg

must satisfy:
e} 1 1 _
_ dr = 8§ 4.25
/Ro (R% r2>pR(T) " (423

Substitution of (4.24) into (4.23) yields the closed-form expression

o) 7.2
c(S) = / log (——2-) pr(r)dr (4.26)
Ry Ry
This capacity is achieved by a Gaussian code book where every symbol is gener-
ated as ~ N(0, 1), then scaled in amplitude according to the power adaptation pol-
icy (4.24). Notice also that, while the capacity with CSI at the receiver only never
exceeds that of the AWGN channel (we observed this in Subsection 4.2.2), no such
inequality holds for the capacity with CSI at transmitter and receiver [4.11]. Fig-
ure 4.7 shows the effect on capacity of CSI at transmitter. The capacity of AWGN
is also shown. We can observe that, when the SNR is very low, the capacity with
CSI at the transmitter and receiver exceeds that of the AWGN channel. We also
observe that, unless the SNR is very low, CSI at the transmitter increases capacity
very little.

4.3 Block-fading channel

In a typical wireless system, Doppler spreads may range from 1 to 100 Hz, corre-
sponding to coherence times from .01 to 1 s, while transmission rates range from
2 - 10* to 2 - 10° elementary signals per second. Thus, blocks with a length L
ranging from 2 - 10% x 0.01 = 200 symbols to 2 - 106 x 1 = 2 - 106 symbols are
affected by approximately the same fading gain.! If coding is used, then in order to
make the fading gains affecting the symbols of x independent, interleaving must
be introduced.

Interleaving consists of making the channel approximately memoryless by per-
muting the order of the transmitted elementary signals. These are dispersed over
different coherence intervals, and hence are affected by independent fades. More
specifically, consider an a x b matrix. After being generated, the elementary sig-
nals are written rowwise into the matrix, then read columnwise and transmitted.

'In practice, to claim with a fairly high degree of confidence that the fading gain is almost constant
throughout the block, the maximum block duration should be limited to a fraction (e.g., 1/4) of the
coherence time.
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Figure 4.7: Capacity of the independent Rayleigh fading channel with channel state
information at the receiver only and with channel-state information at the receiver
and transmitter. The capacity of the AWGN channel is also shown for comparison.

from source

SRifiie

| to channel

Figure 4.8: A 4 x 8 interleaving matrix.

For example, if the interleaving matrix is 4 x 8 as shown in Figure 4.8, the sig-

nals z1,29, ...,

x39 enter the channel in the order zi, xg, z17, 95, L2, L10, T18,

etc.  After reception, the original order of the signals is reconstituted by dein-
terleaving, i.e., by having them written columnwise and read rowwise. Thus, if
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Figure 4.9: The block-fading channel model: the code word length is split into F'
blocks of length v each; the fading is constant over each block.

the same fading value affects four signals that are adjacent on the channel, say for
instance x», 19, £18, L26, WE see that it affects signals that, in their original or-
der, are separated by at least eight positions. In order for the fading to affect each
coded symbol independently, the size of the matrix must be made large enough.
Notice that interleaving and deinterleaving involve a delay due to the time required
to read/write the matrices: this delay is proportional to the size of the matrix.

Now, with a code with length n, if we want each component of x to be affected
by an independent fading gain the time interval spanned by a single interleaved
code word x must be made at least nL. Thus, the (interleaving) delay of the system
is large and, above all, characterized by L, a parameter that is not under control of
the code designer.

The trade-off involved in interleaving (which improves performance, as we shall
see, but increases delay) is dependent on applications. In delay-tolerant systems
(data transmission, broadcasting, etc.) deep interleaving is possible, and hence the
independent-fading assumption is reasonable. In delay-constrained systems, like
those transmitting real-time speech, separation of coded symbols by more than the
coherence time of the channel is not possible, and therefore a length-n code word
is affected by a number of independent fading gains that is less than n. In this case,
each word is split into a number of blocks that is a fraction of n, and over each
block the channel fading is correlated so highly that we may model it as constant.
Note that codes designed ad hoc for correlated fading are rather unpractical, since
optimality criteria would depend on the fading Doppler bandwidth, which in turn
depends on the mobile speed.

When delay constraints are present, the block-fading model turns out to be the
sensible choice in many instances. This model assumes that the fading gain pro-
cess is piecewise constant and can be described through a sequence of independent
random variables, each of which is the fading gain in a block of v elementary sig-
nals. A code word of length n is spread over F blocks of length v symbols each,
so that n = F'v (see Figure 4.9). If v = n, and hence ' = 1, we have a channel
in which the entire code word is affected by the same fading gain. If v = 1, and



4.3. Block-fading channel 101

hence F' = n (ideal interleaving), each symbol is affected by an independent fad-
ing gain, which shows that the independent fading channel model examined above
is a special case of this model.

The delay constraint to which the communication system is subject determines
the maximum number F' of independently faded blocks over which a code word of
length n = F'v can be spread. The choice F' — oo makes the channel ergodic and
allows channel capacity, in Shannon’s sense, to be defined.

This block-fading model can be used as an approximation whenever the fading-
gain process can be approximated by a piecewise-constant process. It is an ex-
act model whenever the coherence time T, is large enough (stationary or almost-
stationary users) and the code word is spread over a finite number F' of blocks
transmitted over independent channels. These, in turn, can be generated by trans-
mitting blocks over frequency bands separated by at least B, (slow frequency hop-
ping where v symbols are transmitted per hop), or over time intervals separated by
at least T,.. The first choice occurs in GSM, with F' = 8 (full-rate GSM) or F' = 4
(half-rate GSM), while the second occurs in IS-136.

4.3.1 Mathematical formulation of the block-fading model

To describe the block-fading model mathematically, we define the code word X as
the ' X v matrix whose mth row contains the mth block x,,, m =1, ..., F, with
length v. The mth block is sent over a constant-fading channel with gain R,,,. The
channel output matrix corresponding to X is given by

Y=RX+Z (4.27)
where
X1
X =
XF
and R 2 diag(Ry, ..., Rr), while Z is an F' x v matrix of independent Gaussian
noise RVs.

As observed before, the fully interleaved channel and the block-fading channel
are formally very similar. The former is obtained from the latter by choosing v = 1,
and hence F' = n, while the latter corresponds to the former with X interpreted
as a code word of length F' whose components are chosen from X”, the v-fold
Cartesian product of X—that is, their dimensionality is » times the dimensionality
of the elementary signals z. As usual, X is a two-dimensional signal set, such as
QAM or PSK, so that each row of the matrix X can be seen to be a signal of a
2v-dimensional signal set.
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4.3.2 Error probability for the coded block-fading channel

Based on the model developed in the previous section, we focus here on the trans-
mission of a coded modulation scheme over a block-fading channel with perfect
CSI at the receiver. As discussed before, a code word of length n is split into F°
blocks, each of length v. Each block represents a signal in X¥: that is, we do not
consider explicitly the “fine grain” of the code, i.e., the fact that a block is actually
a sequence of elementary signals. Here, a “channel use” indicates transmission of
an element x of X¥, affected by an independent fading value and by AWGN.

As we have done previously, upper bounds and approximations to error probabil-
ity can be constructed by using the pairwise error probability (PEP) P(X — fi)
This is the probability of mistaking the transmitted code word X for a different
coded block X when these two are the only possible outcomes of the decoder.
Then, simple coding optimization criteria can be based on the analysis of PEP.

PEP analyses carried out for the independent fading model can be repeated here,
mutatis mutandis, for the new signal set X. Denote by ||B|| the Frobenius norm
of B (see Section B.5 of Appendix B). Based on (4.27), the PEP is given by

P(X - X) =P(|]Y - RX]|]®> > |Y - RX||? | X) (4.28)

so that, using once again the bound @ (z) < exp(—x2/2), we obtain

P(X — X) =Egr |:Q (M)] < Egr [e_“R(X“X)HZ/‘lNO} (4.29)

2N
where the expectation is with respect to the fading sequence R;,..., RF.
For Rayleigh fading, independent from block to block, we have
Er |exp{~IR(X — X)|*/4No}] (4.30)
F
= Eg,.. Ry [exp{~—ZRi2||xi —ii||2/4N0}] (4.31)
i=1
so that

Px-X) < ]

(4.32)
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where J is the set of indices ¢ such that ||x; — X;|| # 0, that is, such that the blocks
x; and X; differ. Denote by Dp(X, X) the number of rows in Wthh X and X
differ (we call this the Hamming block distance between X and X). We can write

R -1 1\ DrXX)
PX—-X)< [H l|%: — ii||2] (m) (4.33)

(1)

(Notice the similarity of the above equation with (4.17).)

Hamming block distance and its significance. Result (4.33) shows the impor-
tant fact that the error probability is (asymptotically for high SNR) inversely pro-
portional to the product of the squared Euclidean distances between the signals
transmitted in a block, and, to a more relevant extent, to a negative power of the
signal-to-noise ratio whose exponent is the Hamming block-distance between X
and X.

By using the union bound as we did in the previous chapter, we see that the error
probability is dominated by the pairwise errors with the smallest Dy (X, )A(), say
Dp min. This in turn is a nondecreasing function of F, as can be easily verified:
thus, the presence of a delay constraint impairs the exponent of error probability.

Example 4.4
As an example, consider a block code with length 16, X = {41}, and the two code
words

+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

-1-1+1-1-14+1-1+1+1+14+14+1+1-1-1+41

It can be seen that the Hamming block distances between these two code words
corresponding to different values of F' are D16 = 7 (corresponding to independent
fading, i.e., full interleaving), Dg = 6, D4 = 3, Dy = 2, and D; = 1 (correspond-
ing to no interleaving). |

Example 4.5

In Chapter 3 we have exhibited a signal constellation (the orthogonal signals) that
asymptotically, for large alphabet size, has an error probability that tends to zero
provided that €, /Ny > ln 2. This threshold value corresponds to the limiting value
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given by the capacity formula for infinite-bandwidth AWGN channel. We shall now
see that the same constellation, when used on the block-fading channel with no
interleaving, cannot achieve zero error probability for any finite £;/No.

Since for the AWGN channel the error probability of M-ary orthogonal signals
can be written in the form

A}im PM(e) = [Eb/No <In 2]

(where |A] takes value 0 if the proposition A is true, and 0 otherwise), with the
fading gain R affecting all the transmitted components of signal x, we have

lim Puy(e| R) = [R%€,/No < In2]
M—o0

With R a Rayleigh random variable, we have
Jim Pule) = E [R?€,/Np < In2)

= E[R < v/In2/(&/No)|

= 1—exp{—1n2/(€y/Nv)} (4.34)

Thus, no infinitely reliable transmission is possible with finite SNR, contrary to
what happens with ergodic fading. 0

Singleton bound on Hamming block-distance. It can be shown that the max-
imum Hamming block-distance achievable on an F-block fading channel can be
obtained as follows (Generalized Singleton bound: see the Problem section). As-
sume again that the code words are composed of F' blocks from X", and let p
denote the code rate, expressed in bits per elementary signal. The following in-
equality holds (see the Problem section):

P
s o< R M— .
DFEmin <1+ [F (1 og |I)C|)J (4.35)

We notice that the right-hand side of (4.35) increases with F' (showing that inter-
leaving is beneficial) and with |X| (showing that binary elementary constellations
are worse). It decreases as the rate p increases.

Codes meeting the equality in (4.35) are called maximum-distance (MD) codes.

4.3.3 Capacity considerations

As mentioned before, when the ergodicity assumption cannot be invoked, the chan-
nel capacity may be viewed as a random entity that depends on the instantaneous
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parameters of the fading process. In this situation we associate an outage prob-
ability with every given rate p; since the capacity associated with the ith block,
1 < i < F,is the random variable C(R;) = log(l—l—Ri2 SNR), the average instanta-
neous mutual information is (1/F) Zf; 1 C(R;), and hence the outage probability
is given by [4.16]

1 F
Pou(p) =P (f Z C(Ry) < P)
i=1

where p is the average transmission rate.

Consider first F/ = 1: a stringent delay constraint prevents transmitting infor-
mation in more than a single block, and the same fading value affects the entire
code word. With Rayleigh fading, the probability that C(R) < p is given by

Poui(p) = 1 — exp[—(SNR) " }(2” — 1)) (4.36)

as derived earlier in this chapter. Observe that, at high SNR,

20 -1
SNR

Pour(p) =

which decreases as SNR™!. We have previously observed (Example 4.2) that the
error probability of any uncoded modulation scheme decreases as SNR~L. Thus,
we cannot expect coding to improve significantly the error performance of this
channel with ' = 1.

With F' = 2, which corresponds to a decoding-delay constraint that is slightly
relaxed, a code word is transmitted in two separate blocks. Using independent
Gaussian symbols on the two blocks, the random capacity is (1/2)[C(R1)+C(Rz2)],
and consequently the outage probability, with Rayleigh fading and under the as-
sumption of equal SNR on both blocks, can be computed as

Pout(p) = (4.37)
= P[(1/2)log(1 + R?SNR) + (1/2)log(1 + R3 SNR) < ]
= PJ(1 4 R?SNR)(1 + R3SNR) < 2%)

(2%2¢—-1)/SNR 92p )
— —x _ - - _ -
= /o e [1 exp { (1 T 7SNR 1) (SNR) H dx

The outage probabilities for ' = 1 and F' = 2 are plotted in Figure 4.10.

The calculations done so far assumed that channel-state information was avail-
able at the receiver only. If no CSI is made available before transmission, the
outage-probability results still hold, as the following simple argument shows. Our



106 Chapter 4. Fading channels

out

"SNR= 20 dB

_______ i

0 1 2 3 4 5 6 7 8 9 10
p (bit/dimension pair)

Figure 4.190: Outage probability for the block-fading channel with Rayleigh fading,
F =1 (continuous line) and I’ = 2 (dash-dot line).

assumption with block fading is that the channel state remains constant as the block
length n of the code increases. Hence, we can estimate it, using a training sequence
whose length is proportional to y/n, which entails no decrease in the code rate as
n — 00.

Consider now the more complex case of channel-state information being avail-
able at both transmitter and receiver, so that a strategy can be used to compensate
for the effects of fading. This is described by the function S(R), which yields for
the ith block the random capacity log(1 + R2S(R;)). With F = 1 the optimal
strategy is to invert the channel, that is, to choose S(R) o< 1/R2. If the constraint
to be satisfied has the form E[S(R)] = S, then channel inversion yields

R?2

S(R) = B

which corresponds to the capacity

S
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Thus, if E[R~?] < oo, capacity is nonzero, and hence the channel can support a
finite rate with a zero outage probability. When this occurs, C is called zero-outage
capacity.

Example 4.6

With Rayleigh fading we have E[R™2] = oo, that is, channel inversion requires
transmission of an infinite average power. Thus, zero outage cannot be reached
with finite power even in the presence of CSI at the transmitter. (Later on in this
chapter we shall see that the introduction of receiver diversity yields a positive zero-
outage capacity.) O

When channel inversion is not possible with finite power because E[R~2] = oo,
an alternative strategy is to choose S(R) inversely proportional to R? only when
R > R*, where R* is a suitable threshold, and S(R) = O otherwise. In [4.11]
it is shown that the latter power-control policy is actually optimum, in the sense
that it minimizes the outage probability under a long-term power constraint, i.e., a
constraint on the power expenditure as averaged over many code words. We may
interpret this power allocation technique by saying that, if fading is very bad, then
the power needed to compensate for it by channel inversion would affect the aver-
age power too much. Under these conditions, it is better to turn off transmission
and accept an outage.

The above solution can be generalized to higher values of F. In this case, the

random capacity corresponding to the fading values Ry, ..., RF is given by
F
1 2
C(Rl, ey Rp, 51,00, SF) = —F— z log(l -+ R,' Si(Ri)) (4.39)
i=1

and the outage probability is again minimized under a long-term power constraint
by turning off transmission over p blocks (where u € {0,1,..., F}) whenever
the point in the F'-dimensional space with coordinates R, ..., Rp falls in certain
regions whose structure depends on the channel statistics and on the power con-
straint [4.11].

Figures 4.11 and 4.12 show the outage probabilities obtained by choosing the
optimum power-allocation strategy or constant power (which corresponds to no
CSI at transmitter) in a transmission with rate p = 0.4 bit/dimension pair. With
F =1, it is seen that infinite SNR is required to have F,,; = 0, which implies
that the zero-outage capacity is zero here. On the other hand, the power savings
obtained by using the optimum power-allocation strategy are dramatic (e.g., 22 dB
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Figure 4.11: Outage probability for the block-fading channel with Rayleigh fading
and F' = 1. The rate is p = 0.4 bit/dimension pair. Channel-state information is
available at transmitter and receiver.

for P,y = 1073), especially when we observe that CSI provides little advantage in
terms of ergodic capacity. With F' = 2, the power savings decrease, and we have
Pyt = 0 for finite SNR, indicating that the zero-outage capacity is nonzero.

4.3.4 Practical coding schemes for the block-fading channel

From (4.35) we observe that, for high SNR, binary signal sets (JX| = 2) are not
the most effective on block-fading channels.? Thus, codes constructed over high-
level alphabets should be considered [4.14, 4.15]. The simplest coding scheme
for achieving diversity F' over the block-fading channel is repetition coding. For
v = 1, this has |X| words, p = log, |X|/F, and Dy, = F. Short MD codes for
block-fading channels with A/ = 2,6, and 8 can be formed by either shortening

2Compounding this, when the SNR is low, higher-order constellations may result in additional
losses due their sensitivity to synchronization inaccuracies.
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Figure 4.12: Outage probability for the block-fading channel with Rayleigh fading
and F' = 2. The rate is p = 0.4 bit/dimension pair. Channel-state information is
available at transmitter and receiver.

or lengthening Reed-Solomon codes [4.14]. An extended MD Hamming code for
F = 6 can also be exhibited. A computer search of trellis codes suitable for this
channel has also been performed [4.14].

4.4 Introducing diversity

We have seen that the effect of fading on the performance of uncoded transmission
requires delivering a power higher, and in some cases much higher, than that for
an AWGN channel to achieve the same error probability. For example, passing
from AWGN to Rayleigh fading transforms an exponential dependency of error
probability on SNR into an inverse linear one. To combat fading, and hence to
reduce transmit-power needs, a very effective technique consists of introducing
diversity in the channel. Based on the observation that, on a fading channel, the
SNR at the receiver is a random variable, the idea is to transmit the same signal
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Figure 4.13: Illustrating diversity and combining.

through r separate fading channels. These are chosen so as to provide the receiver
with 7 independent (or close-to-independent) replicas of the same signal, giving
rise to independent SNRs. If r is large enough, then, at any time instant, there
is a high probability that at least one of the signals received from the r “diversity
branches” is not affected by a deep fade and hence that its SNR is above a critical
threshold. By suitably combining the received signals, the fading effect will be
mitigated.

Many techniques have been advocated for generating the independent channels
on which the diversity principle is based, and several methods are known for com-
bining the signals yi, ..., ¥y, obtained at their outputs into a single signal ¢ (Fig-
ure 4.13). The most important among them can be categorized as follows.

Space diversity. This consists of receiving the signal through r separate antennas,
whose spacing is wide enough with respect to their coherence distance so as
to obtain sufficient decorrelation. This technique can be easily implemented
and does not require extra spectrum occupancy. (In Chapter 10 we shall
examine in detail a situation in which multiple transmitting and receiving
antennas are simultaneously employed.)

Polarization diversity. If a radio channel exhibits independent fading for signals
transmitted on orthogonal polarizations, then diversity can be obtained by
using a pair of cross-polarized antennas in the receiver. Notice that only two
diversity branches are available here, while any value of r can in principle be
obtained with space diversity. On the other hand, cross-polarized antennas
do not need the large physical separation necessary for space diversity. In
scattering environments tending to depolarize a signal, there is no need for
separate transmission.
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Frequency diversity. This is obtained by sending the same signal over differ-
ent carrier frequencies whose separation must be larger than the coherence
bandwidth of the channel. Clearly, frequency diversity is not a bandwidth-
efficient solution.

Time diversity. If the same signal is transmitted in different time slots separated
by an interval longer than the coherence time of the channel, time diver-
sity can be obtained. Since, in mobile radio systems, slow-moving receivers
have a large coherence time, time diversity in these conditions could only be
introduced at the price of large delays.

4.4.1 Diversity combining techniques

Three main combining techniques, viz., selection, maximal ratio, and equal gain,
will be described here. Each of them can be used in conjunction with any of the
diversity schemes just listed. Some analyses will follow; however, it should be
clear from the onset that the relative advantage of a diversity scheme will be lower
as the channel moves away from Rayleigh fading towards Rice fading. In fact,
increasing the Rice factor K causes the various diversity branches to exhibit a
smaller difference in their instantaneous SNRs. This typically occurs when a fixed
path becomes available in addition to scatter paths (see Section 2.3.1). Notice that
the increased quality of the Rice channel may more than make up for the decreased
diversity.

We assume here that transmission is uncoded (the case of coded transmission
will be dealt with, in a more general framework, in Chapter 10). When the elemen-
tary signal two-dimensional z is transmitted, the received signal at the output of the
r diversity branches can be modeled as an r-vector: the model for this single-input,
multiple-output (SIMO) channel is

y=hz+z (4.40)

where y is a vector whose r components are the observed channel outputs, h
is a random r-vector modeling the fading affecting the r diversity branches (its
entries h; = R;e’% are independent complex RVs under our assumptions), and
z ~ N.(0, NoI,) describes the white noise, assumed independent from branch to
branch.

The optimum (maximum-likelihood) detection of = given the observation y and
perfect knowledge of the value taken on by h (the channel-state information) con-
sists of looking for the signal z that minimizes the norm ||y — hz||. A simpler
way of proceeding consists of transforming, through a combiner, the vector y into
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a scalar g that is used for demodulation as if it were obtained at the output of
a single-input, single-output channel. Here we examine some of these combin-
ing techniques, focusing on the SNR obtained. Specifically, consider the SNR in
the ith diversity branch. This SNR is R2€/Ny. A combination technique gen-
erates an output whose SNR is R2E /No, with R a function of Ry, ..., R,. The
error probability can consequently be reduced to the calculation of the expectation
Ep f(R2E/Ny), where f(€/Np) is the error probability over the AWGN channel,
consistently with our discussion in Section 4.2.

Maximal-ratio combining

A family of combination techniques consists of forming a linear combination of the
signals at the output of the r diversity branches. The problem here is to select the
coefficients of the linear combination according to a suitable optimization criterion.
Formally, before detection the received signal y is linearly transformed into the
scalar 4 by using an 7-vector a to obtain § £ aly.

With maximal-ratio combining, the vector a is chosen so as to maximize the
SNR at the combiner’s output. Since aly = atha + afz, the ratio of signal energy
to noise power spectral density at the output of the combiner is

é l]ath|2€ 5 €
D o A 4.41
No laff2Ng = [ No (“4.41)

where the Schwarz inequality [ath|? < ||a]|?||h||? has been used. Now, since (4.41)
holds with equality if and only if a = kh for some complex scalar «, then the
SNR (4.41) is maximized by choosing 7 = h'y. This yields

€ 2 &
NO ; ' N 0
Maximum-likelihood detection can be performed by minimizing ||y — hz|| over
z. Now, observe that
|9 — htha|® = |* ~ 2|h|*R[g*z] + ||b]*|2)?

and that the term || is irrelevant when it comes to searching for the signal « that
minimizes the metric. Moreover, multiplication of a metric by a positive quantity
yields an equivalent metric. Thus, we may use —2R[*z] + ||h||?|z|? instead of the
original metric. This is equivalent to the ML metric: in fact,

Iy —hall® = [lyll® - 2R[y'ha] + []|z]
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is equivalent to —2R[y*z] + ||h|?|z|.

Note that, since R? = 37_, |h;|? with E[|h;|2] = 1, we have E[R?] = r.
This is due to the increase of the power captured by the r separate receivers in a
SIMO transmission system, and shows that r-branch diversity with maximal-ratio
combining increases the average SNR by a factor r. In addition to this effect, the
shape of the pdf of the fading gain changes as r increases. To isolate this last effect
from the previous one, we may consider the normalized SNR, which is

T

& A 1E €1 2
N TR T Mor ERZ (4.42)
Using the law of large numbers, we see that as r — oo we have &'/ Ny — &/Np,
which is the SNR one would obtain on an AWGN channel without fading: we see
how diversity serves the dual role of capturing more power and at the same time
reducing channel fluctuations.

To evaluate the error performance of maximal-ratio combining, observe that,
since 12 = ||h||, the pairwise error probability becomes

. o .|z — Z|
P(x—»x)—]EP(m—>x|R)—IEQ<R\/_2TO> (4.43)
with the expectation being taken with respect to R. In general, a PEP can be
evaluated by first writing down the corresponding PEP for the AWGN channel,
next multiplying the SNR by the factor B2, and finally taking the expectation.

If the components of vector h are independent complex Gaussian RVs with
mean zero and common variance E[|h;|?] = 1,4 = 1,...,r, then R? is a chi-
square distributed random variable with 2r degrees of freedom. Its probability
density function is

1
Pi2(T) = (r——l—)' z'te™?, z>0 (4.44)

The following expectation can be computed in closed form as follows (see Sec-
tion D.1, Appendix D):

o= (2 (L)) e

k=0

where

(4.46)
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Using this calculation, the PEP (4.43) can be given a closed form by identifying

ry lz — 2|

V2Ny

For large-enough values of 3, we have (14-11)/2 ~ 1 and, using (4.12), (1—p)/2 ~

1/23%. Moreover,
N rk—1\  [(2r—1
: k B T

oon-(7) (&) e

B (4.47)

T

M

b
Il

which yields

T

Since 3? is proportional to SNR, diversity of order r makes the error probability
decrease as SNR™".

Example 4.7

Consider binary antipodal modulation with coherent detection transmitted over
an independent Rayleigh fading channel and detected with r-branch diversity and
maximal-ratio combining. Since |z — £|? = 4&y, its error probability is given by

Ple) =EQ < Rz?-]%’i) (4.49)

and this expectation can be computed by using (4.45), with

by Ev/No
1+ &,/Ny

Figure 4.14 shows this error probability for various values of r. The approxima-
tion (4.48) is also shown. O

Example 4.8

Consider a block-fading channel with F' = 1, diversity order r, Rayleigh-distributed
fading, and channel-state information available at both transmitter and receiver. The
equivalent fading channel has a gain R whose pdf is given by (4.44), wherea = 1/r
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Figure 4.14: Error probability of binary antipodal transmission with coherent de-
tection and r-branch diversity with maximal-ratio combining. Exact values (con-
tinuous lines) and approximate values (dotted lines) are shown.

in order to satisfy the normalization condition E[R?] = 1. Direct calculation shows
that

_ r
E[R 2]21”—1

so that channel inversion can be performed with finite average power, provided that
r > 1. The resulting zero-outage capacity is given by

(4.50)

C = log (1 + %5‘) bit/dimension pair 4.51)

Capacity values for r = 2,4, 8 are shown in Figure 4.15. We observe here the in-
teresting fact that as r — oo the capacity tends to that of the AWGN channel: over
this channel, zero-outage capacity coincides with ergodic capacity. This finding
can be interpreted by saying that, in addition to capturing more power, receiver di-
versity stabilizes channel fluctuations by reducing the amount of effective fading. [
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Figure 4.15: Zero-outage capacity of a block-fading channel with F = 1,
Rayleigh-distributed fading and channel-state information available at both trans-
mitter and receiver. The AWGN channel capacity is also shown for comparison.
The signal-to-noise ratio is £ /Ny.

Equal-gain combining

Maximal-ratio combining requires knowledge of channel-state information, which
in this case corresponds to the r values of the gains of each diversity branch. Should
this full information be unavailable, one may use a combining technique in which
g = afy, with a the vector whose components are a; = e the phases of the
components of h. Notice that channel-state information might be estimated for
other purposes: for example, unequal-energy constellations (typically, QAM) need
channel gains for automatic gain control. If this is the case, maximal-ratio combin-
ing is the natural choice.
From (4.41), we see that

- 2
4 & (1<
R~ N l; 2 &] *52)
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which shows that analysis depends on the statistics of a sum of Rayleigh (or Nak-
agami, ...) random variables. Obtaining a closed-form pdf of this sum is a no-
toriously difficult problem [4.5] (see the Bibliography section for results in this
area).

Selection combining

This consists of selecting at each time, among the r diversity branches, the one
with the largest value of signal-to-noise ratio. Its simplicity makes it often used in
practice in conjunction with antenna diversity. In fact, the receiver only needs a sin-
gle complete receive chain, which can be switched among the individual antennas.
Also, like with equal-gain combining, CSI is not required.

We assume that each diversity branch is affected by the same Gaussian noise
power, so selecting the branch with the largest instantaneous SNR is tantamount
to selecting the branch with the largest instantaneous power, and hence the largest
fading gain. Hence, this combining technique is equivalent to choosing the diver-
sity branch whose fading gain is

R2max{Ry, ..., R} (4.53)

This combining technique yields the following ratio of signal energy to noise power
spectral density:
E &
— = o max R2
NO NO mi *

Under our assumption of independent diversity path gains, the cumulative distribu-
tion function of R is given by

Fp(#) 2 P(R<7) =P(R1 < #,...,R, <7) = [Fr(7)]" (4.54)

(in fact, R is less than 7 if ar}d onlyif Ry,..., R, are all less than 7). The derivative
of (4.54) yields the pdf of R.
If the channel gains R; are independent Rayleigh-distributed RVs, then

F(7) = [1 — exp(—))"
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and we have, integrating by parts:

EQ(R) = / " Q(B) d](1 - exp(—2?))']

_ B[ — exp(—z?))" exp(—F2> x

= = [ - ew(-a?)) exp(=%"2)d

_ B (T Nk ooex N 2 19221 daz

= 2 (B [T eot-ter 2l

— 1 ~ (T — kL

- 2:5 k)( D V32 + 2k (459

As 8 — oo, we have the asymptotic expression (see Problem 10):

EQ(BR) ~ %(27« - (%)T (4.56)

where we see that, as with maximal-ratio combining, the error probability de-
creases as SNR™".

Example 4.9

With binary antipodal modulation as in Example 4.7, but with selection combining,
the error probability is obtained from (4.55) with 8 = /2&,/No. The results for
various values of r are shown in Figure 4.16. O

4.5 Bibliographical notes

An extensive discussion, summarizing the state of the art in information-theoretic
analyses of the fading channel, can be found in [4.9]. For a fading channel with
no channel-state information at the transmitter, the fact that the capacity under
an average power constraint is achieved by a discrete input distribution was proved
in [4.1] (see also [4.19]). Under the same conditions, if the constraint is on the peak
amplitude, then the capacity-achieving distribution is discrete with a finite number
of points [4.18]. The calculation of outage probability for the block-fading chan-
nel was done in [4.16] (see also [4.13]). Zero-outage capacity (or delay-limited
capacity) is discussed in [4.9,4.11] and references therein. An extensive analysis
of diversity techniques can be found in [4.21, Chap. 5]; for recent work, see [4.20].
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Figure 4.16: Error probability of binary antipodal transmission with coherent de-
tection and r-branch diversity with selection combining. The signal-to-noise ratic
is & / N, 0-

For a historical perspective, see the now-classic paper by Brennan, originally pub-
lished in 1959, and recently reprinted in [4.10]. Recent analyses of equal-gain
combining can be found in [4.24.6,4.17,4.22,4.23].

4.6 Problems

1. Prove that, as SNR— oo, the SNRs needed to obtain the same ergodic ca-
pacity for the AWGN channel and the independent Rayleigh fading channel
differ by 2.5 dB.

2. Prove that the ergodic capacity of the independent Rayleigh fading channel
with r-branch diversity and maximal-ratio combining tends to the capacity
of the AWGN channel as r — oo if the normalized SNR of (4.42) is used in
the calculations.



120

Chapter 4. Fading channels

10.

Repeat the calculation of Example 4.7 with Nakagami-distributed fading.
Show that for high SNRs the error probability for M — oo is inversely pro-
portional to (€,/Np)~™, where m is the Nakagami-distribution parameter.

Consider the code with eight words and » = 8 whose words are all the
permutations of (\/E, 0,0,0,0,0,0,0). Discuss its error performance for
transmission on a high-SNR block-fading channel with F' = 1,2,4 and on a
high-SNR independent Rayleigh fading channel.

. Prove the “generalized Singleton bound” (4.35).

Consider transmission of QPSK over a Rayleigh fading channel with two-
branch diversity. Compute the asymptotic (for high SNR) error probability
with (a) maximal-ratio combining and (b) selection combining. Hint: You

may use the integral
oo 2,2 s
/ e v T dr = £
0

2a
and the asymptotic expansion, valid for z — O:
1 1 - 3 3 2
Vit z 2 8

Consider an ergodic Rayleigh fading channel with r independent fading di-
versity branches. Compute its average capacity with maximal-ratio combin-
ing and with selection combining.

Consider an ergodic Rayleigh fading channel with r independent fading di-
versity branches and maximal-ratio combining. Compute its average capac-
ity with channel state information at the receiver only and with channel state
information at the receiver and transmitter. Choose » = 1, 2, and 3 (the
results for » = 1 are shown in Figure 4.7).

Compute the outage probability of a block-fading channel with r-branch di-
versity and maximal-ratio combining. Assume Rayleigh fading and ' = 1.
Show in particular that P,y — 0 as 7 — oo. If the normalized SNR (4.42)
is used, show that, as 7 — 00, Pyt is equal to either 0 or 1 according to the
value of the rate p.

Derive (4.56) from (4.55). Use the expansions

-
Z( 1JJ )
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and

" = Z S(n, m)z™
m=0

where S(n, m) are the Stirling number of the second kind, with S(m, m) =
1, and
ma ) zz—1)-(z-m+1), m=>1
T =
1, m =20

11. Define the e-outage capacity C, of a nonergodic fading channel as the largest
rate p such that P,y (p) is less than a fixed amount e. Examine the behavior
of Ck. In particular, show that

(a) Athigh SNR, C differs from the AWGN capacity by an additive term
dependent on € but independent of SNR.

(b) Atlow SNR, C, differs from the AWGN capacity by a multiplicative
term dependent on ¢ but independent of SNR.

Compute the two terms above for the Rayleigh fading channel.

12. MMSE combining consists of transforming the received signal y into the
scalar by, where the r-vector b minimizes the mean-square error £2 £
E[|b'y — z|?]. Find the vector b, and Compare this combining technique
with MRC.
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Trellis representation of codes

In Chapter 3 we described a techniqué to introduce an algebraic structure
into a signal constellation S obtained as a subset of X", X = {+1}. This
technique generates linear binary codes. Each of these codes can be repre-
sented in two ways: either as the set of all linear combmatwns of the rows
ofa generator matrix or as the set of all binary n- tuples that satisty some
parity-check equanons The present chapter describes an exceedingly con-
venient representation. of linear block codes as the set of all n-tuples cor-

responding to paths traversmg a trellis. This representation can be used for
optimal decodmg based ot he V1terb1 algorithm. The complexity of this trel-
lis representation is also exan ined, and minimal trellises are mtroduced 1he
complex1ty of trelhs representatzons can be further reduced by introducing
tail- b1t1ng trelhses '
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5.1 Introduction

A convenient description of algebraic codes as well as of codes on a signal space
is through a trellis: this provides at the same time a compact method of cataloging
code words and, via the Viterbi algorithm (to be described soon), an efficient de-
coding algorithm.

A trellis is a directed graph where each distinct code word corresponds to a
distinct path across it, starting from an initial vertex and ending into a final vertex.
A trellis is described by a set X of vertices (called states), a set B of labeled edges
(called branches), and a set L of labels, with the property that every state has a
well-defined trellis time. Formally, we have the following definition:

Definition 5.1.1 A trellis T = (3, B, L) of depth n is a branch-labeled directed
graph with the following property: the state set 3. can be decomposed as a union
of disjoint subsets

Y=33guUXju---ul, (5.1)

such that every branch in J that begins at a state in ¥; ends at a state in 3, and
every state in T lies on at least one path from a state in X to a state in 3.,.

The trellis T represents a block code of length n over X if L = X (that is,
its branches are labeled by the elements of X), and the set of all the sequences
of branch labels is the set of code words. It is convenient to define a “time” in the
trellis, by assuming that the code symbols are transmitted and received sequentially
in time. The graphical representation of a trellis has the horizontal axis associated
with time, and the vertical axis with states. Branches connect states at two adjacent
time instants.

Although we shall restrict our attention to linear codes here, a trellis can also
be used to describe nonlinear codes. Two exceedingly simple (but by no means
insignificant) cases of trellis descriptions of binary codes are described in the ex-
amples that follow.

Example 5.1 ((n, 1, n) repetition code)

Here there are only two code words, each corresponding to an n-tuple of equal ele-
ments. The corresponding trellis is shown in Figure 5.1. ]
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0 0 0 0
o000
1 : : 1
1 1

time 0 1 2 n-2 n-1 n

Figure 5.1: Trellis representation of the binary (n, 1, n) repetition code.
0 0 0 0
1 1
0 0
time 0 1 2 n-2 n-1 n

Figure 5.2: Trellis representation of the (n,n — 1,2) binary single-parity-check
code.

Example 5.2 ((n,n — 1, 2) binary single-parity-check code)

The trellis cataloging the 2"~* words, characterized by having an even number of
1s, is shown in Figure 5.2. O

5.2 Trellis representation of a given binary code

Here we focus our attention on the construction of the trellis describing a given
linear binary code. Assume that the (n, k, d) code is systematic, i.e., its generator
matrix has the form

G = [I; ! P]

where I}, is the k x k identity matrix, and P is a generic k X (n — k) binary matrix.!
The first k& positions of the words of a systematic code include all possible binary
k-tuples. Draw the 2* paths associated with these k-tuples, starting from a common
initial node, as shown in Figure 5.3.

'Recall from Chapter 3 that this assumption entails no loss of generality.
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time 0 1 k n

Figure 5.3: Initial part of the trellis representing an (n, k,d) linear binary code in
systematic form.

Next, “close” the trellis by associating with each code word at time k its cor-
responding n — k redundant symbols (which are uniquely determined by the sub-
matrix P). It can be easily seen that the trellis of Figure 5.1 corresponds to this
construction.

A related construction is based on the parity-check matrix H of code C: recall
that, given a binary n-tuple x, this is a word of € if and only if Hx' = 0. The
(n — k)-tuple Hx' is the syndrome of x and cannot take on more than 2"~* values.
Now, choose one state for each syndrome value, and label it by this value. The path
corresponding to the code word (1, x2, . .., Z,) is obtained as follows. Start from
the zero state at time 0. Let the syndrome of (z;,0,0,--- ,0) be o1. Then draw a
branch from state O to state o7 and label it ;. Next, consider (z1,z2,0,--- ,0).
Let its syndrome be 0. Draw a new branch from o4 to o9 and label it x2, and
so on. The total number of trellis states at any time cannot exceed the number of
syndrome values, viz., |Z;| < 2"%,i =0,...,n. Figure 5.2 shows an example of
this construction: here H = [1 1 ... 1], and hence the syndrome of an n-tuple is
the modulo-2 sum of its elements. Its value is either O or 1.

The two constructions just described lead to the following result: for linear bi-
nary codes, the maximum number of trellis states at any given time is bounded
above by min{2*, 27~F},
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5.3 % Decoding on a trellis: Viterbi algorithm

Consider transmission of the code word x = (z1,...,%,). We receive y, a cor-
rupted version of x, at the output of a channel whose conditional probability density
function (pdf) factors into the product involving elementary signals, i.e.,

p(y | x) = Hp yi | i) (5.2)

A channel satisfying (5.2) is called stationary memoryless, because it transforms
each elementary symbol in a way that does not depend on the other symbols and
on the transmission instant. The task of the decoder is to make a decision on
the transmitted x upon observation of y. The maximum-likelihood decoding rule
consists of choosing the signal x € § that maximizes p(y | x). Now, in general,
we cannot maximize p(y | x) by maximizing separately p(y; | z;) because the
components of x are interrelated by the code structure (for example, in a single-
parity-check code, the components of a code word are such that the number of 1s
is even). Only if the signals are uncoded are we allowed to make “‘symbol-by-
symbol” decisions without any loss of optimality.

On the other hand, the solution of the maximization problem above may be
computationally very intensive if the code has little structure, or its structure is not
taken into account: in fact, with M code words we would have to compute M
values of p(y | x) and find their maximum (brute-force approach). Now, M may
be so large as to make this approach impractical.

We now show that a way of exploiting the structure of the code for decoding is
by taking advantage of its trellis representation. We can do this under the assump-
tion that the “metric,” i.e., the quantity whose maximization is equivalent to the
maximization of p(y | x), is additive over the z;, that is,

m(y | x) = Zm(yi | z;) (5.3)

For a stationary memoryless channel, additivity is satisfied by choosing the met-
ric m(y | x) = Inp(y | x). In fact,

Inp(y |x) = lan(in:vi)=Zlnp(yilwi)

= Zm(yi | 2:) = m(y | x)
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Note that the metric can assume different forms, according to the specific prob-
lem at hand. For example, with AWGN channels (for the fading channels with CSI
known at the receiver, examined in the previous chapter, the extension is straight-
forward), we have

ply | x) = ce vl

(c a normalization constant), and hence, by disregarding the constant In ¢ and as-
suming for simplicity that the elementary constellation X contains real or complex
signals

m(y | x)=—lly —x|* == |y — x|
i=1

Thus, we may choose
m(yi | i) = —lyi — @i

Moreover, observe that

lyi — zil? = |wil? + |2:* — 2R(yiz})
where R denotes real part. Here the term |y;|? is irrelevant to the maximization of
the metric and hence can be removed from consideration. Similarly, if the signals
in the elementary constellation have one and the same energy, the term |;|? is also
irrelevant, and the metric is reduced to Ry;x;. If in addition z; = +v€, no product
is necessary for the computation of the metric.

The Viterbi algorithm (VA) decodes a code described by a trellis when the metric
induced by the channel is additive.

A branch metric is associated with each branch of the trellis, in the form of a
label. Since the metrics are additive, the metric associated with a pair of adjoining
branches is the sum of the two metrics. Consequently, the total metric associated
with a path traversing the whole trellis from left to right is the sum of the labels of
the branches forming the path. The problem here is to find the path traversing the
trellis with the maximum total metric.

We start our description of the VA with the illustration of its key step, commonly
called ACS (for Add, Compare, Select). Consider Figure 5.4. It shows the trellis
states at time k (denoted o) and at time £ 4 1 (denoted oy1). The branches
joining pairs of paths are labeled by the corresponding branch metrics, while the
states o, are labeled by the accumulated state metrics, to be defined soon. The ACS
step consists of the following: For each state oy, examine the branches leading
to it and stemming from states oy, (there are two such branches in Figure 5.4).
For these branches, ADD the metric accumulated at the state from which it stems
to the metric of the branch itself. Then COMPARE the results of these sums,
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ADD COMPARE SELECT
1 3+1=4 max{4,5}=5
3 1+4=5 ) 5
3+6=9 _
5 4 . 1434 max{9,4}=9 9
1 1 5+2=7 max{7,3}=7 7
0+3=3
3
0 1 5+1=6 max{6,1)=6 . 6
0+1=1
Ok Ok+1 Oy Ok+1

Figure 5.4: The ACS step of the Viterbi algorithm.

and SELECT the branch associated with the maximum value (and consequently
discard, for each state, all other branches entering it; and, if two or more of the
quantities being compared are equal, choose one at random). The maximum value
is associated with the state, and forms its accumulated metric. This value is retained
only for the next ACS step, then discarded.

The VA consists of repeating the ACS step from the starting state to the ending
state of the trellis. After each ACS step, the VA retains, for each state, one value
of accumulated metric and one path, called the survivor corresponding to the state.
Thus, at any time k& we are left, for each oy, with a single survivor path traversing
the trellis from the initial state to oy, and with one value of accumulated metric.
This survivor path is the maximum-metric path to the corresponding state. After
n ACS steps, at the termination of the trellis we obtain a single n-branch path
and a single accumulated metric. These are the maximum-metric path and the
maximum-metric value, respectively.?

Figure 5.5 illustrates the determination of a maximum-metric path through a
four-state trellis via the VA.

To prove the optimality of the VA, it suffices to observe the following. Assume
that the optimum path passes through a certain state o at time k. Then its first k
branches must be the same as for the survivor corresponding to o. In fact, if they
were not, the optimum path would begin with a path passing through ¢ and having

2In practice, since the maximum-metric path for each state can be found by retracing the branch
decisions, one may choose to store only the branch decisions, rather than the entire path.
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4
4
k=4 6
5
7
L 6
k=5 o——>0—— > 8

Figure 5.5: Determination of the maximum-metric path through a trellis withn = 6
and four states via the Viterbi algorithm.
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[ ] ®
[ ] L
L ] L]
0

—p cOMMon path
............ » discarded path

— surviving path

Figure 5.6: Surviving paths merging into a common one at time £ — D.

a metric lower than the survivor of o, which is a contradiction. In other words, no
path discarded in favor of a survivor can provide a contribution to the total metric
larger than the survivors.

The computational complexity of the VA grows with n oniy linearly. More
specifically, at time 7 the VA requires |3;| storage locations, one for each state,
with each location storing an accumulated metric and a surviving path. In terms
of the number of computations, assuming for simplicity two branches per state, at
time ¢ the VA must make B; additions, where B; is the number of branches in the
trellis section at time ¢, and |X;| comparisons.

It must be observed that in some cases the number of surviving paths that the de-
coder must store and search may be too large for practical applications. In this case
the Viterbi algorithm may be abandoned in favor of suboptimal algorithms, which
search only a fraction of trellis paths (sequential algorithms, M -algorithm) [5.2].

5.3.1 Sliding-window Viterbi algorithm

When the transmitted block of symbols is very long, it might be unrealistic to
assume that the whole data sequence should be received before making a decision
on it: in fact, this would entail a large memory and a long delay. Now, by tracing
back all surviving paths at a given time /, it often occurs (especially with large
SNR) that they all stem from a single path, originating at time 0 and splitting at
atime £ — D (Figure 5.6). This observation leads to the concept of the sliding-
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window Viterbi algorithm. This algorithm consists of forcing a decision at time ¢
on the symbol received at time £ — D — 1; this decision is based on the comparison
of the metrics accumulated across the sliding window of Figure 5.6. Thus, after an
initial latency D, at every time a decision is made on a single symbol. The ensuing
loss of optimality is reduced as D increases, because for large D there is a high
probability that all paths surviving at £ have a common part extending before £ — D.

5.4 The BCJR algorithm

A symbol-by-symbol maximum a posteriori probability (MAP) algorithm for codes
described on a trellis is known as the BCJR algorithm, from the names of their pro-
posers [5.3]. Having observed y, we want to compute the soft decisions p(z; | y),
whose maximization for 7 = 1,...,n, yields decisions on symbols x; that mini-
mize symbol error probabilities. As noted in Section 3.8, since we are interested
in maximizing p(z; | y) over z;, we can omit constants that are the same for all
values of x;. Observing that symbol z; is emitted as a transition takes place be-
tween states ;1 and o;, with possibly several transitions corresponding to the
same symbol, we have

p(zily) = p(y,z:)/p(y)
& p(y7 ‘Tl)
= Z p(y,0i—1,%i, 0i) 5.4

(0i-1,24,00)€T;

where the summation is extended to all pairs of states o;_1, ¢; joined by a branch
labeled by symbol z; in the trellis section T; between times 7 — 1 and 4 (Figure 5.7).
Now, for any time ¢ we write y = (y<;, ¥, ¥>i), where y; and y-; denote the
components of vector y with indices 1,...,72 — 1 and 7 + 1,...,n, respectively.
We call y.; the past observations, y-.; the future observation, and y; the current
observation. We can write

p(y,ai—hxiaai)
= p(Y<i> ¥, Y>i» Oi—1, Ti, 03)

(

p(Y<uyz7Uz ly-Tz,Uz)p Y>i ‘Y<hyza0'1 17-'1»'1,0'1)
(
p(

DP\Y<i,Oi—- 1)p(yzaxhal |Y<laa’t 1)p( Y>i | Y<i,yi,0i—171'i70i)
Y<z, Oi— 1) p(yzawwaz | Oj— 1) p(Y>z ' Uz) (5.5)
P4 y B
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Yi

Figure 5.7: The trellis section TJ;.

The last equality comes from the trellis properties, which cause y-,; to depend on
(¥ <i» ¥, 0i-1, i, o) only through o3, and the pair (y;, o;) to depend on (y <;, 05-1)
only through o;_;. Observe now that, in (5.5), the term o depends on the past val-
ues of the observation, 3 on its future values, and -y on its current value. The BCJR
algorithm works by recognizing that a and 3 can be given expressions that are
recursive in time. To this purpose, define

ai—1(0i-1) £ p(y<i,0i—1) (5.6)

(this is the joint probability of observations y .; and state o;_1) and

Bi(oi) £ plysi | o) (5.7)

(the joint probability of observations y-.; given state ;). Moreover,

Yie1,i(0ic1,25,0:) &£ p(yi,zi, 04 | 05-1)
= p(yi | 0i-1,%i,00)p(2s, 04 | 0i—1) (5.8)
This is the branch-transition probability of transmitting x; and observing y; when

a transition occurs between ¢;.1 and ¢;. For stationary memoryless channels, it
can be computed by observing that

p(yi | i1, %3, 03) = p(yi | i)
and
p(xi, 04 | 0i—1) = p(as) [(0i-1, 4, 03) € Ti

The function {(0;-1, z;, 0;) € T;] takes value 1 if the trellis section T; is compatible
with the transmission of symbol z; when the transition o;_; — o; occurs, and
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value zero otherwise (we shall return on this notation in Chapter 8, when the BCJR
algorithm will be rederived as a special case of a more general algorithm). In
conclusion, we can write

Yi-1,i(0i-1, i, 0i) = p(yi | zi)p(xi) [(0i—1, T3, 04) € T4 (5.9
and
p(y,0i-1, i, 03) = ai—1(0i—1)%i-1,i(0i—1, T, 03) Bs (04) (5.10)
so that, finally,
plai | y) &< 3 > ai1(oi1)vie1i{oio1, T4, 00)Bi(03) (5.1D)
Oi—1 0%

We now derive recursive formulas for the quantities defined in (5.6)-(5.8). We
have the forward recursion

ai(ai) = p(Y<i+170'i)
= P(Y<i,yi,0i)

= Z ZP(Y<i,yi70i—1,$i,0i)

Oi—1 T3

= Z ZP(Y<i,0i—1)Z)(yi7$i,Uz‘ | oi-1)
Oi—1 X3

= ZZai——l(ai——l)')’i—l,i(o'i—laxi,o'i)
Oi—1 T4

with the initial condition ap(og) = 1 (0¢ the initial state of the trellis). Similarly,
we have the backward recursion

/Bi—l(ai—l) = p(Y>i—1|Ui—1)

= > pi,ysi zi,0i | 0i1)
0; X4
= > p(yi 25,01 | 0i1)p(y>i | 03)

g Iy

= Z Z Yi-1,i(0i-1, i, 03) Bi(04)

G Iy

with the initial value $,(0y,) = 1 (0, the ending state of the trellis). Combining
the latter two recursions, we obtain the BCJR algorithm for the computation of a
posteriori probabilities.
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ohsavation Y1 Y2 s
S0l o0 , 0
1 1
S1 1 5 1
time 0 1 2 3

Figure 5.8: Trellis for the (3,2, 2) single-parity-check code.

Let us specialize the BCJR algorithm to binary systematic codes; in their trellis,
the first k£ branches correspond to information symbols, and the last n — & to parity-
check symbols. Thus, two branches emanate from each node in the initial part of
the trellis, and only one in the final part, where all transitions are determined by the
information sequence w1, ..., u. We may label the branches in the first & trellis
sections by uy, . .., ug, and those in the remaining sections by xx.1,...,Z,. The
branch transition probabilities ;1 ;(ci—1, z;,0;) can be computed as

i~1,i(0i—1,%i,04) = p(yi | wi) p(ui)[(oim1,us,00) € T3], 1<i<k
Vi=1,4\Ti-1, %0, O p(yi | zi)|(oi-1, 24, 03) € Ti, k+tl<i<n
(5.12)

Example 5.3

As a simple illustrative example, we show how the BCJR algorithm can be used
to compute the a posteriori probabilities p(u; | y) for the code and the channel
observations of Example 3.17. The trellis representation of the code is shown in
Figure 5.8. The observed data lead to the following values of the branch transitions:

Y0,1(50,0,80) = p(y1]0) - = =049 ~0,1(s0,1,81) =p(y1]|1)- 5 =0.10

M| =
N

71,2(50,0,50) = p(y2 | 0) - 5 = 0.495 71,2(50,1,81) = p(y2 | 1) - = = 0.09

1
2
1

7,2(51,1,80) = p(y2 | 1) - 5 = 0.09 71,2(81,0,51) = p(y2 | 0) - 5 = 0.495

= | =

72,3(50,0,80) = p(y3 | 0) =0.55  ~2,3(s1,1,80) = p(y3 | 1) = 0.67

(all other ~ys are zero, as they correspond to triples (o1, Z;, ¢;) not consistent with
the trellis structure). With the initialization ap(sg) = 1, ag(s1) = 0, the forward
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recursion yields the values

a1(s0) ao(s0)70,1(50,0, so) = 0.49

a1(s1) = aol(so)vo,1(s0,1,81) =0.10

az2(s0) = oa1(so)n,2(80,0,80) + c1(s1)71,2(51,1, 50) = 0.2516

ag(sl) = 011(80)’}/1,2(3 1, 81) + a1(81)’)’1’2(31,0, 81) = 0.0936

az(so) = a2(50)v2,3(50,0, s0) + a(s1)72,3(s1, 1, 80) = 0.2011

az(sy) = a2(s0)72,3(50,1,81) + a2(51)72,3(51,0,81) =0
With the initialization G3(so) = 1, B3{s1) = 0, the backward recursion yields the
values

B2(s0) = 72,3(s0,0,80) =0.55

B2(s1) = 72,3(s1,1,80) = 0.67

Bi(so) = 71,2(50,0,50)82(s0) + 71,2(50, 1, $1)F2(s1) = 0.3326

Br(s1) = m,2(s1,1,50)82(s0) +71,2(51,0,51)B2(s1) = 0.3812

Bo(so) = 70,1(50,0,50)B1(s0) + Y0,1(50,1,51)B1(s1) = 0.2011

Bo(s1) = 70,1(s1,1,50)B1(s0) + 70,1(51,0, 51)B1(s1) =0

Application of (5.11) finally yields

p(u1 =0 | y) x ao(s0)70,1(s0, 0, 50)31(s0) = 0.1629
p(ur =1 |y)xao(s0)v0,1(50,1,81)31(s1) = 0.0381
plug =0 y) oca1(so)v1,2(s0,0, 50)B2(s0) + 1(81)71,2(51,0, 51)B2(s1) = 0.1666
pluz = 1] y) xa(so)r1,2(s0, 1, 51)B2(s1) + a1 (s1)71,2(51, 1, 50)B2(s0) = 0.0345

Observe that the proportionality coefficients of the a posteriori probabilities here
differ from those of Example 3.17. To reconcile the results obtained from the brute-
force approach with those from the BCJR algorithm, one can verify that the ratios
p(u; = 0| y)/p{u; = 1| y) are equal. O

5.4.1 BCJR vs. Viterbi algorithm

Comparing the BCJR and Viterbi algorithms, we can see that both of them process
the same channel observations. Their basic difference is in their outputs: while the
VA decisions are hard, those of the BCJR algorithm are soft. This makes it crucial
to use the BCJR algorithm if, after applying it, the a posteriori probabilities must
be further processed before making hard decisions (see Chapter 9). Also, observe
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that the VA yields the most likely sequence (which must be a code word), while
the BCIR algorithm yields the most likely symbol, along with its reliability, at each
time (the BCJR sequence may not be a valid code word [5.4]).

5.5 Trellis complexity

In general, a given code can admit more than one trellis representation. If the
trellis is to be used for decoding, it should be clear that among the various possible
representations we should choose the one yielding the minimum complexity of
the algorithm. We may define here a state complexity profile as the sequence of
the numbers of trellis states |3;| at various times ¢ = 0,...,n. For example,
the state complexity profile of both trellises of Figure 5.1 and of Figure 5.2 is
(1,2,2,...,2,1). Another possible complexity measure (which measures more
precisely the complexity of Viterbi Algorithm) is the branch complexity profile,
defined as the sequence of the number of branches in the various trellis sections.
This is (2,2, ..., 2) for the trellis of Figure 5.1 and (2,4, 4, ... ,4,2) for the trellis
of Figure 5.2. To characterize complexity by a single number we may use the
largest entry in the state complexity profile, i.e., the maximum number of states
. max |21|

1=0,...,n
We have the following definition:

Definition 5.5.1 (Minimal trellis) A trellis T for a code C of length n is minimal
if it satisfies the following property; for each i, the number of states in T at time i is
less than or equal to the number of states at time 1 in any other trellis representing

C.

Notice that this definition is rather strong. In fact, given a code C, it is not
obvious that there exists a minimal trellis for it: minimization of |X;| may be in-
compatible with the minimization of |X;|, j # i. However, if C is linear, then a
minimal trellis for € can be proved to exist [5.16]. The next section shows how to
construct it.

5.6 Obtaining the minimal trellis for a linear code

Here we illustrate an algorithm, due to Forney [5.16], that yields the minimal trellis
representing a given linear code.

We need some definitions and some additional theory first. Consider a code
word x € C, whose components are thought of as being generated sequentially in
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time. For any position 1 < ¢ < n (corresponding to time, in the trellis) we refer
to its first £ coordinates (already generated) as the past, and to the remaining n — ¢
coordinates (yet to be generated) as the furure:

(3:1) T2, - 71"@; Te1y, " 7xn)

vy

past future

Let € be a binary linear (n, k, d) code. At time £ we can define the following four
codes derived from C:

©) Gf (P for past) is the set of all code words x € € whose future is the null
vector, i.e, g4 = - = zp, = 0. Gf is a subcode of C. We define its

dimension kf as
kg £ logy |C/] (5.13)

It is often convenient to look at this subcode as having length ¢, which is
obtained by deleting its zero components from £ + 1 to n.

® (?{ (F for future) is the set of all code words x € € whose past is the null
vector, i.e.,, 1 = --- = zp = O. G{ is a subcode of C. We define its

dimension k} as
ki 2 log, |CF] (5.14)

It is often convenient to look at this code as having length n — £, which is
obtained by deleting its first £ zero components.

® The “past projection code” fPf is the set of all codewords obtained by zeroing
(or deleting) all components from £ + 1 to n.

@ The “future projection code” fPf is the set of all codewords obtained by
zeroing (or deleting) its first £ components.

Example 5.4
Consider the (4, 3, 2) single-parity-check code, and £ = 2. We have
ey = (00, 11)
el = (00, 11)
PP = (00, 01, 10, 11)
P = (00,01, 10, 11)
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so that @F and @F are (2, 1, 2) repetition codes, while P, P£ are (2,2, 1) universe
codes. O

Now, the past coordinates influence the values that the future coordinates can
take. This influence is characterized by the trellis state at time £. With the defini-
tions above, observe that the generator matrix of € can be decomposed as follows:

GP o
G=| 0 G}
G, GJ

where G/ is the k[ x ¢ generator matrix of €)', G{' is the kf" x (n — £) generator
matrix of G’{ , and G}, G are additional matrices needed to obtain G. Specifically,
Gf and G, together generate PP, while Gf and G together generate ’.Pf . The
linear binary code generated by (G G7] is called the state code and is denoted by
8y. Its dimension ky, also called the dimension of the state space, satisfies

ke =k -kl —kf (5.15)

so, from (5.13) and (5.14), k; = log, |S¢]-

Example 5.4 (continued)
We have G = Gf = [1 1]. It can be verified that the matrix

G =

OO -
[ e

00
11
0 1
actually generates C. The state code S5 is (0000, 0101), and has dimension1. [

The above can be interpreted by saying that any code word x € C (which is a
linear combination of rows of ) can be expressed uniquely at any time ¢ as the
sum of a past code word x¥ € CF, a future code word x¥' € @F, and a state code
word s € Pp. We write

x=x" +s+xF (5.16)

for some xF € CF and x¥" € CF, and we represent this decomposition in graphical
form as shown in Figure 5.9. This corresponds to associating x with a trajectory
in a trellis: for any given time ¢, x* is associated with the past trajectory from time
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Figure 5.9: Graphical representation of the decomposition of the code word x as
the sum of the past code word xF, the future code word x¥', and the state code
word s.

initial final
state state
(time 0) (time n)
intermediate
state
(time £)

Figure 5.10: Past and future of a code trellis at time £.

0 to time ¢, x" with the future trajectory from time ¢ to time n, and s with the state
where the two trajectories meet at time £.

Consider now the past projection of x in (5.16). This is given by the sum of the
past projections of xF and of s. Hence, the trellis branch joining the initial state
to state s at time £ corresponds to the coset Gf + sP, where s* denotes the past
projection of s. In a similar way, the future projection of x is given by the sum of
the future projections of xf and of s. Hence, the trellis branch joining state s at
time £ with the final state at time n corresponds to the coset Cf + s%', where s’
denotes the future projection of s. Thus, the code € may be described by a trellis
diagram as shown in Figure 5.10. No other trellis for the same code can have less
states at time £. To prove the description shown in Figure 5.10 we must prove two
things that form the so-called Markov property of the trellis:

@ All code words x associated with the same state-code word s have the same
set of possible future trajectories.



5.6. Obtaining the minimal trellis for a linear code 143

{000,011,101,110}

7001,010,100,111}
=0 £=1 0=4

Figure 5.11: Code trellis at time 1.

@ If x, x' are associated with different state-code words s, s/, then they have
disjoint sets of possible future trajectories.

The first item is proved by observing that for all such x the possible future trajec-
tories are given by the coset Gf + s¥'. In the conditions of the second item, the

possible future trajectories are given by the cosets C{ + st and (‘35 +s'F, which

are disjoint because the sum s” + 8’7 is not a code word in €F. The Markov
property can be suggestively summarized by saying that “the states of the trellis
are equivalence classes of past histories modulo future possibilities.”

If the decomposition illustrated in Figure 5.10 is repeated for every ¢, a full
trellis for code C is obtained. This will be illustrated by the examples that follow.

Example 5.5

Here we construct the minimal trellis for the (4, 3, 2) single-parity-check code. For
¢ =1 we have €f = {0}, so k¥’ = 0, and CF = {000,011,101,110},s0 kf = 2.
Thus, k&y = 3 —2 — 0 = 1 and hence |X;| = 2. The code trellis at time 1 is shown
in Figure 5.11. Observe in particular that at time 1, i.e., after the first code symbol,
the number of states is 2 because there are two possible pasts, each with a different
future.

At time £ = 2 we have €5 = {00,11}, so k¥ = 1, and € = {00,11}, so
k¥ = 1. Thus, k2 = 3 — 1 — 1 = 1 and hence |£5| = 2. The code trellis at time 2
is shown in Figure 5.12.

At time 3 we have € = {000,011,101,110},s0 k¥’ = 2, and Cf = {0}, so
k¥ = 0. Thus, k3 = 3 — 2 — 0 = 1 and hence |Z3| = 2. The code trellis at time 3
is shown in Figure 5.13.

We can now summarize our calculations by constructing the code trellis as
shown in Figure 5.14. g
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{00,11} {00,11}

{0110} {0110}
£=0 ¢=2 t=4

Figure 5.12: Code trellis at time 2.

{000,011,101,110} {0}

{001,010,100,111} {1}

£=0 (=3 (=4

Figure 5.13: Code trellis at time 3.

5.7 Permutation and sectionalization

The structure and the complexity of the trellis of a code depend on the order of
the code symbols. It turns out that the (seemingly innocuous) operation of per-
muting the symbols in each code word can drastically change the number of states
in the minimal trellis representation of a given code €. Unfortunately, finding a
permutation that minimizes the complexity of a trellis representing a linear code
is an intractable problem, since essentially the only way to solve it is to try all the
permutations.

Sectionalization, which consists of grouping together two or more symbols la-
beling each branch, can also drastically change the structure and the complexity
of the trellis representing a given code. Sectionalization shrinks the time axis at
the expense of increasing |X|: for example, a binary code with length 2n may be



5.7. Permutation and sectionalization 145

time 0 1 2 3 4
Figure 5.14: Minimal trellis for the (4, 3, 2) code.

thought of as a quaternary code of length n if pairs of consecutive bits are grouped
together.

Example 5.6

Here we construct a sectionalized trellis, based on a quaternary constellation, for
the (8,4, 4) Reed—Muller code. The generator matrix of this code is

11110000
11111111
GnlOlOlOlO
1 0011001

The words of G, i.e., the linear combinations of the rows of (3, are the sixteen
8-tuples that follow:

0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0
0 o 1 1 0 0 1 1
1 1 1 1 1 1 11
0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1
1 1 0 0 11 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 1
0 1 0 1 10 1 0
1 1 0 0 0 0 1 1
0 0 0 0 1 1 1 1
1 0 0 1 0 1 1 0
1 0 1 0 0 1 0 1
0 0 11 1 1 0 0
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eF ef + (010101) eF + (101010) ef 4+ (111111)
(past: 00) (past: 01) (past: 10) (past: 11)
00 0000 01 0101 10 1010 11 1111
00 1111 01 1010 10 0101 11 0000
11 1100 10 1001 01 0110 00 0011
11 0011 10 0110 01 1001 00 1100

Table 5.1: The cosets of Cf.

Contrary to what we have dorne previously, we construct a trellis for this code by
associating fwo binary symbols with each trellis branch. Consider first £ = 1. There
is only one word with zero components from time 2 to time 4, namely, the all-zero

code word. Thus, we have
e = {(00)}

There are four words beginning with two zeros, so
ef - {(000000), (001111}, (111100}, (110011)}
Thus k¥ = 0 and kf’ = 2, and from (5.15) we have
ki =4-0-2=2

and hence four states at time 1. The cosets of Cf are 01, 10, and 11. The cosets of
CF are listed in Table 5.1.

The code trellis at this stage is shown in Figure 5.15. The trellis branches are
labeled by the coset representatives: 00, 01, 10, and 11 for the past and 010101,
101010, and 111111 for the future.

The top node at time £ = 1 corresponds to code words whose first two symbols
(the representative of the subcode €f’) are 00 and whose future (the representative
of the subcode @f) is @F. The other states have as their past the cosets of the
subcode Cf and as their future the cosets of the subcode Cf. We have four states
here because the pasts consist of all pairs of binary symbols.

Take now £ = 2. There are two code words in € that begin with four zeros, i.e.,
00000000 and 00001111. Thus we have

e = {(0000), (1111)}.

There are also two words that end with four zeros, namely, 00000000 and 11110000.
Thus
ef = {(0000), (1111)}

Since kI’ = 1 and &£’ = 1, from (5.15) we have

ko=4-1-1=2.
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Cf + (111111)

Figure 5.15: Code trellis at time 1.

Here the past consists of four binary symbols, but the code structure restricts them
to four possible combinations. The cosets of €5 and €I are listed in Tables 5.2
and 5.3. The trellis at time 4 is represented in Figure 5.16.

el el + (1100) ef + (1010) ¢f + (1001)
0000 1100 1010 1001
1111 0011 0101 0110

Table 5.2: The cosets of L.

el €L + (1100) ef + (1010) el + (1001)
0000 1100 1010 1001
1111 0011 0101 0110

Table 5.3: The cosets of C}.

Take then £ = 3. There are four code words in C ending with two zeros, and we

have
Gg = {(000000), (110011}, (111100), (001111)}.

There is a single code word beginning with six zeros (the all-zero word), so

c5 = {(00)}
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cZ + (1100) el + (1100)

e + (1010) cf + (1010)

e + (1001) ef + (1001)

Figure 5.16: Code trellis at time 2.

Since k{’ = 2 and k" = 0, from (5.15) we have
ks=4-2-0=2.

The cosets of G5 are 00, 01, 10, and 11. The cosets of €4 are listed in Table 5.4.
The trellis at time 3 is represented in Figure 5.17.

el e + (010101) eL + (101010) el + (111111)
0000 00 0101 01 1010 10 111 11
1100 11 1001 10 0110 01 0011 00
1111 00 1010 01 0101 10 0000 11
0011 11 0110 10 1001 01 1100 00

Table 5.4: The cosets of CF.

Thus, there are four states at £ = 2,4 and 6. Now, let o1 be a state at time 1, o5
a state at time 2, and o3 a state at time 3. If there is a code word in € that passes
through o1, 09, and o3, then we join states o1, o1, and o3 in the complete code
trellis. The result is shown in Figure 5.18. O

5.8 Constructing a code on a trellis: The |u|u + v| con-
struction

We show here an example of a code that can be constructed directly on a trel-
lis. Let U be an (n, ky, dy) linear code, and let V be a linear (n, ky,dy) sub-
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00
e + (010101)

eL + (101010)

el + (111111) 11

Figure 5.17: Code trellis at time 3.

Figure 5.18: Trellis of the (8,4,4) Reed—Muller code.

code of U with minimum distance dy > dy. If a = (a1, ,ap) and b =
(b1, -+ ,bn), we denote here by (a, b) their concatenation, i.e., the (m + n)-vector
(a1, ,am,b1,--- ,by). The |u|u + v| construction combines U and V to yield

a code whose words are obtained by concatenating a word u € U with the sum
u+v,wherev € V:

lulu +v| = {(w,u+v) [uel,veV}
Theorem 5.8.1 |ulu + v| is a linear (n, k, d) code, with
k=ky+ky
Its minimum Hamming distance is bounded below by

d > min{2dy, dv} (5.17)
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Proof. For the first part of the theorem, see [5.12, p. 76]. For the second part,
let (u,u+ v) be a non-zero code word in |ulu + v|. If u € V, then both u
and u+ v are words of V, and either u # O (in which case w(u) > dy) or
u+ v # 0 (in which case w(u + v) > dy). Thus w(u,u+v) > dy. fu ¢ Vv
(and consequently u # 0, because a linear code must contain the all-zero word),
then u and u + v are both nonzero words in U, and w(u,u + v) > 2dy.

Example 5.7

We are especially interested in codes U, V for which dy = 2dy. For example,
consider the (4, 3, 2) single-parity-check code

60 0 0 O
1 0 0 1
1010
0011
u—1111
0110
01 01
1100

and its (4, 1, 4) “repetition” subcode V = {(0000), (1111)}. The |u|u-+v]| construc-
tion gives the (8, 4, 4) code examined above, with words (u, u) and (u, u+(1111)).
If we apply again this construction with U this (8, 4,4) code and V the (8, 1, 8) rep-
etition code, we obtain the (16, 5, 8) Reed-Muller code. In [5.12, Chap. 13] it is
shown that all Reed—Muller codes can be built in this way. ]

In the |u|u + v| construction, U is the union of M cosets of V in U:
U=VUV+u)U:---U(V+upy_1)

The trellis of |u|u + v| consists of two sections joined at M intermediate states, as
shown in Figure 5.19. The branches in each section correspond to cosets of V in
U, and branches in the past and in the future section labeled by the same coset are
joined at a common intermediate state.

The distance properties of the construction can be derived directly from the trel-
lis. Two code words that determine the same path through the trellis must differ
in at least d(V) positions, and two code words that determine two different paths
must differ in at least d(U) positions in each of the two branches.
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Figure 5.19: Trellis of the |u|u + v| construction.

Figure 5.20: A dog biting its tail, a Celtic symbol for renewal and immortality.

5.9 Tail-biting code trellises

The “conventional” trellises used so far were defined on an ordered time axis
(0,1,...,n). A tail-biting trellis (Figure 5.20) is defined on a circular time axis
(0,1,...,n—1), corresponding to index arithmetics performed modulo 7. Graph-
ically, this can be represented as a trellis wrapped around a cylinder, with the states
at time n coinciding with those at time 0. The valid paths in the trellis are those
starting and ending at the same state. A conventional trellis may be regarded as
a special case of a tail-biting trellis with a single starting and ending state. Con-
versely, a tail-biting trellis that has a single state at some time can be viewed as a
conventional trellis.

Figure 5.21 shows conventional and tail-biting trellises of the quaternary repeti-
tion code {00, 11,22, 33}. It can be seen that one of the versions of the tail-biting



152 Chapter 5. Trellis representation of codes

(a) (b) ()

Figure 5.21: Trellises of the quaternary repetition code. (a} Conventional trellis.
(b) Tail-biting trellis. (c) Another tail-biting trellis with only two states.

Figure 5.22: Minimal tail-biting trellis of the (8, 4,4) Reed—Muller code.

trellis has fewer states than the conventional one. Another example is shown in Fig-
ure 5.22. The interest for tail-biting trellises comes from the fact that in some cases
the trellis complexity is lower than that of the conventional trellis (Figure 5.21 pro-
vides a simple example). Actually, the number of states can be as low as the square
root of the number of states in a conventional trellis. In addition, tail-biting trellises
can be viewed as the simplest form of a factor graph with cycles (see Chapter 8).

An exact maximum-likelihood algorithm for decoding a code on a tail-biting
trellis has been derived [5.15]. It consists of running the VA under the assumption
that the code starts and ends in each starting state in turn. The complexity is ||
times that of a single VA, where |2¢| denotes the number of possible starting states.
Thus, this algorithm shows no complexity advantage over decoding a conventional
trellis for the same code. An efficient iterative approximate decoding method on
a tail-biting trellis is as follows. Initialize all the metrics at time 0 to zero, use
the Viterbi algorithm going around and around in the trellis, and stop the iterations
according to a preset stopping rule. If the preferred path starts and ends in the same
state, it is chosen as the decoded code word; otherwise, an error is detected.
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5.10 Bibliographical notes

The Viterbi algorithm was introduced in [5.17] as a method for decoding convolu-
tional codes (Chapter 6). A survey of applications of the Viterbi algorithm, as well
as a number of details on its implementation, can be found in [5.6]. Sequential
algorithms and the M -algorithm are described in [5.18, Chap. 6] and [5.2].

The BCJR algorithm was proposed in [5.3]. It received limited attention be-
cause of its complexity until recently, where it was applied to iterative decoding
techniques (Chapter 8).

The theory of trellis representation of linear block codes, after attracting some
interest in the late 1970s [5.15, 5.20], has been rekindled in recent years, when
it was recognized that, in addition to illuminating the code structure, it may lead
the way to efficient decoding algorithms [5.5,5.9-5.11,5.13,5.14,5.16]. Tail-biting
trellises were also introduced in the late 1970s [5.15]. Interest in them was recently
enhanced after the discovery that the number of states in a tail-biting trellis can be
as low as the square root of the number of states in the conventional trellis for the
same code [5.5,5.8,5.19]. Iterative decoding of tail-biting trellises is now better
understood [5.1,5.7] than iterative decoding for more general graphs, that we shall
discuss in Chapter 8.

5.11 Problems

1. Consider the linear binary code with parity-check matrix

0111}

H=[1011

(a) Find a four-state trellis describing the code.

(b) Decode the received vector y = (0.7,1.2,—0.3,—0.5) by using the
Viterbi algorithm (assume an AWGN channel and an elementary con-
stellation X = {£1} with the correspondence 0 — +1,1 — —1).

(¢) Decode as above by using the BCJR algorithm.

2. Derive the minimal trellis of the linear code whose parity-check matrix is

1110000
H={|{1001100
1 000011

Compare the resulting complexity with that of the trellis obtained by using
the construction based on the parity-check matrix (Section 5.2).
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3. Derive a version of the BCJR algorithm obtained by factoring the joint pdf
p(y, 0i—1,0;) in the reverse direction (this is equivalent to defining a reverse
time axis).
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With his rent in his rears. /Give him six years

Coding on a trellis: Convolutional
codes

In the previous chapter we have seen how a given block code can be repre«
_sented by using a trellis. We now. examine the problem of designing a bmaty
code dJrectIy ona .tre]hs This can be done by first Choosmg a trelbs with a
by usmg one or more bmazy Shlft regzsters The chome ol a penod1c trelhs '
- which simplifies the Viterbi algontmn and of symbols generated as linear
combinations of the contents of the shift registers, leads to the definition of
‘convolutlonal codes. Invented m 1954, these codes have been Very success-f
ful because they can be decoded ina simple way, have a good perfonnance

and are well adapted to the transnnsswn of continuous streams of data. In
this chapter we present the rudiments of an a]gebraw theory of convolutmna]

codes, and show how code performance can be evaluated
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6.1 Introduction

In the previous chapter we have seen how a given code can be represented by a
trellis. We now examine the problem of designing a code directly on a trellis.
Specifically, we first choose a trellis (the number of its states being constrained
by the decoding complexity we are willing to accept) and then we label the trellis
branches so as to design a code that is optimum under a specified criterion. To
simplify decoding, here the trellis will be assumed to have a periodic structure
(apart from the initial and terminal transients caused by the finite length of the
source sequence), so that the Viterbi-algorithm operations will be the same for
every state-transition interval.

In this framework, we examine two design criteria. The first is based on binary
symbols and linear encoders and leads to convolutional codes, which will be treated
in the present chapter. In the next chapter, a more general set of elementary signals
and encoders will be used, which gives rise to trellis-coded modulation.

A simple way of constructing a periodic trellis with a given number of states is
by using a memory-» binary shift register, as shown in Figure 6.1. This contains
v+1 cells, or stages, and each binary symbol entering the register shifts its contents
to the right by one place. Positions 1 to v determine the staze of the register, so there
are 2V states. Position 0 contains the source symbol that is emitted at a given time:
this forces the transition from one state to another. A trellis describes graphically
the transitions among states. Notice that the resulting trellis structure is determined
by the number of cells alone.

binary
symbols

«—— state of the register ———

Figure 6.1: A binary shift register with 2" states.

Example 6.1

Take v = 2. We have four possible states, labeled by the contents of cells 1 and
2: these are 00, 01, 10, and 11. From state yz (y € {0,1} and z € {0,1}) we
can only move to state zy, where = denotes the symbol emitted by the source and
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Figure 6.2: A section of the trellis generated by a shift-register sequence with four
states.

forcing the transition. The resulting trellis section is shown in Figure 6.2. Here a
dashed arrow denotes a transition driven by the binary source symbol “1,” while a
continuous arrow corresponds to a “0.” O

6.2 Convolutional codes: A first look

A convolutional encoder (in a simplified definition that we shall generalize and
make rigorous later on) combines linearly (with respect to modulo-2 operations)
the contents of a binary (v + 1)-stage shift-register (nonbinary convolutional en-
coders can also be defined, although we shall not consider them here). We say that
the code has constraint length v + 1, or memory v.! If for every binary source
symbol these linear combinations generate ng binary channel symbols, the result-
ing code has rate 1/ng. Figure 6.3 shows two constraint-length-3 convolutional
encoders, one with rate 1/2 and one with rate 1/3.

The trellis diagram of the code has branches labeled by symbols generated
by the linear combinations of the shift-register contents (n¢ binary symbols per
branch). Moreover, it is customary to represent by a dashed line the branches
corresponding to transitions between states forced by a source symbol “1” entering
the shift register, and by a continuous line those forced by a “0”". Figure 6.4 shows
the initial sections of the trellis diagram, complete with its labels, corresponding to
the rate-1/3 convolutional code of Figure 6.3.

Another representation of a convolutional encoder, which provides a useful tool
for performance evaluation, is its state diagram, which describes the transitions

"Note that the definitions of constraint length and of memory are not consistent throughout the
convolutional-code literature.
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Figure 6.3: Two convolutional encoders with constraint length 3, having rates 1/2
(left) and 1/3 (right).

state

00

10

01

11

time 0 1 2 3 4

Figure 6.4: Trellis diagram for the rate-1/3 convolutional code of Figure 6.3. The
boldface path corresponds to the input sequence 1101. The initial state is chosen
conventionally as the all-zero state.

among states without explicitly including the time axis. The state diagram corre-
sponding to the rate-1/3 convolutional code of Figure 6.3 is shown in Figure 6.5.
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Figure 6.5: State diagram for the rate-1/3 convolutional code of Figure 6.3.

6.2.1 Rate-ky/ng convolutional codes

More generally, we may define rate-ko/ng convolutional codes. For these, ng bi-
nary symbols are sent to the channel for every k¢ input binary symbols. An ex-
ample of a rate-2/3 encoder is shown in Figure 6.6. In general, in a rate-ko/no
convolutional code we have kg shift registers with memories v, ..., vg,, and ng
binary adders. An overall constraint length may also be defined, but its definitions
are not consistent throughout the literature (see [6.6, pp. 12-13]).

6.3 Theoretical foundations

Contrary to what we did with linear block codes, here we must distinguish between
a code (the set of all possible encoded sequences) and the encoder chosen for that
code. As we shall see, the same convolutional code can be generated by several
different encoders, whose properties may be helpful (minimum overall constraint
length, and hence minimum decoding complexity) or harmful (catastrophicity—
see infra).

We start by characterizing a rate-ko/n binary convolutional encoder as a linear
causal time-invariant system over the binary field s having k¢ inputs and ng out-
puts (some additional properties are needed, as we shall see). In general, a single-
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Figure 6.6: A rate-2/3 convolutional encoder.

input, single-output linear causal time-invariant system is characterized by its im-
pulse response g = (g;)%°,, with the system’s output sequence x £ ()92 _ o
being related to its input sequence u = (u;)3°___ by the convolution x = g * u.

1=—00
Explicitly,

o0
T =) G- (6.1)
j=0

where sums and products are in [y, that is, are computed modulo-2.

It is convenient to associate with the sequences g, x, and u their D-transforms,
i.e., the functions of the indeterminate D (the delay operator equivalent to the
indeterminate 2! of the z-transform) defined as

[o¢]
g(D) 2> " g;D’
=0

o0

z(D)& > a;DI

j=—00

and
(o0}

w(D) £ > D’

j=—o0
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Figure 6.7: An implementation of a causal linear time-invariant system with poly-
nomial transfer function g(D) having degree v.

These are related, through (6.1), by
#(D) = u(D)g(D) (6.2)

Note that the causality constraint (g; = 0 for ¢ < 0) allows sequences to be repre-
sented by the sum of their D-series without potential ambiguities: thus, for exam-
ple, 1/(1+D) represents the sequence 1+D+D?+. . . rather than D™ '+D "2+ ...
The function ¢g(D) is called the transfer function of the system. If (D) is a polyno-
mial with degree v (we write v = deg g(D)), then the system whose input-output
relationship is (6.1) can be implemented by using a shift register, as shown in Fig-
ure 6.7. Additionally, we say that a polynomial g(D) is delay free if g(0) = 1.

The structure of Figure 6.7, while adequate for implementing polynomial trans-
fer functions, cannot be used if g(D) includes an infinite number of terms, i.e., if
its corresponding sequence has no end. This may occur, for example, if g(D) is
rational, i.e., if it has the form of a ratio between two polynomials. If this is the
case, we do not need an infinite number of stages in the shift-register implemen-
tation of the encoder: in fact, we can verify that the system of Figure 6.8 has the
rational transfer function g(D) = p(D)/q(D), where

v v
p(D) £ " pD* ¢(D) £ 1+ gD’
=0 ‘ i=1

(i.e., ¢(D) is delay free). If p(D), ¢(D) are relatively prime, then this realization
has a feedback connection unless g(D) = 1. Conversely, every rational transfer
function p(D)/q(D), with a delay-free g(D), can be realized in the “controller
form” of Figure 6.8. For this reason, such a transfer function is called realizable.
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Figure 6.8: Implementation of a system in controller form.

Example 6.2
The causal transfer function
x>
9(D)=(1+D)» D% (6.3)
k=0

includes an infinite number of terms. From the equality
1+ D*=(1+D)1+ D+ D?
we obtain, summing the series (6.3),

1+D 1

T1¥Dd 1+D1D?

9(D)

Thus, the system whose transfer function is g{D) can be realized in the controller
form of Figure 6.9. |

Based on these definitions, we can now describe a rate-kg/ng binary convo-
lutional encoder by giving its konp impulse responses g;;(D), 1 < ¢ < ko,
1 < j < ng, conveniently organized as the entries of a kg X ng generator ma-
trix G(D). If the ko-input sequence and the ng-output sequence are represented
by the vectors u(D) £ (uy (D), ..., ux, (D)) and x(D) & (21(D), ..., xn (D)),
respectively, then we may write

x(D) = u(D)G(D) (6.4)
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Figure 6.9: An implementation of a causal linear time-invariant system with trans-
fer function g(D) = 1/(1 + D + D?).

Example 6.3

The rate-1/2 convolutional encoder of Figure 6.3 has
g1(D)=1+D+D*  g12(D)=1+D"
and is described by the generator matrix G(D) = (1 + D + D?, 1+ D?). O

6.3.1 Defining convolutional codes

We define now, in a natural way, a rate-ko/no convolutional code as the set of
all possible sequences one can observe at the output of a convolutional encoder,
which is a ko-input, no-output system with the £y x ng transfer function G(D).
We require the encoder to be realizable and delay free (that is, at least one of its
entries p(D)/q(D) has p(0) = 1). Moreover, since the source sequence u(D)
must be uniquely reconstructed from the observation of x(D), the matrix G(D)
must have rank k.

The point here is that the same convolutional code can be generated by more
than one encoder (encoders generating the same set of output sequences are called
equivalent): each encoder defines a mapping between information sequences u(D)
and code words x (D), but the set of code words does not depend on the mapping
chosen. Observe in fact that if Q(D) denotes an invertible matrix with appropriate
dimensions, (6.4) yields

x(D) = u(D)Q(D)Q~(D)G(D) = u'(D)G/(D)

where u'(D) £ w(D)Q(D) and G'(D) £ Q~Y(D)G(D). Since u'(D) runs
through all possible information sequences, the encoders with generators G(D)
and G'(D) are equivalent. That said, it makes sense to look for encoders with
certain useful properties. One of them is minimum number of states, which has a
direct bearing on the complexity of the corresponding Viterbi decoder.
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Example 6.4

The convolutional encoder of Figure 6.10 has the transfer function

1 D2 D} ©65)

G(D)Z[D 1 0

Now, observe that

1 D2 D] _[1 D2 1 0 5
D 1 o|T|D 1 [|o1 &
1 p217t 1 1 D2
D 1 T 1+D3| D 1
which shows that the left-hand side of the last equation is an invertible matrix. Thus,
we can write

and that

x(D) = u(D)G(D)
1 D211 0 s
- o} 1}[0 \ D_g]
= w/(D)G'(D) (6.6)

so that the encoder can also be implemented in an equivalent form as shown in
Figure 6.11. This encoder is systematic: in fact, its input (ugl),ugz)) yields the
output (xEl), a:l(?),xf’)) with mgl) = ugl) and x§2) = u§2). It can be seen that this
encoder has the same number of states as that of Figure 6.10. Yet another equivalent
encoder (but with more states) has the generator matrix

G"(D) 1+D 1+ D? D]:[l 1

=|p+D> 14D o 0 1+D]G(D) ©7

For future reference, observe that with this encoder the input sequence

w(D) = [o l—j—ﬁ]

whose Hamming weight is oo, generates the output sequence
x(D) =u(D)G"(D)=[D 1 0]

whose Hamming weight is 2. O
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A\ 4

o)

A\ 4

o

o

Figure 6.10: A rate-2/3 convolutional encoder corresponding to the generator ma-
trix (6.5).

\4

ul(l) xgl)

u§2) R CE’EQ)

o

Figure 6.11: A rate-2/3 convolutional encoder corresponding to the generator ma-
trix G'(D) in (6.6).
6.3.2 Polynomial encoders

If g(D) denotes the least common multiple of all the denominators of the entries
of G(D), the matrix

yields an encoder equivalent to G(D) that is polynomial. Thus, every convolu-
tional code admits a polynomial (i.e., feedback-free) encoder.
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6.3.3 Catastrophic encoders

Example 6.4 shows how an encoder may map an infinite-weight input sequence
u(D) to a finite-weight output sequence. We call this encoder catastrophic because
a finite number of errors in the decoded word can lead to an infinite number of
errors in the corresponding information sequence u(D). In Example 6.4, if the
transmitted word is x(D) = [D 1 0] and the decoded word is X(D) = [0 0 0],
then the corresponding source sequence is u(D) = [0 0], which entails an infinite
number of errors.

Catastrophicity is an encoder property, not a code property: every convolutional
code admits noncatastrophic as well as catastrophic generator matrices. For rate-
1/n¢ codes with polynomial generators, a simple necessary and sufficient condi-
tion for a noncatastrophic encoder is that no two polynomials have a factor in com-
mon (see Problem 2 at the end of this chapter). More generally, it can be proved
that if the entries of G(D) are rational, then a unique polynomial ¢(D) exists with

q(0) = 1 such that we can write, fori = 1, ..., ng,
pi(D)
9:(D) =

A condition for this G(D) to be noncatastrophic is that no two polynomials p;(D)
have a common factor other than D.

6.3.4 Minimal encoders

It can be shown that among all equivalent encoder matrices there exists one cor-
responding to the minimum number of trellis states: specifically, its realization in
controller form requires the minimum number of memory elements [6.8, Section
2.6].

6.3.5 Systematic encoders

Every encoder can be transformed into an equivalent systematic rational one. It
suffices to transform the generator matrix into the form

G(D) = [Iko : P}

where P is a kg X (ng — ko) matrix with rational entries. An interesting property
of systematic encoding matrices is that they are minimal [6.8, Section 2.10].
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Example 6.5

Consider the following generator matrix of a rate-2/3 code:

_|1+D D 1
G(D)_[ D* 1 1+D+D2]

The matrix consisting of the first two columns of G(D)

1+D D}

T(D)é[ D* 1

is invertible: in fact

1 1 D
-1 _
T =15y [D2 1+D]

Premultiplication of G(D) by T~!(D) yields a systematic generator matrix equiv-

alentto G(D):
. 1+D+D?*4 D3
G'(D) = it
1 Tipipr

6.4 Performance evaluation

The definition of error probabilities of convolutional codes, as contrasted with
block codes, requires some extra care because in principle we are examining code
words with infinite length. Consider transmission of the all-zero code word x and
the competing code word X # x. We decompose the error, made by choosing X, as
a set of error events, each consisting in a single subpath diverging from the all-zero
path and merging later into it, never to split again (see Figure 6.12). Note that,
before and after this mergence, the correct path and the erroneous path accumulate
the same metric increments.

The probability of error can then be written by using pairwise error probabilities
and the union bound:

Ple|x) <> P(x—R) (6.8)
where the sum is extended to all possible error events (whose starting time is ir-
relevant, since the code trellis is periodic if we disregard, as we do, the initial and
final transients). Of course, the actual computation of P(x — X) depends on the
channel used for transmission.
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Ll

N
N

events

Figure 6.12: Trellis paths associated with code words x and X, and two error events.

6.4.1 AWGN channel
For this channel we can write, from (3.18):

[Ix — x|

Pec—-%=0 (Y

Here, under the assumption of binary antipodal signaling with X = {:}:\/E }, we
have ||x — %||? = 4&dy(x,X), where dp(x,X) denotes the Hamming distance of
x and X. Notice that, for all code words x’, we have

du(x,X) = dg(x +x', X +x')
and hence, by choosing x’ = x,
du(x,X) = du(0,X + x) = wu(X + x) (6.9)

Since convolutional codes are linear, X + x is itself a code word, and hence in (6.8)
we may assume, without loss of generality, that x is the all-zero word.
In conclusion, we have

P(e)=P(e|0) <> P(0—X) (6.10)
where
PO—%)=Q ( 2wH(i)NiO> (6.11)

This shows that the pairwise error probability depends on X only through its Ham-
ming weight: thus, the union bound (6.10) can be evaluated by enumerating the



6.4. Performance evaluation 171

set W of Hamming weights of all the nonzero words of the code. Specifically, we
have the union bound

P(e) < Z v(w)@ < 2wN£0> (6.12)

wew

where v(w) is the number of nonzero code words whose Hamming weight is w.

Weight enumerator function

The evaluation of bound (6.12) can be considerably simplified by using bound (3.19),
which yields the union-Bhattacharyya bound

P(e) < Z v(w)e~wENo (6.13)
weW

To proceed further, we construct a weight enumerator function of the convolu-
tional code: this lists the weights of all the words X that split from the all-zero-word
trellis path and remerge later into the same path. We do the following: we start from
the state diagram of the code and examine all state sequences splitting from the all-
zero state and ending in it. Every edge of the diagram is labeled X“, where X
is an indeterminate and w is the weight of the code word segment associated with
the edge in the original state diagram. Formally, we have w = ) w, where the
sum is extended to the trellis branches forming the code word whose weight is w.
Figure 6.13 shows this modified state diagram for our usual rate-1/3 convolutional
code (see Figure 6.5). The transfer function of the graph is the enumerator of path
weights:

T(X) = v(a) X+ v(b) X + v(c) X + ... (6.14)

If T(X) is known, then we have, from (6.13)
Ple)<T (e'e/N‘)) (6.15)
where we may want to write
€/No = p&y/No (6.16)

with p = ko /no the convolutional code rate (1/3 in our example). The minimum
exponent of T'(X) is called the free (Hamming) distance of the code, denoted djyee.
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Figure 6.13: State diagram for the rate-1/3 convolutional code of Figure 6.5. The
labels allow the computation of the weight enumerator function T'(X).

This is the smallest free distance of the error events and determines the asymptotic
(for large €,/ Ny) error probability of the code:

Ep

P(e) g V(dfree)Q ( 2Pdfreeﬁ(;> (6.17)

This also shows that pdge is the asymptotic coding gain of the code.

Computing the transfer function of a graph

The transfer function between a pair of vertices of a directed graph is defined as the
sum of the labels of all paths of any length connecting the two vertices. The label
of a path is defined as the product of the labels of its edges. This transfer function
can be computed in several ways. One consists of the progressive reduction of
the original graph to a single edge, obtained by repeated application of elementary
rules like those summarized in Figure 6.14. These show how a graph with more
than one edge can be replaced by a new graph with a single equivalent edge.

As an example, consider the graph of Figure 6.15 (a), with labels A, B, ..., G
and vertices ¢, 3, ..., £. By using reduction rules (c) and (b) of Figure (6.14),
this graph can first be replaced with that of Figure 6.15 (b) and then with that of
Figure 6.15 (c). Final application of rule (a) of Figure 6.14 yields the transfer
function: between o and €

ACG(1 - E) + ABFG

Ne—&)=1—F 6D+ CDE-BDF

(6.18)




6.4. Performance evaluation 173

A FE
A B E \
(@) . 0 < =
B
C
® 4 :
A B Es _ 4
(©) = (d) Q -
B
E1=AB
E,=A+B
AB
E3=AB—i—ACB—1—ACZB—I—...:1—_--E
A

Figure 6.14: Reduction rules for the computation of the transfer function of a di-
rected graph.

BF
. “ti-E
Q—A—»/_\ G )
(s) >
D
C& (b)
\ G
y € 4 G ..
D C(1—-E)+ BF
(@) 1-E—-CD+CDE— BDF
(c)

Figure 6.15: (a) Directed graph with five vertices and seven edges; (b) first reduc-
tion step; (c) second reduction step.
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When the number of vertices is large, the reduction technique previously ex-
plained becomes too complex, and we must resort to a different technique for eval-
uating the transfer function. This technique is based on a matrix description of the
graph: we shall explain it with reference to the graph of Figure 6.15.

Let us define by z, the value of the accumulated path labels from any vertex
directed towards ¢. The state equations for the graph of Figure 6.15 (a) are

z3=A+ Dz,
zy = Czg+ Fzs
Ty = BIg-}-Exg
ze = Gz

(6.19)

With this approach, we obviously have T(a — ¢) = z., and therefore we can
solve the system (6.19) and verify that z. is given again by (6.18).

The system of equations (6.19) can be given a more general and formal expres-
sion. Define the two column vectors

x £ [zgzyz52]  x0=[A000] (6.20)

and the state transition matrix T

0 D 0 0
a|C 0 F O
T= B 0 E 0 (6.21)
0 G 0 0
Using (6.20) and (6.21), system (6.19) can be rewritten in matrix form as
x =Tx+ xg (6.22)
whose formal solution 1s
x=(I-T) %o (6.23)

or, equivalently, the matrix power series

x = (I+T+ T2+ - xg (6.24)
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Example 6.6
From (6.18), the transfer function of the graph of Figure 6.13 is

2X% - X8

— — 6 8 10
= T s = X XS H5X 04

T(X)

which yields dg..e = 6, and the bound

Ple) < T (¢=5/2%)

6.4.2 Independent Rayleigh fading channel

Assume now a fading channel with interleaving deep enough to validate the inde-
pendent-fading model, and with CSI known at the receiver. Here we have

< IR (x — ﬁ)ll)
P =E —_— 6.25
(x — %) Q ( SN (6.25)
with R the diagonal matrix of the fading gains. Now,
IR(x - R)||* =48> " R? (6.26)
i€]

where J is the set of indices where the two vectors x and X differ. If the fading gains
have a common Rayleigh pdf, the sum above is a chi-square-distributed random
variable with 2|J| = 2du(x,X) degrees of freedom. As in the AWGN case, the
PEP depends only on the Hamming distance between x and X, so we can assume
without loss of generality that x is the all-zero sequence and write

Ple)< > v(w)EQ (, / 2X22w—]%> (6.27)
weW

where X2, is chi-square with 2w degrees of freedom. Exact computation of the
expectations in (6.27) can be done with the aid of (4.45)—(4.46). The asymptotic
expression (4.48) can also be used to obtain

9 i N 1 <2w—1>
EQ( N A (6.28)



176 Chapter 6. Coding on a trellis: Convolutional codes

AN

Figure 6.16: The rate-1/2 convolutional code used in GSM.

and hence, if there are v(dfe.) Words with Hamming weight djye., then, for high
SNR,
~ 1 2dpee — 1
Ple) <v(d —_ 6.29
(6) < 1/( free) (48/N0)dfree ( dfree ( )

The reader can verify that, if the results of Section 4.2.1 are directly applied to this
case, a weaker bound on P(e) is obtained.

6.4.3 Block-fading channel

From the results of Section 4.3, we can easily infer that the asymptotic performance
of convolutional codes over block-fading channels depends on Dy, defined as the
minimum Hamming block distance of error events.

Example 6.7

As an example of a convolutional code used on a block-fading channel, we describe
the code used in GSM. Its performance is evaluated by determining its Hamming
block distance with F' = 8.

Consider the rate-1/2 binary convolutional code whose encoder is depicted in
Figure 6.16. This is employed in full-rate GSM. Its Hamming free distance is 7, and
the coded sequence with Hamming weight 7 is

"'0707071,1707170707171a17170707"'

The coded bits are interleaved over F' = & blocks and transmitted over channels
whose fading gains can be assumed to be independent, so the block-fading model
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applies. The above sequence is distributed among the eight blocks as follows:

coocococooo
OO O
OO OO
coococoocoo

which shows that its Hamming block-distance is 5. This turns out to be also Dyyee
(see [6.9]), and use of the Singleton bound (4.35) shows that no binary rate-1/2
code can yield a higher distance. Hence, this code is optimum over the block-fading
channel with F' = 8. O

6.5 Best known short-constraint-length codes

Computer search methods have been used to find convolutional codes optimum in
the sense that, for a given rate and a given constraint length, they have the largest
possible free distance. The best rate-1/2 and rate-1/3 codes are listed in part in
Tables 6.1 and 6.2 [6.3,6.10]. The codes are identified by their generators, repre-
sented as octal numbers. By transforming an octal number into a binary number,
we have a sequence of 1s and Os, each of which represents the presence (or the ab-
sence, respectively) of the connection of a cell of a shift register with one modulo-2
adder.

6.6 Punctured convolutional codes

Puncturing is a procedure for obtaining, in an easy way, a convolutional code with
a higher rate from one with a lower rate ko/ng. If a fraction € of symbols are
eliminated (punctured) from each encoded sequence, the resulting code has rate
(ko/n0)/(1 — €). For example, if 1/4 of the symbols of a rate-1/2 code are punc-
tured, a new code with rate (1/2)(4/3) = 2/3 is obtained. An example will show
how this can be done.

Example 6.8

Consider the four-state convolutional encoder of Figure 6.17(a). For each input bit
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Memory v Generators in octal notation diree
1 1 3 3
2 7 5
3 15 17 6
4 23 35 7
5 53 75 8
6 133 171 10
7 247 371 10
8 561 753 12
9 1131 1537 12
10 2473 3217 14
11 4325 6747 15
12 10627 16765 16
13 27251 37363 16

Table 6.1: Maximum-free-distance convolutional codes of rate 1/2 and memory v.

Memory v Generators in octal notation dfree
1 1 3 3 5
2 7 7 8
3 13 15 17 10
4 25 33 37 12
5 47 53 75 13
6 117 127 155 15
7 225 331 367 16
8 575 623 727 18
9 1167 1375 1545 20
10 2325 2731 3747 22
11 5745 6471 7553 24
12 10533 10675 17661 24
13 21645 35661 37133 26

Table 6.2: Maximum-free-distance convolutional codes of rate 1/3 and memory v.

entering the encoder, two bits are sent through the channel, so the code generated
has rate 1/2. Its trellis is also shown, in Figure 6.17(b). Suppose now that, for every
four bits generated by the encoder, one (the last) is punctured, i.e., not transmit-
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(@)

(b) (c)

Figure 6.17: Encoder (a) and trellis (b) for a rate-1/2 convolutional code. The
trellis (c) refers to the rate-2/3 punctured code described in Example 6.8.

ted. In this case, for every two input bits three bits are generated by the encoder,
thus producing a rate-2/3 code. The trellis for the punctured code is shown in Fig-
ure 6.17 (c), and the letter = denotes a punctured output bit. As an example, the
input sequence u = 101101... would yield x = 111000010100 for the rate-1/2
code and x = 111000010 for the punctured rate-2/3 code. O

In decoding, the samples corresponding to punctured bit locations are provided
to the decoder after assigning them the value of 0.0, since there is no channel
information about these bits.

The major upside of puncturing is that several rates can be obtained from the
same “mother code,” thus simplifying the implementation through a sort of “uni-
versal” encoder and decoder, a fact widely exploited in circuit implementations.
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As for the downsides to the punctured solution, there are at least two of them.
First, punctured codes are normally worse (albeit slightly), in terms of distance
spectrum, than the best unpunctured codes with the same rate. Second, since the
trellis of a punctured (ng, ko) code is time-varying with period kg, the decoder
needs to acquire frame synchronization in addition to symbol synchronization.

6.7 Block codes from convolutional codes

Since in practice a convolutional code is used to transmit a finite sequence of in-
formation symbols, its trellis must be terminated at a certain time. This operation
yields a block code. Here we study how this termination can be done, focusing
our attention to rate-1/ng convolutional codes for simplicity (the general case of
rate-kg /ng codes is left as an exercise to the willing reader).

Let us first derive the generator matrix G of the infinite-length block code ob-
tained as the output of a rate-1/ng polynomial (i.e., nonrecursive) encoder. Ateach
time ¢ > 0, the ng output symbols are a linear combination of the v 1 binary digits
contained in the shift register: we write

Xt = ut81 + U182 + .. . + U 8uy1 (6.30)

where g;, 1 < ¢ < v+ 1, is a “generator” row vector whose ng components
describe the connections between the adders and the shift register. Specifically, the
jth component of g; is 1 if adder j is connected to the cell ¢ of the shift register, and
0 otherwise. Equation (6.30) can be written in a matrix form involving the input
sequence u = (ug u; ...) and the output sequence x as

where
g1 82 ' Buv+l
gr g2 - 8v+1
Goo = g1 & v Butl (6.32)

g1 g2 < gu+1

(the blank entries in (G4, are zero).
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l‘gl) xEZ) x§3)

Figure 6.18: A rate-1/3 polynomial convolutional encoder.

Example 6.9

With the rate-1/3 encoder of Figure 6.18 we have
W _q. . .
Ty =1 U +0-U1+0-us9

x,gz):l-ut+1'ut_1+0-ut_2

x§3):1-ut+1~ut,1+1-ut_2

so that
x; 2 [xgn $§2) wgs)] = ugg1 + U182 + U283
with
gr2(111] g=[011] g3£[00]]
which yields
111 011 001
111 011 001

Goo = 111 011 001

6.7.1 Direct termination

Consider now an input sequence with finite length N. The first N output symbols
can be computed from (6.30) by taking 0 < ¢ < IV, which is equivalent to writing

x = uGy (6.33)
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where
(g1 82 - 0 g 1
g1 8 - 8v+1
g1 82 o Butl
Gy 2 g (6.34)

g1 82 o 8Bu

g2
g1

is a matrix with IV rows and ng/N columns. Hence, the resulting block code has the
same rate as the original convolutional code. This is a very natural code construc-
tion, but it has a downside. In fact, it turns out that the last coded symbols are less
protected from the noisy-channel effects: the BER as a function of the bit position
in a block would typically be about constant for most bits, except for those at the
beginning and at the end of the block. This occurs because the Viterbi algorithm
leaves from a known starting state when it decodes the first bits, and hence yields
a lower BER for them. The opposite occurs with the last bits in the block.

6.7.2 Zero-tailing

To avoid the poor protection at the end of the block caused by direct termination,
the most common way (the zero-tailing method) of terminating a convolutional
code consists of having the encoder end in a predefined state (typically, the all-zero
state). To be able to do this, the encoder appends a deterministic sequence, at the
end of the information sequence, that fills with zeros the entire shift register of
the encoder. This sequence need not be any longer than the memory length of the
encoder (multiplied by kg if the code has rate kg/np). Its components generally
depend on the encoder state at the end of the information sequence: however, for a
polynomial generator matrix of memory v, the zero-tailing sequence is the all-zero
v-tuple. This sequence causes a code-rate loss that may be substantial for short
blocks: in fact, for rate-1/ng codes with /N information symbols, the resulting
block length is (N + v)ng, so the resulting code rate is N/((N + v)ng) < 1/no.

Example 6.10

Figure 6.19 shows that, to terminate the trellis by bringing the encoder back to state
00, the last two bits fed into the shift register must be zero. If the rate of the original
convolutional code is 1/2, that of the terminated block code is 5/14. O
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Figure 6.19: Trellis termination.

6.7.3 Tail-biting

If a system transmits short data frames, the loss due to trellis termination using
the zero-tailing method may be unacceptable. In this case, one can resort to a
transformation of the code trellis into a tail-biting one (see Section 5.9). With a
tail-biting trellis the encoder starts and ends in the same state, and thus the code-
rate loss is eliminated at the price of increased decoder complexity, due to the fact

that the starting and ending states of the encoder are unknown to the decoder.

Consider a polynomial encoder for a memory-v, rate-1/ng code (the general-
ization to rate-ko /n is straightforward). After IV input symbols, the encoder state
is (uny un-—1 ... UN—p41), Wwhich we want to coincide with the initial state. If the
all-zero sequence is sent to an encoder with this initial state (that is, preloaded with
these bit values from the end of the block), then the output sequence has the form

%0 — u(O)Ggg)

where

u® £1000...0un_ps1UN_pi2 .. UN]

and

Gg\?) 2 8v+1
gv
g2

841

g3

gv+1

is a matrix with N rows and no/N columns. For a general input sequence with
length NNV, due to the linearity of the code we can write the code words obtained
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with the tail-biting method in the form x = uG L2, where

GIP2Gy+GY

g1 g2 e e r+1
gl g2 “ .. o gy+1
= | g1 g1 8 - 8 (6.35)
g B+l ' PR
: : . g2
| B2 g3 o Buhl g1

Observe how the matrix (6.35) can be obtained from (6.34) by wrapping around
the last » columns. Based on this observation, we may construct a convolutional
code from a block code whose generator matrix has the form (6.35): to obtain G,
it suffices to unwrap it and to extend it to a semi-infinite matrix.

6.8 Bibliographical notes

A thorough treatment of the algebraic aspects of convolutional codes can be found
in [6.8] (see also papers [6.4,6.7]). Some information-theoretical aspects of these
codes are examined in [6.13]. Tables of good codes can be found in [6.3, 6.10].

In this chapter we have not covered the calculation of bit error probability. This
can be found, for example, in [6.1, Section 11.1]. The effect of trellis truncation
on the error rate of convolutional codes is examined in {6.12]. Tail-biting convolu-
tional codes are treated in [6.8,6.11].

Tables of punctured codes can be found in [6.2,6.14].

6.9 Problems

1. Find a parity-check matrix for the code of Example 6.3, i.e., a matrix H(D)
satisfying
x(DYH'(D) = 0

2. Consider a rate-1/ng convolutional code with polynomial generators. Prove
that its encoder is catastrophic if and only if all generator polynomials have
a common polynomial factor of degree at least one.
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EHES
[

Figure 6.20: Encoder of a rate-1/3 convolutional code.

3. Prove that, for a rate-1/nq convolutional encoder,
(a) Two generators G(D), G'(D) are equivalent if and only if G(D) =
u(D)G'(D) for some nonzero rational function u(D).
(b) Every generator G(D) is equivalent to a polynomial generator.

4. Prove that a systematic encoder for a rate-1/ng convolutional code with gen-
erator G(D) = (g1(D), g2(D), ..., gne (D)) may be obtained in the form

(1,92(D)/g1(D), - - ., gno(D)/91(D)).

5. Consider the rate-1/3 convolutional code shown in Figure 6.20.

(a) Draw a section of the trellis diagram of the code, including the branch
labels describing the coded symbols.

(b) Derive the weight enumerator function 7'(D) of the code.
(¢) Compute its free Hamming distance.

6. Use (6.28) and the inequality

1 [2w-—1 <1
4w w

to derive a transfer-function bound for the error probability P(e) of a convo-
lutional code used over the independent Rayleigh fading channel with perfect
channel state information at the receiver.

7. Use (3.66) to derive a bound tighter than the union-Bhattacharyya bound (6.13).

8. Consider a convolutional encoder with feedback. Show that a finite zero-
sequence at its input may not terminate the trellis in the null state. Examine
the special case of systematic encoders with feedback.

9. Generalize the transfer-function bound to error probability derived in this
chapter to the computation of P(e) for block codes defined on a (generally
nonperiodic) trellis.
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and barnacled up to the eyes when he repented after seven

Trellis-coded modulation

In this chapter we introduce codes designed on a periodic trellis, and whose
‘coded symbols are not restricted to the binary set {0, 1} but rather chosen
froma generé] elementary constellation X. The basic idea underlying Trellis-
Coded Modulation ( TCM) is to use a convolutional code fo generate the re-
dundancy necessary to achieve a coding gain, while preventmg bandwidth
expansion by i zncreasmg the size of the constellanon rather than the number
of transmitted symbols. Spec1ﬁcally, a rate-kg /ng convoluuonal code trans-
formsa bmary ko-tuple into a bmary no-tople. The Iatter is used as the binary
label of a constellation X ,;thf'pC[ 210 sienals. With “ut coding, the con-
stellatzon needed would be X', with |X'| = 2k s1gnals hus, coding does
not entail any bandw;dth expansmn Hx x bave the same dimensionality,
while the couvo]uﬂoua] code provides a codmg gain. In practice. TCM uses
;:;'no = ko + 1, s0 |X| = 2|X'| and data yaregtransmnted at a rate of log |I)C| -1
bits per s1gnal « . -
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7.1 Generalities

If a convolutional code is designed by properly choosing a periodic trellis and the
binary symbols associated with its branches, its coded signals carry information
at a rate lower than 1 bit/signal. To introduce the redundancy needed to decrease
the rate (and hence to obtain a coding gain), we are forced to increase the number
of transmitted binary symbols, which entails decreasing their duration, and conse-
quently increasing the occupied bandwidth. Since bandwidth expansion is obvi-
ously an unwelcome effect, we may consider introducing redundancy in a different
way. Trellis-coded modulation (TCM), described in this chapter, uses a redundant
signal set, i.e., an elementary constellation with more signals than we would need
if coding were not used. Specifically, TCM uses 2M signals to transmit at a rate
of log M bit/symbol. As a result, a coding gain is obtained without any sacrifice
in bandwidth. To understand how TCM works, consider Figure 3.4 or Figure 4.5.
Here we see that, to transmit 1 bit per dimension pair (say), one could use 2-PSK
and a high-enough SNR; if a lower SNR is available, then the rate decreases below
1 (this is the “standard” coding solution). Now, observe that 1 bit per dimension
pair could also be transmitted at a lower SNR (and hence by achieving a coding
gain) if 4-PSK is used. The challenge here is to design coding schemes yielding
the coding gain promised by these considerations. TCM is one such solution.

Consider the transmission of uncoded signals chosen from X', and let £’ denote
the average transmitted energy. We have seen in Chapter 3 that the error probability
of this uncoded system on the AWGN channel depends, asymptotically for high
signal-to-noise ratios, on the energy per bit £} and on din, the minimum Euclidean
distance of X. This dependence is summarized by the definition of asymptotic
power efficiency, whose value is 7/ = 62, /4, here. With a coding scheme
using the constellation X D X', the asymptotic error probability depends on the
average transmitted energy per bit £; and on e, the smallest Euclidean distance
among code words (since we are considering trellis codes here, it is appropriate
to call it free Euclidean distance). The quality of the transmission solution can be
expressed by its asymptotic power efficiency v = §2.../4€p. Since the amount of
bits per symbol carried by uncoded and coded constellations must be the same,
&,/& = &'/, and we can write the coding gain in the form

a Y 6?1’ee/ Ep 6%ree/ €
= — = = 7.1
U WA @b

min

Typically, TCM has |X| = 2|X'|. A bigger increase is indeed possible if |X| >
2|X"} (look again at Figure 3.4 or Figure 4.5), but the performance improvement
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X = {zo, z1, z2, T3, T4, T5, Te, T7}

Figure 7.1: A TCM trellis section with two states and parallel transitions.

thus obtainable does not seem to compensate for the additional complexity intro-
duced.

A TCM scheme is given by choosing a trellis and assigning to every transition
between pairs of states an element from constellation X. For generality, unlike con-
volutional codes, in which only one branch can conjoin two states, TCM accepts
parallel transitions, i.e., the presence of two or more branches emanating from,
and merging into, the same state. Figure 7.1 illustrates a trellis section exhibiting
parallel branches.

7.2 Some simple TCM schemes

Before delving into the theory, we examine a few simple examples of TCM schemes
and evaluate their asymptotic coding gains. Consider first the transmission of 2 bits
per signal. Without coding, a constellation with four signals would suffice. Instead,
consider TCM schemes with eight signals.

With 4-PSK we have

a value that provides a baseline for computing the coding gains. Consider next
8-PSK, with signals labeled {0,1,2,...,7} as in Figure 7.2. Here,

62 = 4€sin’7/8

Two states. Consider first a trellis with two states (Figure 7.3). If the encoder is
in state S, it picks its signals from the subconstellation {0, 2,4, 6}. If it is in state
Ss, it picks them from {1, 3,5,7}. The free distance of this TCM scheme may



190 Chapter 7. Trellis-coded modulation

Figure 7.2: 8-PSK as used in a TCM scheme.

Figure 7.3: TCM scheme with a two-state trellis. The pair of paths yielding the
free distance is shown in bold.

be equal to the smallest distance between pairs of signals associated with parallel
transitions (competing paths with length 1), or to the smallest distance between
pairs of paths diverging from a node and remerging after some instants (competing
paths with length > 1). Through the use of techniques to be presented later in this
chapter, it can be proved that the free distance is given by the pair of paths shown
in bold in Figure 7.3. If dg(i, j) denotes the Euclidean distance between signals 4
and j, we have

52

free

Otree _ 1

e = 2[dB(0,2) +dB(0,1)] =2 + 4sin® g- = 2.586
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Figure 7.4: Four-state TCM scheme.

It follows that the asymptotic coding gain with respect to 4-PSK is

2.
n=—?§=L%3:1ldB

Four states. More states in the TCM trellis yield a larger coding gain. Using
again the constellation of Figure 7.2, we now consider the four-state trellis of Fig-
ure 7.4. Here we associate the subconstellation {0, 2,4, 6} with states S; and S3,
and {1, 3,5, 7} with states S and S4. In this case the error event generating the
free distance 5. has length 1 (parallel transition). This is shown in bold in Fig-
ure 7.4, along with another pair of competing paths with length 3 yielding a larger

distance. We obtain .

%ﬁ:ﬁm@=4

which entails that the asymptotic coding gain is

n=g=2:>3dB

Eight states. We can further increase the asymptotic coding gain by choosing
an eight-state trellis as in Figure 7.5. To simplify Figure 7.5, the four symbols
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0426
1537
<
4062 ~—>
L2
5173 XS5 .
SRS,
2604 LSO .
JEK
AR
3715 > L
AN
6240 L
7351 L

Figure 7.5: Eight-state TCM scheme with 8-PSK.

associated with the branches emanating from a node are indicated near the node.
The first among the four symbols is associated with the uppermost transition, the
second with the second transition from the top, etc. The pair of paths at e is also
shown. We obtain

52 1
Tree — Z[43(0,6) + d3(0,7) + d3(0,6)] = 2+ 4sin® = +2 = 4.586
3 e B 8

and hence

4.
n= ? =2293 = 3.6dB

Consideration of QAM. Consider now the transmission of 3 bits per signal and
quadrature amplitude modulation (QAM) schemes. The octonary constellation of
Figure 7.6 (black dots) will be used as the baseline uncoded scheme. It has

A TCM scheme with eight states and based on this constellation is shown in Fig-
ure 7.7. The subconstellations used are

{0,2,5,7,8,10,13, 15}
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Figure 7.6: The octonary QAM constellation {0,2,5,7,8,10,13,15} and the 16-

ary QAM constellation {0,1,...,15}.

0,10,2,8,5,15,7,13
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Figure 7.7: A TCM scheme based on an eight-state trellis, M’ = 8, and M = 16.

and

{1,3,4,6,9,11,12,14}

The free distance is obtained from
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52 1
Tree = _[d2(10,13) + d2(0,1) + dZ(0,5)]

3
= %[0.88 +0.4€ + 0.8€]
2

so that

9
— 2 —925= 398dB
=038

7.2.1 Coding gain of TCM

The values of 4. that can be obtained with TCM schemes based on two-dimen-
sional, unit-energy elementary constellations (PSK and QAM) are summarized in
Figure 7.8. Their free distances are expressed in dB and referred to the baseline
value 62, = 2, corresponding to uncoded unit-energy 4-PSK. The abscissa shows
Ry/W, the spectral efficiency in bit/dimension pair (or in bit/s/Hz if W is the
Shannon bandwidth, as defined in Chapter 3). We can see how relatively large
coding gains can be achieved by using TCM schemes with a small number of states:
4, 8, and 16. Convolutional codes are the solution of choice if bandwidth efficiency
is not at a premium; otherwise, TCM provides higher values of R,/W, albeit at the

price of a smaller coding gain for a comparable complexity.

7.3 Designing TCM schemes

As mentioned before, to describe a TCM scheme we give its trellis and the map
associating each branch with an elementary signal. This map must be chosen in
order to maximize the free Fuclidean distance, and hence the asymptotic coding
gain. In the following, we elaborate on how this maximization can be achieved.

7.3.1 Set partitioning

Consider the evaluation of the free distance d¢e, i.€., the Euclidean distance be-
tween a pair of trellis paths diverging from a node and remerging after L instants
(Figure 7.9).

Let us first examine the case in which the free distance is determined by parallel
transitions, viz., L = 1. In this case the free distance dg. is equal to the smallest
distance between any two signals associated with the parallel transitions. Next,
consider L > 1; if A, B, C, D denote the subsets of signals associated with each
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Figure 7.8: Free distance vs. spectral efficiency of some TCM schemes using two-
dimensional unit-energy constellations.

branch, and dg(X,Y) is the minimum Euclidean distance between one signal in X

and one signal in Y, then §,

2

free Can be written in the form

oo = d5(A,B) + -+ + dg(C, D)
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On : On+1 On A On+1 On+L-1 C On+L
B : : D
L=1 L>1

Figure 7.9: A pair of paths diverging and remerging with L = 1 (parallel transi-
tions) and L > 1.

This implies that, for a good TCM scheme, the subsets associated with the same
originating state (A and B in Figure 7.9) or with the same terminating state (C
and D in Figure 7.9) must be separated by the largest possible distance. These
observations form the basis for a technique suggested by Ungerboeck [7.6] and
called set partitioning.

A constellation with M signals is successively partitioned into 2,4, §, ..., sub-
constellations with size M /2, M /4, M/8, ..., respectively, having progressively
larger minimum Euclidean distances: 5&)11, 5$i)n, 5531)11, ... (see Figure 7.10).

Three rules are applied, deemed to give rise to the best TCM schemes and called
Ungerboeck rules:

Ul Parallel transitions are associated with signals belonging to the same sub-
constellation.

U2 Branches diverging from the same node or merging into the same node are
associated with the same subconstellation at the level above that correspond-
ing to rule Ul.

U3 All signals are used equally often.

All the TCM schemes examined so far in this chapter satisfy U1-U3 (except the
one in Figure 7.3: why?).

7.4 Encoders for TCM

In the previous chapter, we saw how the encoder of a code on a trellis can be gen-
erated by assigning one or more binary shift registers and a function mapping their
contents to the elements of the signal constellation. With TCM, an encoder is
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Figure 7.10: Set-partitioning 8-PSK.
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B Convolutional
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Figure 7.11: A TCM encoder.

slightly more complex, as two blocks are present. In the first block, m-tuples of
source bits b( ) bgm) are presented simultaneously to a convolutional encoder
with rate m/ (m +1). The second block consists of a memoryless modulator map-
ping the convolutionally encoded binary (m + 1)-tuples onto a signal constellation
(see Figure 7.11).
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Figure 7.12: TCM encoder. Here the uncoded bits are explicitly shown.

It is convenient to modify the encoder scheme of Figure 7.11 as shown in Fig-
ure 7.12, which makes it explicit that some input binary digits may be left uncoded,
hence generating parallel transitions (in fact, these bits, which do not pass through
the memory elements of the convolutional encoder, cannot cause a state change).
The convolutional code now has a rate /(M + 1), and each trellis branch is asso-
ciated with 2™~ signals. The correspondence between convolutionally encoded
bits and subconstellation signals is shown, for 8-PSK, in Figure 7.10.

Example 7.1

Figure 7.13 shows a TCM encoder and the trellis associated with it. Here m = 2
and 7 = 1, so that the nodes of the trellis (corresponding as usual to the states of
the encoder) are connected by parallel transitions, each being associated with two
signals. O

7.5 TCM with multidimensional constellations

We have seen that, with a given constellation, the performance of TCM can be im-
proved by increasing the number of trellis states. Nonetheless, when this number
exceeds a certain (small) value, the coding gain increases little, in accordance with
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Figure 7.13: A TCM encoder with m = 2 and m = 1 corresponding to the trellis
at right.

the principle of diminishing returns. In this situation, we may choose the solu-
tion of changing the constellation X: an option is to move from two-dimensional
constellations to multidimensional constellations.

Consider, in particular, signals generated by taking the /N-fold Cartesian product
of two-dimensional constellations (such as PSK or QAM). These can be obtained,
for example, by transmitting sequentially N two-dimensional signals, each with a
duration 7'/N. The resulting signals can be interpreted as having a duration 7" and
2N dimensions.

Example 7.2

A TCM scheme with four dimensions can be obtained by concatenating two unit-
energy 4-PSK signals. The constellation obtained is called 2 x 4-PSK. With the
labels shown in Figure 7.14, the 42 = 16 four-dimensional signals are

{00,01,02,03,10,11,12,13, 20,21, 22, 23, 30, 31, 32, 33}
This constellation has the same minimum Euclidean distance as 4-PSK:
62 = d(00,01) = d%(0,1) = 2
The subconstellation that follows has eight signals:

X = {00,02,11, 13,20, 22, 31, 33}
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00, 22 00, 22
-

o >0
02, 20 13, 31
13, 31
11,33

Figure 7.14: A two-state TCM scheme with a 2 x 4-PSK constellation. The error
event giving rise to the free distance is also shown.

and a minimum squared distance equal to 4. If X is partitioned into four subsets
{00, 22} {02,20} {13,31} {11, 33}

then the two-state TCM scheme of Figure 7.14 has a squared Euclidean distance
equal to 8. O

7.6 TCM transparent to rotations

We now examine channels affected by a phase offset, and the design of TCM for
these channels. Consider coherent demodulation. This requires the estimate of
the carrier phase before demodulation. Several techniques for this estimate exist,
based on the removal of the phase shifts caused by the data transmitted (the data
noise). This removal generates a carrier whose phase value is affected by an am-
biguity that depends on the rotational symmetries of the constellation used. For
example, QAM is left invariant by a rotation by multiples of 7 /2, and M-ary PSK
by a rotation by multiples of 2w /M. The presence of any such rotation cannot
be directly detected by the carrier-phase recovery circuit. We model this effect by
adding to the received signal a random, data-independent phase shift ¢ taking on
values in the set {2mk/M }27 !, To remove this phase shift, differential encoding
and decoding are often used.

7.6.1 Differential encoding/decoding

With differential encoding, the information to be transmitted is associated with
phase differences rather than with absolute phases. Consider differential encoding
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of PSK. The model of a channel introducing the phase ambiguity ¢ can be easily
constructed by assuming that, when the phase information sequence (6,)52 is
transmitted, the corresponding received phases are (6, + )22 ;. (We neglect noise
for simplicity.) While the received phases differ from those transmitted, we may
observe that the phase differences between adjacent bits are left invariant. Thus, if
the information bits are associated with these differences rather than with absolute
phases, the value of ¢ has no effect on the received information. We illustrate this
by a simple example.

Example 7.3

Consider transmission of binary PSK. If the channel is affected by the phase offset
¢ = m, we receive (0, + m)52, and hence all received bits differ from those
transmitted. To avoid this, transform, before modulation, the information-carrying
phases (6,,)22, into the differentially encoded phase sequence (8})22.,, according
to the rule

0 =0,+6:_, mod2r ' (7.2)

where it is assumed that 8* ; = 0. Next, differentially decode the received phase
sequence by inverting (7.2):

0,=05—6:_, mod2r (7.3)
where a hat"denotes phase estimates. We have the situation illustrated in Table 7.1.
O
Information digits bn 6 1 1 1 0 1 0 1 1
Corresponding phases 0, O = = o 0 @« 0 =w =«
Received phases O+ 7 ©~ 0 0 0 @« 0 x« 0 O
Detected info. digits bn 1 6 0 0 1 0 1 0 O
Diff. encoded phases o 0 0 = 0 # « O O =m O
Received phases bp+7 @« w 0 « 0 0 7 7w 0 «
Diff. decoded phases 0, O = = « 0 7w 0 =« =«
Decoded info. digits bn o 1 1 1 O 1 O 1 1

Table 7.1: Effect of a rotation by = on uncoded and differentially encoded binary
PSK.
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Figure 7.15: Differential encoding and decoding.

To explain in general terms the differential coding/encoding procedure, we use
D-transform notations, which correspond to describing a semi-infinite sequence
(an)S2., through the power series A(D) £ >°°°  a, D". With this notation, we

write the transmitted phase sequence as
O(D) =6y + 61D + 6,D% 4 - -
and the received sequence as

(D) +®(D) = (fo+ )+ (1 +8)D+ (02 + ¢)D* + - --
= OD)+¢(1+D+D*+---)
¢
o(D)+ =5 (7.4)
(we are still neglecting the effect of the additive Gaussian noise).

To get rid of the ambiguity term ¢/(1— D), we multiply the received signal (7.4)
by (1 — D). This is accomplished by the differential decoder. In the time domain,
this circuit subtracts, from the phase received at any instant, the phase that was re-
ceived in the preceding symbol period: since both phases are affected by the same
ambiguity ¢, this is removed by the difference (except for the phase at time 0). The
received sequence is now (1 — D)O(D) + ¢, which shows that the ambiguity is
now removed (except at the initial time n = 0, as reflected by the term ¢ multi-
plying D°). Now, the information term ©(D) is multiplied by (1 — D): to recover
it exactly we must divide ©(D), before transmission, by (1 — D). This opera-
tion, corresponding to (7.2), is called differential encoding. The whole process is
summarized in Figure 7.15.

7.6.2 TCM schemes coping with phase ambiguities

If TCM is employed on a channel affected by a phase offset, we must make sure
that signal sequences affected by phase rotations are still valid sequences, i.e., cor-
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Figure 7.16: TCM transparent to a phase rotation by 7 but not to a rotation by /2.

respond to paths traversing the trellis; otherwise, a single phase rotation might
generate a long error sequence, because even in the absence of noise the TCM
decoder cannot recognize what it receives as a valid TCM sequence.

Example 7.4

With the trellis of Figure 7.16, suppose that the all-zero sequence has been trans-
mitted. A rotation by 7 introduced by the channel causes the reception of the all-2
sequence, which is valid. On the contrary, a rotation by 7 /2 generates the all-1 se-
quence, which is not a valid sequence, and hence will not be recognized as such by
the Viterbi algorithm (see the trellis). |

The receiver can solve this ambiguity problem in several ways. One of these
consists of transmitting a known “training” sequence that allows one to estimate,
and hence to compensate for, the phase rotation introduced by the channel. An-
other one uses a code that is not transparent to rotations. A phase error generates
a sequence that, not being recognized as valid by the decoder, triggers a phase-
compensation circuit. The third solution, which we shall examine in some detail,
is based on the design of a TCM scheme based on M-PSK and transparent to ro-
tations: for it, every rotation by 2w /M of a TCM sequence generates another valid
sequence so that the decoder will not be affected.

For a TCM scheme to be transparent to a certain set of rotations, we require the
following:

1. Any rotated TCM sequence is a TCM sequence.

2. Any rotated TCM sequence is decoded into the same source-symbol se-
quence.
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Figure 7.17: Partition of 8-PSK transparent to rotations.

The first property above is geometric: the coded sequences, which can be inter-
preted as a set of points in a Euclidean space with an infinite number of dimensions,
must be invariant with respect to a given finite set of rotations. The second property
is rather a structural property of the encoder: in fact, it is related to the input—output
relationship of the encoder.

Partitions transparent to rotations. The first fundamental principle in the de-
sign of a code transparent to rotations is the construction of a transparent partition.
Let X be a 2N -dimensional signal constellation, {Y7, - - - , Y } its partition into
K subconstellations, and consider the rotations in the two-dimensional Euclidean
space. The rotations of the 2/N-dimensional space are obtained by considering
a separate rotation in each two-dimensional subspace. Next, consider the set of
rotations that leave X invariant, and denote it by R(X). If R(X) leaves the partition
invariant, that is, if the effect of every element of R(X) on the partition is simply a
permutation of its elements, then the partition is called transparent to rotations.

Example 7.5

Consider an 8-PSK constellation and its partition into four subsets of signals as in
Figure 7.17. Let the elements of R(X), the set (group) of rotations by multiples of
7 /4, be denoted by po, pr /4, pr /2, €tc. This partition is transparent to rotations. For
example, p/4 corresponds to the permutation (Y1Y3Y2Y}), pr /2 to the permutation
(Y1Y2)(Y3Y4), pr to the identity permutation, etc. O
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)4

Figure 7.18: Section of a two-state trellis.

Example 7.6

Consider the four-dimensional signal set of Example 7.2 and its partition into the
four subconstellations

Y = {Y17Y27)f37}/47y:’n)/67y77Y8} (75)
= {{00,22}, {11, 33}, {02, 20}, {13, 31},
{01,23}, {12, 30}, {03, 21}, {10,32}} (7.6)

The elements of R(X) are the pairs of rotations, each a multiple of /2, denoted po,
Pr /2> P> and p3r /2. We can see, for instance, that the effect of p,/ on signal zy is
to change it into a signal (z + 1)(y + 1), with sums taken mod 4. This partition is
transparent to rotations. ]

Trellises transparent to rotations. Consider now the effect of a phase rotation
on coded TCM sequences. If the partition Y of X is transparent to rotations, the
TCM scheme becomes transparent to rotations if every rotation p € R(X) trans-
forms a valid subconstellation sequence into a valid subconstellation sequence.

Examine a trellis section. If all the subconstellations labeling the trellis branches
are affected by the same rotation p, we generally obtain a different trellis section.
Now, for the TCM scheme to be transparent to rotations, this transformed trellis
section must be equal to the unrotated section, apart from a possible permutation
of its states.

Example 7.7

Consider a section of a two-state trellis (Figure 7.18) based on the partition

Y ={¥,Y2,Y3,Ys}
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(we use the same notations of Figure 7.17). This partition is transparent to rotations.
We describe this trellis section by giving the set of its branches (S;, Y}, Sk), where
Y; is the subconstellation labeling the branch joining state S; to state Sy. This trellis
is described by the set

J= {(AaY'I’A)v (A7)%7B)7 (B7Y4)A)’ (Bay27B)}
The rotations pr /2 and p3, /2 transform T into
{(A5Y23 A)a (A,Y:i,B), (B,YE;,A), (Ba YlaB)}

which corresponds to the permutation (A, B) of the states of T. Similarly, pg and
pr correspond to the identity permutation. In conclusion, this TCM scheme is trans-
parent to rotations. O

It may happen that a TCM scheme satisfies the conditions of rotational invari-
ance only for a subset of R(X), rather than for the whole of R(X). In this case we
say that X is partially transparent to rotations.

Example 7.8

Consider the TCM scheme of Figure 7.19. This has eight states, and its subconstel-
lations correspond to the partition Y = {Y1, Y3, Y3, Ya} of Figure 7.17. This parti-
tion, as we know, is transparent to rotations. However, the TCM scheme is not fully
transparent. If we consider the effect of a rotation by 7 /4 (Table 7.2), we can see
that the effect of p,; /4 is not a simple permutation of the trellis states. In fact, take the
branch (51, Y3, S1); in the initial trellis, there is no branch of the type (S;, Y3, S;).
This TCM scheme is partially transparent: in fact, it is transparent to rotations by
multiples of 7 /2. For instance, the effect of p, 5 is described in Table 7.2: it gener-
ates the following permutation of its states: (S1.55)(52.57)(5356)(5455). O

Transparent encoder. Consider finally the transparency of the encoder. We re-
quire every rotation of a TCM sequence to correspond to the same information
sequence. If u denotes a sequence of source symbols, and y the corresponding
sequence of subconstellations, then every rotation p(y) to which the TCM scheme
is transparent must correspond to the same sequence u.

We observe that for this condition to be satisfied it is sometimes necessary to in-
troduce a differential encoder. This point is illustrated by the example that follows.
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Figure 7.19: A TCM scheme not transparent to rotations.

Example 7.9

Consider again the eight-state TCM and the 8-PSK constellation of Example 7.7. We
have seen in Example 7.5 that rotations by /2 and 37 /2 generate the permutation
(Y1Y2)(Y3Y4). If the encoder associates source symbols to constellations according
to the rule:

00="1 10=Y, 01=1Y3 11=Y,

then the only effect of p, /3 and of p3, /3 is to change the first bit of the pair of binary
source symbols, while pg and p, change no bit. Thus, if the first bit is differentially
encoded, the resulting TCM scheme will be transparent to rotations by multiples of
w/2. O

General considerations

We can generally say that the constraints of transparency to rotations may entail
a reduction of the coding gain of two-dimensional TCM. Generating an encoder
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Po Pr/a Pr /2
(S1,Y1,51) (51,Y3,51) (S1,Y2,51)
(S1,Y2, S?) (S1,Ys,S2) (S1,Y1,52)
(S2,Y3,83) (82, Y2, S3) (52, Y4, S3)
(S2,Yy, Sy) (S2,Y1,S4) (S2,Y3,54)
(S3,Yy, Ss) (S3,Y1,S5) (S3,Y3,55)
(83,73, S6) (S3, Y2, S6) (S3, Yy, Se)
(84,Y2,87) (S4,Ya, S7) (84, Y1, 57)
(54, Y1, S8) (S4,Y3,S8) (S4,Y2,S3)
(S5, Y2,51) (Ss,Ys,S1) (Ss,Y1,51)
(557}/1752) (557}%752) (557}/2782)
(Ss, Y4, S3) (S6, Y1,.53) (S6, Y3,.53)
(S6,Y3,54) (Se, Y2, 54) (S6, Y4, S4)
(S7,Y3,S5) (87,Y2,S5) (S7,Y4,Ss)
(S7,Y4,S6) (S7,Y1,56) (S7,Y3,856)
(Ss,Y1,57) (S8, Y3,57) (Ss,Ya,87)
(Sg, Y2, S8) (Ss, Y, Sg) (Ss, Y1, S8)

Table 7.2: Effect of rotations by 7 /4 and 7 /2 on the TCM scheme of Example 7.8.

transparent to rotations may require a nonlinear convolutional code. The loss in
performance caused by the invariance constraints is generally lower for multidi-
mensional constellations.

7.7 Decoding TCM

As discussed in Section 5.3, due to the one-to-one correspondence between sig-
nal sequences and paths traversing the trellis, maximum-likelihood (ML) decoding
over a stationary memoryless channel consists of searching for the trellis path with
the maximum metric m(y | x). This is done by using the Viterbi algorithm. The
branch metrics to be used are obtained as follows. If a branch of the trellis describ-
ing the code is labeled by signal x;, then at discrete time 7 the metric associated
with that branch is m(y; | ;) if there are no parallel transitions. If a pair of nodes
is connected by parallel transitions, with branches labeled z/, z”, ... ., in the set X*,
then in the trellis used for decoding the same pair of nodes is connected by a single
branch, whose metric is

min m(y: | 2)
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That is, in the presence of parallel transitions, the decoder first selects the signal
with the maximum metric among z’, =, ..., (this is a demodulation operation),
and then associates with a single branch the metric of the signal selected.

7.8 Error probability of TCM

This section is devoted to the calculation of error probability of TCM. We as-
sume transmission over the AWGN channel, and maximum-likelihood detection. It
should not come as a surprise that, asymptotically for large SNRs, upper and lower
bounds to error probability decrease as dg¢. increases. This finding shows that the
free Euclidean distance is a sensible parameter for comparing TCM schemes used
over the high-SNR AWGN channel.

No general constructive technique is available for the design of an optimal TCM
scheme: hence, sensible designs should be based on a search among a set of
schemes satisfying Ungerboeck rules. For this reason, it is important to ensure
that a fast and accurate method is available for the evaluation of free distance and
error probability.

7.8.1 Upper bound to the probability of an error event

A rate-m/(m + 1) convolutional code accepts blocks b; of m binary source sym-
bols each, and transforms them into blocks c; of m + 1 binary symbols, each of
these to be presented at the input of a nonlinear memoryless mapper (Figure 7.11).
This mapper outputs the elementary signals z;. From now on, the binary (m + 1)-
tuple c; will be called the label of signal z;.

There is a one-to-one correspondence between each x; and its label c;: thus,
two sequences xz, and Xy, of L signals each can be equivalently described by the
sequences Cy, and C 1, of their labels, i.e,

Cr = (Cks Ck+1, - -, Cht+L—1)
and R
CL = (Ck,Cky1,-->CktL—1)
where
Cp=Cr+er Cry1=Ckt1+€kt1, ~*° ,ChiL—1= ChyL—1+ ChyL_1
wheree;, i =k, ..., k+L—1,is a sequence of binary vectors, called error vectors,

and + denotes mod-2 addition.
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An error event of length L, as defined in Section 6.4, occurs when the demod-
ulator chooses, in lieu of the transmitted sequence xy, the sequence X7 # X[,
corresponding to a path along the trellis that diverges from the correct path at a
certain instant and remerges into it exactly L time instants later. The error proba-
bility (defined here, as we did in Section 6.4, as the probability of an error event) is
obtained by summing over L, L = 1,2, - - -, the probabilities of the error events of
length L, i.e., the joint probabilities that x, is transmitted and X, # x, decoded.

The union bound yields the following inequality for error probability:

< %I SN > P{xu}P{xp — %1} (1.7)

L=1 x1 Rp#x1,

where |Z| is the number of trellis states.!

By exploiting once again the one-to-one correspondence between output signals
and their labels, if C;, denotes a label sequence with length L, and E, a sequence
(with the same length L) of error vectors e;, we can rewrite (7.7) in the equivalent
form

Ple) < —E— Z > > P{cryp{Cc,—CyL}

L=1Cr ¢ 2C,

= I_f ZZ > P{CL}P{CL — CL+EL}
L=1 C;, EL#0

= o P{Er} (7.8)

where
P{EL} £ P{CL}P{C,— C+EL} (7.9)
C.

expresses the probability of a specific error event with length L generated by the
error sequence E. Although the PEP appearing in the last equation can be calcu-
lated exactly, we shall rather use a simple upper bound, which opens the way to a
transfer-function approach to the calculation of P(e).

IDivision by |L| does not take place for convolutional codes, since their linearity makes it possi-
ble to assume that all error events start and end in the same state.
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Let f(c) denote the signal whose label is ¢, and f(Cp) the signal sequence
whose label is Cy. Using the bound Q(z) < exp(—z2/2), > 0, we obtain

_ If(Cr) —£(Cr +EL)]
=< ( V2N )

1
< exp {—4—]\]—0[|f(CL) —f(Cr + EL)||2} (7.10)

P{CL — CL+EL}

Define now the function

W(EpL) LN ZP{CL}e—||f(CL)—f(CL+EL)||2/4N0 (7.11)
CL

This allows us to finally bound the error probability P(e) in the form

P(e) < Ell DY W(EL) (7.12)

L=1Er#0

Equality (7.12) shows that P(e) is upper bounded by a sum, extended to all pos-
sible lengths of the error events, of functions of the vectors Ejy, generating them.
We shall enumerate these vectors. Before proceeding further, we observe here that
a technique often used to evaluate error probabilities (especially for TCM schemes
with a large number of states, or being transmitted on non-AWGN channels) con-
sists of including in (7.12) a finite number of terms, chosen among those with a
small value of L. It is expected that these terms contribute to the smallest Eu-
clidean distances, so they should provide the most relevant contribution to error
probability. However, this technique should be used with the utmost care, because
truncating the series does not necessarily yield an upper bound.

Enumerating the error events

We show now how W (E},) can be computed. The error vectors can be enumerated
by looking for the transfer function of an error state diagram, i.e., a graph whose
branch labels are |¥| x |X] matrices. Observe first that we can write

L
I£(CL) — €CL+EDIP = 3 If(cd) - flee+ el (.13)
=1

Next, observe that, under our assumptions, all L-tuples of labels have the same
probability 2~™L to be transmitted, and let us define the [S| x |X| error weight
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matrix G(ey) as follows: The component i, j of G(ey) is equal to zero if no tran-
sition is allowed between trellis states S; and S;; otherwise, it is given by

[G(ef)]i,j _9-m Z x I (eimy)—Fleinjten)? (7.14)

Cisj

where X is an indeterminate and c;_,; are the vectors of the labels generated by
the transition going from state S; to state S;. The sum in (7.14) accounts for the
parallel transitions that may occur between these two states.

To every sequence Ef, = (ey,- - -, ep) of labels in the error state diagram, there
corresponds a sequence of L matrices of error weights G(ey), ..., G(er), with

(7.15)

L
W(EL) =1 {H G(eg)} 1
£=1

X=exp(—1/4Np)

where 1 is the column vector all of whose components are 1. (Consequently, if A
denotes a |¥] x || matrix, then 1’A1 is the sum of all entries of A.) The entry
t,J of matrix H£=1 G(e¢) enumerates the Euclidean distances generated by the
transitions from state .S; to state .S; in exactly L steps.

Now, to compute P(e) we should sum W (E},) over all possible error sequences
E . To this purpose, we use (7.12).

The error state diagram. Consider now the enumeration of the error sequences
E . Assume first the simpler situation of no parallel transitions in the TCM trellis.
The nonzero E;, correspond to error events in the convolutional code: in fact, since
the latter is linear, and Cj, and C 1. = Cr + E, are admissible label sequences in
an error event, then also E;, = C 1 + C is an admissible label sequence. Thus,
the error sequences can be described by using the same trellis associated with the
encoder and can be enumerated by using a state diagram that mimics that of the
code. This diagram is called the error state diagram. 1Its structure is uniquely
determined by the convolutional code underlying the TCM scheme, and differs
from the code state diagram only in its branch labels, which are now the matrices
G(eg).

If there are parallel transitions, each one of the e, can be decomposed in the
form ey = (e}, €}), where €], contains m — 7 “unconstrained” Os and 1s generated
by the uncoded bits, and ej contains the /7 + 1 components that are constrained
by the structure of the convolutional code. Thus, the set of possible sequences
E] £ (ef,...,€]) is the same as the set of convolutionally encoded sequences,
and E; = C 1+ Cy is again an admissible label sequence. In this case, the branch
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00
>
G(11)
01
- ®
10°g G(10) G(01)
T

Figure 7.20: Trellis diagram of a TCM scheme with two states and m = 1 (the
branch labels are the components of c¢) and error state diagram.

labels of the error state diagram are the matrices ) | G(e), €}), where the sum is
taken with respect to all values of e;.

Transfer-function bound. Using (7.12) and (7.15), we can write

Ple) < LT(X)I (7.16)
|E| X=exp(~1/4Np)
where
T(X)=1G1 717

and the matrix

fe'e} L
G2 > J]G(e (7.18)

L=1E1#0 =1

is the transfer function of the error state diagram. We call 7'(X) the scalar transfer
function of the error state diagram.

Example 7.10

Consider the TCM scheme whose trellis diagram is shown in Figure 7.20, where
m = 1 and M = 4 (binary source, quaternary constellation). The error state dia-
gram is also shown in the figure. Denoting by € = (eqe;) the error vector and by
€ = 1 + e (& the complement of e), we can write the general form of matrix G(e)
as follows:

1| x|£(00)—f(eze1)l? | (10)— f (e2e1)?
X

G(egel) = =

2 | XIFOU-f(2e?  xIF (A1 f(ezen)? (7.19)
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The transfer function of the error state diagram is
G = G(10)[I. — G(11)]71 G(01) (7.20)

with I the 2 x 2 identity matrix.

We can observe that (7.19) and (7.20) can be written without knowing the signals
used for TCM. In fact, giving the constellation is tantamount to giving the four
values of function f(-). In turn, these values provide those of the entries of G(eze;)
for which the transfer function T'(X) is computed.

Consider first 4-PAM, with the following correspondence between labels and
signals:

F(00)=+3 f(01)=+1 f(10)=—-1 f(11)=-3

In this case we have

1(1 1
G(00) = 3 [ 11 ] (7.21)
17 x¢ Xx¢
G(01) = 5 [ x4 x4 ] (7.22)
1 X16 X16
G(10) = 5| x1 x16 } (7.23)
and ) %6 wd
X X
G(ll) = 5 l: X4 X136 ] (7.24)
which allows us to obtain, from (7.20),
X2 11
G = gxr—xw |1 1] 723

Finally, the transfer function has the form

4X2O

TR X (7.26)

T(X)=1Gl =
If we consider a unit-energy 4-PSK constellation as shown in Figure 7.21, we obtain

f00)=1 fO01)=5 f(A0)=-1 f(11)=—j

and hence 1
G(00) = 3 [ i i ] (7.27)
1] x2 X2
1[ x¢+ Xx¢
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01

Figure 7.21: 4-PSK signal constellation and its partition.

and LT x? x2
G(11) = 3 [ x2 X2 ] (7.30)
Finally,
1 X8 11
G—§1—X2[1 1] (7.3D)
so the transfer function is
/ X*®
pasmnd = —_— N 2
TX)=1G1 21—X2 (7.32)
0

Interpretation and symmetry considerations

Examining the matrix G defined in (7.18), we can observe that its entry 1, j pro-
vides us with an upper bound to the probability that an error event starts at node S;
and ends at node S;. Similarly, G1 is a vector whose entry 7 is an upper bound to
an error event starting at node S;, and 1’G is a vector whose entry j is an upper
bound to the probability of all error events ending at node S;.
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By inspection of matrix G we can observe that different levels of symmetry may
occur in a TCM scheme. Matrix G may have all its elements equal, as in (7.31).
We interpret this by saying that all paths in the trellis bring the same contribution
to error probability (more precisely, to the upper bound to error probability). In
the context of the analysis of TCM, we can choose a single reference path and
compute the error probability under the assumption that this path corresponds to
the coded sequence that has been transmitted. A sufficient condition for this to
occur is that all matrices G(e) have equal components. However, this condition is
not necessary, as we can observe by considering the 4-PAM case of Example 7.10:
G has equal entries, although those of G(11) are not equal.

If all matrices G(e) have equal components, then, in the calculation of the
transfer-function bound, the error state diagram branches can be simply labeled
by the common entry of these matrices, which yields a scalar transfer function.
However, for this to be possible, the code needs a high degree of symmetry. Ac-
tually, what is needed is only the following weaker form of symmetry: the sum
of all entries of a row (or a column) of G is the same for all rows (or columns).
With this symmetry, since all states play the same role, a single state can be chosen
as a reference, rather that a state pair. It suffices to consider only the error events
starting from a certain state (when all rows have the same sum) or merging into the
same state (when all columns have the same sum).

Algebraic conditions for a scalar transfer function. Here we derive simple condi-
tions to have a graph whose labels are scalars rather than matrices.
If A is a square matrix, and 1 is the eigenvector of its transpose A’, that is,

1A =al’

where « is a constant, then the sum of the components of any column of A does
not depend on the column index. We say that A is column-uniform. Similarly, if 1
is an eigenvalue of the square matrix B, that is, if

Bl = 1

where (3 is a constant, then the sum of the components of any row does not depend
on the row index. In this case we say that B is row-uniform.

Now, the product and the sum of two (row- or column-) uniform matrices are
uniform matrices. For example, if B; and B, are row-uniform with eigenvalues 3;
and 32, then B3 £ B; + B, and B4 £ BB, satisfy the following relationships:

B3l = (8, + f2)1
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and

Byl = 8161
which show that B3 and By are also row-uniform, with eigenvalues 31 + (32 and
5182. Moreover, for a (row- or column-) uniform matrix A of order NV, we have

1’Al1 = Na

It follows from this discussion that, if all matrices G(e) are row-uniform or
column-uniform, the transfer function (which is a sum of matrix products, as we
can see from (7.18)) can be computed using only scalar labels in the error state
diagram. These labels are sums of the row (or column) components (notice that,
when scalar labels are used, the resulting transfer function should be multiplied by
|| to be consistent with the original definition (7.17)). In this case we say that the
TCM scheme is uniform.? From the definition of matrices G (e), we can observe
that G(e) is row-uniform if the transitions splitting from any trellis node carry the
same label set (the order of the transitions is not relevant). G(e) is column-uniform
if the transitions leading to any trellis node carry the same label set.

Asymptotics

For large signal-to-noise ratios, i.e., when Ny — 0, the only elements of the matrix

. . . o . 2
G that contribute significantly to error probability are those proportional to X %iree.
Hence, asymptotically,

P(e) ~ v(dgree)e” 8free/ Mo

where v(dfee ) is the average number of competing paths at distance dfee-

A tighter upper bound

A better approximation to P(e) can be obtained by using in (7.10) the tighter
bound (3.66). Recall that we have, exactly,

f(Cr +Ey)|
2N,

Since the minimum value of ||f(C1) —f(Cr + Ep)|| equals e, then, by using
the inequality (3.66), we obtain

5ree
P(CL - 81 £ Q (S ) e/ Moexp [ L |(Cy) — £(Ce + B
(7.34)

P{CL - CL+E.}=Q (”f(CL) — (7.33)

2This uniformity is weaker than the “geometric uniformity” introduced in Section 3.6. See [7.5].
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In conclusion, we obtain the following error-probability bound:

5free ) 52 /AN ‘
Ple) < ——— |} %ree/ VO X (7.35)
© <0 ®

Lower bound to error probability

A lower bound to the probability of an error event can also be computed. Our
calculations rely upon the fact that the error probability of a real-life decoder is
bigger than that of an ideal decoder using side information provided by a benev-
olent genie. The genie-aided decoder operates as follows. The genie observes a
long sequence of transmitted symbols, or, equivalently, the label sequence

K-1
C= (Ci)i=o
and informs the decoder that the transmitted sequence is either C or the sequence
! __ INK—1
C' = (ch)izo

where C' is selected at random among the possible transmitted sequences at the
smallest Euclidean distance from C (this is not necessarily dfce, because C may
not have a sequence C’ at free distance).

The error probability of this genie-aided receiver is that of a binary transmission
scheme whose only two transmitted sequences are C and C':

f(C)—f(C

IH©)HONN 36
vV2Ny

Consider now the error probability of the genie-aided receiver, denoted Pg(e). We

have

PG(GIC)=Q(

B I£(C) — £(C)]
Pe(e) = 2ch(0>@( o )

5free
EC:I(C)P(C)Q ( \/m) (1.37)

where I(C) = 1 if C admits a sequence at distance Jee:

v

tin [£(C), £(C)| = biee
and I(C) = 0 otherwise. In conclusion,

P(e)zw(jg%)
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Figure 7.22: Trellis diagram of a TCM scheme with four states and m = 1, and
corresponding error state diagram.

where

% £) " P(C)I(C) (7.38)
C

is the probability that, at any time instant, a path traversing the code trellis, chosen
at random, has another path diverging from it at this instant, and remerging later,
such that the Euclidean distance between the twe is dgee. If all paths have this
property, we obtain the following lower bound:

Ple) > Q (j%) (7.39)

For the validity of (7.39) we need all the trellis paths to be equivalent and each
of them to have a path at distance dg.e. This is obtained if every error matrix has
equal entries.

Example 7.11

We develop here an example of calculation of error probability. From the theory
above, this calculation is performed in two steps. First, we evaluate the transfer
function of the error state diagram with formal branch labels. Next, we replace
formal labels with actual labels and compute T(X), P(e).

A four-state TCM is shown in Figure 7.22 along with its error state diagram. T,
T}, and T, denote the transfer functions of the error state diagram from the initial
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node to nodes «, /3, and -y, respectively. We can write

To = G(10)+ T,G(00)
Tlg = TaG(ll) —I—TgG(Ol)
T, = ToG(01)+TsG(11)
X)) = T,G(10)
To simplify, we examine here only the case of scalar labels, for which commutativity

holds. Denoting by go, g1, g2, and g3 the scalar labels associated with G(00),
G(01), G(10), and G(11), respectively, we obtain the following result:

2 2 2
g5(g1 — g1 +g5)
T(X)=4 (7.40)

X0 (1 - gog1)(1 — g1) — gog3

Using (7.40), we can obtain an upper bound to the probability of an error event
by replacing g; with the values obtained from the calculation of the error matrices
G (- ). This operation will be performed for a unit-energy 4-PSK with the map

f00)=1 fO01)=5 f(0)=-1 f(11)=—j

‘We have uniformity here, and we obtain matrices G whose associated scalar labels
are
- e — Y2 _ yv4
go=1 g=g=X g2=X

so that from (7.40) the transfer function is

10
T(X) = 42y = 4(X™0 42X 14X ) (7.41)

2X

We have 62, = 10 (this value is obtained with & = 1). A binary PSK constellation
with antipodal signals +1 has distance 62, = 4 and energy & = 1, which yield a
coding gain

n=14—0=2.5:>4dB

If error probabilities are rewritten so as to show explicitly the ratio €, /Ny, then,
observing that £ = £, = 1, we obtain the following from (7.41) and (7.16):

e—5Eb/2No

Plo) < T —mam,

The improved upper bound (7.35) yields

& 1
Ple)<@Q ( SNE) "1~ 2¢-E+/2No
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Figure 7.23: Error probabilities of a four-state TCM scheme with 4-PSK. TFB:
Transfer-function upper bound. ITFB: Improved transfer-function bound. LB:

Lower bound. The error probability of uncoded 2-PSK is also shown. Here
SNR== &,/Ny.

The lower bound (7.39) yields

P(e)2Q ( 5]%‘;)

These error probabilities should be compared with those of uncoded 2-PSK, i.e.,

Pley=@Q ( 2—;—2)

These four error probabilities are plotted in Figure 7.23. We observe from Fig-
ure 7.23 that lower bound and improved upper bound are very close, and hence ap-
proximate well the exact error probability. Unfortunately, this occurs only for TCM
schemes built upon small constellations and for a small number of trellis states.
Moreover, comparing the probability P(e) for uncoded 2-PSK with the two TCM
bounds, we can observe that the coding gain is very close to 4 dB, its asymptotic
value. O
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7.8.2 Computing g

The results obtained for the upper and lower bounds to error probability show that
dfree plays a central role in assessing the performance of a TCM scheme. If a
single parameter has to be chosen to evaluate the quality of a coded scheme, this is
drree- For this reason, it is sensible to look for algorithms aimed at computing this
quantity.

Using the error state diagram

The first technique we shall describe for the calculation of &g is based on the
error state diagram. We have previously observed that the transfer function 7(X)
contains information on the distance J¢e. In previous examples we have seen that
the value of 5f2ree can be obtained from the series expansion of this function: the
smallest exponent of X in this series is 5f2ree- However, an exact expression for
T'(X) may not be available.

For this reason, we describe here an algorithm for the numerical calculation
of Sree- The algorithm is based on the update of matrices D™ = (61(3")) whose
elements are the squared minimum distances between all pairs of paths diverging at
the initial instant and merging at time n into states ¢ and j (here and in the following
we simply write 4, j to denote states S, S;). Two pairs of such paths are shown in
Figure 7.24. We observe that the matrix D™ is symmetric and that its entries on
the main diagonal are the distances between paths converging to a single state (the
error events).

The algorithm goes as follows.

Step 1 For every state %, find the 2™ states (the predecessors) from which a transi-
tion to state 1 is possible, and store them in a matrix. Let d;; = —1 for every
¢ and j > 4. If there are parallel transitions, for every 7 let J;; be equal to
the smallest Euclidean distance between signals associated with the parallel
transitions leading to state s.

Step 2 For every state pair (¢,5), j > 14, find the minimum Euclidean distance
between pairs of paths diverging from the same initial state and merging into
the state pair ¢, j in a single instant. Two such pairs are shown in Figure 7.25.

This distance is 51(]1 ),

Step 3 For the two states of the pair (¢,5), 7 > ¢, find in the matrix defined at
Step 1 the 2™ predecessors 41, - - ,%9m and ji,--- ,jom (see Figure 7.26).
In general we have 2™ possible paths at time n — 1 passing by 7 and j at
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Oy o]
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Figure 7.24: Two pairs of paths diverging at time n = 0 and reaching states i, j at
the same time.

Op 0y

Figure 7.25: Two pairs of paths leaving two different states and merging into the
same pair of states in a single time instant.

time n. They pass by the pairs
(7:17.7.1)7 (il’j2)7 T (il,j2m)

(iQmajl)a (iQmaj2)a T, (i2m7j2m)
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On-1 Oy

Figure 7.26: Predecessors of states i, j.

The minimum distance between pairs passing by (2, j) at time n is

o) =min {6050 + 80 — 4,51 — ),

1] i1J1

5("“1)

1152

+ 62(iy — 4,72 — 7),

8D 4§20y — i jar — ),

i1fom

- (7.42)
B+ 82(izm = 4, jom — ) }

igm jom

In (7.42), the distances 6(*~1) come from the calculations performed in Step
2, where for example 6(i; — 4,77 — j) is the Euclidean distance between
signals associated with transitions ¢; — ¢ and j; — j. These can be com-
puted only once at the beginning. When one of the distances 621_1) al-
ready computed is equal to —1, the corresponding term in the right-hand
side of (7.42) vanishes. In fact, the value 5%—1) = —1 tells us that there is
no pair of paths passing by states £ and m at time n — 1. When ¢ = j, 51(1" )
represents the squared distance between two paths merging at step n and at
state 7. This is an error event. If 57 < 6", then 6 takes the place of
o

in matrix D™,
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Step 4 If
6% < min 4 (7.43)
1

for at least one pair (3, j), then n is changed into n+ 1, and we return to Step
3. Otherwise, the iterations are stopped, and we have

2 _ o s(n)
6free - miln 51'1’

7.9 Bit-interleaved coded modulation

From results of Chapters 3 and 4 we can infer that, to perform well on the AWGN as
well as on the independent Rayleigh fading channel with high SNR, a code should
exhibit large Euclidean as well as Hamming distances. We may call such a code
robust. Binary coding schemes are intrinsically robust, due to the proportionality
between Hamming and Euclidean distance, but nonbinary codes may not be robust.
In particular, TCM schemes that are optimum for the AWGN channel (in the sense
that they maximize the free Euclidean distance) may not be optimum for the inde-
pendent Rayleigh channel, whenever their free Hamming distance is not maximum.
For example, many schemes that are optimum for the AWGN channel exhibit par-
allel transitions, and hence have free Hamming distance 1: consequently, while
they perform well on the AWGN channel, they do poorly on the Rayleigh fading
channel.

Now, if the channel model is nonstationary, in the sense that the propagation
environment changes during transmission (think of a wireless telephone call ini-
tiated indoors, and ended while driving a car on the freeway), we are interested
in robust codes, rather than in codes that are optimum only for a specific channel.
One such robust scheme is provided by bit-interleaved coded modulation (BICM).
BICM separates coding from modulation and hence cannot achieve optimum Eu-
clidean distance: however, it can achieve a Hamming distance larger than TCM.
The idea here is to transform the channel generated by the multilevel constellation
X into parallel and independent binary channels. Any transmisston of a multilevel
signal from X, with |X| = 2™, can actually be thought of as taking place over m
parallel channels, each carrying one binary symbol from the signal label. However,
these channels are generally not independent, due to the constellation structure. To
make them independent, binary symbols are interleaved (with infinite depth) before
being used as signal labels.
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Figure 7.27: Block diagram of a transmission system with TCM and with BICM.
For TCM, 7 denotes a symbol interleaver, while for BICM it denotes a bit inter-
leaver.

Example 7.12

Consider 8-PSK: the three bits labeling each signal can be thought of as being trans-
mitted over three nonindependent binary channels: in fact, erroneous reception of
one bit influences the probability that the others are also received erroneously. In
other terms, the probability that an 8-PSK symbol is received erroneously is not
equal to the product of the probabilities of receiving each bit erroneously. The idea
of bit interleaving is to remove the statistical connections that were created by the
modulator among bits. O

The BICM block diagram is shown in Figure 7.27. In the decoder, the metrics
must reflect the fact that we are separating bits. Suppose we transmit the code word

x = (z1, T2y -+ -, Tp)

and we receive y at the output of a stationary memoryless channel. With TCM, we
decode by maximizing the metric

logp(y | %) = log(y: | =:) (7.44)
i=1

with respect to x, while with BICM we must consider, instead of the symbol metric
log p(y; | z;), the bit metric

log Z plyi | x:i), b=0,1, ji=12,...,log|X| (7.45)
a?iEDC(b,j)

where X(b, j) denotes the subset of X having bit b in position j of its label.
As computation of this metric may be too complex for implementation, a con-
venient approximation here is based on

log Z zj R mjax log z; (7.46)
J
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A A

[ ] [ ] [ ] [} [ ] ® ® [ ]
1110 1010 0010 0110 1001 1100 1101 1000

[ ] [ J ® ® [ ] [ ] ® [}
1111 1011 0011 0111 1110 1011 1010 1111

[ ] [ J [ ] [ ] ® [ J o [ ]
1101 1001 0001 0101 0101 0000 0001 0100

[ ] [ J [ [ ] [} o [ J [ J
1100 1000 0000 0100 0010 0111 0110 0011

Figure 7.28: 16-QAM with Gray and Ungerboeck labeling.

which yields the suboptimum metrics

Lmex log p(yi | i) (7.47)
Notice that the term log p(y; | z;) is the same as that appearing in TCM metric
computations, and hence only the set of comparisons leading to the maximiza-
tion (7.47) adds to the complexity of BICM.

It should be also observed that labeling plays a key role in BICM; in particular,
empirical evidence suggests that Gray labeling should be preferred. This labeling
is such that signals at minimum Euclidean distance differ in only one bit of their
labels; as such, it is convenient in uncoded modulation, where one symbol error at
high SNR causes only one bit to be in error. A formal definition of Gray labeling,
useful for BICM, is the following: we say that z € X(b,) satisfies the Gray
condition if it has at most one =’ € X(b, i) at distance dg min. A Gray labeling
is one in which every x € X satisfies the Gray condition. The performance of
BICM depends on the labeling used: in particular, Gray labeling performs better
than Ungerboeck labeling, that is, the labeling generated by set partitioning (see
Figure 7.28).

Since for some constellations Gray labeling does not exist, we may define quasi-
Gray labeling as one that minimizes the number of signals for which the Gray
condition is not satisfied.

Table 7.3 shows free Euclidean and Hamming distances of selected BICM and
TCM schemes with the same state complexity. It can be seen that BICM increases
the Hamming distance considerably, while reducing (often marginally) the Eu-
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clidean distance. This means that BICM will outperform TCM over independent
Rayleigh fading channels, while suffering a moderate loss of performance over the
AWGN channel.

Encoder BICM TCM

memory 5f2ree du 5f2ree du
2 1.2 3 2.0 1
3 1.6 4 24 2
4 1.6 4 2.8 2
5 2.4 6 3.2 2
6 24 6 3.6 3
7 3.2 8 3.6 3
8 3.2 8 4.0 3

Table 7.3: Euclidean and Hamming distances of some BICM and TCM schemes
for a 16-QAM elementary constellation. Both schemes have a transmission rate of
3 bits per dimension pair (the average energy is normalized to 1).

7.9.1 Capacity of BICM

An equivalent BICM channel model consists of log |X| parallel, independent, and
memoryless binary-input channels. A random switch, whose position selects at
random one of the label positions with which the coded symbol is associated, mod-
els ideal interleaving. Specifically, for every symbol ¢; in the coded sequence ¢, this
switch selects (independently from previous and future selections) a position index
i € {1,2,...,log|X|}, and transmits ¢; over the channel. The decoder knows
the sequence of channels used for the transmission of ¢, and makes ML decisions
accordingly.

Computations [7.3] show that with Gray labeling the capacity of BICM is very
close to the capacity of coded modulation. Similar results hold for the independent
Rayleigh fading channel with channel-state information known at the receiver.

7.10 Bibliographical notes

Before the introduction of TCM by Ungerboeck [7.6], it was commonly accepted
that a coding scheme would necessarily expand the bandwidth. Once this be-
lief was dispelled, TCM gained quick acceptance for applications not tolerating
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binary-input
channels

Figure 7.29: Equivalent parallel channel model of BICM with ideal interleaving
and m = log |X|.

a loss in spectral efficiency. An important application was in modem design for
voice-grade telephone lines. Before the introduction of TCM, the International
Telecommunication Union’s ITU-T V.29 modem used uncoded 16-QAM to trans-
mit 9,600 bit/s. This standard was introduced in 1976. Further improvement of the
data rate would require using a bigger signal constellation, at the price of a worse
error probability due to power constraints. New standards (V.32, V.33, and V.34),
introduced after 1986, included TCM with two-dimensional or four-dimensional
QAM [7.7,7.8]. Further details on this, as well as a historical perspective of TCM,
can be found in the review paper [7.4]. Further details on TCM can be found in the
book [7.2]. A thorough analysis of the geometric uniformity of TCM can be found
in [7.5]. BICM is covered in [7.3].

7.11 Problems

1. Consider the TCM encoder shown in Figure 7.30 and based on the 8-PSK
constellation of Figure7.2. Draw one section of its trellis diagram, and la-
bel the trellis branches by the signals associated with them. Are the three
Ungerboeck conditions satisfied?

2. Consider the TCM scheme whose encoder and signal constellation are shown
in Figure 7.31. Here the block ® denotes a bit multiplier. Notice the presence
of a nonlinear trellis code in lieu of a convolutional code.
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Figure 7.31: TCM encoder and signal constellation for Problem 2.

(a) Find a set partitioning of the constellation.

(b) Find the trellis of the encoder, and associate with each branch a source
symbol.

(c) Is this a good TCM scheme?

3. A signal constellation (‘“asymmetric 8-PSK”) is shown in Figure 7.32. Do
“set partitioning” of the constellation.

Figure 7.32: Asymmetric 8-PSK for Problem 3.
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4. Asymmetric 4-PSK is shown in Figure 7.33. Design TCM schemes with
2 and 4 states based on this constellation and transmitting 1 bit per signal.
Discuss how the asymptotic coding gain depends on the value of angle ¢.

Figure 7.33: Asymmetric 4-PSK for Problem 4.

5. Partition the 32-QAM “cross” constellation of Figure 7.34 into eight subcon-
stellations such that the minimum Euclidean distance within any of them is
24/2 larger than the minimum Euclidean distance within the original constel-
lation. (This partition is used in the V.32 telephone modem standard, which
incorporates an eight-state rotationally invariant TCM scheme.)

Figure 7.34: 32QAM “cross” constellation.

6. Consider the TCM encoder shown in Figure 7.35. The signal constellation
used is 16-QAM. Design the memoryless mapper, and compute the resulting
Euclidean free distance.

7. Consider the 16-point constellation of Figure 7.36. Design good TCM schemes
with four and eight states for transmitting 3 bit/signal with this constellation.
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Figure 7.35: A TCM encoder for 16-QAM.

Compute the ratio between the square Euclidean free distance and the con-
stellation energy.

Figure 7.36: A 16-point signal constellation.
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A full octavium below me!

Codes on graphs

This chapter introduces a new code description. We first develop a graphx-:
cal representation for the factorization of a function of several variables into
a product of functions of a lower number of variables. This representation
allows us to derive ,efﬁczent algorithms for computing the marginals of the
original functlo w1th espect to any one of its variables. Glven a function
describing mem in a code €, 1ts marginalization leads to a method for
decoding C. Thus, ¢ h1cal representations of codes provide a natural set-
ting for the d‘ of symbol-by-symbol decoding techniques, much as
the code tre]h settmg for the desmpnon of maximum-likelihood

fact that 311 known codes that approach ( fty;and are practmal]y decodable'
admit a simple graphical representation. ,
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8.1 Factor graphs

To motivate the introduction of factor graphs in this Chapter, let us consider a
specific problem, viz., maximum a posteriori (MAP) probability decoding of a
given code. In previous chapters we have examined decoding of code € based on
the maximum-likelihood (ML) rule, which consists of maximizing, over x € C,
the function p(y | x). We recall from Section 1.1 that, under the assumption that
all code words are equally likely, this rule minimizes the word error probability.

Now, assume that we want to minimize the error probability of a single symbol
of the code word (possibly at the price of a nonminimum word error probability).
In this case, we must do symbol-MAP decoding, which consists of maximizing the
a posteriori probabilities (APPs)

p(zi | y), i=1,...,n

Specifically, we decode x; into 0 or 1 by comparing the probabilities that the sth bit
in x is equal to 0 or 1, given the received vector y and the fact that x must satisfy
the constraints describing the code C. The APP p(xz; | y) can be expressed as

plzily)= D p(x|y) 8.1)

x€C,(z;)

and C;(z;) denotes the subset of code words whose ith component is z;. Simi-
larly, we may want to do symbol-ML decoding, which consists of maximizing the
probabilities!
p(y | i), i=1,...,n (8.2)

In this chapter we develop efficient algorithms for decoding according to crite-
ria (8.1) and (8.2) (see Table 8.1).

The central concept in our development is that of a marginalization, which con-
sists of associating with a function f(zi,...,z,) of n variables its n marginals,
defined as the functions

a2 Y S ) 83)

For each value taken on by z;, these are obtained by summing the function f over
all of its arguments consistent with the value of z;. It is convenient to introduce

! One should observe that, if the symbol-MAP (or symbol-ML) rule is used to decode all symbols
of x € C, theresulting word does not necessarily belong to €, and, if it does, this is note necessarily
the word one would obtain by using the block-MAP (or block-ML) rule. [8.2]
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(block-)MAP % = max”'p(x | y)
(block-)ML X = max”'p(y | x)
symbol-MAP 2 = max~"p(z; | y)
symbol-ML & = max'p(y | ;)

Table 8.1: Summary of different decoding rules. The maximizations are performed
with respect to words and symbols compatible with code C.

the compact notation ~ z; to denote the set of indices zy, ..., Ti—1, Tit1,---,Tn
to be summed over, so that we can write
filz) £ f(a, ..., Tn) (8.4)
~T;
Ifz; € X,i=1,...,n, then the complexity of this computation grows as |X|*~1.

A simplification can be achieved when f can be factored as a product of functions,
each with less than n arguments. Consider for example a function f(z1,z2,x3)
that factors as follows:

f(z1, 2, 73) = g1(21,22)g2(x1, 3) (8.5)

Its marginal f;(z;) can be computed as

fi(z) = ZZ f(z1, 22, 23)

2 3

= > > gi(@1,z2)g2(z1,23) = > g1(w1,72) - Y ga(z1, )
T2 I3 3 3

where we see that this marginalization can be achieved by computing separately
the two simpler marginals >, g1(x1,%2) and ). g2(21, z3) and finally taking
their product. This procedure can be represented in graphical form by defining
a factor graph describing the fact that the function f factors in the form (8.5).
The factor graph corresponding to the function f is shown in Figure 8.1. The
nodes here can be viewed as processors that compute a function whose arguments
label the incoming edges, and the edges as channels by which these processors
exchange data. We see that the first sum } . g1(z1, z2) can be computed locally
at the g; node because z; and x5 are available there; similarly, the second sum
st g2(x1,z3) can be computed locally at the go node because x; and z3 are
available there.
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Figure 8.1: Factor graph of the function f(x1, z2,23) = g1(x1,x2)g2(21, 23).

Formally, we describe a (“normal”) factor graph as a set of nodes, edges, and
half-edges. Every factor corresponds to a unique node, and every variable to a
unique edge or half-edge. The node representing the function g is connected to
the edge or half-edge representing the variable x if and only if z is an argument of
the factor g. Half-edges are connected to only one node and terminate in a filled
circle @. Edges represent states of the system, and filled circles represent external
variables. In the example of Figure 8.1 we have two nodes representing the factors
g1 and go, one edge, and two half-edges. The factors ¢ are called local functions,
or constraints, and the function f the global function. An important feature of
factor graphs is the presence or absence of cycles: we say that a factor graph has
no cycles if removing any (regular) edge partitions the graph into two disconnected
subgraphs. More specifically, a cycle of length £ is a path through the graph that
includes ¢ edges and closes back on itself. The girth of a graph is the minimum
cycle length of the graph.

The definition of normality assumes implicitly that no variable appears in more
than two factors. For example, the graph of Figure 8.2 does not satisfy our defini-
tion: in fact, the variable 2 appears as a factor of g1, g2, and g3, and as a result
it corresponds to more than one edge. To be able to include as well in our graphi-
cal description those functions that factor as in Figure 8.2, we need to “clone” the
variables appearing in more than two factors. We shall explain below how this can
be done.

8.1.1 The Iverson function

An important role in factor graphs is played by functions taking on values 0 or 1 as
follows. Let P denote a proposition that may be either true or false; we denote by
[P] the Iverson function

a | 1, Pistrue
[Pl = { 0, Pisfalse

Clearly, if we have n propositions P, ..., P,, we have the factorization

[Prand Py ---and P,] = [P1][P] ... [P)]
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X, X3

Xg

Figure 8.2: Factor graph of the function f(z1,%2,3,%4) =
g1(z1, x2)g2(21, 73)g3(T1, Ta)-

X,

Figure 8.3: Normal factor graph of the function f(x1,x2,23,24) =
91(z1, w2)g2(21, 3)g3 (21, 24) = g1 (21, T2) g2 (2, 73) 93 (2, 24) f= (w1, 71, 7).

This function has several applications in our context. In particular, it allows
the transformation of any graph into one satisfying normality. In fact, define the
repetition function f_ as

f=(z1,2),2]) & [21 = 7} and 71 = 2] (8.6)
This transforms the branching point of Figure 8.2 into a node representing a repe-

tition function. Thus, the graph of Figure 8.2 is transformed into that of Figure 8.3,
which satisfies the definition of a normal factor graph.
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(a)

(b)

Figure 8.4: A block diagram (a) and the corresponding normal graph (b).

Another application of the Iverson function is the natural transformation of a
block diagram into a normal factor graph. For example, an adder xy + z2 = x3
can be represented by the Iverson function [z; + z2 = x3], which takes value 1
if the condition x1 + z9 = x3 is satisfied, and O otherwise. Consider the block
diagram of Figure 8.4. The block with input—output relationship y = hi(z,u)
can be interpreted as representing the factor [y — hi(x,u)], and the block z =
ha(y, v) as representing the factor [z — ha(y, v)]. Thus, the global Iverson function
[y—ha(x, u)][z—ha(y, v)] takes on value 1 if and only if the values of the variables
z,y, z, u, v are consistent with the input—output relationships of the block diagram.
The resulting normal graph is shown in Figure 8.4(b).

8.1.2 Graph of a code

For our purposes, the most important application of the Iverson function is the rep-
resentation of a block code described through the set of its parity-check equations,
as summarized by the parity-check matrix (Section 3.7). For example, consider the
parity-check matrix

1110000
H=|1001100 &7
1000011
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defining a linear binary block code €. This consists of the 2% binary length-7 code

words x = (1, 9, . .., x7) that satisfy the three parity checks
r1+ax2+x3 = 0
x1+zxa+as = 0
z1t+axs+x7r = 0

and membership in € is determined by verifying that each parity check is satisfied.
Thus, the Iverson function that expresses the membership of an n-tuple x in € is

[x € €] = [Hx = 0] (8.8)
which, in our example, becomes
[(z1,...,27) € €] = [z1 + 32 + 23 = 0] [#1 + @4 + 35 = 0] [21 + 76 + x7 = O]

so a linear block code can be described by a factor graph.

A Tanner graph is a graphical representation of a linear block code correspond-
ing to the set of parity checks that specify the code. Each symbol is represented by
a filled circle @, and every parity check by a check node €. Each check node spec-
ifies a set of symbols whose sum must be zero. Tanner graphs are bipartite: filled
circles are connected only to check nodes and vice versa. For the code described
by (8.7) we have the Tanner graph shown in Figure 8.5(a) and 8.5(b) (the bipartite
structure of the graph is especially evident in the latter, where symbol nodes are on
the left and check nodes are on the right).

The normal factor graph representing a general linear binary block code € can
be obtained from its Tanner graph as shown in Figure 8.6. It has n variables z,
..., Tpn, 1 repetition nodes, and n — k parity-check nodes. A parity-check node
corresponds to an Iverson function (for example, the uppermost node of Figure 8.6
corresponds to the function [z} + z2 + =, = 0]). Generally, in the normal graph
of a linear binary code, each variable node corresponds to one bit of the code word,
i.e., to one column of H, and each check node to one parity-check equation, i.e., to
one row of H. The edges in the graph are in one-to-one correspondence with the
nonzero entries of H.

The Tanner graph of a code (and hence its normal factor graph) may have cycles:
the (7,4, 3) ‘Hamming code described by the parity-check matrix

1 0
H=|1 0
1 1

O = O

110
011
1 01

OO -
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(@) (b)

(@) (b)

Figure 8.6: (a) Tanner graph of a linear binary code and (b) its normal version.

i.e., whose code words x = (x1, 2, ..., z7) satisfy the three parity checks

r1+r2ot+a5+2s = 0
r1+ra+xe+27 = 0
zi+axs+as+xzr = 0
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X2 X6

Figure 8.7: A Tanner graph with cycles: the (7,4,3) Hamming code.

shows this fact (Figure 8.7).

Notice that, since a given code can be represented by several parity-check matri-
ces, then the same code can be represented by several Tanner graphs. It is possible
that some representations have cycles, while others are cycle free (see the Problem
section at the end of this chapter).

Example 8.1 (LDPC codes)

Figure 8.8 shows the normal graph of a regular low-density parity-check (LDPC)
code. This is a long linear binary block code such that every code symbol is checked
by the same number w, of parity checks, and every parity equation checks the same
number w, of code symbols. Equivalently, the parity-check matrix H of the code
has the same number w,. of 1s in each column and the same number w, of 1s in each
row. (We have w. = 3 and w, = 5 in Figure 8.8.) An interleaver 7, which applies a
permutation to the input symbols before they enter the modulo-2 adders, describes
the connections between symbols and parity checks. The term low-density refers to
the fact that the number of 1s in H is small as compared to the number of entries.
For large block lengths (say, above 1,000), LDPC codes rank among the best codes
known. They will be studied in depth in the next chapter. O

Normal code graphs can now be generalized by considering codes originally
described by a trellis (e.g., terminated convolutional codes). A trellis can be viewed
as a set of triples (01, ;, ;) describing which state transitions o;_1 — o at time
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Figure 8.8: Normal graph of a regular LDPC code with w, = 3 and w, = 5.

1— 1,7 = 1,...,n, are driven by the channel symbol x;. Let J; denote the set of
branches in the trellis at time ¢ — 1. Then the set of branch labels in T; is the domain
of a variable z;, while the set of nodes at time 7« — 1 (¢) is the domain of the state
variable o;_1 (0;). The initial and final state variables take on a single value. The
local function corresponding to the 4th trellis section is

[(oi-1,%i,0:) € Ti] (8.9)

and the whole trellis corresponds to a product of Iverson functions (Figure 8.9):

n

x € € = [[(0i-1, 21, 05) € T] (8.10)
i=1

In some cases (see Example 8.5 infra) it is convenient to include, in the descrip-
tion of the trellis sections, also the information symbols u; that drive the transitions
between states. If this is the case, the local function corresponding to the ith trellis
section becomes

[(Ui—h Uiy T, Ui) € ‘Iz]

Example 8.2

Figure 8.10 shows the trellis of an (8, 4, 4) binary linear code and its normal factor
graph. Here the filled circles correspond to two-bit inputs. |
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(@]
/ SN\ \R
—_

Oi—1 a3

Ti = {(O,a,O), (O’b7 2)7 (1>ba 1)7 (1,(1, 3)}
z; € {a,b}

Figure 8.9: A section of a trellis and the node representing it in a normal graph.

(b)

Figure 8.10: An (8,4,4) binary linear code: (a) Trellis diagram, and (b) Normal
graph.

Notice how in this representation the graph edges are associated with states, the
filled dots with symbols, and the nodes with constraints. We may say that symbols
represent visible variables, while states represent hidden variables: the latter are
unobserved, as parts of the internal realization of the code. We may keep this
interpretation even for codes described by normalized Tanner graphs, even though
here the concept of state does not come naturally. In this latter case, the constraints
are simply represented by adders.
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Figure 8.11: Normal graph of a code defined through its tail-biting trellis.

Since the factor graph of the trellis code consists of a chain of nodes, each cor-
responding to a function (8.9), it is cycle free. Since we know that all codes can
be represented by a trellis, the above shows that any of them can also be repre-
sented by a cycle-free factor graph: however, the resulting complexity (number of
states) might be so large that this kind of representation becomes useless (for a
quantitative version of this statement, see [8.6]).

Example 8.3 (Tail-biting trellises)

Figure 8.11 shows the normal graph of a code described by a tail-biting trellis. It is
seen that this trellis has a single cycle. |

Example 8.4

This example illustrates the fact that the same code admits different graph represen-
tations. Figure 8.12 shows the Tanner graph of the (4, 1,4) binary repetition code,
its trellis, and the graph derived from the trellis. Notice how the repetition blocks
in the figure illustrate the fact that, in each trellis section, coded symbol, starting
state, and ending state coincide. Figure 8.13 shows two graph representations for
the (4, 3, 2) binary single-parity-check code, its trellis, and the graph derived from
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\

(a) (b)

Figure 8.12: Two graph representations of the binary (4,1, 4) repetition code.

(@) (b)

Figure 8.13: Two graph representations of the binary (4, 3,2) single-parity-check
code.

the trellis. Notice that for both codes the two endmost states, rather than being rep-
resented in the graph by two dangling branches, correspond to two code symbols.
This reflects the fact that the initial and final trellis states are fixed, and, conse-
quently, in the functions T7 and T4 the arguments og and o4, respectively, are fixed.
Observe finally how the normal graph of the repetition code can be obtained from
the graph of the single-parity-check code (its dual code: see Section 3.7) by replac-
ing the parity-check nodes with repetition nodes. This is a special case of a general
result [8.6] connecting the graphs of dual codes. ]
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C1

C2

Tu

Figure 8.14: Encoder of a turbo code.

Example 8.5 (Turbo codes)

Figure 8.14 shows the encoder of a turbo code, the parallel concatenation of two
terminated convolutional codes. Here C; and €3 are systematic convolutional en-
coders. A block u of source data is fed to the encoder €1, which produces the
block c1, and to an interleaver 7, which produces the permuted block wu. This
block in turn is sent into the encoder €5 to produce the block ¢s. The blocks ¢; and
co contain only the parity-check part of the code words generated by the convolu-
tional encoders. The three blocks u, c;, and ¢5 are multiplexed and sent through
the transmission channel. Observe that € and €; may be (and often are) the same
code. Turbo codes are among the best codes known and will be studied in the next
chapter. Their normal graph is shown in Figure 8.15. We see how the two trellises
generating ¢; and c, share, via the interleaver 7, the common symbols u.

O

Example 8.6 (Repeat-accumulate codes)

Figure 8.16 shows the encoder of a repeat—accumulate code. This is obtained by
cascading two codes separated by an interleaver. The first one is an (n, 1, n) binary
repetition code. The second one is a rate-1 convolutional code, whose generator is
g(D) = 1/(1 + D), corresponding to the input-output accumulation relationship
z; = u; + z;—1. The trellis of the latter code has two states, corresponding to coded
symbols. Originally introduced as tools for deriving coding theorems [8.3], these
codes exhibit a surprisingly good performance on the additive white Gaussian noise
channel. The structure of their normal graph is shown in Figure 8.17, where the
trellis constraints x; + u; + x;—1 = 0 are shown explicitly. O
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Cq

Figure 8.15: Normal graph of a (truncated) turbo code.

repeat accumulate

Figure 8.16: Encoder of a repeat—accumulate code.

8.2 The sum-product algorithm

We now describe an algorithm for the efficient computation of the marginals of a
function whose factors are described by a normal factor graph. This works when
the graph is cycle free, and yields, after a finite number of steps, the marginal func-
tion corresponding to each variable associated with an edge. Initially, we limit
ourselves to stating the algorithm; the principles on which it is based will be de-
scribed later on, in the context of its application to symbol-MAP decoding.
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Ti—1

Li1

Figure 8.17: Normal graph of a rate-1/3 repeat—-accumulate code.

In this algorithm, two messages are transmitted along each branch, one for each
direction. Each message is a function of the variable associated with that branch,
and depends on the direction. It is given in the form of a vector, whose components
are all the values taken on by the corresponding variable. For messages that are
probability distributions of binary variables, a convenient choice consists of repre-
senting each of them as the ratio between two probabilities, or as the logarithm of
this ratio.

Consider the node representing the factor g(z1, ..., x,) (see Figure 8.18). The
message [ig—q, (2;) out of this function node along the edge x; is the function

trg—a;(Ti) = Zg(:ﬂl, ey Tp) H,meg—»g(xe) (8.11)

~T; 51

where i, —.4(x¢) is the message incoming on edge 7y, and the notation ) .
indicates that all variables are summed over except x;. In words, the message
Hg—a; (i) is the product of g and all messages towards g along all edges except
x;, summed over all variables except x;. Half-edges, which are connected to a
single node, transmit towards it a message with value 1.

Two important special cases are as follows:
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'ru’wl —g (331)

Zy

Ln Hg—z; (33%)
Hz,—g (xn)

Figure 8.18: The basic step of the sum—product algorithm.

Figure 8.19: The basic step of the sum—product algorithm when a node is a function
of only one argument.

1. If g is a function of only one argument x;, then the product in (8.11) is empty,
and we simply have (see Figure 8.19)

Hg—a; (zi) = g(z:)
2. If g is the repetition function f_, then we have (see Figure §.20)

By (@) = [ [ g (1) (8.12)
04

8.2.1 Scheduling

The messages in the graph must be computed in both directions for each edge. Af-
ter all of them are computed according to some schedule, the product of the two
messages associated with an edge yields the marginal function sought. It should be
observed here that the choice of the computational schedule may affect the algo-
rithm efficiency. A possible schedule consists of requiring all nodes to update their
outgoing messages whenever their incoming messages are updated. In a factor
graph without cycles, message computation may start from the leaves and pro-
ceed from node to node as the necessary terms in (8.11) become available. In the
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\ll’f]?l—)f: (xl)
I1

Ly

| EREY

‘Nmn—ﬂcz (xn) e#1

Figure 8.20: The basic step of the sum—product algorithm when a node represents
the repetition function f_.

“flooding” schedule, the messages are transmitted along all edges simultaneously.
For linear graphs like that shown in Figure 8.10, a natural schedule consists of a
single forward sweep and a single backward sweep (see infra, Section 8.3.2).

8.2.2 Two examples

Later on, we shall prove why the sum—product algorithm (SPA) solves the mar-
ginalization problem in the context of symbol-MAP decoding. Here we illustrate
it in a simple case, followed by a numerical example of application.

Example 8.7
Consider the function
flx1, 2, 23, T4, 5) = g1(21, 22, ¥5)g2(T3, T4, T5)

whose factor graph is shown in Figure 8.21. Its marginalization with respect to x5
can be computed as follows:

Folms) = DD > gi{w1,w2,75)g2(w3, 74, T5)

r1 X2 XT3 T4

= Z 291(1‘1,962,:135) Z 292(353:9347955)

T x2 3 X4
v

UQl—»zs(x5) :ugz-»zs(mS)

which corresponds to the product of the two messages along edge x5 exchanged by
the SPA. O
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Hg,—zs (115)

s

Hgs—axs (25'5)

Figure 8.21: Factor graph of the function g;(x1, z2, x5)g2(z3, 4, T5).

Figure 8.22: Factor graph for the burglar alarm problem.

Example 8.8

Consider the burglar alarm graph [8.8, 8.13], which describes a burglar alarm sen-
sitive not only to burglary, but also to earthquakes. There are three binary variables:
b (for “burglary”), e (for “earthquake™), and a (for “alarm”). A value of 0 for any of
these variables indicates that the corresponding event has not occurred, whereas a
value of 1 indicates that it has occurred. Suppose that the alarm went off. We want
to infer the probability of the two possible causes, namely, derive p(b | a = 1) and
p(e | @ = 1). These can be computed by marginalizing p(b,e | a = 1); since we
have, assuming independence of e and b,

pla=1|be)p(b)ple)
pla=1)

then the factor graph appropriate to the problem is shown in Figure 8.22, where

flbye) &pla=1|be)  fiolb)Zp(b)  fole) 2 ple)

plbela=1)= o pla=1]b,e)p(b)p(e)

The data of the problem consist of the values taken on by these three functions.
Let them be

f0)=09  fp(1)=0.1
f(0)=09  fo(1)=0.1

and

F(0,0)=.001  f(1,0)=.368  F£(0,1)=.135  f(1,1)=.607
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(.9,.1) (9,.1)

—
(.0144,.3919) (.0377,.1822)

Figure 8.23: Messages passed by the sum—product algorithm along the edges of
the factor graph for the burglar alarm problem.

By representing a function g of a binary argument as the two-component vector
(g(0}, g(1)), the SPA goes as follows:

1y —b(D) = (.9,.1)

s.—e(e) = (9,.1)

proe(e) = Y fbe)uss(b)
b

= (001 x .94 .368x .1, 135 x .9+ .607 x .1) = (.0377,.1822)
b=0 b=1
b=0 b=1 = =

~
e=0 e=1

pr—pn®) = > Fb,e)esle)

(.001 x .94 .135 x .1, .368 x .9+ .607 x .1) = (.0144, .3919)
—_——— ) —— N—

e=0 e=1 e=0 e=1
N

I

b=0 b=1
The messages passed along the graph edges are summarized in Figure 8.23. Thus,
we have

p(b|a=1)x (.9 x.0144, .1 x .3919) = (.01296, .03919)

and
ple|a=1) e (.9 x.0377, .1 x .1822) = (.03393, .01822)

After proper rescaling of these vectors (we account for the fact that they are proba-
bility vectors) we obtain the final result:

p(bja=1)=(.249, .751) plela=1)= (651, .349)
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8.3 > Decoding on a graph: Using the sum-product algo-
rithm

Consider now the problem mentioned at the beginning of this chapter, viz., symbol-
MAP decoding of a code € defined on a graph. Specifically, we transmit x and
observe a sequence y at the output of a channel; the APP p(x | y) is proportional
(see (1.1)) to the product p(y | x)p(x). Now, for a stationary memoryless channel,
we have

p(y | %) Hp vi | ) (8.13)

while, assuming that the a priori distribution of the transmitted code words is uni-
form, we have

p(x) = e] [x € €] (8.14)

and [x € €] factors according to the graph of the code.
Thus, the APPs can be computed by marginalizing the function

p(x | y) o< [x € € [ plvs | =:) (8.15)
i=1

This is done by applying the SPA to the graph of the code (which describes the
factorization of [(z1,...,2z,) € C}) in which the filled dots are replaced by the
function nodes p(y; | z;) (each of these to be interpreted as a function of z; with
parameter y;). The resulting graph describes the factorization of (8.15). As an
example, Figure 8.24 shows the graph to be used for symbol-MAP decoding of a
block code described by a normalized Tanner graph.

For systematic codes, whose code words we express in the form

X= (Ul,ug,...,Uk,$k+1,---,l'n)

we can write, instead of (8.14),

k
p(x) =[x € €] [ p(w)
i=1

so that the APPs are obtained by marginalizing the function

k n

p(x | y) o [x € €] [ ply: | wi)p(ws) [ pli| ) (8.16)

i=1 1=k+1
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p(y1|z1)
p(yz2|z2) |

P(Yn|Zn)

Figure 8.24: Normal factor graph for the calculation of the APPs p(z; | y).

and the graph of Figure 8.24 should be modified accordingly, by introducing a
priori information about the source symbols u;.
The above can be extended to the computation, for a state variable o, of the

APP
plojly)oc Y prllxz (8.17)

x€C;(o;) i=1

where now C;(o;) denotes the set of code words consistent with ¢, i.e., whose jth
state is 0.

8.3.1 Intrinsic and extrinsic messages

In a terminology that is often used, the message depending only on the channel
observation generated by symbol x; (and possibly on its probability distribution if
the code is systematic and (8.16) is used) is called intrinsic. The message in the
opposite direction, whose multiplication by the intrinsic message yields the APP
of x;, is called extrinsic. This depends on the code structure and on the observation
of all components of y except y;. Extrinsic information plays a central role in the
“turbo algorithm,” to be described in Section 9.2.1.

Example 8.9

The single-parity-check binary code with length 3 has words x = (z1, 22, 23) with
x3 = x1 + x2. It can be decoded using the graph of Figure 8.25. Information on z;
can be gathered from the observation of y; (intrinsic message), and also from the
observation of y2, ¥3, because we have z1 = xo + z3 (extrinsic message). |
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p(y1]z1)

p(y2|z2)

p(ys|z3)

Figure 8.25: Graph of the binary (3,2,2) single-parity-check code for symbol-
MAP decoding.

p(yzixz)P(l’z)

Bi-1(oi-1) Bi(os)

Figure 8.26: Hlustrating the BCJR algorithm on a linear graph. (a) A section of the
graph. (b) Messages exchanged by the BCJR algorithm.

8.3.2 The BCJR algorithm on a graph

As emphasized before, application of the sum—product algorithm depends on the
choice of a computational schedule. Sometimes, this choice follows quite naturally
from the graph structure, as is the case with linear graphs derived from a trellis
(see the example of Figure 8.10). Here, the schedule consists of a single forward
sweep and a single backward sweep, which makes the SPA equivalent to the BCJIR
algorithm introduced in Section 5.4. We now prove the latter statement.

Consider a segment of the graph as shown in Figure 8.26(a), and the correspond-
ing messages exchanged in the application of SPA, with the notations indicated in
Figure 8.26(b). Direct use of (8.11) yields the messages
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ai(oi) = D [(eic1,x5,0:) € Ti] p(yiles)p(a:)i1(oi1)

0i—1 T3
= Z Z%’—l,i(fn—l,xi,Ui)Oéi—l(Ui—l) (8.18)
Ti;—1 X4
and
Bici(oi) = D> (i1, i,0:) € Ti] p(yile:)p(x:) Bi(os)
= ZZ”ﬁ—l,i(di—l,$i,0i)ﬁi(0i) (8.19)
where
’71—1,1‘(02'—1,371'701') £ [(Uz‘—1,$€z‘70i) € Ti]P(yiL’Ci)P(%) (3.20)

In conclusion, the APP of z; is given by

le}’) ZZ’)’z lz(az 1,371701)041 1(0'1 1)ﬁ1(‘71)

Oi-1 04

in agreement with the results of Section 5.4. Notice that the values of p(z;) may
not be available, in which case they are substituted with a constant (see the next
chapter, where the BCJR algorithm is applied to iterative decoding of turbo codes).

8.3.3 Why the sum-product algorithm works

We now prove that the sum-product algorithm achieves the marginalization of a
function represented by a factor graph without cycles. We consider in particular
the calculation of APPs in a decoding problem.

The algorithm is based on two principles, called the past—future decomposition
and the sum—product decomposition. For the first principle, observe that, if an edge
is cut in a graph without cycles, then the graph is partitioned into two disconnected
subgraphs. Consider the edge corresponding to state o, and the value S; taken on
by ;. Then, similarly to what we did in Chapter 5, a code C can be decomposed
as the Cartesian product of two “past” and “future” projection codes, denoted here
fPP (S;) and TF (S;). respectively. If for a moment we think of the code words of
G as paths traversmg a trellis, then at time j the code fPP (S;) corresponds to the
set of subpaths merging into S;, and fPf (S;) to the set of subpaths emanating from
S; (Figure 8.27 illustrates this).



8.3. * Decoding on a graph: Using the sum—product algorithm 259

Figure 8.27: Decomposing a code at state o;. The code words corresponding to
paths through S; are the Cartesian product of two projection codes, the “past”
in(Sj) and the “future” fPf(Sj).

We now use the Cartesian-product distributive law, which states the following:
If A and B are disjoint discrete sets, and a(a), 5(b) are two functions defined on
A and B, respectively, then

> aa)B) = (Z a(a)) (Z B(b)> (8.21)

(a,b)eAxB ac€A beB

This law, on which several “fast algorithms” are based [8.1], says that, rather than
computing the sum of |[A x B| = |A| - |B| products, we can (and it is faster to)
compute a single product of separate sums over A and B.

Now apply this law to (8.17). After defining x* and x* as code words of
in (o) and fP;-P CHE JP, JF as their index ranges, and y*, y¥ as the projections

of y to J¥, IF, respectively, we obtain

ploj|y) o > I el > 1 el =)

xPGTf(aj) i€IP xFein(oj) iedF
< p(oj | yP)ploj | ¥F) (8.22)

The SPA computes the two functions in (8.22) separately, then multiplies them. In
practice, each function will be represented as a vector whose components corre-
spond to the values taken by .S;, with the multiplication occurring componentwise.

Application of the Cartesian-product distributive law to (8.15), which involves
symbol variables rather than state variables, is simpler. In fact, one of the two
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Figure 8.28: Illustrating the sum—product decomposition principle.

factors in the product is just p(z; | y), and we have

plzily) o plzily) | D [Ip(elzo)

x€C;(x;) ¢4
o< pla; | y)p(zs | Yi) (8.23)

where y..; is a shorthand notation to indicate the vector y with its ¢th component
removed.

Consider now the second principle, the sum-product decomposition. This deals
with the computation of p(c; | y¥) and p(o; | y*') in (8.22) from analogous
quantities that are one step further upstream. Consider the edge labeled o, em-
anating from the node corresponding to constraint Cy, that we interpret here as a
code (for example, for normal graphs derived from Tanner graph, the nodes may
only represent repetition functions or modulo-2 adders, which we interpret as repe-
tition codes and single-parity-check codes, respectively). For notational simplicity,
renumber the edges entering this node o1, ..., 0, as shown in Figure 8.28. Next,
observe that, since the graph is cycle free, each of the edges entering the node
has its own distinct past, whose union must be the projection code Tf (o). For
each word of code C; corresponding to o, the set of possible pasts is the Cartesian
product of possible pasts of the other states, i.e., oy, ... ,oj, and the total set of
possible pasts is the disjoint union of these Cartesian products. Using once again
the Cartesian-product distributive law, we have

ploj | y") Z Hp o | y*) (8.24)

Cy(oy) t=1
where the factors in the product are known and hence can be used to compute
P
ploj | y™).
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8.3.4 The sum—product algorithm on graphs with cycles

If the code graph is finite and has no cycles, the sum—product algorithm, applied
in conjunction with a suitable computational schedule that is usually easy to find,
yields the required exact APP distribution of the code word symbols in a finite
number of steps. On a graph with cycles, the sum—product algorithm can still be
applied by implementing the sum—product step (8.11) at any node, using the in-
coming messages that are actually available and initializing all unknown messages
to the constant function. However, the algorithm may not converge at all, or it
may converge to an incorrect APP distribution: the derivation of conditions for
convergence is a topic of current research. Fortunately, in many practical cases
the algorithm does converge and yields the correct answer: for this reason it is
commonly used to decode powerful codes such as the turbo codes and low-density
parity-check codes to be studied in next chapter.

Regrettably, codes whose Tanner graphs have no cycles are rather poor: in [8.4]
it is shown that, if € is an (n, k, d) cycle-free linear code with rate p = k/n > 0.5,
then d < 2. On the other hand, if € has a rate lower than 0.5, then d < 2/p.

In a code whose graph is not cycle-free, the presence of short cycles should
be avoided, as they hinder convergence [8.14]: if the girth of the factor graph is
very large, the loop-free approximation can be made. In [8.14], it is proved that
the assumption of a graph without cycles holds asymptotically, as n grows large,
for LDPC codes, while for turbo codes it has only a heuristic justification. The
presence of the interleaver should be exploited to maximize the girth of the factor
graph.

8.4 Algorithms related to the sum-product

The formulation of the sum—product algorithm described above is based on the fact
that two operations are available (sum, product) and that distributivity holds:

(a-b)+(a-¢c)=a-(b+c)

An immediate generalization of the sum—product algorithm can be obtained when-
ever we can define two operations that are distributive. For example, assuming that
the quantities we are operating on are nonnegative, the operators max and product
are such that

max{ab, ac} = amax{b, c}

Similarly, the operators min and sum are such that

min{a + b,a + ¢} = a + min{b, c}
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while the operators max and sum yield
max{a + b,a + c} = a + max{b, ¢}

For every specific distributive law we are using, a version of the sum—product algo-
rithm can be derived. For example, from the latter property a max—sum algorithm
can be obtained by changing sums into max and products into sums. This allows
one to marginalize a function f(z1,...,z,) by computing the equivalent of (8.3)
as

filw:) & max f(z1, ..., ) (8.25)

where the function f is “factored” as a sum of functions: (8.5) corresponds to
f(x1, 2, 23) = g1(z1, 72) + ga(71, T3)

The basic step of the max—sum algorithm then becomes, upon modification of (8.11),

pg—a;(zi) = max |g(x1, ..., Tn) + > tayg(e) (8.26)
' £

Notice that the definition of the Iverson function must also be generalized: in gen-
eral, we have a null element z for the “sum” and an identity u for the “product,”
suchthatz + z =z, u-x = x, and z - ¢ = z for all z. We define [P] as taking the
value 4 when P is true, and z otherwise. For example, in the max—sum context we

have z = —oo and « = (. The sitvuation is summarized in Table 8.2.
“+” “"’ “1’7 660”
sum product 1 0
min sum 0 oo
max sum 0 —00
max product 1 0

Table 8.2: Multiple aspects of the sum—product algorithm.

8.4.1 Decoding on a graph: Using the max—sum algorithm

We now show how the max—sum algorithm can be used to decode a code described
by a factor graph by a variant of ML decoding. Observe that we have, for a station-
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(ao,a1)

(bo, b1)

Figure 8.29: A step of the max—sum algorithm applied to the node [x1 + x2 + z3 =
0].

ary memoryless channel,

mn
logp(y | x) = log[[p(ui| =)
=1
o K2
= > logp(y: | ) (8.27)
i=1

Denote, as before, by C;(x;) the subset of code words whose ith component is z;.
Now, ML decoding of € consists of finding the code word whose symbols Z; are
solutions of

A -1 -1
; = ma X) = ma lo X 8.28
#i = max py | x) hax gp(y | x) (8.28)
Since log p(y | x) “factors” as in (8.27), the max—sum algorithm can be applied to
the factor graph of the code. In fact, observe that we can write, by appropriately
defining the Iverson function,

max logp(y | x) = max {[x € €] +logp(y | x)} (8.29)
xeC; (.’l’l) ~Z;

As an illustration, consider the basic step of the max—sum algorithm for a @
node with three branches emanating from it, as shown in Figure 8.29 (the case
with more than three branches can be derived as a simple exercise). We have

ez (@) = max {[o1 + 2 + @5 = 0] + oy (1) + s (22)}
Again, since [z1 + z2 + x3 = 0] takes on value —oo when z; + z2 + z3 # 0,
and 0 otherwise, the maximum value of the term in curly brackets occurs when the
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constraint z; + x9 = x3 is satisfied, so

Hd—as (1'3) = max {/‘581—*69(371) + /*"2:2—>69($2)}
z1,x2|C1+22=23

In words, for a value of x3 the outgoing message is the maximum of the sums of the
incoming messages over the set of all incoming pairs 1, zo consistent with 3.2
For example, with the incoming message from each edge z; being represented by
the two-component vector

(Nmi—%B(OL :U’l‘i“*@(l))

we have the situation of Figure 8.29.
Similarly, the outgoing messages from a repetition node are determined accord-
ing to the rule, derived from (8.12),

pfem (T6) = Y apm pa (24) (8.30)
£
We should also observe the following. Consider decoding of €. Taking the
logarithm of the function marginalized by the SPA, we have the approximation
(see Problem 6 below)

log Y _[x € €]p(y | x) ~ max {log[x € €] + logp(y | x)}

which expresses how the max—sum algorithm turns out to be an approximation of
the sum—product algorithm as far as decoding is concerned.

Example 8.10

We now provide an example of decoding a linear binary code using the max—sum
algorithm. We choose the code whose Tanner graph is shown in Figure 8.5. The
normal form of the graph used for decoding is shown in Figure 8.30. The values
of the input variables are shown in Figure 8.31, in the form of the two-component
vector (logp(y; | z; = 0), logp(y; | &; = 1)). Since for binary messages only the
difference between the two components is significant in this algorithm, the symbol
with the lowest value of log p(y; | x;) is assigned zero value. The centripetal mes-
sages associated with each edge are also shown (notice how these messages can be
computed in parallel). Figure 8.32 shows the centrifugal messages, and Figure 8.33

%It may be observed that this step is reminiscent of the ACS step in the Viterbi algorithm. This
is not a coincidence: a variant of the Viterbi algorithm can be expressed as a max—sum algorithm on
a factor graph derived from a code trellis. Not only the BCJR algorithm, but also the Fast-Fourier
Transform (FFT) algorithm and the Kalman filtering algorithm turn out to be special cases of the
SPA [8.1,8.11].
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log p(ys|zs)  logp(ys|ws)

log p(yalza) [ ] log p(yr|zr)

Z1

log p(ys|ws) [ log p(y1|z1)

log p(y2|z2)

Figure 8.30: Normal graph of a binary code, as transformed for the application of
the max—sum algorithm.

the final values obtained by summing the latter with the centripetal messages of Fig-
ure 8.31.

At this point, we can do ML decoding (see Figure 8.33): the most likely code
word is 1010110 and has weight 15. However, the max—sum algorithm tells us more:
it computes the relative weights of all possible symbol values. The magnitudes of
the weight differences (the soft information)

1132113

tell us that the decisions on x3 and 27 are the most reliable, while those on 1, x5, 5,
and xg are the least reliable. This additional information may prove useful, for ex-
ample to monitor the channel quality. |

8.5 Bibliographical notes

In his landmark 1981 paper [8.15], Tanner introduced the graphical-model descrip-
tion of codes and proved the optimality of the sum—product algorithm for cycle-free
graphs. In Tanner’s original formulation, all variables were code symbols. Wiberg
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Figure 8.31: Max—sum decoding of a binary code: initial values and centripetal
messages, computed according to Figure 8.29.

Figure 8.32: Max—sum decoding of a binary code: centrifugal messages.
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(14,15) (14,15)

(14,15)

(15,14)
(j\jla j?a i'?)v i/l) :2.57 '/'%67 i7) = (101011())

Figure 8.33: Max—sum decoding of a binary code: final values of the messages and
ML decoding.

et al. [8.16, 8.17] introduced state variables in the model. The sum—product al-
gorithm was discovered by Gallager in [8.9] as a decoding algorithm for LDPC
codes, but it took a long time (and the invention of turbo codes) for its full poten-
tial to be appreciated. Tanner [8.15] introduced the min-sum algorithm. In [8.17]
it was observed how the Viterbi and BCJR algorithms can be reinterpreted in the
message-passing context of the SPA. Reference [8.1] describes how the SPA can
be described in the context of “belief propagation in Bayesian networks” [8.13],
a theory developed with applications to artificial intelligence. Factor graphs were
expounded in [8.10]. Normal graphs were introduced by Forney [8.6].

Our presentation of the material in this chapter is essentially based on [8.1, 8.5,
8.10-8.12]. Our analysis of the sum-product algorithm on cycle-free graphs is
derived from [8.7]

8.6 Problems

1. Consider the function f(z1,...,zs), with each z; taking on |X| values, and
its factorization

f(z1, 22,73, T4, T5, T6) = g1(x1)g2(1, T2)g3(1, T3, 24) g4 (4, T5, T6)
(8.31)
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We are interested in the marginal

f4(£L‘4) £ Zf($1,$2,2:3,$4,$5,w6) (832)

~Z4

Compare the complexity of the direct calculation of (8.32) with the complex-
ity of its calculation based on factorization (8.31).

2. Using the sum-product algorithm, compute the message (o shown in Fig-
ure 8.34. Assume xg, x1, and z5 to be binary variables taking values in
{0,1}, and g(xo, x1,22) = zo - 1 - T2.

i

g1 = (p1,1 —p1) 2 = (p2,1 — p2)

Figure 8.34: A segment of a factor graph.

3. Consider the binary code whose Tanner graph is shown in Figure 8.35.

(a) Draw the normal graph of the code.

(b) Find the parity-check matrix H of the code.
(¢) List all code words.

(d) Find the minimum Hamming distance.

(e) Decode a code word using the max—sum algorithm with input data

(5,0) (4,0) (3,0) (2,0) (0,1)

4. (Soft channel equalization.) Consider the transmission of n independent bi-
nary symbols x = (z1,...,Z,) on a common channel, and the observation
of a noisy vector y whose components are known functions of all symbols
(for example, linear combinations with known coefficients). The channel is
described by the function p(y | x). Draw a factor graph for the estimation
of the APPs p(z;,y), and sketch the corresponding sum—product algorithm.
How do the factor graph and the SPA change if x is a word of the block code
e?
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X ® ®X;

E—e—

X5

X1 @ ® X,
Figure 8.35: Tanner graph for Problem 3.

(1 —Plapl)

(1 —Po,po)
(1 "pmvpm)

Figure 8.36: Sum-product algorithm applied to a check node. The variables are
binary, and the messages represent probabilities.

5. Consider the application of the sum—product algorithm to the graph fragment
with a check node as shown in Figure 8.36. The variables are binary, and the
messages represent probabilities. Prove that

1m
51‘[1-2@

l\')['—‘

6. This problem shows how the max—sum algorithm can be viewed as an ap-
proximation of the sum-product algorithm. Define the function

max*(z,y) £ In(e” + €¥)
(a) Prove that

max*(z,y) = max(z,y) + In (1 + e—!z~y|>
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7.

so that
max*(x,y) ~ max(z,y)

(b) Find upper and lower bounds to the error involved in the approximation
above.

(¢) Extend (a) to more than two variables.

Consider the (5, 2, 3) code C whose parity-check matrix is

g

1
H=|1
1

= O

1
1
0

= o O

1
0
0

The Tanner graph of this code has cycles. Prove that they can be removed by
considering a suitable code equivalent to C.
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you did your strong nine furlong mile in slick and slapstick record time

LDPC and turbo codes

Classes of codes defined on graphs exist that can approach Shannon's ca-
pacity bound quite closely, and with a reasonable decoding complexity. All
these codes are obtamed by connectmg s1mp]e component « codes through an
mterleaver Decodlng conswts of 1terat1ve decodmgs of these s1mp16 codes .
In thzs chapter we describe in some detail turbo codes: and Iow-dcnszty panly-j
check codes, with specml attention {o their pezfonnance and tbelr decodmg"
algonthms 'TI]CH‘ d1stance propertws are also ¢ given séme attenaon ;
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9.1 Low-density parity-check codes

A low-density parity-check (LDPC) code is a long linear binary block code whose
parity-check matrix H has a low density of 1s. Specifically, H is sparse, and
contains a small fixed number w,. of 1s in each column and a small fixed number
wy of 1s in each row. If the block length is n, we say that H characterizes an
(n, we, wy) LDPC code. These codes may be referred to as regular LDPC codes to
distinguish them from irregular codes, whose values of w, and w,. are not constant.
The matrix H of the latter has approximately w, 1s in each row and w, 1s in each
column.

The normal graph of a (regular) LDPC code is shown in Figure 9.1. With this
representation, we have that an LDPC code is a binary linear code such that every
coded symbol participates in exactly w, parity-check equations, while each one
of the m sum-check equations involves exactly w, bits. For consistency, we have
NWe = MW,.

Figure 9.1: Normal graph of a regular (n, w,., w,) LDPC code.

It follows from the definition of an LDPC code that H has nw,./w, rows: in
fact, the total number of 1s in H is nw,; dividing by w,., we obtain the number of
rows. Since H is in general an m X n matrix, if H has full rank the code rate is

n—m m We

=1—-—=1-— ©.1)

n n Wy

The above equality yields the constraint w, < w,. Notice that the actual rate p of
the code might be higher than m/n = w,/w, because the parity-check equations
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summarized by H might not be all independent. We call p* £ 1 — w./w, the
design rate of the code.

Example 9.1
The parity-check matrix of a (20, 3, 4) LDPC code with p* = 1/4 is shown below.

$111100O0O0OOO0CODOODOOO0OO0OO0OO
00001111 00O0O0O0O0O0CO0O0O0CO0O0O0
0oo000O0OO0OO0CO0OI1I1T1T1QO0O0O0O0O0O0O0O0O0
0 000O0O0O0GCOO0OO0COO0OT1T111O0UO0O0090
000O0O0OO0OOODOOOCOOOOOGCOI1I 111
1 00010O0O0O1CO0O0CO0OT1O0CO0OO0OO0OTO0QO0OOQO
01000100O0OT1O0O0ODOO0OCOO1O0O00
H=])00100O0O19000O0O0O0O1O0O0O01100
0o 001000O0O0OO0C1O0O0O01O0O0TO0T10Q0
0 00 0O0O0O010O0O0O1O0O0OO0OTI11O0O0OTO0T1
10000100O0OO0OO0O1CO0CO0OO0OGO0COT1O0T0
01 000O0O1O0CO0OO0CI1TOO0OO0OOTI1TO0OTG OGO OGO
001 00O0O0OC1O0O0COOO11 0O0OOGOGOT1O
000100O0O0O1O0CO0O0OO0OT1O0O0O0T11O0O0C0O0
(0 000100O0O0C1IO0O0OOOTI1IOO0OO0GQO0T1|]

In this example we observe that H can be viewed as composed of three subma-
trices, each of which contains a single “1” in each column. The second and third
submatrices are obtained from the first submatrix by permuting the column order. (J

9.1.1 Desirable properties

While the ultimate quality of an LDPC code is defined in terms of its rate, cod-
ing gain, and complexity, some simple considerations may guide the selection of a
candidate code. First, for good convergence properties of the iterative decoding al-
gorithm, the Tanner graph of the code should have a large girth. In particular, short
cycles must be avoided. (Observe that the shortest possible cycle in a bipartite
graph has length 4, as shown in Figure 9.2 along with the structure of the parity-
check matrix that generates it.) Next, regularity of the code eases implementation.
Finally, for small error probability at high £;/Ny on the AWGN channel, the min-
imum Hamming distance of the code must be large. This is especially interesting,
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: ? J
1 1|
H =
1 1 s

Figure 9.2: Four-cycle in a Tanner graph, and corresponding parity-check matrix.

because LDPC codes are known to achieve a large value of dy min. Roughly speak-
ing, if w, > 2 this minimum distance grows linearly with the block length n, and
hence a large random LDPC code will exhibit a large di min With high probability.
More specifically, it has been proved [9.12,9.18] that, for a large enough block
length n, an LDPC code exists with rate p > 1 — 1/A, and minimum distance
dH min > On, for any 0 < 0.5 that satisfies the inequality

—dlogd — (1 —0)log(l—46) <1/A

9.1.2 Constructing LDPC codes

Several techniques for the design of parity-check matrices of LDPC codes have
been proposed and analyzed. They can be classified under two main rubrics: ran-
dom and algebraic constructions. Here we provide an example of each.

Random constructions

These are based on the generation of a parity-check matrix randomly filled with
0Os and 1s, and such that the LDPC properties are satisfied. In particular, after one
selects the parameters n, p*, and w, for regular codes the row and column weights
of H must be exactly w, and w,, respectively, with w, and w, small compared
to the number of columns and rows. Additional constraints may be included: for
example, the number of 1s in common between any two columns (or two rows)
should not exceed one (this constraint prevents four-cycles).

In general, randomly constructed codes are good if n is large enough, but their
performance may not be satisfactory for intermediate values of 7 [9.11,9.16]. Also,
usually they are not structured enough to allow simple encoding.
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A method for the random construction of H was developed by Gallager in [9.12].
The transpose of the matrix H of a regular (n, w,, w,) has the form

H = [H] H) ---H, ] 9.2)

where H; has n columns and n/w, rows, contains a single 1 in each column, and
contains 1s its ith row from column (¢ — 1)w, + 1 to column sw,. Matrices Hs to
H,, are obtained by randomly permuting (with equal probabilities) the columns
of H;. The matrix H of Example 9.1 is generated in this way, although there the
permutations are not random.

Another algorithm for the generation of the parity-check matrix of an (n, w,, w,)
LDPC code works as follows:

Step 1 Seti = 1.

Step 2 Generate a random binary vector with length nw,/w, and weight w,. This
is the ith column of H.

Step 3 If the weight of each row of H at this point is < w,, and the scalar product
of each pair of columns is < 1 (four-cycle constraint), then set 2 = 7 + 1.
Otherwise, go to Step 2.

Step 4 If i = n, then stop. Otherwise, go to Step 2.

Since there is no guarantee that there are exactly w, 1s in each row of H, this
algorithm may generate an irregular code. If a regular code is sought, suitable
modifications to the procedure should be made.

Algebraic constructions

Algebraic LDPC codes may lend themselves to easier decoding than random codes.
In addition, for intermediate n, the error probability of well-designed algebraic
codes may be lower [9.1,9.20].

A simple algebraic construction works as follows [9.10,9.13]. Choose p >
(we — 1)(wy — 1), and consider the p x p matrix obtained from the identity matrix
I, by cyclically shifting its rows by one position to the right:

601060 --0
0010 -0
J2|0oo0o01 - 0
0000 -1
1000 --- 0
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The ¢th power of J is obtained from I, by cyclically shifting its rows by £ mod p
positions to the right. After defining JO £ I, construct the matrix

Jo J° JO e JO

JO Jl J2 . Jwr—l
H=|J0 J°2 J4 e J2wr—1)

JO J(wc—l) J2(wc—1) c. J(wc—l)(wr—l)

This matrix has w.p rows and w,p columns. The number of 1s in each row and
column is exactly w, and w,, respectively. Hence, this construction generates a
{(wyp, we, wy) LDPC code. It can be proved that no four-cycles are present.

Combining random and algebraic constructions

A technique that combines random and algebraic construction is proposed in [9.20].
Start with the m x n parity-check matrix H(0) of a good “core” LDPC code. Next,
substitute for each 1 in H(0) a p; x p; permutation matrix chosen randomly. We
obtain the new mp; X np; parity-check matrix H(1). Since the probability of
repeating the same permutation matrix in the construction of H(1) is 1/p;!, it is
suggested to choose p; > 5. The construction is repeated by substituting for each
1in H(1) a pa X py random permutation matrix, which yields the mpip2 X npip2
parity-check matrix H(2). This procedure can be repeated. In [9.20], it is shown
that this construction preserves the girth and the minimum Hamming distance of
the core code.

9.1.3 Decoding an LDPC code

Decoding can be performed using the sum—product or the max—sum algorithm,
as indicated in the previous chapter. Here, however, since the Tanner graph of
the code has cycles, the algorithm is not exact, nor does it necessarily converge
in a finite number of steps. An iterative algorithm can be devised that computes
alternatively the messages associated with both directions of each branch, and stops
according to a preassigned criterion. A possible stopping rule is the following: set
2 =1ifp(z; =1]y) > p(z; =0|y), and Z; = 0 otherwise. If the vector
X 2 (£1,...,2y) is a code word (i.e., all parity checks are satisfied) then stop.
Otherwise, keep on iterating to some maximum number of iterations, and then stop
and declare a failure.

Figure 9.3 represents, in a schematic form, the two basic message-passing steps
when an iterative version of the sum—product algorithm is used for decoding an
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r
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Figure 9.3: Decoding an LDPC code: message-passing from a symbol node to a
check node, and vice versa.

LDPC code. We assume here that the messages are normalized so as to represent
probabilities, and use a result from Problem 4 of Chapter 8. The algorithm starts
with the intrinsic probabilities v; £ p(y;|x;), and with uniform messages coming
out of check nodes: 1y = (0.5,0.5) for all £. Application of the SPA first computes
the messages passing from symbol nodes to check nodes, and then from check
nodes to symbol (repetition) nodes. These two steps represent a single iteration of
the SPA.
Figure 9.4 shows the performance of two LDPC codes.

A simple suboptimum decoding algorithm: bit flipping

An LDPC code can be suboptimally decoded by a simple iterative technique called
the bit-flipping algorithm. First, the symbols are individually “hard decoded” by
transforming the channel observations into 1s and Os so that the received vector
y is transformed into the binary vector b. Consider the syndrome Hb', whose
components are the results of the sums computed in the right part of the graph.
Each component of b affects w, components of the syndrome. Thus, if only one bit
is in error, then w, syndrome components will equal 1. The bit-flipping algorithm
is based on this observation and works as follows. Each iteration step includes
the computation of all check sums, as well as the computation of the number of
unsatisfied parity checks involving each of the n bits of b. Next, the bits of b are
flipped when they are involved in the largest number of unsatisfied parity checks.
The steps are repeated until all checks are satisfied, or a predetermined number of
iterations is reached.
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P(e)

E/N, (dB)

Figure 9.4: Performance of rate-1/4 codes. Code B [9.7] is an irregular LDPC code
withn = 16,000. Code C [9.18] is a regular LDPC code with n = 40,000. For ref-
erence’s sake, Code A is a turbo code withn = 16,384 (see Figure 9.17 for further
details). The leftmost curve is the Shannon limit for p = 1/4 and unconstrained
AWGN channel, as derived in Problem 8 of Section 3 (see also Figure 1.5).

Example 9.2

For illustration purposes, consider the rate-1/3 code (not exactly an LDPC code,
since n is not large enough to yield a sparse H) with parity-check matrix

111000
1 00110
H_010101
001011

corresponding to the Tanner graph of Figure 9.5. Let the observed vector be
(.1,.3,—-1.2,.02,.5,.9)

The binary 6-tuple obtained by hard decoding is (001000). This is not a code word.
The first iteration shows that the parity checks that fail are 1 and 4—a finding that is
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interpreted as indicating the presence of an error among the symbols whose nodes
are connected to adders 1 and 4. Now, symbol 4 corresponds to no failed check,
symbols 1, 2, 5, and 6 correspond to one failed check, and symbol 3 to two failed
checks. We flip the third bit, thus obtaining the code word (000000), which is ac-
cepted, as all parity checks are satisfied. O

Figure 9.5: Tanner graph of an LDPC code.

9.2 Turbo codes

The general scheme of a turbo code based on parallel concatenation of two convo-
Iutional codes was shown in Figure 8.14. There, €; and €5 are binary terminated
convolutional codes or block codes, realized in systematic form. Let the generator
matrices of C; and Co be Gy = [I Pj]and Gy = [I Py, respectively. If the
vector to be encoded is u, the first encoder outputs [u  ¢3], with ¢q 2 uP;. The
interleaver 7r applies a fixed permutation to the components of u and sends 7u to
the second encoder, which generates [ru ¢z}, with ¢y £ (7ru)Ps.
If €; and C» have rates p; and pa, respectively, the turbo-code rate is given by

p= P1p2 9.3)

©p1+p2— pip2

To prove this, neglect the effect of the trellis termination, and observe that if & bits
enter the encoder of Figure 8.14, then u contains & bits, ¢; contains k/p; — & bits,
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» U

Figure 9.6: Encoder of a parallel-concatenated turbo code with recursive compo-
nent encoders, and p = 1/3.

and co contains k/pg — k bits. The ratio between k and the total number of encoded
bits yields (9.3). Note that if p; = py we simply have

M
2—p

9.4

The most popular turbo-code design has p; = ps = 1/2 (typically obtained with
C1 = Gy), and hence p = 1/3 [9.3,9.4]. If the even bits of ¢, and the odd bits of
cy are punctured, then p; = py = 2/3,and p = 1/2.

The most common form of convolutional encoder used in general is nonsystem-
atic and polynomial (as, for example, the rate-1/2 encoder of Figure 6.3). Such an
encoder cannot be used as a constituent of a turbo code, which requires system-
atic encoders. Nonrecursive (i.e., feedback-free) encoders should also be ruled out
because the resulting turbo code would exhibit poor distance properties. A turbo
encoder including two systematic recursive codes is shown in Figure 9.6.

Serially concatenated turbo codes

A serially concatenated turbo code is obtained by cascading two convolutional en-
coders as shown in Figure 9.7. €, is called the outer code and C; the inner code.
Their rates are p, and p;, respectively. In practice, the outer code may be chosen
as nonrecursive and nonsystematic or recursive and systematic; however, C; should
be recursive and systematic for better performance. The rate p of the concatenated
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Figure 9.7: General scheme of a serially concatenated turbo code.

code is simply given by the product of the two rates:
p = Popi 9.5)

For example, the rate p = 1/2 can be obtained by choosing two component
codes with rates p, = 2/3 and p; = 3/4. Notice that this choice involves con-
stituent codes with higher rates and complexity than for a rate-1/2 turbo code with
parallel concatenation.

9.2.1 Turbo algorithm

Although, in principle, turbo codes can be optimally decoded by drawing their trel-
lises and using the Viterbi algorithm, the complexity of the resulting decoder would
be generally prohibitive. Using an iterative version of the sum—product algorithm
(the turbo algorithmy) provides instead extremely good performance with moderate
complexity. This algorithm is conceptually similar to the message-passing algo-
rithm described for LDPC codes, consisting of iterative exchanges of messages
from symbol nodes to check nodes and vice versa (see Figure 9.3). With turbo
codes, the more complex structure of their factor graph (which includes convolu-
tional codes in lieu of symbol nodes and check nodes: see Figure 8.15) calls for a
more complex algorithm. In fact, it requires the separate decoding of the compo-
nent codes: each decoder operates on the received data, forms an estimate of the
transmitted message, and exchanges information with the other decoder. After a
number of iterations, this estimate is finally accepted. The algorithm is run for a
fixed number of iterations or can be stopped as soon as a code word is obtained
(see supra, Section 9.1.3).

Figure 9.8 summarizes the general principle, whereby two decoders (one for C;
and one for C9) exchange messages back and forth: this decoding mechanism is
reminiscent of the working of a turbo-charged engine, which suggested the name
turbo for the algorithm. Although relatively little is known about its theoretical
convergence properties (which will be examined infra, in Section 9.2.4), its behav-
ior with graphs having cycles is surprisingly good.

To describe the turbo algorithm, we first examine the behavior of the two de-
coders of Figure 9.8, and, in particular, the messages they exchange under the SPA.
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Figure 9.8: General scheme of turbo decoding algorithm. Here y, and yo are
channel observations gencrated by two independent encodings of the same block
u.

Consider a linear binary block code € with length n and with & information sym-
bols (if a convolutional code is used, let its termination generate a block code with
the above parameters). Here we compute explicitly the a posteriori probabilities of
the code symbols, examining separately systematic and nonsystematic codes.

SISO decoder: systematic codes

If the code is systematic, the first £ entries of each word x coincide with the infor-
mation symbols u. We write X = (u1, ..., Uk, Th41, - - -, Zpn), and we have

k

p(x) = [x € & [ ] p(w)

i=1

Hence, under our usual assumption of a stationary memoryless channel,

k n
p(x|y) < [x € €] [[ plys | wi)p(us) [] plyj|zy) (9.6)
i=1 j=k+1
To compute the APPs of the information symbols w;, ¢ = 1,..., k, (and hence

to soft-decode €) we combine, according to (9.6), the a priori information p(u),
..., p(uy) on the source symbols and the channel information p(y | x) into one
ntrinsic message (Figure 9.9).

To describe the message-passing turbo algorithm, it is convenient to introduce a
soft-input, soft-output (SISO) decoder, as shown in Figure 9.10. This is a system
that, based on (9.6), has two sets of inputs: (a) the n conditional probabilities whose
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e(u]|] pCyilus)p(u;)

(a) (b)

Figure 9.9: (a) Factor graph for the systematic code C. (b) Messages exchanged by
the sum—product algorithm applied to the computation of the APPs p(u;|y).

channel
observations APPs
p(y | %) plui|y), 1<i<k

p(ui),lgigkz e(ui),lgigkz

a priori extrinsic
information information

Figure 9.10: Soft-input, soft-output decoder for systematic codes.

product forms p(y | x), and (b) the k a priori probabilities p(u;). It outputs (c) the
k APPs p(u; | y) and (d) the k extrinsic messages (the extrinsic information). This
block may be implemented using the BCJR algorithm, or, if this is computationally
too intensive, an approximate version of it.

SISO decoder: nonsystematic codes

In this case, with the assumption of a stationary memoryless channel, the APP
p(x | y) takes the form

n

p(x | y) o [x € €] [ [ pwi | z:)p(z:) 9.7)

=1

This equation implies the assumption that the symbols z; are all independent so that
p(x) can be factored as the product of individual probabilities p(x;). A priori, this
assumption does not seem to make sense: however, we shall see in the following
that, in turbo decoding algorithms, the role of these probabilities will be taken by
the extrinsic messages e(z;). Since one of the effects of a long interleaver is to
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e(z)] || p(uilz:)p(zs)

(a) (b)

Figure 9.11: (a) Factor graph for the nonsystematic code C. (b) Messages ex-
changed by the sum-product algorithm applied to the computation of the APPs

pzi | y).

channel
observations APPs

p(y | %) plzily), 1<i<n

p(z;), 1<i<n e(z;), 1<i<n

a priori extrinsic
information information

Figure 9.12: Soft-input, soft-output decoder for nonsystematic codes.

make the random variables e(x;) independent (at least approximately), the above
assumption becomes realistic for long enough blocks. The corresponding factor
graph is shown in Figure 9.11, while Figure 9.12 illustrates the SISO decoder.
This system has two sets of inputs: (a) the n conditional probabilities p(y; | z;),
and (b) the n a priori probabilities p(x;). Its outputs are: (c) the n APPs p(z; | y)
and (d) the n extrinsic messages e(z;). (Notice that the a priori probabilities are
unknown here.)

Turbo algorithm for parallel concatenation

Having defined SISO decoders, we can now specialize the general iteration scheme
of Figure 9.8. If codes C; and C; are connected together, they may exchange extrin-
sic information, as suggested in Figure 9.13. The complete scheme of Figure 9.14
shows how two SISO decoders combine into the turbo algorithm. The algorithms
starts by soft-decoding C;, which is done by the SISO decoder D;. At this step,
the a priori probabilities of each bit are initialized to 1/2. The output APPs are not
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Figure 9.13: Exchange of extrinsic information between two codes.

Y1 Yo

P/S y
u
channel APP channel
observation . observation
apriori | extrinsic apriori | extrinsic
information | information information | information

-

Figure 9.14: General scheme of an iterative turbo decoder for parallel concatena-
tion. P/S denotes a parallel-to-series converter; Dy and Do are soft-input, soft-
output decoders for code €1 and code Cy, respectively; m denotes the same inter-
leaver used in the encoder; and 7! denotes its inverse.

used, while the extrinsic messages, suitably normalized to form probabilities, are
used, after permutation, as a priori probabilities in Do, the SISO decoder for C,.
The extrinsic messages at the output of Do are permuted and used as a priori prob-
abilities for D1. These operations are repeated until a suitable stopping criterion is
met. At this point the output APPs are used to hard-decode the information bits.
Notice that in the iterations the channel information gathered from the observation
of yu, y1. and y» does not change: only the a priori information inputs to the
decoders vary.

By this algorithm, the operation of the individual SISO decoders is relatively
easy, because C; and Cs are weak codes. As such, neither C; nor €z can individu-
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channe_l APP channe.-l APP
observation observation
a priori extrinsic a priori ' extrinsic
information information : information | information
] T

Figure 9.15: General scheme of an iterative turbo decoder for serial concatenation.
P/S denotes a parallel-to-series converter; D; and D, are soft-input, soft-output
decoders for inner code C; and outer code C,, respectively; m denotes the same
interleaver used in the encoder; and w—! denotes its inverse.

ally achieve a high performance. It is their combination that makes for a powerful
code and at the same time allows the decoding task to be split into simpler opera-
tions.

Turbo algorithm for serial concatenation

We assume here that the inner code is systematic, while the outer code is nonsys-
tematic. Recalling Figure 9.7, let u, v denote input and output of C,, respectively;
w £ mv the permuted version of v; and (w, c¢) the output of €;. Finally, let
¥ = (Yw, Y¢) denote the observed vector. The block diagram of a turbo decoder
for serially concatenated codes is shown in Figure 9.15. The operation of this
decoder is similar to that of Figure 9.14; however, the two SISO decoders are dif-
ferent here: D; has the structure illustrated in Figure 9.10, while D,, corresponds
to Figure 9.12.

9.2.2 Convergence properties of the turbo algorithm

Figure 9.16 shows qualitatively a typical behavior of the bit error rate of an iter-
atively decoded turbo code. Three regions can be identified on this chart. In
the low-SNR region, the BER decreases very slowly as the iteration order and the
SNR increase. For intermediate values of SNR, the BER decreases rapidly as the
SNR increases and improves with increasing the number of iterations. This water-
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Figure 9.16: Qualitative aspect of the BER curves vs. /Ny and the number of
iterations for turbo codes.

fall region is where turbo codes are most useful, as their coding gain approaches
the theoretical limit. Finally, for large SNR, an error floor effect takes place: the
performance is dictated by the minimum Hamming distance of the code, the BER-
curve slope changes, and the coding gain decreases.!

Figure 9.17 shows the performance of three turbo codes in the waterfall re-
gion. Their error probabilities are compared with the Shannon limits for the uncon-
strained AWGN channel, as derived in Problem 8 of Section 3 (see also Figure 1.5).

It has been argued [9.15] that the presence of this error floor makes turbo codes not suitable
for applications requiring extremely low BERs. Their poor minimum distance, and their natural
lack of error-detection capability, due to the fact that in turbo decoding only information bits are
decoded (but see [9.26] for an automatic repeat-request scheme based on punctured turbo codes),
make these codes perform badly in terms of block error probability. Poor block error performance
also makes these codes not suitable for certain applications. Another relevant factor that may guide
in the choice of a coding scheme is the decoding delay one should allow: in fact, turbo codes, as well
as LDPC codes, suffer from a substantial decoding delay, and hence their application might be more
appropriate for data transmission than for real-time speech.
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Figure 9.17: Performance of three turbo codes with block length 16,384, obtained
by parallel concatenation of two convolutional codes. Code A has p = 1/4, 16+16
states, and is decoded with 13 iterations. Code B has p = 1/3, 16 + 16 states, and
is decoded with 11 iterations. Code C has p = 1/2, 2 + 32 states, and is decoded
with 18 iterations.

9.2.3 Distance properties of turbo codes

As just observed, for intermediate SNRs the good performance of turbo codes does
not depend on their minimum-distance properties: it is rather affected by their
small error coefficient (small number of nearest neighbors) in their low-weight
words. For high SNRs, on the other hand, the error probability curve of turbo
codes exhibits a “floor” caused by a relatively modest minimum distance.?

Let n denote the block length of the component codes (and hence the interleaver
length), and B the number of parallel codes (B = 2 in all preceding discussions,

2 An error floor may also occur with LDPC codes, caused by near-code words, i.e., n-tuples with
low Hamming weight whose syndrome has also a low weight. See [9.19].
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but we can think of a more general turbo coding scheme). Moreover, let the compo-
nent codes be recursive. Then it can be shown [9.14] that the minimum Hamming
distance grows like n1=2/B. More precisely, given a code €, let €(d) denote the
set of its nonzero words with weight 1,...,d. If we choose at random a parallel
concatenated code C using B equal recursive convolutional codes and the block
length is n, then as n — oo we have, for every € > 0,

lle(n¥5)[=0] -1 and Pl (n!¥5+)

Notice how this result implies that a turbo code with only two parallel branches
has a minimum distance that does not grow as any power of n, whereas if three
branches are allowed, then the growth is n1/33

For serially concatenated codes, the minimum-distance behavior is quite differ-
ent. Let us pick at random a code from an ensemble of serially concatenated turbo
codes. Moreover, let d, denote the free Hamming distance of the outer code. Then
as n — oo we have, for every € > 0,

=0] -0

Plle(nt¥%)|=0] =1 and  P[|e(ni7o)
99

We see that if the outer code has a large d, we can achieve a growth rate close to
linear with n.

= 0] 0 (9.8)

9.2.4 EXIT charts

Since the turbo algorithm operates by exchanging extrinsic messages between two
SISO decoders, its convergence may be studied by examining how these evolve
with iterations. A convenient graphical description of this process is provided by
EXIT charts [9.28], which yield quite accurate, albeit not exact, results, especially
in the waterfall region of the error-probability curve of turbo codes. An EXIT
chart is a graph that illustrates the input—output relationship of a SISO decoder
by showing the transformations induced on a single parameter associated with in-
put and output extrinsic probabilities. The upside of EXIT-chart analyses is that
only simulation of the behavior of the individual decoders is needed, instead of
computer-intensive error counting with the full decoding procedure.

Let us focus on the binary alphabet X = {£1} and assume an AWGN channel
so that the observed signal is

Yy=x+z

3For B = 2, an upper bound to the minimum distance of a turbo code for all possible interleavers
is derived in [9.5].
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with z ~ N(0, 02). Since

5, Plyle=+1)
A = e = 1)
takes value 5
Aly) = Z5(@+2) (9.10)

z

and hence, given z, A is conditionally Gaussian: we write

2 4
Aly) |z ~N <—2a:, —2) (9.11)

Oz Oz

In summary, we may say that A(y) | £ ~ N(u, o?) and that it satisfies the consis-

tency condition [9.25]
p=xo2/2 (9.12)

The above allows us to write

p(A|z) = —(A—z0?/2)*/20% (9.13)

\/_a

EXIT-chart techniques are based on the empirical evidence that extrinsic mes-
sages, when expressed in the form of log-likelihood ratios, approach a Gaussian
distribution satisfying the consistency condition (9.12). In addition, for large block
lengths (and hence large interleavers) the messages exchanged remain approxi-
mately uncorrelated from the respective channel observations over many itera-
tions [9.28]. Under the Gaussian assumption, the extrinsic messages are charac-
terized by a single parameter, which is commonly and conveniently chosen to be
the mutual information exchanged between the LLR and the random variable =
(see [9.29] for experiments that justify this choice):

I(z;A) = Z / A|a:)log (Al2) 55 ©.14)

a:E{:i:l} )

with p(A) = 0.5[p(Alx = —1) + p(Alz = +1)] under the assumption that
takes on equally likely values. In particular, if A is conditionally Gaussian, and the
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Figure 9.18: Plot of the function J(o?) defined in (9.15).

consistency condition (9.12) is satisfied, then I(z; A) does not depend on the value
of x, and we have explicitly I(x; A) = J(c?), where

(oo}
Jo?) & 1- / ;ﬁge*[(w—x"z/?)z/?"z] log(1 + €~"%) dw
—co V

= 1-E[log(1—e™™)] (9.15)

where E is taken with respect to the pdf N (z02/2,02). The function J(o?)
(plotted in Figure 9.18) is monotonically increasing, and takes values from O (for
o — 0)to 1 (for 0 — o). If the assumption of conditional Gaussianity on A is
not made, a convenient approximation of I(z; A), based on the observation of N
samples of the random variable A, is based on (9.15):

N
1
I{z;A)~1— N ;bg (1 + exp(—=ziA;)) (9.16)
Recall now that we have four different messages at the input and output of a
SISO decoder: a priori, channel observation, soft-decision, and extrinsic. We de-
note these messages by 12, u°, u9, and p®, respectively, and by I2, I°, I, and I¢,



294 Chapter 9. LDPC and turbo codes

decoder

Figure 9.19: Computing the transfer function T. GRNG is a Gaussian random
noise generator.

respectively, the mutual informations exchanged between their LLRs and z. We
describe the behavior of a SISO processor used in iterative decoding by giving its
extrinsic information transfer (EXIT) function

I¢ = T(I*, I°) 9.17)

Figure 9.19 schematizes the Monte Carlo derivation of the EXIT chart for a given
code. Choose first the values of 7? and /°. The random vector u of uncoded +1
symbols is encoded to generate the vector x. A Gaussian random noise generator
outputs, for each component z of x, the LLR A° such that

2
A°lz ~N (a:%o-,ag)

where 02 = J~1(I°). Similarly, another Gaussian random noise generator outputs,

for each component u of u, the LLR A® such that
2
A*u ~N (u%@, U§>

where o2 = J~1(I?). These two LLRs correspond to messages entering the SISO
decoder. This outputs the LLRs A9 and A®. Only the latter is retained, and N
values of it are used to approximate [° through (9.16), so no Gaussian assumption
is imposed on A°.

Once the transfer functions of both decoders have been obtained, they are drawn
on a single chart. Since the output of a decoder is the input of the other one, the
second transfer functions is drawn after swapping the axes, as shown in the exam-

ple of Figure 9.20 (here the two decoders are equal). The behavior of the iterative
decoding algorithm is described by a trajectory, i.e., a sequence of moves, along
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Figure 9.20: EXIT chart for a rate-1/2 convolutional code and two values of
Ep/No.

horizontal and vertical steps, through the pair of transfer functions. Iterations start
with no a priori knowledge, so I* = (. Due to the channel observations, the corre-
sponding value of I€ at the output of the first SISO decoder increases with £,/ Np.
The resulting extrinsic message is fed to the second decoder, which corresponds to
moving along a horizontal line joining the two transfer functions. We thus obtain
the value of I° at the output of the second decoder. The corresponding message
is fed back to the first decoder, whose output yields the value of I° obtained by
joining the two curves with a vertical line, and so on.

Figure 9.20 shows two examples of convergence behavior. For £;,/Ny = 0.65 dB,
the two curves intersect, the trajectory is blocked, and we experience no conver-
gence to large values of mutual information (which correspond to small error prob-
abilities). For £,/Ny = 1 dB, instead, we have convergence.

Estimates of the error probability of a coded system can be superimposed on
EXIT charts to offer some extra insight into the performance of the iterative de-
coder. If the LLR A9 is assumed to be conditionally Gaussian, with mean pgq =
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xoﬁ /2 and variance ad2, the bit error rate (BER) can be approximated in the form

Pe) =P(AY>0|z=-1)~Q (@> -Q (ﬂ) (9.18)

a4 2
Since A9 = A° + A® 4 A®, the assumption of independent LLRs leads to
0(21 = a§ + 02 + Ug

which in turn yields

J-L(IoY + J-Y(I2) + J-1(J¢
Pb(e) ~ Q (\/ ( ) 5 ( ) ( ) (9.19)
Notice that, due to (9.11), we have
4 &
2 b
— —4SNR = 8p—=2
o, g S 8pN0

where p is the rate of the concatenated code. Figure 9.21 superimposes the EXIT
chart corresponding to £,/Ny = 1 dB onto a set of constant-BER curves. A com-
parison of this figure with Figure 9.22, obtained by Monte Carlo simulation, shows
a good match between the “true” BERs and those predicted by EXIT charts. In ad-
dition, observing the evolution of the constant-BER curves, one can observe how
traversing the bottleneck region between the two curves corresponds to a slow con-
vergence of the BER. Once the bottleneck is passed, faster convergence of BER is
achieved.

Accuracy of EXIT-chart convergence analysis

In the upper portion of the EXIT chart, extrinsic messages become increasingly
correlated, and the true evolution of I€ deviates from the behavior predicted by the
chart. As correlations depend also on the interleaver size, it is expected that EXIT
analyses become more accurate as this size increases.

9.3 Bibliographical notes

Low-density parity-check codes were introduced by Gallager in his doctoral the-
sis [9.12], and rediscovered in the mid-1990s [9.18]. Reference [9.21] reviews
techniques for constructing LDPC codes whose graphs have large girths. LDPC
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Figure 9.21: EXIT chart as in Figure 9.20, for £,/Ny = 1 dB, superimposed to
constant-BER curves.

decoding algorithms are analyzed in [9.12,9.18]. LDPC codes over nonbinary al-
phabets are examined in [9.8]. Turbo codes, and their iterative decoding algorithm,
were first presented to the scientific community in [9.4]. The iterative (turbo) de-
coding algorithm was shown in [9.17] to be an instance of J. Pearl’s belief propa-
gation in graphs {9.22]. Our presentation of SISO decoders follows [9.23].

The capacity-approaching codes described in this chapter are now finding their
way into a number of practical applications, ranging from UMTS to wireless local-
area networks, deep-space communication, and digital video broadcasting. A list
of practical implementations of LDPC codes can be found in [9.24].

Richardson and Urbanke [9.6] have introduced the study of the evolution of the
probability distribution of the exchanged messages as a tool to study the conver-
gence behavior of turbo algorithms. EXIT charts, which characterize these distri-
butions using a single parameter, were advocated in [9.28]. Application of EXIT
charts to LDPC codes, a topic not considered here, is described in [9.2].

Computation of bounds to the error probability of turbo codes can be found
in [9.9,9.27].
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Figure 9.22: Convergence of a turbo code based on two equal convolutional codes
as in Figure 9.20 with block length 10° (simulation results).

9.4 Problems

1. Once the matrix H of an LDPC code is selected, show how the generator
matrix G can be obtained. Consider separately the cases of H having or not
having full rank. Is G a sparse matrix?

2. Derive EXIT charts for some simple convolutional codes assuming I* = (.
Interpret the shape of the functions.

3. Extend the EXIT-chart analysis to the frequency-flat, slow independent Ray-

leigh fading channel.
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10.1 Preliminaries

We consider a radio system with ¢ antennas simultaneously transmitting one sig-
nal each, and with 7 antennas receiving these signals (Figure 10.1). Assuming

Figure 10.1: Transmission and reception with multiple antennas. The channel
gains are described by the r x t matrix H.

two-dimensional elementary constellations throughout, the channel input—output
relationship is
y=Hx+z (10.1)

where x € Cl,y € C", H € C™* (i.e,, His an r x ¢ complex, possibly ran-
dom, matrix, whose entries h;; describe the gains of each transmission path from a
transmit to a receive antenna), and z is a circularly symmetric, complex Gaussian
noise vector. The component z;, ¢ = 1, ..., ¢, of vector x is the elementary signal
transmitted from antenna 7; the component y;, j = 1,...,r, of vector y is the
signal received by antenna j. We also assume that the complex noise components
affecting the different receivers are independent with variance Vg, i.e.,

E[zz'] = NoIL, (10.2)

where I, is the » x r identity matrix, and the signal energy is constrained by
E[x'x] = t€, where & denotes the average energy per elementary signal. The
additional assumption that E[|h;;|%] = 1 for all 4, 5,! yields the average signal-to-

!'The assumption of equal second-order moments for the channel coefficients facilitates the anal-
ysis but is somewhat restrictive, as it does not allow consideration of antennas differing in their
radiation patterns.
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noise ratio (SNR) at the receiver (see (3.28))

=t—— 10.3
with Ry the bit rate and W the Shannon bandwidth of the elementary signals.
Since we assume here N = 2, we have R,/W = log M, with M the size of the
elementary constellation, and hence

€
=t— 104

¢ N (10.4)

Then, rather than assuming a power or energy constraint, we may refer to an SNR

constraint, i.e.,
E[x'x] < ¢Ng (10.5)

For later reference, we define
m £ min{¢,r} n 2 max{t,r} (10.6)

Explicitly, we have, from (10.1),
t
yi =3 humitz, j=1,...,7 (10.7)
i=1

which shows how every component of the received signal includes a linear combi-
nation of the signals emitted by each antenna. We say that y is affected by spatial
interference, generated by the signals transmitted from the various antennas. This
interference has to be removed, or controlled in some way, in order to separate the
single transmitted signals. We shall see in the following how this can be done:
for the moment we may just observe that the tools for the analysis of multiple-
antenna transmission have much in common with those used in the study of other
disciplines centering on interference control, such as digital equalization of linear
dispersive channels (where the received signals are affected by intersymbol inter-
ference: see, e.g., [10.4]) or multiuser detection (where the received signals are
affected by multiple-access interference: see, e.g., [10.61]). Notice, however, the
peculiar feature of multiple-antenna systems, which allow for coérdination among
transmitted signals: this can be exploited to simplify the receiver’s operation.

10.1.1 Rate gain and diversity gain

The upsides of using multiple antennas can be summarized by defining two types
of gain. As we shall see in the following, in the presence of fading, a multiplicity
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Figure 10.2: Spatial multiplexing and diversity obtained by transmission and re-
ception with multiple antennas.

of transmit antennas creates a set of parallel channels, that can be used to poten-
tially increase the data rate up to a factor of min{¢,r} (with respect to single-
antenna transmission) and hence generate a rate gain. This corresponds to the
spatial multiplexing illustrated by Figure 10.2. Here the serial-to-parallel converter
S/P distributes the stream of data across the transmit antennas; after reception, the
original stream is reconstituted by the parallel-to-serial converter P/S? The other
gain is due to the combination of received signals that are independently faded
replicas of a single transmitted signal, which allows a more reliable reception. We
call diversity gain the number of independent paths traversed by each signal, which
has a maximum value r¢. We hasten to observe here that these two gains are not
independent, but there is a fundamental trade-off between the two: and actually it
can be said that the problem of designing a multiple-antenna system is based on
this trade-off. As an example, Figure 10.3 illustrates the diversity—rate trade-off for
a multiple-input multiple-output (MIMO) system with ¢ = 2 transmit and r = 2
receive antennas. Figure 10.3(a) assumes the channels are orthogonal so that the
rate is maximum (twice as large as the single-channel rate), but there is no diver-
sity gain, since each symbol traverses only one path. Figure 10.3(b) assumes that
the transmitter replicates the same signal over the two channels so that there is no

*Here we limit ourselves to considering only transmissions with the same rate on all antennas.
However, different (and possibly adaptive) modulation rates can also be envisaged.
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TSP
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Figure 10.3: Diversity—rate trade-off with r = t = 2. (a) Transmission of two
signals over two orthogonal channels. (b) Transmission of one signal over four
paths.

rate gain, but the diversity is now four, since the signal traverses four independent
paths. We shall discuss this point in more depth in Section 10.14.
The problems we address in this chapter are the following:

1. What is the limiting performance (channel capacity) of this multiple-antenna
system?

2. What is its error probability?
3. How can we design “space-time” codes matched to the channel structure?

4. How can we design architectures allowing simple decoding of space—time
codes, and what is their performance?

10.2 Channel models

Here we focus on two models simple enough to allow tractable analysis.
For fast, frequency-nonselective channels, we have, if the index n denotes dis-
crete time,
Yn = Hpxp + 2p (10.8)

with H,,, —0o < n < oo, an ergodic random process. This channel is consequently
ergodic.
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For slow, frequency-nonselective channels, the model becomes
yn = Hx,, + 2z, (10.9)

and each code word, however long, experiences only one channel state. This fading
model is nonergodic.

10.2.1 Narrowband multiple-antenna channel models

Assume that the r x £ channel matrix H remains constant during the transmission of
an entire code word. Analysis of this channel requires the joint pdf of the r¢ entries
of H. A number of relatively simple models for this pdf have been proposed in the
technical literature, based on experimental results and analyses. Among these we
consider the following:

Rich scattering The entries of H are independent, circularly symmetric complex
zero-mean Gaussian random variables.

Completely correlated The entries of H are correlated, circularly symmetric com-
plex zero-mean Gaussian random variables. To specify this model, the cor-
relation coefficients of all pairs of elements are required.

Separately correlated The entries of H are correlated, circularly symmetric com-
plex zero-mean Gaussian random variables, with the correlation between two
entries of H separated in two factors accounting for the receive and transmit
correlation:

E[(H),;(H)j ] = (R),#(T);,5 (10.10)
for two Hermitian, nonnegative definite matrices R (r xr) and T (¢ xt). This
model is justified by the fact that only the objects surrounding the receiver
and the transmitter cause the local antenna-elements correlation, while they
have no impact on the correlation at the other end of the link. In other words,
this model does not account for correlation between transmit and receive
antennas: for this to be actually negligible, the distance between transmitter
and receiver must be large. The channel matrix can be expressed in the form

H = RY?H,T!/? (10.11)
where H,, is a matrix of uncorrelated, circularly symmetric complex zero-

mean Gaussian random variables with unit variance, and (-)}/2 denotes ma-
trix square root.> For a fair comparison of different correlation cases, one

3The square root of matrix A > 0 whose singular-value decomposition (SVD: see Appendix B)
is A = UDV' is defined as A'/2 2 UD'/2V*,
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should assume that the total average received power is constant, i.e.,

E(Tr (TH,RHL)] = ) E[(T)g(Hu)jr(R)re(Hu)f)
1,5,k
= > (TR
ik
= Tr(T)Tr (R)
tr (10.12)

Since H is not affected if T is scaled by a factor a 7 0 and R. by a factor

a1, one can assume, without loss of generality, that

Tr(T)=t Tr(R)=r (10.13)

Uncorrelated keyhole The rank of H may be smaller than min{¢,r}. A special
case occurs when H has rank one (a keyhole channel). Assume H = hrhz R
with the entries of the vectors h, and h; being independent, circularly sym-
metric complex zero-mean Gaussian random variables. This model applies
in the presence of walls where the propagating signal passes through a small
aperture, such as a keyhole. In this way, the incident electric field is a lin-
ear combination of the electric fields arriving from the transmit antennas and
irradiates through the hole after scalar muitiplication by the scattering cross-
section of the keyhole. As a result, the channel matrix can be written as the
product of a column vector by a row vector. Similar phenomena arise in
indoor propagation through hallways or tunnels.

Rice channel The channel models listed above are zero-mean. However, for cer-
tain applications, the channel matrix H should be modeled as having entries
whose means are nonzero.

10.2.2 Channel state information

As we discussed in Chapter 4, a crucial factor in determining the performance of
transmission over a channel affected by fading is the availability, at the transmitting
or at the receiving terminal, of channel-state information (CSI), that is, the value
taken on by the fading gains in a transmission path. In a fixed wireless environment,
the fading gains can be expected to vary slowly, so their estimate can be obtained
by the receiver with a reasonable accuracy, even in a system with a large number of
antennas, and possibly fed back to the transmitter. In some cases, we may assume
that a partial knowledge of the CSI is available. One way of obtaining this estimate
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is by periodically sending pilot signals on the same channel used for data (these
pilot signals are used in wireless systems also for acquisition, synchronization,
etc.). We shall address this issue in Section 10.7.

10.3 Channel capacity

In this section we evaluate the capacity of the MIMO transmission system de-
scribed by (10.1). Several models for the matrix H can be considered:

(a) H is deterministic.

(b) H is a random matrix, and each channel use (viz., each transmission of one
symbol from each of the ¢ transmit antennas) corresponds to an independent
realization of H (ergodic channel).

(c) H is a random matrix, but once it is chosen it remains fixed for the whole
transmission (nonergodic channel).

When H is random (cases (b) and (¢) above) we assume here that its entries
are iid and ~ N.(0, 1), i.e., Gaussian with zero-mean, independent real and imag-
inary parts, each with variance 1/2. Equivalently, each entry of H has uniform
phase and Rayleigh magnitude. This choice models Rayleigh fading with enough
separation between antennas such that the fades for each TX/RX antenna pair are
independent. We also assume, unless otherwise stated, that the CSI (that is, the
realization of H) is known at the receiver, while only the probability distribution
of H is perfectly known at the transmitter (the latter assumption is necessary for
capacity computations, since the transmitter must choose an optimum code for that
specific channel).

10.3.1 Deterministic channel

Assume first that the nonrandom value of H is known at both transmitter and re-
ceiver. We derive the channel capacity by maximizing the average mutual infor-
mation /(x;y) between faput and output of the channel over the choice of the dis-
tribution of x. Singular-value decomposition of the matrix H yields (Section B.6.4
of Appendix B)

H=UDV' (10.14)

where U € C™*" and V € C!*! are unitary, and D € R"*? is diagonal. We can
write
y =UDVix +z (10.15)
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—

Figure 10.4: Ilustration of water-filling. The height of each patch is \; 1 The
region is flooded to a level . by using the total amount of water C.

Premultiplication of (10.15) by U shows that the original channel is equivalent to
the channel described by the input—output relationship
y=Dx+2z (10.16)

where y £ Uly, x £ Vix (so that E[x'x] = E[x'x]), and z £ U'z ~
N(0, NoI,.). Now, the rank of H is at most . = min{t,r}, and hence, at most,

m of its singular values are nonzero. Denote these by v/, i = 1,...,m, and
rewrite (10.16) componentwise in the form

o VNEi+E, i=1,...,m

.%—{07 i=m+4+1,...,r (10.17)

which shows how this channel is equivalent to a set of m parallel independent
channels, each corresponding to a nonzero singular value of H. In addition, we see
that, for ¢ > m, §; is independent of the transmitted signal, and ; plays no role.

Maximization of the mutual information requires independent Z;,7 = 1,...,m,
each with independent Gaussian, zero-mean real and imaginary parts. Their SNRs
should be chosen, as indicated in Section A.5 of Appendix A, via water-filling
(Figure 10.4):

1o _
G2 JTTSE %= (=271, (10.18)

where (-); = max(0, -). With u chosen so as to meet the SNR constraint, we see
that the SNR, as parametrized by p, is

SO N (10.19)

i
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and the capacity takes on the value (in bits per dimension pair)

C=> log(1+¢) (10.20)

Observation 10.3.1  Since the nonzero eigenvalues of HH are the same as those
of HH!, the capacities of the channels corresponding to H and to H are the same.
A sort of “reciprocity” holds in this case.

Example 10.1

Take t = r = m, and H = I,,. Due to the structure of H, there is no spatial
interference here, and transmission occurs over m parallel additive white Gaussian
noise (AWGN) channels, each with SNR ¢ /m and hence with capacity log(1+¢/m)
bit/dimension pair. Thus,

C =mlog(1+¢{/m) (10.21)

We see here that we have a rate gain, since the capacity is proportional to the num-
ber of transmit antennas. Notice also that, as m — o0, the capacity tends to the
limiting value C = ¢ loge. W]

Example 10.2

Consider as H the all-1 matrix, a limiting case of spatial interference. Its SVD is

V1/r

H-= W (Vrt) [V1/t---/1]4] (10.22)

1/r

Here we have m = 1, v/A; = V/rt, and hence A\; = rt. Thus, for ¢ > 0,

1 1
<=<u—ﬁ)+=u—ﬁ (10.23)

and hence the capacity is

C =log [(C + %) rt] = log(l +rt{) (10.24)
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The signals achieving this capacity can be described as follows. Vector X has only

one component, and
1
1| 1
V= 71 (10.25)
1

Thus, the components of x = VX are all equal, i.e., the transmit antennas all send
the same signal. Each transmit antenna sends an energy £. Because of the structure
of H, the signals add coherently at the receiver, so at each receiver we have the
voltage tv/€ and hence the energy t2€. Since each receiver sees the same signal,
and the noises are uncorrelated, the overall SNR is 7t2€ /No = rt(, as shown by
the capacity formula (10.24). In this case we see no rate gain, but a diversity gain is
obtained through proper combination of the received signals. a

10.3.2 Independent Rayleigh fading channel

We assume here that H is independent of both x and z, with entries ~ N.(0, 1),
and that for each channel use an independent realization of H is drawn so that the
channel is ergodic. If the receiver has perfect CSI, the mutual information between
the channel input (the vector x) and its output (the pair y, H), is (Appendix A)

I(x;y,H) =I(x;H) + I(x;y | H) (10.26)
Since H and x are independent, then I(x; H) = 0, and hence
I(xy,H) = I(x;y | H) = Eg[I(x;y | H = H)] (10.27)

where H denotes a realization of the random matrix H. The maximum of the
mutual information I(x;y, H), taken with respect to the distribution of x, yields
the channel capacity C. From the results of Appendix A we know that the capacity,
achieved by a transmitted signal x ~ N¢(0, (¢/¢)1;), is equal to

C=E [log det (L + %HHT” (10.28)

The exact computation of (10.28) will be examined soon. For the moment, note
that, if r is fixed and ¢ — oo, the strong law of large numbers yields

1
ZHHT I, as. (10.29)
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Thus, as t — oo, the capacity tends to

logdet (I, + (I,) = log(l+¢)"
= rlog(1+() (10.30)

and hence increases linearly with r, thus exhibiting a rate gain (compare this result
with (10.24), where C increases with r only logarithmically).

One may be tempted to interpret the above result by qualifying fading as bene-
ficial to MIMO transmission, since independent path gains generate r independent
spatial channels. Actually, high capacity is generated by a multiplicity of nonzero
singular values in H, which is typically achieved if H is a random matrix, but not
if it is deterministic.

Exact computation of C

Exact calculation of (10.28) yields

m—1 m f+ptn—m L+p
C = bye 'Z:z: > (=1) (62ﬁ+" m)! (10.31)
¢=0 p=0 p=0 e

0] () (o) (2t ) (o)

oo
Bu@) 2 [ ey
1

is the exponential integral function of order n.

where

Proof

Observe first that, since the matrices HH' and HTH share the same set of eigenval-

ues, we have
Covent C oot
det [ I, + ZHH =det { I, + ZH H

Next, define the m x m matrix

)
Wé{HH’r<t (10.32)

H'H, t<r

where again m £ min{t, r}. This is a nonnegative definite random matrix and thus
has real, nonnegative random eigenvalues. The joint pdf of the ordered eigenvalues
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of W is known (see Appendix C, Equation (C.28)). The expectation to be computed
can be expressed in terms of one of the unordered eigenvalues of W (say, A1) as
follows:

C’=1E10gH<1+%)\i) E) log (1+%)\i)
i=1

i=1
= Zm:IE log (1 + %A,)
i=1
= mElog(l+ %)\1) (10.33)
To compute the marginal pdf of A1, use
p(/\l):/---/p()\l,)\g,--- Am)dAs - A (10.34)

To perform this computation, we resort to an orthogonalization of the power se-
quence 1, \, A2, ..., A™~1 in the Hilbert space of real functions defined in (0, cc)
with inner product

(f,9) = /0 F)gM)Ae™ > dA (10.35)

Explicitly, we express the pdf (10.34) in terms of the polynomials

k!
Lrm(\) (10.36)

D1 2 e

Here, L (A) is an associated Laguerre polynomial [10.54], defined as
1

dk:
« . Ay —a -y k+o
L) = 51 € A E (e7*AFT)

k k Al
Z(—l)“(ktcg)ﬁ (10.37)

£=0

The polynomials ¢;(\) satisfy the orthonormality relation
o0
[ a0 meran = s, (1039)
0

In order to calculate (10.34), we first observe that the term H;nm +1(A — Aj) ap-
pearing in (C.28) can be expressed as the determinant of the Vandermonde matrix

1 1
M o Am
D1, A2, Am) £ ) X (10.39)

m—1 m—1
/\l T Am,
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SO we can write

det[D(A1, Az, ... Am) 2 [ A7~ e

(10.40)
with T, (a) £ H;’;};l T'(a — 1). Next, with row operations we transform matrix
D()\l, A2, ..ty )\m) into

P(AL, A2, 5 Am) = m

1 (M) - $1(Am)
DA, Az, ..y Am) 2 : : (10.41)

so the determinant of D equals (apart from multiplicative constants generated by
the row operations) the determinant of D, that is,

detD(Ar, .., Am) = D (=1 ] s (M) (10.42)
o =1

where the summation is over all permutations of {1, ..., m}, and

(a) = 0, «ais aneven permutation
1, otherwise

Thus, with ¢(m, n) a normalization constant, we have

P Am) = c(m,n) Y (—1 ”<°'>+“<ﬂ>H¢ )08 (A)AT e
a,f
(10.43)

and, integrating over Ag, .. ., A, we obtain

p(\) = clmyn) Yy (1T Og,, (M), A)AT e [] dacs,

a,f =2
= c(m,n)(m=1)1Y_ ¢F(A)A e M
=1
= I3 g uppme (10.44)
m =1

where the second equality follows from the fact that, if a; = (3; for ¢ > 2, then also

= [31 (since both o and (3 are permutations of the same set) and thus & = 3. The
last equality follows from the fact that ¢2(A1)A\]~™e ™™ integrates to unity, which
entails ¢(m, n) = 1/m!. In conclusion, the capacity can be given the form

C= / log (1+ )Z (k+:' m)'[L” m)PAP e A dA  (10.45)
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where m £ min{¢, 7}, n £ max{t,r}.
Consider now the Christoffel-Darboux identity, valid for orthonormal polyno-
mials [10.54]:

A ¢m+1(:v)¢m() Om(T)bm+1(y) (10.46)

T—Yy

Z ¢r(2)Px(y) =

k=1

where A denotes the coefficient of -1 in ¢4 (z). Taking the limit as y — z, the
above identity yields

> (@)’ = 5o (@ (@) — ma(@p(@] (1047
k=1 m

When specialized to associated Laguerre polynomials, (10.36) and (10.37) yield
(~1)t1

A =
T k- Dlk—1+a)
$0
o 2 m! o o o [ i
> die) = W[Lm( N5 () = L ()L ()))
m! x (o] (21 a
where we used the relation [Lg(z)]’ = L{*](z) [10.54]. Then, we can rewrite
Equation (10.45) as
- n_l), / (LA VLA () — IR (N Lo (V)
log (1 + %A) Anme= A g (10.49)

and further expand it using (10.37) as follows:
m—1 m
_ m! (—1)b+n ¢ PRI

(nt ) (o)~ (w22t ) (an)] 0o

Finally, using the equality (from [10.50])

00 w
/ In(1 + CA)Me  dh = ple!/ " Epi(1/¢) (10.51)
]

p=0
we obtain (10.31). O
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Some capacity values for ¢ = 20 dB are plotted in Figure 10.5 and 10.6. Special
cases, as well as asymptotic approximations to the values of C, are examined in
the examples that follow.

70 T T T T T T T T T

(=]
N
F .
[o23
for]
-
o
-
el
-
S
-
(o]
—
@®
n
o

Figure 10.5: Capacity (in bit/s/Hz, or bit/dimension pair) of the ergodic Rayleigh
MIMO channel with ¢ = 20 dB.

Example 10.3 (r > t)
Consider first ¢ = 1, so that m = 1 and n = r. Application of (10.31) yields

C =log(e) Yy e Ex(1/C). (10.52)

k=1
This is plotted in Figure 10.7. An asymptotic expression of C, valid as r — oo,
can be obtained as follows. Using in (10.52) the approximation, valid for large k,

" 1
we obtain
u 1 |
C ~ log(e) VT log(e)/0 7ite dr =log(1+r¢)  (10.54)

k=1
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Figure 10.6: Capacity (in bit/s/Hz, or bit/dimension pair) of the ergodic Rayleigh
MIMO channel with ¢ = 20 dB.

This approximation to the capacity is also plotted in Figure 10.7. We see here that
if t = 1 the capacity increases only logarithmically as the number of receive anten-
nas is increased—hardly an efficient way of enhancing capacity. In addition, this
capacity is much smaller than that of a system with ¢ = r. Increasing r generates
an increase of SNR from ( to ¢, but no rate gain.

For finite ¢ > 1 (and  — 00), we set W = H'H — rI, a.s. Hence, the
following asymptotic expression holds:

C = logdet (I, + ((/t)W) ~ tlog(1 + (¢/t)r) (10.55)
O

Example 104 (t > r)
Consider first 7 = 1, so that m = 1 and n = ¢. Application of (10.31) yields

C = log(e) z e/ Eg(t/¢)

k=1
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SNR=30 dB

10

SNR=20 dB

SNR=10dB

SNR=0 dB

Figure 10.7: Capacity (in bit/s/Hz, or bit/dimension pair) of the ergodic Rayleigh
MIMO channel witht = 1 (continuous line). The asymptotic approximation C' ~
log(1 + Cr) is also shown (dotted line).

This is plotted in Figure 10.8. Proceeding as in Example 10.2, an asymptotic ex-
pression of C' as ¢ — oo can be obtained, yielding C ~ log(1l + ¢). This ap-
proximation to the capacity is also plotted in Figure 10.8. Since log(1 + () is the
capacity of the AWGN channel, we can see that letting ¢ — oo closes the gap be-
tween the AWGN channel and the independent Rayleigh fading channel. Since this
gap is not wide (see Figure 4.6), having a large ¢ when » = 1 corresponds to an
inefficient expenditure of spatial resources (recall that we are assuming no CSI at
the transmitter).

For finite » > 1 (and ¢ — ©0), we have the result (10.29). [

Example 10.5 (r = 1)
With r =t we have m = n = r, so application of (10.31) yields

r—=1 r 24+p

e u
¢ = rioge)y >3 I e, e

£=0 u=0 p=0

(2)05) - @) 6)]
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SNR=30 dB

O 6f SNR=20 dB N

SNR=10dB

SNR=0 dB

0 2 4 6 8 10 12 14 16 18 20

Figure 10.8: Capacity (in bit/s/Hz, or bit/dimension pair) of the ergodic Rayleigh
MIMO channel with r = 1 (continuous line). The asymptotic approximation C' ~
log(1 + () is also shown (dotted line).

The capacity is plotted in Figure 10.9. g

The results of Figure 10.9 show that capacity increases almost linearly with
m 2 min{t,r}. This fact can be analyzed in a general setting by showing that,
when ¢ and 7 both grow to infinity, the capacity per antenna tends to a constant. To
prove this, observe that (10.33) becomes

¢ E [1og (1 n le/)] (10.56)
m t
where v £ \;/m is now a random variable whose pdf is known (see Theo-
rem C.3.2, Appendix C): as m — oo and n/m approaches a limit 7 > 1,
1
p(v) = —/(vy —v)(v —v_) (10.57)

2nv

with

ve £ (1 /1)
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Figure 10.9: Capacity with independent Rayleigh fading and t = r antennas.

for v < v < v,. With the aid of some algebra, expectation in (10.56) can be
computed in closed form [10.43, 10.62], yielding

% ~ (log(w+¢) + (1 — a)log(1 — w_) — (w-c)loge) -max{l,1/a} (10.58)

where
wy = (wx w? —4/a)/2 (10.59)
and
N 1 1
w=14+—+4- (10.60)
a ¢

This asymptotic result can be used to approximate the value of C for finite 7, ¢,
by setting « = t/r. This approximation provides values very close to the true
capacity even for small r and ¢, as shown in Figures 10.10 and 10.11. The figures
show the asymptotic value of C/m (for t,r — oo with ¢t/r — «) versus « and the
nonasymptotic values of C/m corresponding to 7 = 2 and 4, respectively.
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Figure 10.10: Asymptotic ergodic capacity per antenna (C/m) with independent
Rayleigh fading as t,r — oo and t/r — « (solid curves). The exact ergodic
capacity per antenna for r = 2 is also shown for comparison (x ).

Observation 10.3.2 We can observe, from (10.58) and a modicum of algebra,
that, for large SNR, i.e., for { — oo, the ergodic capacity is asymptotically equal
to mlog : comparing this result with the asymptotic capacity of the single-input,
single-output channel C ~ log{ (see Section 4.2.2), we see that use of multiple
antennas increases the capacity by a factor m. That is, multiple antennas generate
m independent parallel channels and hence a rate gain . This explains why m
is sometimes called the number of degrees of freedom generated by the MIMO
system.

Observation 10.3.3 For the validity of (10.58), it is not necessary to assume that
the entries of H are Gaussian, as needed for the preceding nonasymptotic results:
a sufficient condition is that H have iid entries with unit variance (Appendix C,
Theorem C.3.2).
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Figure 10.11: Same as Figure 10.10, but r = 4.

Observation 10.3.4 The reciprocity valid for deterministic channels (Observa-
tion 10.3.1) does not hold in this case. If C(r, ¢, () denotes the capacity of a chan-
nel with ¢ transmit and r receive antennas, and SNR (, we have

C(a,b,(b) = C(b, a,(a) (10.61)

Thus, for example, C(r, 1, ¢ ) = C(1,7,r(), which shows that with transmit rather
than receive diversity we need r times as much transmit power to achieve the same
capacity.

Observation 10.3.5 Choose ¢ = r = 1 as the baseline; this yields one more bit
per dimension pair for every 3 dB of SNR increase. In fact, for large ¢,

C =log(l+¢)~log(¢ (10.62)
and hence, if ( — 2¢ we have
log(2¢) =1+ log(¢ (10.63)

For multiple antennas with ¢ = r, (10.56) shows that for every 3 dB of SNR in-
crease we have ¢ more bits per dimension pair.
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10.4 Correlated fading channels

The separately correlated MIMO channel model was introduced in Section 10.2.1.
The entries of the channel matrix are correlated, circularly symmetric, complex
zero-mean Gaussian random variables, and the channel matrix can be written as

H = RY/?H,T/? (10.64)

where H,, is a matrix of independent, circularly symmetric complex zero-mean
Gaussian random variables with unit variance. Calculation of the ergodic capacity
in this case is an open problem, its solution being known only for some special
cases. A lower bound C* to capacity can be obtained under the constraint that
the signals across the transmit antennas are independent (if the correlations among
the entries of H are unknown at the transmitter, then independent signal are the
sensible choice, and hence C* yields the actual capacity). We have

C*=FE [log det (IT + %HUTHLR)] (10.65)

In the special case ¢ = r, for high SNR the following asymptotic approximation
can be derived [10.50]:

C* ~ mlog(¢/t) + log(m!) + log det (TR) (10.66)

This result can be interpreted by saying that, when ¢ = r = m, the asymptotic
loss in C* due to correlation is log det (TR)/m bit/s/Hz. To prove that correlation
actually causes a loss, let £;,7 = 1,...,m, denote the positive eigenvalues of T,
and recall the trace constraint (10.13). We obtain

det (T)V/™ = Ht:/m < —%Zti =1
i i

Since a similar result applies to R, we obtain
—logdet(TR)/m > 0

with equality if and only if T = R = I,,,. This confirms that, under the “fair com-
parison” conditions dictated by (10.13), the asymptotic power loss due to separate
correlation is always nonnegative and is zero only in the uncorrelated case. This
proves the following asymptotic (in the SNR) statements:

e (Separate) correlation degrades system performance.
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o The linear growth of capacity with respect to the minimum number of trans-

mit/receive antennas is preserved.

The above can be extended to the case ¢ # r [10.50].

Example 10.6

Consider the case of a constant separately correlated m x m MIMO fading channel

with correlation matrices

and

ER ER

ErT
Er

ER
&R

1

Some algebra leads to the asymptotic approximation

C ~ mlog(¢/t) + log(m!) + (m — 1) log(1 — e7)

(10.67)

(10.68)

+log(l —er + mer) + (m — 1) log(l — er) +log(l — er + meRg)

When m is large, the asymptotic capacity loss is about

log[(1 ~er)(1 —er)]

10.5 A critique to asymptotic analyses

The previous results derived under the assumption 7 — oo should be taken cum
grano salis. Our assumption that the entries of the channel-gain matrix H are
independent random variables becomes increasingly questionable as r increases.
In fact, for this assumption to be justified, the antennas should be separated by
some multiple of the wavelength, which cannot be obtained when a large number of
antennas is packed in a finite volume. Thus, as r increases, the effects of correlation
invalidate the assumption of independent channel gains. In addition, if the variance
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of the entries of H does not depend on r, increasing 7 leads to an increased total
received power, which becomes physically unacceptable beyond a certain value.
It follows that capacity calculations for large r and a finite volume become quite
involved. A simple, yet instructive, analysis is possible if the effects of varying
correlation are disregarded and a MIMO system is assumed whereby not only the
total transmit power remains constant as ¢ increases but also the average received
power remains constant when r increases [10.16]. This is obtained by rescaling H
by a factor r~1/2 5o that the capacity (10.28)—(10.33) becomes

¢ ¢ ¢
C=E [log det (Ir + EHH*” => Elog (1 + ﬁxl) (10.69)

i=1

One simple heuristic way of dealing with this situation consists of rewriting C' in
the form

C=E [Iog det (It + %HTHH

and observing that, due to the strong law of large numbers, (1/7)HH — I, almost
surely. Thus,
C — tlog(1 + ¢/t) (10.70)

that is, the channel is transformed into a set of ¢ independent parallel channels, each
with capacity log(1 + ¢/t). As t also grows to infinity, from (10.70) we obtain

C — (loge (10.71)

a conclusion in contrast with our previous result that capacity increases linearly
with the number of antennas.

10.6 Nonergodic Rayleigh fading channel

When H is chosen randomly at the beginning of the transmission, and held fixed
for all channel uses, average capacity has no meaning, as the channel is nonergodic.
In this case the quantity to be evaluated is, rather than capacity, outage probability,
that is, the probability that the transmission rate p exceeds the mutual information
of the channel. The instantaneous mutual information is the random variable

C(H) = log det (Ir + %HHJ’) (10.72)

and the outage probability is defined as

Powt(p) £ P(C(H) < p) (10.73)
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The maximum rate that can be supported by the channel with a given outage prob-
ability is referred to as outage capacity.

The evaluation of (10.73) should be done by Monte Carlo simulation. However,
one can profitably use an asymptotic result which states that, as ¢ and r grow to
infinity, the instantaneous mutual information C(H) tends to a Gaussian random
variable. Thus, by computing its asymptotic mean pc and variance a%, one can
characterize its asymptotic behavior. The value of this asymptotic result is strongly
enhanced by the fact that C(H) is very well approximated by a Gaussian random
variable even for small numbers of antennas. Thus, the outage probability for any
pair ¢, r is given by

Pout(p) = Q (“C — p) (10.74)

agc
where
pc = —t{(l + B) log w + qoro log e + log ro + ﬁlog(qo/ﬁ)}
o0& & —loge-log(l— gor5/B)

expressed in bit/dimension pair and (bit/dimension pair)?, respectively, with w =

V1/¢, 8% o7, and

B—1—w?+./(8—1—w??+4w23

2w 10.75
1-8—w?++/(1-8—w?)?+ dw? ( )

2w

9 =

rg =

Figure 10.12, which plots P,y versus ¢ for r = ¢ = 4 and two values of SNR,
shows the quality of the Gaussian approximation for r = ¢t = 4 and a Rayleigh
channel.

Based on these results, we can use (10.74) to approximate closely the outage
probabilities as in Figures 10.13 and 10.14. These figures show the rate that can be
supported by the channel for a given SNR and a given outage probability, that is,
from (10.74):

p=pc—0cQ " (Pout) (10.76)

Notice how, as r, t increase, the outage probabilities curves come closer to each
other: this fact can be interpreted by saying that, as 7 and ¢ grow to infinity, the
channel tends to an ergodic channel.

Figure 10.15 shows the outage capacity (at P,y = 0.01) of a nonergodic Ray-
leigh fading MIMO channel.



10.6. Nonergodic Rayleigh fading channel 327

/ SNR=10dB SNR =20 dB

o

Figure 10.12: Outage probability forr = t = 4 and a nonergodic Rayleigh channel
vs. p, the transmission rate in bits per dimension pair. The continuous line shows
the results obtained by Monte Carlo simulation, while the dashed line shows the
normal approximation.

10.6.1 Block-fading channel

Here we take the approach of choosing a block-fading channel model, introduced
in Section 4.3 and shown in Figure 10.16. Here the channel is characterized by
the F matrices Hg, k = 1, ..., F, each describing the fading gains in a block. The
channel input-output equation is

yi[n] = Hixg[n] + 2z [n] (10.77)

fork =1,..., F (block index) and n = 1,..., N (symbol index along a block),
Yk, Zr € C", and x;, € C'. Moreover, the additive noise z[r] is a vector of circu-
larly symmetric complex Gaussian RVs with zero mean and variance NVy: hence,

E(zi[n]z}[n]] = NoL,
It is convenient to use the SVD
H; = U;D V] (10.78)

where Dy, is an r X ¢ real matrix whose main-diagonal entries are the ordered
singular values \/Ax 1 2> - > \/ Ak m. With Ay ; the ith largest eigenvalue of the
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Figure 10.13: Transmission rate that can be supported with + =t = 4 and a given
outage probability by a nonergodic Rayleigh channel. The results are based on the
Gaussian approximation.

Hermitian matrix HkHT, and m = min{r,t}. Since Uy, and V are unitary, by
premultiplying y[n] by U}LC the input—output relation (10.77) can be rewritten in
the form

Vi[n] = DgXg[n] + Zg[n] (10.79)

where §x[n] £ Ulyp[n], Xefn] 2 Vixi[n], Z[n] 2 Ulz[n), and Z[n] ~
Ne(0, NolI,.) since

E[Zx[n)Zx[n]T] = UTE[Z [n]Zk[n]T]U = NI,

No delay constraints. When the random matrix process {Hy }f_, is iid, as F —
oo the channel is ergodic, and the average capacity is the relevant quantity. When
the entries of the channel matrices are uncorrelated, and perfect CSI is available to
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Figure 10.14: Transmission rate that can be supported withr =t = 16 and a give

outage probability by a nonergodic Rayleigh channel. The results are based on the
Gaussian approximation.

the receiver only, this is given by

C=E

3 log (1 + ;,\” (10.80)

i=1

If perfect CSI is available to transmitter and receiver,

C=E {Z (log(u/\i))+:| (10.81)

i=1

where 1 is the solution of the water-filling equation

E !Z(u - 1/Ai)+} =¢ (10.82)
i=1

For all block lengths N = 1,2, .. ., the capacities (10.80) and (10.81) are achieved
by code sequences with length Nt with F' — oc. Capacity (10.80) is achieved



330

Chapter 10. Multiple antennas

400

1%-outage capacity [bit/s/Hz]
g 8 & 8

—
o
=]

50

SNR=24dB

Figure 10.15: QOutage capacity (at P,,; = 0.01) with independent Rayleigh fading

and r = t antennas.
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Figure 10.16: One code word in an F'-block fading channel.

by random codes whose symbols are iid complex ~ N.(0, (/t). Thus, all antennas
transmit the same average energy per symbol. Capacity (10.81) can be achieved by
generating a random code with iid components ~ N,(0, 1) and having each code
word split into F blocks of N vectors % [n] with ¢ components each. For block &,
the optimal linear transformation

Wi zvkdiag(\/ Ck:,lr") V Ck:,mv 0770) (10.83)
t—m

is computed, where (x; £ (14 — 1/Mx4)+. The vectors xx[n] = WyXg[n] are
transmitted from the ¢ antennas. This optimal scheme can be viewed as the con-
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catenation of an optimal encoder for the unfaded AWGN channel, followed by
a linear transformation (“beamforming”) described by the weighting matrix Wy,
varying from block to block [10.6].

Delay constraints. Consider now a delay constraint that forces F' to take on a
finite value. Define A 2 {Ag;}™ ., T 2 {¢i}i77._,, the instantaneous
mutual information

F m
I(A,T) 2 - D0 log(L+ Ak iyi) (10.84)

F m
(r 2 %: PP (10.85)

Assuming that the receiver has perfect knowledge of the CSI (and hence of A),
we can define a power allocation rule depending on A such that (; ; and (r are
functions of A. We may consider two power constraints:

¢r(A) < ¢ (short-term) (10.86)
E¢r(A)] < ¢ (long-term) (10.87)

The optimum power allocation rules minimizing the outage probability
Pous(p £ P(I(A,T) < p) (10.88)

under constraints (10.86) and (10.87) are derived in [10.6] and summarized in the
following.

1. With the short-term power constraint, we have

(T, ¢) if A € Ron(p,€)

T(A) = { GT) A e R ) (10.89)

where
(a) The (k,7)-th SNR is given by

G = (A, Q) — 1/ Aei)+ (10.90)
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where

F 1
A Q) = — 10.91
OO B T, o e OO

and F(¢) is the unique set of indexes (k, ) such that 1/ ¢ ; < p**(A, )
for all (k,7) € F(¢) and 1/ A ; > p5*(A, ) for all (k, %) ¢ F(C).

(b) The set
Ron(p, Q) = {A : I(A,T(A, () > p} (10.92)
is called the power-on region.

(c) The set
Roit(0,¢) & {A - I(A,T*(A, () < p} (10.93)

is called the outage, or power-off, region.

(d) G(A) is an arbitrary power allocation function satisfying the short-
term constraint, i.e., (r(G) < (.

2. With the long-term power constraint, we have

T'%(A,p) if A € Ri(p,¢Y)
= ’ e 9
rw={g M RER0E oo
where
(a) The (k,%)-th SNR is given by
G = (W (A, 0) — 1/ M)+ (10.95)
where
F 1/17* (o)
ph(A, p) = 2’ (10.96)
ke (o) Mo

and F*(p) is the unique set of indexes (k, 1) such that 1/ A ; < p'*(A, p)
for all (k,1) € F*(p) and 1/, ; > pl*(A, p) for all (k,3) & F*(p).

(b) The set
Ren(p, C*) 2 {A : Cr(TH(A, p)) < C*} (10.97)

is called the power-on region.
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(c) The set
Rig(pC*) = {A : Cr(T(A, p)) > g*} (10.98)

is called the outage, or power-off, region.

(d) The threshold * > 0 is set in order to satisfy the long-term contraint
(10.87) with equality, i.e., it is the solution of

E{Cr(T™(A, p) [A € Ron(p, ¢} = ¢
where [A] £ 1if A is true, and 0 otherwise.

In other words, the outage probability is minimized under a long-term power
constraint by setting a threshold ¢*. If the instantaneous SNR per block
necessary to avoid an outage exceeds (*, then transmission is turned off
and an outage is declared. If it is below (*, transmission is turned on and
power is allocated to the blocks according to a rule that depends on the fading
statistics only through the threshold value ¢* (see [10.6]).

Figure 10.17 illustrates the concept of an outage region for a single transmit and
receive antenna system (¢t = r» = 1) with /' = 2, p = 1 bit/dimension pair, and
¢ = 1 dB. The outage region is the inner region corresponding to smaller values
of the channel matrix eigenvalues (/A 1, &£ = 1, 2) reflecting the occurrence of a
deep fade.

It is interesting to note that the short-term and long-term outage regions Ry (p, ¢)
and Rz (p, ¢) exhibit the same functional dependence on p and ¢ in spite of their
very different definitions of (10.93) and (10.98) [10.6]. This is again illustrated by
Figure 10.17. The figure also shows that though the outage regions Rog (1, 10%1)
and R¢(1, 10%1) coincide, the boundaries of constant-|F| regions differ in the two
cases (short-term and long-term) [10.6].

Another important concept related to outage probability is given in the following
definition [10.6, 10.59]:

Definition 10.6.1 The zero-outage capacity, sometimes also referred to as delay-
limited capacity, is the maximum rate for which the minimum outage probability is
zero under a given power constraint.

It was shown in [10.6] that, under a long-term power constraint, the zero-outage
capacity of a block-fading channel is positive if the channel is regular. A regular
channel is defined as follows.
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, — Boundary of outage region
: E short-term
HF| =1 - - - long-term

Figure 10.17: Outage region Rog(p, () of a single transmit and receive antenna
system (t = r = 1) with F = 2, p = 1 bit/dimension pair, and ( = 1 dB.
The boundaries of constant-|¥F| regions are also indicated, for the short-term and
long-term constraints, as dotted and dashed lines, respectively.

Definition 10.6.2 A block-fading channel is said to be regular if the fading distri-
bution is continuous and
E[l1/AF] < o0 (10.99)

where A is the geometric mean of the A ;:

Y R (10.100)
ki

where, as usual, m £ min{t,r}.
Example 10.7

The Rayleigh fading channel with F' = m = 1 is not regular, and its zero-outage
capacity is null. The Rayleigh block-fading channel is regular if mF' > 1 (see [10.6]
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for a proof). For example, if F' > 1 and m = 1, we have

E[1/Ar] = @D YF)F =01 - 1/F)F <

10.6.2 Asymptotics

Under a long-term power constraint and with optimal transmit power allocation,
the zero-outage capacity of a regular block-fading channel as { — oo is given
by [10.6]

Czero-outa,ge ~ mlog <m) (10.101)
Asm — oo and n — « > 0, the limiting value of the normalized zero-outage ca-
pacity per degree of freedom C/m coincides with the limiting normalized ergodic
capacity [10.6].

10.7 Influence of channel-state information

As we have seen, in a system with ¢ transmit and r receive antennas and an ergodic
Rayleigh fading channel modeled by a £ X r matrix with random iid complex Gaus-
sian entries, the average channel capacity with perfect CSI at the receiver is about
m £ min{t, r} times larger than that of a single-antenna system for the same
transmitted power and bandwidth. The capacity increases by about m bit/s/Hz for
every 3-dB increase in SNR. Due to the assumption of perfect CSI available at the
receiver, this result can be viewed as a fundamental limit for coherent multiple-
antenna systems.

Perfect CSI at the receiver

The most commonly studied situation is that of perfect CSI available at the receiver,
which is the assumption under which we developed our study of multiple-antenna
systems above.

No channel state information

Fundamental limits of noncoherent communication, i.e., one taking place in an
environment where estimates of the fading coefficients are not available, will now
be derived. Consider a block-fading channel model. To compute the capacity
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of this channel, we assume that coding is performed using blocks, each of them
consisting of ¢{N elementary symbols being transmitted by ¢ antennas in N time
instants. Each block is represented by the ¢ x N matrix X. We further assume
that the » x N noise matrix Z has iid N,(0, /Vy) entries. The received signal is the
r X N matrix

Y =HX +Z (10.102)

and the entries of Y have the explicit expression

t
Yin = hijTin+2zm, i=1,...,1, n=1...,N (10.103)
j=1

Given X, these are random variables whose mean value is zero and whose covari-
ance is

t t
Elyinyim | X1 =Y > Elhijh} i ]2in@jm + Elzinzl,] (10.104)
j=1j'=1

Now, under the assumptions that H and Z are temporally and spatially white, that
is,

E[hijh;j/] = 5“‘/ E[Zmz;n/] = 51'1'/5”"/ (10.105)
we have
t
ElyinYim | X] = 8iir | D Zjn@jns + e (10.106)
j=1

The previous equality expresses the fact that the rows of Y are independent, while
the columns have a nonzero correlation. This observation allows us to write down
the relation connecting the rows (Y); of Y with those of H, denoted (H);, and
those of Z, denoted (Z);, so that

(Y): = (H); X+ (Z); i=1,...,r (10.107)
Each row of Y is a zero-mean Gaussian vector with covariance matrix

E[(Y)(Y): | X] = XX + Iy (10.108)
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and, writing the pdf of matrix Y as the product of the pdfs of its rows, we obtain

(Y [X)= HP(Y!X)

ﬂ-rdetr[}(lTX_*_I Hexp{ ) XTX+IN) 1(Y) }

1
= - X +1Iy)7 1YY 10.109
ﬂ-'rdetr[XfX + IN] exp{ Tr ((X X+ N) )} ( )

We observe the following:

(a) The pdf of Y depends on its argument only through the product Y1Y, which
consequently plays the role of a sufficient statistic. If N < r,the N x N
matrix YTY provides a representation of the received signals that is more
economical than the » X N matrix Y.

(b) The pdf (10.109) depends on the transmitted signal X only through the N x
N matrix XX,

Observation (b) above is the basis of the following theorem, which says that there
is no increase in capacity if we have ¢t > IV, and hence there is no point in making
the number of transmit antennas greater than NV if there is no CSI In particular,
if N = 1 (an independent fade occurs at each symbol period), only one transmit
antenna is useful. Note how this result contrasts sharply with its counterpart of CSI
known at the receiver, where the capacity grows linearly with min{¢,r}.

Theorem 10.7.1 If the entries of H are iid, then the channel capacity fort > N
equals the capacity fort = N.

Proof

Suppose that the capacity is achieved for a particular pdf of matrix X with ¢ > N.
Recalling (b) above, the capacity is determined by the matrix X!X: if we prove that
an X can be found that generates the same matrix with only N transmit antennas,
then the theorem is proved. Now, perform the Cholesky factorization (Section B.6.1,
Appendix B) XX = LLT, with L an N x N lower-triangular matrix. Using N
transmit antennas with a signal matrix that has the same pdf as L, we obtain the
same pdf that achieves capacity. In fact, if X satisfies that average-power constraint

%’—]E [Tr XTX] = ¢Np (10.110)

so does Lt. 0
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From [10.37], the signal matrix that achieves capacity can be written in the form:
X=D¢® (10.111)

where & is a ¢t x N matrix such that ®®! = I,. Moreover, ® has a pdf that is
unchanged when the matrix is multiplied by a deterministic unitary matrix (this is
the matrix counterpart of a complex scalar having unit magnitude and uniformly
distributed phase). D is a ¢ x ¢ real nonnegative diagonal matrix independent of
&, whose role is to scale X to meet the power constraint. In general, the opti-
mizing D is unknown, as is the exact expression of capacity. However, for the
high-SNR regime ({ >> 1), the following results are available (see [10.37, 10.66],
but also [10.34] for the observation that they depend critically on the assumed fad-
ing model):

(@ If N > tand t < min{N/2,r}, then capacity is attained when D =

VCNNo/t1, s0 X = \/CNNo/t ®.

(b) For every 3-dB increase of (, the capacity increase is t*(1 — t*/N), where
t* 2 min{t,r, |[N/2}}.

(c) If N > 2r, there is no capacity increase by using r > .

An obvious upper bound to capacity can be obtained if we assume that the receiver
is provided with perfect knowledge of the realization of H. Hence, the bound to
capacity per block of IV symbols is

C < Nlogdet [It + %Hfﬂ] (10.112)

We can reasonably expect that the actual capacity tends to the right-hand side of
previous inequality, because a certain (small) fraction of the coherence time can be
reserved for sending training data to be used by the receiver for its estimate of H.

10.7.1 Imperfect CSI at the receiver: General guidelines

Assume now that the receiver has some knowledge, albeit imperfect, of the CSI.
Let the CSI be obtained by transmitting a preamble in the form of a known ¢ X IV,
code matrix X, with total energy Tr (X,X}) = tN,E&,, with &, the average sym-
bol energy. Since to estimate the r x ¢ matrix H we need at least ¢ measurements,
and each symbol time yields » measurements at the receiver, we need N, > t.
Moreover, the matrix X, must have full rank ¢, since otherwise t linearly indepen-
dent columns would not be available to yield rt independent measurements. As



10.7. Influence of channel-state information 339

a consequence, XPX;}LJ must be nonsingular. The corresponding received signal is
denoted by

Y, = HX, + Z, (10.113)

Among the several receiver structures that can be envisaged, we focus on the
following:

(a)

(b)

©

The simplest receiver inserts directly the maximum-likelihood (ML) esti-
mate of the channel into the ML metric conditioned on H. The detection
problem consists of computing first

H 2 arg max p(Y, | Xp, H) (10.114)
H
and then R
X £ arg max ji(X) (10.115)
X
where -
MX) 2 ||Y — HX|? (10.116)

Since (10.116) is commonly referred to as a mismatched metric, we call this
a mismatched receiver.

The receiver estimates the channel matrix H from Y, and X, by an ML
criterion and uses this result to detect the transmitted signal X. The detection
problem consists of computing

H 2 arg max p(Y, | Xp, H) (10.117)
H

and
X 2 arg maxp(Y | X,H = H) (10.118)
X

where p(Y | X,H = ﬁ) denotes the probability density function of Y
given X and H, with H equal to H.

The receiver detects the transmitted signal X by jointly processing Y, Y,
and X, without explicit estimation of H. In this case, the detection problem
can be written as

X 2 ag maxp(Y,Y, | X,X,)
X
= Enu|p(Y | X,H) p(Y, | X, H)] (10.119)

since, conditionally on H, X, and X, the received signals Y and Y, are
independent.
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Approach (a) is the simplest. Approach (b) is more efficient (see [10.14] for the
single-input, single-output case) and allows one to study the impairments caused
by imperfect knowledge of H and by the presence of noise in the received pilot
signal Y,,. Approach (c) is optimum: disregarding CSI recovery, it focuses on the
detection of the transmitted signal X. In the following, we examine the second and
third receivers under the simplifying assumption XpXT = NpE&pI; (for results not
depending on this assumption, see [10.55]).

Approach (b): Receiver based on channel estimate

The ML estimate of H based on the observation of Y, is obtained by maximizing
p(Y, | H,X,) or, equivalently, by minimizing ||'Y, — HX,|| with respect to H,
yielding R
H=Y,X/(X,X})"'=H+E (10.120)
where
E £ 7, X} (X, X1)™! (10.121)

is the matrix error on the estimate H. Now, H and E are independent, and, denot-
ing by (-); the ith row of a matrix (-), we can write

E; = (Z,):X}(XpX})™! (10.122)

Thus, the rows of E are independent vectors of zero-mean circularly symmetric
complex Gaussian random variables with covariance matrix

. £ E[EE]
= E(XpX]) ™ Xp(Zp)] (Zp)i X} (Xp X))
= No(XpXhH)™! (10.123)
With our assumption on X, the entries of E are independent, circularly symmetric
complex Gaussian random variables with mean zero and variance Ny/(NpEp).

We now calculate the ML metric from the a posteriori probability p(Y | X, H).
First, we note that it can be written as

p(Y | X, H) =[] p(Y: | X, Hy) (10.124)

i=1

where ﬁi and Y; denote the ith rows of Hand Y, respectively, since it is plain to
see that, conditionally on X, Y; depends only on H; and Z;. Thus, we can apply
the following theorem [10.11]:
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Theorem 10.7.2 Let z, and zs be circularly symmetric complex Gaussian ran-
dom vectors with zero means and full-rank covariance matrices X;; = IE[Z,-Z;[].
Then, conditionally on zs, the random vector zy is circularly symmetric complex
Gaussian with mean X 1222"2122 and covariance matrix 31 — 21222‘21221.

Letting
z, =Y = X'H! + Z! and  zy=H/=H+E!  (10.125)
in Theorem 10.7.2, we have

S = NIy + XX
T = X!
Yoo = I+ No/(Np€p)

Then the conditional probability density function of Y;’ , given X and H;, is a
circularly symmetric complex Gaussian distribution, with

mean = pX'H (10.126)
covariance matrix = Noly + (1 — §)XTX (10.127)
where
1
£ (10.128)

1+ No/(Np€p)

As a result, we have

etr (—(Y — ¢HX)(NoIy + (1 — OXIX)~1(Y — pHX))
det (m(NoIy + (1 — )XIX))"

p(Y | X,H) =
(10.129)
corresponding to the metric

wX) = Tr((Y - eHX)(Iy + (1 - OXIX/No) 1Y — ¢HX)1)
+rNolndet (Iy + (1 — £)X'X/Np) (10.130)

Approach (c¢): Optimum receiver

In this case the receiver detects the transmitted word X maximizing the probabil-
ity density function p(Y,Y, | X,X,) without any prior estimate of the channel
matrix H. We use the following theorem [10.44, Appendix B]:
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Theorem 10.7.3 Given a Hermitian square matrix A such that 1+ A > 0, a
size-compatible complex matrix B, and a matrix 7, of iid zero-mean circularly
symmetric complex Gaussian random variables with unit variance, the following
identity holds:

Efetr (~ZAZ' — ZBT — BZ)] = det (I + A) "etr [B(I + A)"'B1] (10.131)
where etr () 2 exp[Tr (-)].
Applying Theorem 10.7.3, we obtain

p(Y7YP | X’ XP)
_ g |eeCUY - HX|* + || Y, — HX,[*) /No)
H (1 No) Dot N)r
= (nNo)~Mp+Mr

En [etr (—HHXX! + N,&,1,) - HXY! +X,Y)

—(YX'+ Y, XD H + (YY! + Y, Y])/No)]
= (wNp)~(No+NIr get [It + (XX + N,&,1L) /NO] -
etr ((YXT + Y XL+ (XX + Nyply) /No] !
(XY +X,Y)/NZ - (YYT +Y,Y)) /N0> (10.132)

The logarithm of (10.132) yields the corresponding metric to be minimized by the
optimum receiver:

1(X) = r1In det [It + (XX + N,E, 1) /NO} (10.133)
Ty {(YXT + Y, XD, + (XX + N,&,L,)/No]
XY+ X,v})/Ng }

From this result we can verify the fact, a priori rather surprising, that the metrics
(10.133) and (10.130) are equivalent (see [10.55] for details).

Example 10.8

Figure 10.18 shows the word-error probability versus the fraction of pilot symbols
Np/(Np + N) at fixed £;/Ny = 10 dB. It refers to a t = 2, r = 4 MIMO system
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Figure 10.18: Word error probability of at = 2,r = 4, independent Rayleigh fad-
ing MIMO channel with a trellis space—time code versus the fraction of pilot sym-
bols Np,/(Np + N) at £,/Ng = 4 dB. Solid curves with o show the performance
with the suboptimum metric (10.116). Solid curves with © show the performance
with the ML metric (10.130). The lowest straight line shows the performance of a
genie-aided receiver with perfect CSL.

with a trellis space~time code (see infra) and word length N = 130. The ML re-
ceiver performance is close to that of a “genie-aided” receiver having perfect CSI,
and the optimum number of pilot symbols is about 4 for the ML receiver and 16 for
the mismatched receiver. 0

10.7.2 CSI at transmitter and receiver

It is also possible to envisage a situation in which channel state information is
known to the receiver and to the transmitter: the latter can take the appropriate
measures to counteract the effect of channel attenuations by suitably modulating
its power. To assure causality, the assumption of CSI available at the transmitter
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is valid if it is applied to a multicarrier transmission scheme in which the avail-
able frequency band (over which the fading is selective) is split into a number of
subbands, as with OFDM. The subbands are so narrow that fading is frequency
flat in each of them, and they are transmitted simultaneously, via orthogonal sub-
carriers. From a practical point of view, the transmitter can obtain the CSI either
from a dedicated feedback channel (some existing systems already implement a
fast power-control feedback channel) or by time-division duplex, where the uplink
and the downlink time-share the same subchannels and the fading gains can be
estimated from the incoming signal.

10.8 Coding for multiple-antenna systems

Given that considerable gains are achievable by a multiantenna system, the chal-
lenge is to design coding schemes that perform close to capacity: space—time treilis
codes, space—time block codes, and layered space-time codes have been advo-
cated.

A space—time code word with block length V is described by the ¢ x N matrix
X £ (x[1],...,x[N]). The code has M words. The row index of X indicates
space, while the column index indicates time: to wit, the ¢th component of the ¢-
vector x[n], denoted x;[n], is a complex number representing the two-dimensional
signal transmitted by the ith antenna at discrete timen,n =1,...,N,i=1,...,¢.
The received signal is the r X N matrix

Y =HX+7Z (10.134)

where Z is matrix of zero-mean circularly symmetric complex Gaussian RVs with
variance Ny. Thus, the noise affecting the received signal is spatially and tempo-
rally independent, with E[ZZ!] = NNyI,, where I, denotes the = x r identity
matrix and (-)7 denotes Hermitian transposition. The channel is described by the
r x t matrix H. Here we assume that H is independent of both X and Z, it remains
constant during the transmission of an entire code word, and its realization (the
CSI) is known at the receiver.

10.9 Maximum-likelihood detection

Under the assumptions of known CSI and additive white Gaussian noise, ML
decoding corresponds to choosing the code word X that minimizes the squared
Frobenius norm ||'Y — HX]||. Explicitly, ML detection and decoding corresponds
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to the minimization of the quantity

IY - HX|? = }:Z

i=1 n=1

(10.135)

Yin — Z hzjl']n

10.9.1 Pairwise error probability

For computations, since calculation of exact error probability is out of the question,
we resort to the union bound

< %;gmx - X) (10.136)
The pairwise error probability (PEP) P(X — )A() admits a closed-form expression:
PX—-X) £ P(Y-HX|? <|Y - HX|?)
= P(|HA +Z|? < ||Z|?)

= P((HA+Z,HA +Z)—(Z,Z)) < 0)
P(|HA|? + 2(HA, Z)) < 0) (10.137)

where A £ X — X. The variance of the Gaussian random variable v £ (A,Z)
can be obtained as follows. Setting A = A + jAs and Z = Z; + jZ> (where
A4, A,, Z1, and Z- are real matrices), we have

EV? = E[(Tr(A1Z1 — AsZy))?

2
E[(ZZ(Al)ij(zl)ji - (A2)ij(z2)ji) }
— ZZ (ADZE[(Z1)2] + (A2)3E[(Z2)2)])

7 TN (10.138)
since Z; and Z, are independent and have zero mean. Then the pairwise error

probability becomes
S\ [[HA|| )]
PX->X)=E [Q (__—\/2——0 (10.139)

By writing
IHA|?2 = Tr (HTHAAT) (10.140)
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we see that the exact pairwise error probability, and hence the union bound to P(e),
is given by the expected value of a function of the ¢ x 7 matrix H'H. This matrix
can be interpreted as representing the effect of the random spatial interference on
error probability: in particular, if H'H = I;, then (10.139) becomes

2 Al
PX—-X)=Q (\/m) (10.141)
This is the PEP we would obtain on a set of ¢ parallel independent AWGN chan-
nels, each transmitting a code word consisting of a row of X, with ML detection
consisting of minimizing || Y — X||2.

A useful approximation to the pairwise error probability (10.139) can be com-
puted by substituting exponential functions for () functions. This is obtained by
applying the bound, asymptotically tight for large arguments:

Q (”H2—\/%(l)') < exp (—|[HA|[>/4N,) (10.142)

Under the assumption of Rayleigh fading, that is, when h;; ~ N¢(0, 1), with in-
dependent entries in the matrix H, we can compute the exact expectation of the
right-hand side of (10.142) using Theorem C.3.1 of Appendix C. We obtain

P(X — X) < det [It + AAL /4N0] - (10.143)

10.9.2 The rank-and-determinant criterion

Since the determinant of a matrix is equal to the product of its eigenvalues, (10.143)
yields

t
P(X = X) < [[+N\/4No)™ (10.144)
j=1
where A; denotes the jth eigenvalue of AA'. We can also write
P(X = X) <[] (\/4No)™" (10.145)
jed

where J is the index set of the nonzero eigenvalues of AAT. Denoting by v the
number of elements in J, and rearranging the indexes so that Aj,..., A, are the
nonzero eigenvalues, we have

bt

PX-X)<I[N] ™ (10.146)
j=1
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where v £ 1/4Ny. From this expression we see that the total diversity order of
the coded system is 7vpmin, Where vy, is the minimum rank of AAT across all
possible pairs X, X (rvmn is the diversity gain). In addition, the pairwise error
probability depends on the power r of the product of eigenvalues of AAT. This
does not depend on the SNR (which is proportional to ), and displaces the error
probability curve instead of changing its slope. We call this the coding gain. Thus,
for high enough SNR we can design a space-time code for which we choose as a
criterion the maximization of the coding gain as well as of the diversity gain.
Notice that if vy, = ¢, i.e., AAT is full rank for all code word pairs, we have

t
[ 2 =det{AAT] (10.147)
i=1

An obvious necessary condition for AAT to be full rank is that N > ¢ (the code
block length must be at least equal to the number of transmit antennas).

Observation 10.9.1 Note that, based on the above discussion, the maximum
achievable diversity gain is ¢r. In Section 10.14 we shall discuss how this gain
is generally not compatible with the maximum rate gain m.

10.9.3 The Euclidean-distance criterion

Observe that the term in the right-hand side of (10.143) can be written as a negative
power of

det (I + YAAT) = 1 +4Tr (AAT) + ... 4 yldet (AAT) (10.148)

We see that if v < 1 then the left-hand side of (10.148), and hence the PEP, de-
pends essentially on Tr (AAT), which is the squared Euclidean distance between
X and X, while if v > 1 it depends essentially on det (AAT), that is, on the
product of the eigenvalues of AAT. This suggests that, for low SNR, the upper
bound (10.148) to error probability depends on the Euclidean distance between
code words, as one would expect because the system performance is dictated by
additive noise rather than by fading. Conversely, as the SNR increases, the fading
effects become more and more relevant, and the rank and determinant of AAf
dictate the behavior of the PEP.

A different perspective can be obtained by allowing the number r of receive
antennas to grow to infinity. To do this, we first renormalize the entries of H so
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that their variance is now 1/r rather than 1: this prevents the total receive power
from diverging as r — oo. We obtain the following new form of (10.143):

P(X = X) < det [It +AAT /47~N0} - (10.149)
which yields, in lieu of (10.148):
det (I + (v/r)AAD) = 14+ (y/r)Tr (AAN + ...+ (y/r)tdet (AAD) (10.150)

This shows that as 7 — oo the rank-and-determinant criterion is appropriate for a
SNR increasing as fast as r, while the Euclidean-distance criterion is appropriate
for finite SNRs.* This situation is illustrated in the example of Figure 10.19, which
shows the union upper bound on the word-error probability P(e) of the space—
time code obtained by splitting evenly the code words of the (24, 8, 12) extended
Golay binary code between two transmit antennas (the calculations are based on the
techniques described in Appendix D). This space—time code has the minimum rank
of A equal to 1, and hence a diversity gain . Now, it is seen from Figure 10.19 how
the slope predicted by (10.143), and exhibited by a linear behavior in the P(e)-vs.-
€/ Ny chart, can be reached only for very small values of error probability (how
small generally depends on the code under scrutiny). To justify this behavior,
observe from Figure 10.19 that for a given value of r the error-probability curve
changes its behavior from a waterfall shape (for small to intermediate SNR) to a
linear shape (high SNR). As the number of receive antennas grows, this change of
slope occurs for values of P(e) that are smaller and smaller as r increases. Thus, to
study the error-probability curve in its waterfall region, it makes sense to examine
its asymptotic behavior as r — o0o. The case r — o0, t < oo can easily be dealt
with by using the strong law of large numbers: this yields H'H — I, a.s., I, the
t x t identity matrix. As r — oo,

IHA|? — ||A? (10.151)
and hence
PX—-X)—=Q (M> (10.152)
V2N, '

This result shows that, as the number of receiving antennas grows large, the union
bound on the error probability of the space-time code depends only on the Eu-
clidean distances between pairs of code words. This is the result one would get with

4Other design criteria can also be advocated. See, e.g., [10.27].
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Figure 10.19: Word-error probability of the binary (24, 8, 12) extended Golay code
with binary PSK over a channel with t = 2 transmit antennas and r receive anten-
nas with ML decoding.

a transmission occurring over a nonfading additive white Gaussian noise (AWGN)
channel whose transfer matrix H has orthogonal columns, i.e., is such that H'H
is a scalar matrix. In this situation the smallest error probability, at the expense
of a larger complexity, can be achieved by using a single code, optimized for the
AWGN channel, whose words of length ¢V are evenly split among the transmit
antennas. Within this framework, the number of transmit antennas does not affect
the PEP but only the transmission rate, which, expressed in bits per channel use,
increases linearly with ¢.

For another example, observe Figure 10.20. This shows how for intermedi-
ate SNRs the Euclidean-distance criterion may yield codes better than the rank-
and-determinant criterion. It compares the simulated performances, in terms of
frame-error rate, of the four-state, rate-1/2 space-time code of [10.56] and a com-
parable space-time code obtained by choosing a good binary, four-state, rate-2/4
convolutional code [10.15] and mapping its symbols onto QPSK (the first and sec-
ond encoded bits are Gray mapped onto the QPSK symbol transmitted by the first
antenna, while the third and fourth encoded bits are Gray mapped onto the QPSK
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Word-error probability

6
SNR (dB)

Figure 10.20: Word-error probability of two space—time codes with four states, rate
1/2, and QPSK. Number of transmit antennas: t = 2; number of receive antennas:
r = 2,4, 8. Continuous line: code from [10.56]. Dashed line: code obtained from
a binary convolutional code good for the AWGN channel [10.15].

symbol transmitted by the second antenna). The frame length N is 130 symbols for
both codes, including one symbol for trellis termination. The decoder has perfect
CSI, and uses the Viterbi algorithm. It is seen that, in the error-probability range
of these two figures, the “standard” convolutional code generally outperforms the
space—time code of [10.56] even for small values of r.

10.10 Some practical coding schemes

10.10.1 Delay diversity

One of the first coding schemes proposed is called delay diversity. This is a rate-
1/t repetition code, each symbol of which is transmitted from a different antenna
after being delayed. For example, with £ = 2, the transmitted code matrix is

X x x
X = 1 2 3
0 1 X2
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Figure 10.21: Alamouti code witht = 2 andr = 1.

We can see that each symbol traverses r¢ paths, so diversity ¢ is achieved. On the
other hand, this comes at the cost of having a rate of only one symbol per channel
use. Also, observe that delay diversity transforms the frequency-flat channel into an
intersymbol-interference (and hence frequency-selective) channel. Optimum de-
tection can be accomplished by using the Viterbi algorithm or spatial-interference-
canceling techniques (see infra, our discussion of V-BLAST).

10.10.2 Alamouti code

We first describe this code by considering the simple case ¢ = 2, r = 1, which
yields the scheme illustrated in Figure 10.21 [10.1]. The code matrix X has the
form

X = { T T ] (10.153)
Io xq

This means that, during the first symbol interval, signal z; is transmitted from

antenna 1, while signal x is transmitted from antenna 2. During the next symbol

period, antenna 1 transmits signal —x3, and antenna 2 transmits signal =7. Thus,

the signals received in two adjacent time slots are

y1 = hix1 + hozo + 21

and
y2 = —hixs + haz] + 22

where £y, ho denote the path gains from the two transmit antennas to the receive
antenna. The combiner of Figure 10.21, which has perfect CSI and hence knows



352 Chapter 10. Multiple antennas

hll v
h12
T
ha1
Z1,X2 v
haa
T2
transmitter combiner
Figure 10.22: Alamouti code witht = 2 andr = 2.
the values of the path gains h1 and %y, generates the signals
@1 = hiyr + hay;
and
To = hyy1 — hays
so that
1 = hi(hiw1 + howa + 21) + ho(—hize + hiz1 + 23)
(1ha]? + |ha|®) a1 + (Bz1 + ha2) (10.154)
and similarly
Zo = (|h1]* + |h2|®)m2 + (h3z1 — h123) (10.155)

Thus, x1 is separated from xo. Provided that each transmit antenna transmits the
same power as the single antenna for ¢ = 1, this code has the same performance as
one with ¢ = 1, r = 2, and maximal-ratio combining (Section 4.4.1). To prove the
last statement, observe that if the signal z; is transmitted, the two receive antennas
observe hiz1 + 21 and hox + 29, respectively, and after maximal-ratio combining
the decision variable is

h’{(hll‘l + 21) + h;(hza:'l + 22) = (]h1|2 + |h2[2)$1 + ( ’le + hgzg) =1

This code can be generalized to other values of r. For example, with t = r = 2
and the same transmission scheme as before (see Figure 10.22), if y11, y12, Y21, y22,
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denote the signals received by antenna 1 at time 1, by antenna 1 at time 2, by an-
tenna 2 at time 1, and by antenna 2 at time 2, respectively, we have

Y11 Y12 ] _ [ hi1 hi2 } [ Ty —T5 ] [ 211 212 ]
= * +
Y21 Y22 har  ho Ty I3 291 292
_ hiiz1 4+ higze + 211 —huzs + hipz] + 212
horx1 + hooo + 201 —ho175 + hoox] + 222

The combiner generates

Z1 = hl1yu + hiayis + ha1y21 + haoyss

and
T2 = hioy1nn — hnyls + hdayo1 — ha1yss
which yields
_ 2 2 2 2 i
Z1 = (|h1a]” + haa|” + [h21|” + |h22| )21 + noise
and

Tg = (|h11|2 + |h12|2 + |h21|2 + |h22|2):v2 + noise

As above, it can be easily shown that the performance of this t = 2, r = 2 code
is equivalent to that of a ¢ = 1, r = 4 code with maximal-ratio combining (again,
provided that each transmit antenna transmits the same power as with ¢ = 1).

A general code, with ¢ = 2 and r unrestricted, can also be exhibited: it has the
same performance of a single-transmit-antenna code with 2r receive antennas and
maximal-ratio combining.

10.10.3 Alamouti code revisited: Orthogonal designs

We can rewrite the transmitted signal in the Alamouti code witht = 2andr = 1
in the following equivalent form:

Y1 hi hz][ﬂ?l] [Zl]
e B + 10.156
[ Y2 ] [ hy —hi 2 ¥%) ( )
Now, if we define
~a | h1  he
"= [ 5 ~h:]

we see that
HH = (|h[? + b)) (10.157)
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Recalling (10.139)—(10.140), this shows that the error probability for this Alamouti
code is the same as without spatial interference, and with a signal-to-noise ratio
increased by a factor (|h1|2 + |hz|?). For this reason the Alamouti code is called
an orthogonal design. There are also orthogonal designs with ¢ > 2. For example,
witht = 3,r =1, and N = 4, we have

1 —x5 —zj O

X=| 2z = 0 —x3
zz3 0 i T

so that the equation Y = HX + Z can be rewritten in the equivalent form

n
* ]
V2 || 20 | +2 (10.158)
Ys T3
(N
where
hi hy hs
- ¥ —~h¥ 0
A 2 1
H= ¥ 0 h{ (10.159)
0 hi —h3

and Z is a noise 4-vector. In this case we can verify that
HH = (|h1|? + |haf® + |hs|*)]s

Notice that with this code we transmit three signals in four time intervals (that is,
3/4 signals per channel use), while the original Alamouti codes transmit 1 signal
per channel use. It has been proved that orthogonal designs with ¢ > 2 cannot
transmit more than 3/4 signals per channel use [10.63].

10.10.4 Linear space-time codes

Alamouti codes and orthogonal designs share the property of having simple de-
coders due to the linearity of their space-time map from symbols to transmit anten-
nas. Schemes with this property form the class of linear space-time codes. These
can be used for any number of transmit and receive antennas and may outperform
orthogonal designs.

In these codes, the L symbols x1, ...,z are transmitted by ¢ antennas in N
time intervals. The code matrix X has the form

L
X = (arA¢+ jBBe) (10.160)
=1
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where oy and (3, are the real and imaginary part of x,, respectively, and A, By,
¢=1,...,L,aret x N complex matrices.

Example 10.9

With Alamouti codes we may write

7 —I5
X = N
$2 :L'l

az+jiB2 a1 —jb
1 0 . 1 0 0 -1 . 0 1
a1[01]+3ﬂ1[0 _1]+012[1 0]+Jﬁ2[1 0]

which shows them to be a special case of linear space—time codes. O

[ oy + 361 —ao+ 36 }

It

Define the column vectors
X&[ay B - ap Bi) 7 £ vec(Z)
and the Nr x 2L matrix
H 2 [vec(HA;) vec(jHB;) --- vec(HAL) vec(jHBp)]

Then we can write the received signal in the form

L
¥ £ vec(Y) = vec(HX + Z) = ) (agvec(HAy) + Byvec(jHBy)) = Hx + 2
=1

Notice that, since L signals are transmitted and ¥ has Nr components, to be able
to recover X from y we must have L < Nr.

The observed signal ¥ can be decoded as follows. Perform the QR factorization
of H (Section B.6.2, Appendix B):

H=QR

where Q is unitary and R. is an upper triangular matrix. Thus, if we make a linear
transformation on ¥ consisting of its premultiplication by QT, we obtain (disre-
garding noise for simplicity) a vector Rx, whose last entry is proportional to Gy,.
From this, 3z can be detected. The next-to-last entry is a linear combination of
ar, and (g thus, since Gz, has already been detected, and hence its contribution
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to spatial interference can be canceled, we may use this entry to detect ez, The
third-from-last entry is a linear combination of 8,1, ap, and Gy, This can be used
to detect 81, and so on. This nulling-and-canceling idea will be reprised infra,
with some additional details, in our discussion of zero-forcing V-BLAST. More
generally, our treatment of V-BLAST can be applied, mutatis mutandis, to linear
space—time codes.

10.10.5 Trellis space-time codes

Trellis space-time codes are trellis-coded modulation (TCM) schemes, in which
every transition among states, described by a trellis branch, is labeled by ¢ signals,
each being associated with one transmit antenna. Trellis space-time codes can
achieve higher rates than orthogonal designs, but they suffer from a complexity
that grows exponentially with the number of transmit antennas.

Example 10.10

Examples of space—time codes are shown in Figures 10.23 and 10.24 through their
trellises. The code in Figure 10.23 has ¢ = 2, has four states, uses a quaternary
constellation (whose signals are denoted 0, 1, 2, 3), and transmits one signal (2 bits)
per channel use. Its diversity is 2r. Label zy means that signal x is transmitted by
antenna 1, while signal y is simultaneously transmitted by antenna 2. The code in
Figure 10.24 has again ¢t = 2, has eight states, uses an octonary constellation (whose
signals are denoted 0,1, ...,7), and transmits one signal (3 bits) per channel use.
Its diversity is 27. 0

10.10.6 Space-time codes when CSI is not available

In a rapidly changing mobile environment, or when long training sequences are
not allowed, the assumption of perfect CSI at the receiver may not be valid. In
the absence of CSI at the receiver, unitary space—time modulation has been ad-
vocated [10.30, 10.38]. This is a technique that circumvents the use of training
symbols. Here the information is carried on the subspace spanned by orthonormal
signals that are transmitted. This subspace survives multiplication by the unknown
channel-gain matrix H. A scheme based on differential unitary space—time sig-
nals is described in [10.32]. High-rate constellations with excellent performance,
obtained via algebraic techniques, are described in [10.29].
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Figure 10.23: A 4-PSK trellis space-time coding scheme with t = 2 and diversity
2r.
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Figure 10.24: An 8-PSK trellis space~time coding scheme witht = 2 and diversity
2r.

10.11 Suboptimum receiver interfaces

The capacity results described above show that extremely large spectral efficien-
cies can be achieved on a wireless link if the number of transmit and receive anten-
nas is large. Now, as ¢ and 7 increase, the complexity of space-time coding with
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maximum-likelihood detection may become too large. This motivates the design
of suboptimal receivers whose complexity is lower than with ML detection and yet
that perform close to it. In a receiver we distinguish an interface, which is a system
accepting as its input the channel observation Y and generating a “soft estimate”
Y of the code matrix X, and a decoder, whose input and output are Y and the
decoded matrix X, respectively.

We describe here some of these interfaces, categorized as linear and nonlinear.

10.12 Linear interfaces

A linear interface makes a linear transformation A of the received signal, under
the assumption of perfect CSI at the receiver. A = A(H) is a t x r matrix chosen
so as to allow a simplification of the metrics used in the Viterbi algorithm em-
ployed for decoding. The conditional PEP for this linear interface with the metric
|AY — X||? is given by

P(X — X | H)

= P(JAY — X|? < [|[AY - X|* | H)
P(|AHX — X + AZ|?> < |[AHX — X + AZ|? | H)
= ]P’(||A||2 + 2((AH - DX, A) + 2(AZ, A) <0|H) (10.161)
By reproducing computations done to derive (10.138), we obtain that (AZ, A)isa
zero-mean circularly symmetric complex Gaussian RV with variance N0||ATA||2.

Thus, the unconditional PEP becomes

1A% +2((AH - I)X, A) )}

BX—X)= E[Q< 2No||ATA|?

10.12.1 Zero-forcing interface

(10.162)

A zero-forcing interface consists of choosing A = H™, where the superscript *
denotes the Moore—Penrose pseudoinverse of a matrix (Section B.7, Appendix B).
For future reference, we note that we have

HYH) = (HH)™! (10.163)

30Other reduced-complexity receiver interfaces can be envisaged. For example, in [10.39] a
scheme is advocated where r* < r antennas are used, by selecting the r" best received signals.
As long as 7’ > t, the capacity achieved by this system is close to that of a full-complexity system.
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If we assume r > t, then HTH is invertible with probability 1, and we have
HY = (H'H)"'Hf (10.164)

SO
H'Y =X+H'Z (10.165)

which shows that the spatial interference in completely removed from the received
signal, thus justifying the name zero forcing associated with this interface. The
metric used here is then |[H*Y — X||2.

From (10.161), the conditional PEP becomes

PX—>X|H)=Q (%50“—2) (10.166)
where, due to (10.162),
o2 2 V[(A,H'Z))
_ %Tr (ATH*(HH)A]
= 1—\279Tr [ATHTH)'A] (10.167)

This expression shows how the price paid for nulling the spatial interference is
noise enhancement.

10.12.2 Linear MMSE interface

Here we choose the matrix A so as to minimize the mean-square value of the
spatial interference plus noise. Define the mean-square error (MSE) as

e?(A) £ E[|AY -X|?]
E[Tr (AH —I,)X + AZ)((AH — I)X + AZ)'](10.168)

Using the simplifying assumption of iid zero-mean components of x (with second
moment £), we obtain the following expression:

e2(A) = Tr ((AH — L)(AH — I,)T + NjAAT) (10.169)
The variation of £2(A) with respect to A is then given by

§(?) = Tr {5A[8H(AH — 1)t + NoAT + [E(AH - I)H' + NOA]5AT}
(10.170)
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The corresponding stationary point obtained by nulling this variation yields the
MMSE solution:

A= Anme 2 HIHEH! +6,1,)7! = (HH + 6,1,)1H (10.171)

where §s = Np/€. From (10.162) we obtain

PX—-X)=E

0 A%+ 2((HTH + 6,I,) 'H'H - 1)X, A)
V2No[H(HH + 6,1,) "1 A2

(10.172)
Notice that, as 6 — 0 (vanishingly small noise), the right-hand side of (10.172)
tends to the PEP of the zero-forcing interface, as it should.

10.12.3 Asymptotics: Finite ¢ and r — oo.

Here we consider the case r >> t by examining the asymptotic performance ob-
tained when r — oo, while ¢ remains constant. By the strong law of large numbers

we can write, as r — 00,
HH - rI, as. (10.173)

and we have previously seen from (10.152) that with ML detection the pairwise
error probability tends to that of a nonfading AWGN channel (no spatial interfer-
ence). Using (10.173) in (10.167) and in (10.172), we see that, asymptotically, ZF
and MMSE interfaces do not entail any loss of performance with respect to ML.

10.12.4 Asymptotics: t,7 — oo witht/r — a > 0.

Things change if both ¢ and r grow to infinity while their ratio tends to a constant
positive value «. In this case an SNR loss is expected, as we are going to illustrate
for the ZF interface (see [10.9] for the MMSE case).

Theorem C.3.2 of Appendix C shows that, as ¢, — oo with t/r — «, the
cumulative empirical eigenvalue distribution of H'H/r converges to a function
F(X; o) whose derivative is given by:

0 a _
S F(va) = f(Aa) £ (1 - a™1)48()

4 1O 0

27r)\

(10.174)
where A1 2 (y/a £ 1)2. In particular, when o = 0 or oo, the pdf f(); a) tends to
d(X\ — 1) or §(X), respectively.

The asymptotic PEP of the ML and ZF receivers can now be calculated by using
Theorem C.3.3 of Appendix C, where the role of the matrix sequences A,, and B,
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is played by W £ H'H/r and AAT as r — co. Then for the ML receiver we

have
IHA |2 L et
e —Tr(HHAA
2N, oy T )
rt
. t
2NOT(WAA )
%E[T(W)]T(AAT) (a5 a5 b, — 00, t/r — )
0
(10.175)
where 7(A) £ Tr (A)/n for an n x n matrix A. Since
b
E[r(W)] — / Af(ANa)dh=1 (10.176)
a
we obtain, a.s. as t,7 — 00, t/T — a,
[HA? _ rlA]?
N, — Ny (10.177)
and hence
< Al
P(X — X —_ 10.1
(X - )—>Q< oMo (10.178)
For the ZF receiver we have, from (10.167),
o= %BT(W*AAT) — %E[T(W‘l)]T(AAT) (10.179)
Since ,
E[r(W™1)] — / A a)dh = % (10.180)
a —a
we obtain, a.s. as t,7 — 00, t/r — a,
Al rlAl?
— 1—a)——— 10.181
oz -5y (10-181)
and hence
~ 2
PX—-X)—Q (1- a)m— (10.182)

2N,
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Figure 10.25: Word error probability of the binary (8,4, 4) Reed-Muller code with
binary PSK over a channel witht = 2 transmit antennas and r receive antennas
with ML, MMSE, and ZF interfaces (computer simulation results).

Thus, the asymptotic SNR loss with respect to the ML interface is equal to (1 —
«)~! for the ZF interface, which predicts that the choice 7 = ¢ with a large number
of antennas yields a considerable loss in performance. From the above we may
expect that these linear interfaces exhibit a PEP close to ML only for r > ¢; other-
wise, the performance loss may be substantial. This is validated by Figure 10.25,
which shows the error probability of a multiple-antenna system where the binary
(8,4,4) Reed-Muller code is used by splitting its code words evenly between two
transmit antennas. The word-error probabilities shown are obtained through Monte
Carlo simulation. Binary PSK is used, and the code rate is 1 bit per channel use.
It is seen that for 7 = 2 both MMSE and ZF interface exhibit a considerable per-
formance loss with respect to ML, while for » = 8 the losses are very moderate.
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Y =GY-1LX

Figure 10.26: General structure of a nonlinear interface.

10.13 Nonlinear interfaces

The task of reducing the spatial interference affecting the received signal can be
accomplished by first processing Y linearly and then subtracting from the result
an estimate of the spatial interference obtained from preliminary decisions on the
transmitted code word. The metric used for decoding is ||'Y — X||, where Y is the
soft estimate of X given by

Y 2GY-1LX (10.183)

for a suitable choice of the two matrices G and L (Figure 10.26). The diagonal
entries of the matrix L. must be zero in order to have only spatial interference
subtracted from GY.

10.13.1 Vertical BLAST interface

One nonlinear interface is called vertical BLAST (this stands for Bell Laboratories
Layered Space-Time Architecture). With V-BLAST, the data are divided into ¢
substreams to be transmitted on different antennas. The receiver preprocesses lin-
early the received signal by forming the matrix GY, which has ¢ rows. Then it first
decodes one of the substreams after reducing the spatial interference coming from
the others. Next, the contribution of this substream is subtracted from the received
signal, and the second substream is decoded after reducing the remaining spatial
interference. This process is repeated ¢ times.

Different implementations of the basic V-BLAST idea are possible, two of them
being the zero-forcing ZF V-BLAST interface and the minimum-mean-square-error
MMSE V-BLAST interface. These arise from the minimization of the mean-square
error of the spatial interference without or with noise, respectively.

It should be observed that the performance of V-BLLAST depends on the order
in which the substreams are decoded (in the algorithm above, the actual number-
ing of the rows of GY is arbitrary), and on the data rate associated with each
substream. Several strategies are possible here (see [10.10] and references therein,
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and [10.22,10.65,10.67]): the decoding order may be predefined, and the data rates
may be the same; or an ordering may be chosen so as to maximize an SNR-related
parameter, with equal data rates; or different data rates may be assigned to different
substreams.

ZF V-BLAST When the presence of noise is disregarded, the MSE of the distur-
bance can be written as
£(G,L) = E[||Y — X||}] = E[|GHX — LX — X% (10.184)
Under the approximations
EXX!] ~ E[XXI]

EXX! ~ E[XXI] (10.185)

(which are justified by the assumption of having X ~ X unless the error probabil-
ity is high) we obtain
&(G,L) = E[|(GH-L-IL)X|?
= E[Tr{(GH-L-1,)/(GH - L — I,)XX1}]
NEE[|GH - L — L,||%] (10.186)

since ]E[XXT] = NE&I,. From the QR decomposition of H (Section B.6.2 of
Appendix B),

H=Q R
Mo o S~
rxt rxt txt

(where R is an upper triangular matrix), we see that the MSE £%(G, L) vanishes
by setting

G = diag”'(R)Qf

{ L = diag'(R)R-1I, (10.187)
The block diagram of Figure 10.26 illustrates that ZF V-BLAST corresponds to
having a strictly upper triangular matrix L. Explicitly, the steps of the ZF V-
BLAST algorithm proceed as follows. Denoting by (A); the ith row of matrix
A, by (A);; its entry in ith row and jth column, and by = the result of decoding,
we have

(). = (GY) ~ = (X
(Y)i1 = (GY)m1 — (L)e—1,6(X)s R = (X)t—1
! ()2 = (GY)i—2— (L)t—2,t(X)t - (L)t—2,t—1(X)t—1 = (X)i—2

@ = @) - OR— -~ DRy = R
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The soft estimate of X can be written as

Y = diag ' (R)QY — [diag ' (R)R — I;)X (10.188)
= X+ ldiag‘l(RlR — LA +diag™'(R)Q'Z
@ @ ®

The three terms in the last expression are: O the useful term (which is free of spatial
interference, thus justifying the name zero forcing associated with this interface);
@ the interference due to past wrong decisions; and ® colored noise.

MMSE V-BLAST This minimizes the MSE of the disturbance Y — X, taking
into account the presence of noise. Again, under the approximations (10.185), we
can write the MSE as

e2(G,L) = E[|GY -LX -X]?
= E[(GH-L-1,)X + GZ|*]
= N€ ||GH—L—It||2+5S||G||2] (10.189)

where §; = Ny/€. The minimum MSE can be found in two steps:

i) Minimizing £2(G, L) over the set of matrices G € C**" leads to
Gumse = (L + I)(HH + 6,1,) " TH' . (10.190)
The corresponding minimum MSE is

2 (L) = NNoTr [(L + L) (HTH + 5,1,) " (L + It)T] (10.191)

ii) Next, €2, ...(L) is minimized over the set of ¢ x ¢ strictly upper triangular
matrices (i.e., such that [L];; = 0 whenever ¢ > j). This can be done by
using the Cholesky factorization HTH + §,I; = SS, where S is an upper
triangular matrix (Section B.6.1 of Appendix B). After using basic multipli-
cation properties of triangular matrices, we obtain the following result:

Bumse(L) = NNoTr [(L+T)(HH + 1) (L + 1)']
= NNo||(L +I;)S™!|?
> NNoljdiag((L+1)S7)|

t
NNo|diag(S™1)||* = NNo > [[S)al™>  (10.192)

i=1
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The minimum is attained by setting L = diag=*(S)S — I,. Thus, ¢2(G,L) is
minimized by setting

G = G £ diag~}(S)S—tHT
e fag (S) (10.193)
L = Lume = diag7(S)S-1,
and .
Etmse = €% (Gmmse, Lmmse) = NNo Y |[Si.a| ™ (10.194)
i=1
As a result, the soft estimate Y can be written as
Y = diag7}(S)STTH!'Y — (diag~}(S)S — I,)X
= (I; — diag™!(S)S™HX + (diag~1(S)S - I,)A
® @
+diag™}(S)S~TH'Z (10.195)
®

where the three terms in the last expression are: @ the (biased) useful term; @ the
interference due to past wrong decisions; and @ colored noise.

10.13.2 Diagonal BLAST interface

Consider the transmission scheme of Figure 10.27, referred to as Diagonal BLAST
(D-BLAST). Here, a,b,c, ..., denote different data substreams. As discussed in
Section 10.14 infra, this scheme differs from V-BLAST because each symbol in
a data substream is transmitted by a different antenna and hence achieves a larger
diversity. To obtain this, the information stream is demultiplexed into ¢ substreams,
which are transmitted by ¢ antennas through a diagonal interleaving scheme. The
interleaver is designed so that the symbols of a given substream are cyclically sent
over all the ¢ antennas in order to guarantee the necessary diversity order. Diag-
onals are written from top to bottom, and the letters in each rectangle denote the
corresponding code symbol index, i.e., indicate the sequence in which diagonals
are filled. Each rectangle in Figure 10.27 may actually contain an arbitrary number
& > 1 of coded symbols. Each column of ¢ symbols of the diagonal interleaver
array is transmitted in parallel, from the ¢ antennas.

To illustrate the operation of D-BILAST, consider a simple case with two trans-
mit antennas. The transmitted matrix has the form

Ti1 T2 Ti3 -
X = 10.196
0 1 x20 ( )
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space (antennas)

D TI0O Q|0 | QO |

transmission time

Figure 10.27: An example of diagonal interleaving witht = 8.

where x;; is the signal transmitted by the ¢th antenna in the jth substream. The
receiver first detects z11, which is not affected by spatial interference. Then, it
detects xo7; this is affected by the spatial interference caused by x12, which can
be reduced or nulled, by using, for example, a zero-forcing fiiter. Next, the esti-
mates of 17 and xo; are sent to the decoder of the first substream. Once this first
substream has been decoded, its contribution is subtracted out before decoding the
second substream, and so forth. Notice that D-BLAST entails a rate loss due to
the overhead symbols necessary to start the decoding process (these are shaded in
Figure 10.27).

10.13.3 Threaded space-time architecture

To avoid the rate loss implied by D-BLAST, the latter architecture can be general-
ized by wrapping substreams around, as shown in Figure 10.28. This figure shows
a simple special case of threaded layering, whereby the symbols are distributed
in the code word matrix so as to achieve full spatial span ¢ (which guarantees the
right spatial diversity order) and full temporal span [V (which guarantees the right
temporal diversity order in the case of fast fading) [10.19].

10.13.4 Iterative interface

An alternative to BLAST consists of performing an iterative spatial interference
cancellation. Referring again to the block diagram of Figure 10.26, at iteration &,
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Figure 10.28: An example of threading with{ = 8 (each letter represents a layer).

k=0,1,..., an estimate of the spatial interference is generated in the form
W) = (GH — diag (GH))X® (10.197)

Here X®) is the decoded word at iteration k, computed by minimizing the metric
Y ®) — X |2, where

Tr) = v _w®

= Y — (GH — diag (GH))X ¥ (10.198)

and for k£ = 0 we define X 2 0. It can be easily seen that, if decoding is perfect
(that is, if X&) = X for some k), then

Y® = diag (GH) X + GZ (10.199)

which shows that the spatial interference is completely removed.

10.14 The fundamental trade-off

As we briefly mentioned in Section 10.1.1, the use of multiple antennas provides
at the same time a rate gain and a diversity gain. The former is due to the fact
that multiple, independent transmission paths generate a multiplicity of indepen-
dent “spatial” channels that can simultaneously be used for transmission. The latter
is obtained by exploiting the independent fading gains that affect the same signal
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and that can be averaged through to increase the reliability of its detection. Here
we examine how these two performance measures are related by fundamental lim-
its that reflect the ubiquitous trade-off between rate and transmission quality of a
transmission system.

We focus our attention on the nonergodic fading channel of Section 10.6, with
channel state information available at the receiver only, and to a high-SNR situ-
ation. The latter restriction refers to a system whose performance is not power
limited. We have seen (Section 4.2.2 and Observation 10.3.2) that, as the SNR
¢ — o0, the capacity C(() of an ergodic Rayleigh fading channel with SNR ¢
grows as mlog ¢, with m £ min{t,r}. Recalling the high-SNR expression of
the capacity of the single-antenna ergodic Rayleigh fading channel, which is log ¢,
the result above can be interpreted by saying that the maximum number of inde-
pendent parallel channels (or, in a different parlance, the number of degrees of
freedom) created by ¢ transmit and r receive antennas equals m, which is the max-
imum rate gain we can achieve. Consider next the number of independently faded
paths: in our model this is equal to ¢r, which is indeed the maximum achievable
diversity gain with maximum-likelihood detection (Observation 10.9.1).

We discuss here the fact that, while both gains can be achieved by MIMO sys-
tems, higher rate gains come at the expenses of diversity gains. We start our dis-
cussion by defining precisely what we mean by rate gain and diversity gain in the
present context. In a situation where different data rates are involved, a sequence
of codes with increasing rate, rather than a single code, must be considered. For
a fair comparison among codes with different rates, the rate gain is defined by the
ratio between the actual code rate p({) and the capacity of the scalar channel at
that SNR:

a 1. P)

7 Clggo cO (10.200)
This indicates how far the system is operating from the capacity limit. Notice that
the capacity increases with the SNR ¢, so to approach capacity the code rate p(¢)
must also increase with (; if a single code were used, the rate gain would vanish,
because, as ( increases, the ratio (10.200) would tend to zero. As for the diversity
gain 4, this is defined as the exponent of ( ~! in the expression of the average error
probability of the system: formally,

(10.201)

The main point here is that the maximum values of rate gain and diversity gain
cannot be achieved simultaneously; p and ¢ are connected by a trade-off curve that
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Figure 10.29: Diversity-rate trade-off for multiple-antenna systems with t transmit
and r receive antennas.

we are going to introduce and discuss. This curve plots, as a function of the rate
gain u, the maximum achievable diversity gain, denoted &*(1).

The trade-off curve, in the special but important case of a code with length
N >t + 7 — 1,8 is given by the piecewise-linear function connecting the points
(k, 6*(k)), k € {0,1,...,m}, where

(k) 2 (t— K)(r — K) (10.202)

as shown in Figure 10.29. We see that the maximum values that ¢ and § can
achieve are m and tr, respectively, as discussed before. Equation (10.202) also
shows that the maximum diversity gain can only be achieved for zero rate gain,
and the maximum rate gain can only be achieved for zero diversity gain. More
generally, (10.202) shows that, out of the total number of ¢ transmit and r receive
antennas, ~ transmit and « receive antennas are allocated to increase the rate, and
the remaining ¢ — « and r — & create diversity.

Proof

Under the above assumptions, and asymptotically as { — oo, the outage probability
(see Section 10.6) corresponding to an information rate p = plog ¢ can be written

6See [10.67] for lower values of N. Here, it suffices to observe that no more diversity gain can
be obtained if the block length of the code exceeds ¢ + r — 1, which consequently expresses the
infinite-block-length performance.



10.14. The fundamental trade-off 371

as

m
Poue(n,€) 2 IP’( $ log(1 + AiC) < log <) (10.203)

i=1
where ); is the ith ordered eigenvalue of the matrix HHT. If 4 > m the outage
probability is always 1 (since log ( dominates asymptotically the other terms as
{ — 00), so we restrict ourselves to the case u < m. The joint pdf of the A;’s is
given by (C.28) of Appendix C. Defining the new variables o; £ —log A;/log¢,
we can write the outage probability (10.203) as follows:

_ (WmQm
Pout(1,¢) = om0 (10.204)
. 3 log(1 4+ ¢17%) < 4l
/zxemm,alz...zam [; og( ¢ ) < plogg
. He_c—ai C-—(n—m-i—l)oz1 H(C—ai _ C—a]‘ )2d0t
i=1 i<

Since { — o0, several simplifications can be used:

e The Iverson function in the integral tends to the following limit:

[Zlog(l +¢ime) < ulogc] - [Z(l —ai)s < u] (10.205)

=1 i=1

e Since exp(—¢~*) — 0 for a; < 0 and exp(—(~*) — 1 for a; > 0, the
integration domain where the integrand is not asymptotically small reduces to
RT.

o ((T*—(%)2 — (2% since a; > o fori < j except for a set of measure
ZEro.

Collecting the above observations, we obtain, as { — oo,

Pout(1,¢) — (o7 [i(l —o4)y < u]

Pr(m)Tm(n) Joy>. >am>0 i=1

-exp ( —In¢Y) (n—m+2i— 1)a,-) do (10.206)

=1

Using Laplace’s method of asymptotic multidimensional integral approximation
(see, e.g., [10.12]), it can be shown that

Pou(, ¢) — ¢~ douelk) (10.207)
where
m
A . _ . _ X
doue k) = 12 2am 205 Iy (=) < 2 (n-—m+2i-Tai  (10208)

i=1
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The minimization above is a linear programming problem with nonlinear constraints,
equivalent to the computation of

m
a* £ arg max Z(n —m+2i—1)a (10.209)
a1 .Lam<l, Y (@)+<n

In order to compute (10.209),one sets @; = 1 fori =m,m—1,...,m— |p] + 1.
Next, one has to set ap,_|,) = p — ] < 1. This corresponds to setting

1 i=1,...,m—|ul -1
a; =9 1=(u—|u]) i=m-— |4y (10.210)
0 t=m—|p]+1...,m

As a result, we can write the following expression for the diversity:

dout = (n— [u)(m — [p)) = (0 — [k +m —1-2x])  (10211)

which, for integer u, yields
dout = (n. — p)(m — p) (10212)

In this case, &; represents an indicator of the usage of the ith equivalent channel:
&; = 0 means that the ith channel is not used, and vice versa for &; = 1. In fact,
if & = 0 and hence a; = 1, the ith eigenvalue A; = (** — 0 as ( — oc.
That implies a rate loss due to the inability of using the ith channel. Meanwhile,
the diversity doyt (1) is increased by (n —m+ 2¢ — 1) units as shown by (10.206). O

This diversity—rate trade-off curve can be used to compare different schemes and
to interpret their behavior, as shown in the examples that follow. In particular, we
shall see how orthogonal schemes are attractive when high diversity gain is sought,
while BLAST interfaces favor rate gain.

2 x 2 schemes

Consider two transmit and two receive antennas, and a block length chosen to come
ply with the condition of validity of (10.202), viz., N > t 4+ r — 1. The maximum
diversity gain is tr = 4, achieved if each transmitted signal passes through all four
propagation paths. The maximum rate gain is ¢ = r = 2. The optimal trade-off
curve for this system is shown by the continuous line of Figure 10.30.

A simple scheme that achieves maximum diversity is a repetition code:

_ I 0
X = [ 0 o ] (10.213)
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5*(u) |

12 1 B

Figure 10.30: Diversity-rate trade-off for 2 x 2 systems. Continuous line: Optimal
trade-off. Dotted line: Alamouti code. Dashed line: Repetition code.

where z; is a signal from a suitable constellation (we may think of this scheme
as an inner code concatenated with an outer code that generates x;). Figure 10.30
shows the trade-off curve for this “repetition” system. Since it takes two channel
uses to transmit one symbol, the maximum rate gain is 1/2. When maximum
diversity is achieved, the rate gain is 0. In fact, if a data rate plog{ must be
supported, the size of the constellation from which z; is drawn must increase, and
consequently the minimum distance decreases, as does the achievable diversity
gain.
The Alamouti code can also be used on this channel. Here

X = [ 1T ] (10.214)
I9 Ty

This achieves full diversity gain. Two symbols are transmitted every two channel
uses, and hence the maximum rate gain is 1. Its trade-off curve is shown in Fig-
ure 10.30. Notice that, although both the repetition and Alamouti code achieve
the optimum diversity at & = 0, their behavior is markedly different when the
diversity-rate trade-off is taken into consideration.
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Orthogonal designs

Consider first the special case ¢ = 2, with X given again by (10.214). The optimal
trade-off can be computed, and yields

8 (u)=tr(l — p)+ (10.215)

More generally, since orthogonal designs with full rate (that is, x = 1) do not
exist for ¢ > 2, one can observe that their maximum rate gain is strictly less than
1. Hence, although they achieve maximum diversity at u = 0, they are strictly
suboptimum in terms of the diversity—rtate trade-off.

Zero-forcing vertical BLAST

Consider now zero-forcing vertical BLAST (ZF V-BLAST), with m transmit and
receive antennas and independent substreams transmitted by each antenna. Its per-
formance, as discussed in Section 10.13.1, depends on the order of detection of
the substreams and on the data rates of the substreams. For all versions of V-
BLAST, the trade-off curve is suboptimal, especially for low rate gains: in fact,
every transmitted substream experiences only m independent fading gains, and,
even with no spatial interference between substreams, the trade-off curve cannot
exceed 0(k) =m — k.

Zero-forcing diagonal BLAST

This system, which has coding over signals transmitted on different antennas,
promises a higher diversity gain. Here, if the rate loss caused by the overhead sym-
bols is disregarded, the trade-off curve connects the points (m — &, k(x + 1)/2),
k = 0,...,m. Observe that the maximum diversity gain is now m(m + 1)/2,
better than for V-BLAST but still short of the theoretical maximum m?2. It is rec-
ognized [10.2, 10.67] that this performance loss is caused by the zero-forcing step.
If MMSE filtering is used instead of ZF, then D-BLAST achieves the optimum
trade-off curve (apart from the rate loss mentioned before). This behavior can be
justified by observing that D-BLAST achieves the optimum mutual information of
the MIMO channel for any realization of channel H [10.42, Sec. 12.4.1]

10.15 Bibliographical notes

In this chapter we have focused on narrowband channels only. For treatments of
MIMO broadband fading channels, and in particular of the impact of frequency
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selectivity on capacity and on receiver structures, see, e.g., [10.2,10.13]. The rich-
scattering MIMO channel model was introduced and extensively studied in [10.20,
10.21]. The separately correlated channel model is studied in [10.40, 10.51]. The
keyhole model is discussed in [10.17,10.24]. Rician MIMO channels are examined
in [10.53]. In [10.60], the authors show how the properties of the physical MIMO
channel are reflected into the random-matrix model.

Capacity calculations closely follow [10.58]. Equation (10.28) was obtained by
refining a result in [10.50], which in turn was derived by elaborating on (10.45),
derived in [10.58]). An alternative expression for the asymptotic capacity variance
in the form of an integral is obtained in [10.3]). The limits on communication over
a MIMO channel without CSI were derived by Marzetta and Hochwald [10.30,
10.37]. Nonergodic channels and their outage probability were originally exam-
ined in [10.20, 10.21, 10.23, 10.58]. The asymptotic normality of the instanta-
neous mutual information C'(H) was obtained independently by several authors
under slightly different technical assumptions [10.25, 10.31, 10.41, 10.48, 10.52]
(see also [10.5]).

Delay diversity was proposed in [10.49, 10.64]. Space-time trellis codes were
introduced in [10.57]. To avoid the rate loss of orthogonal designs, algebraic codes
can be designed that, for any number of transmit and receive antennas, achieve
maximum diversity, such as Alamouti codes, while the rate is £ symbols per channel
use (see [10.36] and references therein). Linear codes, called linear dispersion
codes, were introduced in [10.28], while a more general treatment can be found
in [10.35]. Differential space-time coding has been advocated for noncoherent
channels: see, e.g., [10.32,10.33].

Deeeper discussions of iterative interfaces can be found in [10.7, 10.8, 10.45-
10.47] and references therein.

Our discussion of the fundamental trade-off follows [10.67].

10.16 Problems

1. Consider the deterministic MIMO channel. Express its capacity under the
constraint that equal energies are transmitted over all channels associated
with nonzero singular values of H. Using Jensen’s inequality, prove that,
among all channels with the same “total power gain” ||H||?, the one whose
singular values are all equal has the largest constrained capacity.

2. Consider an ergodic fading MIMO channel with E|A;;|*> = 1 and CSI at
the receiver only. Show that, at low SNR, its capacity exceeds that of the
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W

4.

AWGN channel by a factor that depends on r, but neither on ¢ nor on the
fading correlation.

Prove (10.139).
Show that the Alamouti code with r = 2 is also an orthogonal design.

Recast V-BLAST as a special case of linear space—time codes by computing
the matrices Ay, By, £=1,..., L.

Consider a MIMO system with ¢ antennas all transmitting the same symbol
x € C. Assume that the channel matrix H has independent and identically
distributed entries, and that its realization (the CSI) is known at the trans-
mitter and at the receiver. The transmitted symbol is weighted by vector
(gH)' /a, where g € C" and @ £ |gH] is a normalization factor, so that the
received signal has the form

y= EH(gH)T +z

The receiver estimates = by forming £ = gy. Compute the vector g that
maximizes the SNR of estimate Z.

Prove that, for an uncorrelated keyhole channel, the constrained capacity C*
defined in Section 10.4 satisfies

C* <log(l+7(¢)

(This result shows that this channel, regardless of the number of antennas,
yields no rate gain).

Consider a MIMO system with r = 1, and the following transmission scheme.
The receiver broadcasts a known probe symbol zg. Transmitter ¢, 1 < i < ¢,

receives h;To + 2;, 2; a noise term (assume for simplicity that E|z;|2 = Ny

for all 4), and sends its information symbol x in the form (h}xj + 27)x. As-

suming binary PSK signaling and an independent Rayleigh fading channel,

compute numerically the error probability of this scheme as a function of ¢

and of the ratio between the transmitted energy per bit and the energy of the

probe signal.
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A.1 Basic definitions

We start with the definition of quantity of information carried by a signal 2, chosen
from an constellation X and transmitted with probability p(z). The information
content of signal x, denoted by I(z), increases with the uncertainty of its transmis-
sion: )
Jay
I(z) £ log (@) (A.1)

where log, here and throughout this book, denotes logarithm to base 2. This infor-
mation is measured in bits. One bit of information is conveyed, for example, by
the transmission of one out of two equally likely signals.

Denote by [E, the expectation taken with respect to the probability measure p(z)
on X, that is, E;[f(z)] £ 3, p(z)f(z) for any function f(z). Then the average
information content of z is

H(z) 2 E,[I(a)] = E; log 5(137) (A2)

This is called the entropy of X, and is measured in bit/signal.!

Example A.1
If the source constellation consists of M equally likely signals, then p(z) = 1/M,
and we have
M
H(z) = —logM =log M it/signal
(x) ; 27 o8 og bit/signa

When X consists of two signals with probabilities p and 1 — p, the entropy of z is

2 H(p) (A3)

1 1
H(x) =plog§ +(1~p)log T

It can be seen that the maximum of the function H (p) defined in (A.3) occurs for
p = 0.5, that is, when the two signals are equally likely. More generally, it can be
proved that, if z is chosen from a finite constellation X, then its entropy is maximum
when p(z) is uniform, i.e., p(z) = 1/]X|. O

'The notation here is not felicitous, as H(x) is not a function of x, but rather of X and of the
probability measure defined on X. However, it has the advantage of simplicity, and should not be
confusing.
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A communication channel is the physical medium used to connect a source of
information with its user. The channel accepts signals z belonging to the input
constellation X, and outputs signals y belonging to the output constellation Y (un-
less specified otherwise, we assume that both X and Y are discrete). A channel is
characterized by the two constellations X and Y and by the conditional probabili-
ties p(y | =) of receiving the signal y given that the signal x has been transmitted.
(p(y | ) may be a probability or a probability density function, according to the
structure of the input and output constellations.) A channel is called stationary

memoryless if
n

P, Y | 71, z0) = [ [ P(v: | 2) (A4)
i=1
where z1, ..., 2z, and y1, . . . , Y, Tepresent n consecutive transmitted and received

signals, respectively.

Given the input and output channel constellations X and Y, and their probabilis-
tic dependence specified by the channel transition function p(y | x), we can define
five entropies, viz.,

(a) The input entropy H(z),
1
H(z) 2 E log —— Dbit/signal (A.5)
() = Be log 1y bitsie

which measures the average information content of the input constellation,
that is, the information we want to transfer through the channel.

(b) The output entropy H(y),

1
H(y) £ E,log — bit/signal (A.6)
( ) Y p(y) £n
which measures the average information content of the signal observed at
channel output.

(c) The joint entropy H(z, y),

1
H(z,y) £ E, ,log ——— bit/signal pair (A7)
Y p(a,y)
which measures the average information content of a pair of input and out-
put signals. This is the average uncertainty of the communication system
formed by the input constellation, the channel, and the output constellation
as a whole.
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(d) The conditional entropy H(y | =),

H(y | ) £ E, 4 log bit/signal (A.8)

1
p(y | z)
which measures the average information quantity needed to specify the out-
put signal y when the input signal x is known. In other words, this measures
the average residual uncertainty on signal y when signal z is known.

(e) The conditional entropy H(z | y),
1
H(z |y) = E .y log ———— Dbit/signal (A9)
@1 = B8 0Ty

which measures the average information quantity needed to specify the input
(or transmitted) signal x when the output (or received) signal y is known.
Equivalently, this is the average residual uncertainty on the transmitted signal
x when the received signal y is observed at the output of the channel: thus,
this conditional entropy (often called channel equivocation) represents the
average amount of information that has been lost on the channel. (A limiting
case is the noiseless channel, for which the channel output equals its input,
so we have H(z | ) = 0. Another limiting case is the infinitely noisy
channel, for which input and output are statistically independent, and hence

H(z | y) = H(z).)

Using these definitions, the following equations and inequalities can be proved:

H(z,y) = H(y,z) = H(z) + H(y | z) = H(y) + H(z | y) (A.10)
H(z | y) < H(z) (A.11)
H(y | z) < H(y) (A.12)

These are summarized in Figure A.1. Inequalities (A.11) and (A.12) become equal-
ities if z Ly, that is, p(z,y) = p(z)p(y).

As mentioned before, the conditional pdf p(y | ), z € X, y € Y, characterizes
a stationary memoryless channel. If X and Y are finite constellations, the values
of p(y | z) can be arranged in a matrix P whose entries are (P);, = p(y | ).
An important channel example occurs when P is such that at the same time all its
rows are permutations of the first one and all its columns are permutations of the
first one. In this case the channel is said to be symmetric. A central property of the
symmetric channel is that H(Y | X) is independent of the input probabilities p(x)
and hence depends only on the channel matrix P.
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H(z) H(yJ2)

H(z]y) H(y)
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H(z,y)
Figure A.1: Relationships among different entropies and mutual information.

Example A.2 (Binary symmetric channel)

An important special case of a symmetric channel occurs when |X| = |Y] = 2, and

S
p l-p

This is called the Binary Symmetric Channel (BSC). 1]

A.2 Mutual information and channel capacity

A part of the information H(z) transmitted over a noisy channel is lost. This part
is measured by the channel equivocation H(z | y). Thus, it seems natural to define
an average information flow through the channel, called the mutual information
between z and y and denoted I(z;y), as

I(z;y) 2 H(z) — H(z |y)  bit/signal (A.13)
Using (A.10) (see also Figure A.1), the following alternative forms can be derived:
I(z;y) = H(y) —H(y | ) = H(z) + H(y) — H(=z,y) (A.14)

Comparing (A.13) with the first equality of (A.14), it is apparent that I(x;y) =
I(y; z).
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Example A.3

Consider again the two limiting cases of a noiseless channel and an infinitely noisy
channel. In the first case, we observe y = z, so there is no uncertainty left on x:
we have H(z | y) = 0, and hence from (A.13) we have I(z;y) = H(z): the mutual
information is exactly the entropy of the source, as nothing is lost over the channel.
In the second case, y is independent of x: no information on x can be gathered by
observing y, and hence H(z | y) = H(x) (after observing y, the uncertainty on x is
the same as without any observation). We have I(z;y) = 0 (all information is lost
over the channel). O

Example A4

Let us consider again the BSC and see how I(xz;y) depends on the probability
distribution of the input signals. Direct calculation gives

I(z;y) = H(y) — H(p) (A.15)

where the function H(p) was defined in (A.3). The maximum value of I(z;y),
irrespective of the value of p, is obtained when the input signals are equally likely.
Thus, equally likely input signals yield the maximum information flow through a
BSC. This is given by

max I(z;y) =1~ H(p) =1+ plogp + (1 —p)log(1l - p) (A.16)
p(z

where the maximum is taken with respect to all possible probability distributions of
the input signals. If the channel is not symmetric (for example, transmitted Os are
more affected by noise than the 1s), then the more “robust” input signals should be
transmitted more often for maximum information transfer. |

In general, the maximum value of I(X;Y) for a given memoryless channel is
called its capacity and is denoted by C.

Example A.S

In the BSC, capacity is maximum when p is equal to O or equal to 1, since both these
situations lead to a noiseless channel. For p = 0.5, the capacity is zero, since the
output signals turn out to be independent from the input signals, and no information
is transferred through the channel. a
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A.2.1 Channel depending on a parameter

Suppose that the channel depends on a random parameter / independent of = and
y. The following equality can be proved:

Uz;y, H) = (z; H) + Yz;y | H) (A17)

A.3 Measure of information in the continuous case

Assume now that z is a continuous RV taking values in X with pdf p(z). The
entropy of X can still be defined formally through (A.2); however, some differences
arise, the main one being that H(z) may be arbitrarily large, positive, or negative.
As we did for discrete X and Y, we can define, for two continuous random variables
x and y having a joint probability density function p(z, y), the joint entropy H(z, y)
and the conditional entropies H(z | y) and H(y | z). If both H(z) and H(y) are
finite, the relationships represented pictorially in Figure A.1 still hold. As in the
discrete case, the inequalities (A.11) and (A.12) become equalities if x and y are
statistically independent.

In the discrete case, the entropy of z is a maximum if all z € X are equally
likely. In the continuous case, the following theorems hold.

Theorem A.3.1 Let x be a real, zero-mean continuous RV with pdf p(x). If « has
finite variance o2, then H(z) satisfies the inequality

1
H(z) < 3 log(2meo?) (A.18)
with equality if and only if z ~ N(0, 02).

A case more general than the above is obtained by considering, instead of a
scalar random variable z, a complex random vector x:

Theorem A.3.2 Let x be a zero-mean complex random vector with covariance
matrix Ry. Then H(x) satisfies the inequality

H(x) < logdet(meRx) (A.19)

with equality if and only if x ~ N¢(0, Ry).



390 Appendix A. Facts from information theory

Proof
Let xg ~ N¢(0, Rx. ), and calculate its entropy by using the pdf (C.24):

H(xg) = E[logdet{(nwRx.)+ xTcR;GIXG log €]
logdet (7Rx.) +E [xER;é xg]loge
= logdet(mRys) + Tr (R;éE[XGXE]) loge
= logdet(meRx,) (A.20)

Let p(x) and pge(x) be the pdfs of x and x¢, respectively. The theorem follows by
HO) - Hixe) = [ (pox)logpo(x) - p(x)logp(x)dx
= /p(x) (log pe(x) — log p(x))dx

= X ) 10, p——G(X) X

< oo )
= 0 (A21)

where we used the equality E [log pg(x)] = E [logpg(xs)] and Inu < u — 1 for
u > 0, with equality if and only if u = 1.2 Notice that equality holds if and only if
p(x) = pe(x), i.e., if and only if x is circularly symmetric Gaussian. 0

A.4 Shannon theorem on channel capacity

The celebrated Shannon theorem on channel capacity states that the information
capacity of a channel is also the maximum rate at which information can be trans-
mitted through it. Specifically, if the channel capacity is C then a sequence of
rate-C codes with block length n exists such that as n — oo their word-error prob-
ability tends to zero. Conversely, if a sequence of rate-p codes with block length n
has word-error probabilities tending to 0 as n — oo, then necessarily p < C.
Quantitatively, we can say that if we transmit data over a noisy channel, then
there exists a code with block length n and rate p bit/dimension for which the error

?In fact, the function f(u) 2 lnu — u + 1 has derivative f'(u) = u~' — 1, which is positive for
0 < u < 1 and negative for u > 1. Hence, it has amaximum at v = 1, i.e., f(u) < f(1) =0.
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E(p)¢

pof.

Po c »p
Figure A.2: Reliability function and cutoff rate of a channel.

probability is bounded above by
P(e) < 27"E0) (A.22)

where E(p), the channel reliability function, is a convex U, decreasing, nonnega-
tive function of p for 0 < p < C, and C is the channel capacity. We notice that
E(p) can be taken as a measure of the channel quality when a rate-p code is to
be used on it: in fact, the larger the value of E(p), the smaller the upper bound to
error probability for any given block length ». From (A.22) we can also see that
by increasing the block length n the error probability can be decreased at will, pro-
vided that the transmission occurs at a rate strictly less than C. Thus, computing
C we obtain a range of rates for which reliable transmission is possible, and hence
an indication of the quality of the channel when coding is to be used on it.

Another parameter for the comparison of coding channels is offered by the so-
called cutoff rate of the channel. This is obtained by lower-bounding the reliability
function E(p) with a straight line with slope —45° and tangent to E(p) (see Fig-
ure A.2).

The intercept of this line over the abscissa and the ordinate axis is pg. Thus, we
have

Pe) <27™po=P) - p < pg (A.23)

It is seen that while C yields a range of rates where reliable transmission is pos-
sible, po yields both a range of rates and an exponent to error probability, i.e., an
indication of how fast P(e) tends to zero when n is increased. Moreover, it is
generally easier to compute than the capacity. For a long time it was widely be-
lieved that pg was also the rate beyond which reliable transmission would become
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very complex, so pg was considered as a practical bound to the transmission rate.
However, the discovery of classes of codes that admit a practical decoding algo-
rithm and yet have performance close to capacity (LDPC codes, turbo codes) has
somewhat diminished the importance of pg as a performance parameter.

A.5 Capacity of the Gaussian MIMO channel
Let the channel input-output relationship be
y=Hx+z (A.24)

where H is a constant r X ¢ matrix whose realization is called the channel-state
information (CSI), x is a t-vector, and y and z are r-vectors. Assume x1lz and
z ~ N,(0, NoI,). From the mutual information

I(x;y) = H(y) - H(y | x) = H(y) — H(z) (A.25)
we seek the channel capacity under the constraint
Tr (Rx) < t€ (A.26)

For a given Ry, the covariance matrix of y is Ry = HR,H' + NoI,, and H(y) is
maximum for y ~ N.(0, Ry) (Theorem A.3.2). Moreover, the maximum mutual
information is given by

I(Ry) = log det (I, + Ny 'R,H H) (A.27)
The channel capacity can be calculated according to different assumptions:
(a) The receiver has perfect CSI and the transmitter has no CSIL.
(b) The receiver and the transmitter have perfect CSIL.

With assumption (a), the transmitter divides the available power evenly among the
transmit antennas, and the capacity is

Cix = log det (IT + %HTH) (A.28)

where ¢ = t€/Ny. With assumption (b), the capacity can be written as

C/rx = max log det (I, + Ny 'R,H'H) (A.29)
Rx>0,TT[Rx]<tE
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From Hadamard’s inequality (B.23) and the orthogonal diagonalization
Ny 'H'H = UDU'
(where U is unitary and D diagonal), we have
logdet (I, + Ny 'R,yH'H) = logdet (I, + RD)

> log(l+ (R)ii(D)is) (A30)
(D);,:>0

AN

where R £ U'R,U, with equality if and only if Ris diagonal. Since constraint
(A.26) translates into Tr (R) < t€, the maximization problem admits the water-
filling solution [A.1]:

(R); = (u . (D);})+ (A31)

with u obtained as the solution of
3 (u - (D);j)+ = 1€ (A.32)

(D)i,:>0

The channel input pdf achieving capacity is circularly Gaussian:

x ~ Ne(0, Udiag((1 — (D);;)+)U")

A.5.1 Ergodic capacity

Consider the separately correlated fading channel described in Section 10.2.1, with
channel matrix given by (10.11). Assume that the receiver has perfect CSI but the
transmitter has no CSI. Here we calculate the average capacity under the power
constraint E[||x||?] < t€ = Ny in the case T = I;. This derivation follows the
guidelines of [A.6] for the case of R = I,. and [A.4] in the more general setting of
R # I,, although we restrict ourselves to consideration of iid, ~ N.(0, 1) entries
of H,.
From the expression of the mutual information (A.25), capacity is given by

C = max  E[logdet(I, + Ny 'HR,H')] (A.33)
R, >0, TT{Rx]<tE

Using the orthogonal diagonalization Rx = UDUT (with matrix U unitary and D
diagonal), we notice that capacity can also be obtained as follows:

C= max E[logdet (I, + HDH')] (A.34)
D>0,Tr[D]<¢
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where the maximum is sought over the set of diagonal matrices with nonnegative
diagonal entries and trace upperbounded by ¢. The equivalence derives from the
fact that H,, and H, U (and hence H and HU) have the same joint pdf. Let us
write

¥(D) £ E [logdet (I, + HDH) (A.35)

Since the log-det function is concave [A.1, Th. 16.8.1], we have, for every vector
(a;) such that oy > O0and ) ;05 =1,

/ ( Z aiDi> = E [log det ( Z o (I, + HDiHT))]

> " E [logdet (I, + HD;H)]
= > o ¥(Dy) (A.36)

Now, let P; denote the ith permutation matrix (¢ = 1,...,¢!). For a given matrix
D such that Tr D = ¢, define D; £ P;DP/, i.e., the diagonal matrix obtained by
applying the ith permutation on the diagonal elements. We notice that

(@) v(D;) = ¥(D), since
E [logdet (I, + HP;DP.H')] = E [log det (I, + HDH')]
as H and HP; have the same joint pdf.

(b) >, D;/t! = (p/t)1;, since every diagonal entry of D appears the same num-
ber of times at each position of the matrix sum.

Hence, we have )
V((¢/OT) 2 53 > S ¥(Di) = ¥(D) (A.37)

which proves that the maximum ¥ (D), i.e., capacity, is attained for D = ({/t)1;,
i.e., uniform power allocation.
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Facts from matrix theory

In this appendlx we collect some. useful definitions and properties about ma-
trices. As we assume that the reader has some fam;tlt&nty w1th th1s tOpIC
results are stated without proof -
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B.1 Basic matrix operations

A real (complex) m X n matrix is a rectangular array of mn real (complex) num-
bers, arranged in m rows and n columns and indexed as follows:

ail a2 Ces a1n
ani aso e A9on (B l)
Aml Am2 ... Qmp

We write A = (a;;) as shorthand for the matrix (B.1), and sometimes we use
the notation A € R™*™ or A € C™*" to indicate a real or complex matrix,
respectively. If m = n, A is called a square matrix; if n = 1, A is called a column
vector, and if m = 1, A is called a row vector. We denote column vectors using
boldface lowercase letters, such as x, y,....

Standard operations for matrices are the following:

(a) Multiplication of A by the real or complex number c. The result, denoted by
cA, is the m X n matrix with entries ca;;.

(b) Sum of two m x n matrices A = (a;;) and B = (b;;). The result is the
m X n matrix whose entries are a;; + b;;. The sum is commutative, i.e.,
A+B=B+A.

(¢) Product of the m x k matrix A by the & X n matrix B. The result is the
m x n matrix C with entries

k
A . .
cijzg aigbej i=1,....m, j=1,...,n
=1

When AB = BA, the two matrices A and B are said to commute. The
matrix product is not commutative (i.e., in general AB # BA), but it is
associative (i.e., A(BC) = (AB)C) and distributive with respect to the
sum (i.e., A(B+ C)=AB + ACand (A + B)C = AC + BC).

The notation A* is used to denote the kth power of a square matrix A (i.e.,
the product of A by itself performed k — 1 times). If we define the identity
matrix I £ (8;;) as the square matrix all of whose elements are 0 unless
1 = j, in which case they are equal to 1, multiplication of any square matrix
A by I gives A itself, and we can set

A=1
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(d) The transpose of the m x m matrix A with entries a;; is the n x m matrix
with entries aj;, which we denote by A’. If A is a complex matrix, its con-

Jjugate A* is the matrix with elements a;;, and its conjugate (or Hermitian)

transpose AT £ (A’)* has entries aj;- The following properties hold:
(AB) = B'A’ (AB)! = BfAf

(e) Given a square matrix A, there may exist a matrix, which we denote by A~%,
such that AA~1 = A=1A = I. If A~ exists, it is called the inverse of A,
and A is said to be nonsingular. We have

(AB)T=B'AT  (A)=(aTly  (AhT=(aTY

B.2 Some numbers associated with a matrix

(a) Trace. Given a square n X n matrix A, its trace (or spur) is the sum of the
elements of the main diagonal of A

n
Tr (A) é Zaii (B2)
i=1
The trace operation is linear; that is, for any two complex numbers «, 3, and
two square n X n matrices A, B, we have
Tr (A + B) = aTr (A) + S Tr (B) (B.3)

In general, Tr (AB) = Tr (BA) even if AB # BA. In particular, the
following properties hold:

Tr (A"!BA) = Tr (B) (B.4)
Tr (ABC) = Tr (CAB) = Tr (BCA) (B.5)

and
x'y = Tr (xy') (B.6)

(b) Determinant. Given an n X n square matrix A, its determinant is the number
defined as the sum of the products of the elements in any row of A with their
respective cofactors ;;:

n
detA £ Zaij"ﬁj , forany ¢ =1,2,...,n B.7)
Jj=1
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The cofactor of a;; is defined as ;; £ (-1 mij, where the minor mi;
is the determinant of the (n — 1) x (n — 1) submatrix obtained from A by
removing its ith row and jth column. The determinant has the following

properties:
det A = 0 if one row of A is zero
or A has two equal rows B.8)
det A’ = detA (B.9)
det AT = (detA)* (B.10)
det (A7) = (detA)™! (B.11)
det (AB) = detA -detB (B.12)
det(cA) = " -detA for any number ¢ (B.13)

A matrix is nonsingular if and only if its determinant is nonzero.

(c) Rank. The rank of an m X n matrix A is the maximum number of linearly
independent columns or rows. The rank has the following properties:

rank (A) < min(m,n) (B.14)
rank (A 4+ B) < rank (A) + rank (B) (B.15)
rank(AB) < min(rank(A), rank (B)) (B.16)

(d) Eigenvalues. Given an n X n square matrix A and a column vector u with n
entries, consider the set of n linear equations

Au=Au B.17)

where A is a constant and the entries of u are unknown. There are only n
values of A (not necessarily distinct) such that (B.17) has a nonzero solution.
These numbers are the eigenvalues of A, and the corresponding vectors u
are the eigenvectors associated with them. Note that if u is an eigenvector
associated with the eigenvalue ) then, for any complex number c, cu is also
an eigenvector.

The polynomial a()\) 2 det(AI — A) in the indeterminate X is called the
characteristic polynomial of A. The equation

det \I— A) =0 (B.18)
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is the characteristic equation of A, and its roots are the eigenvalues of A.
The Cayley—Hamilton theorem states that every square 7 X n matrix A sat-
isfies its characteristic equation. That is, if the characteristic polynomial of
Aisa(A) = A" + g A" L+ -+ + ay, then

a(A)éAn+a1An_1+...+anI=0 (B.lg)

where 0 is the null matrix (i.e., the matrix all of whose elements are zero).
The monic polynomial z(A) of lowest degree such that u(A) = 0 is called
the minimal polynomial of A.

The following properties hold:

(i) If f(x) is a polynomial in the indeterminate z, and u is an eigenvector
of A associated with the eigenvalue A, then

f(A)u= f(A)u (B.20)

That is, f(A) is an eigenvalue of f(A) and u is the corresponding
eigenvector.

(i) The product and the sum of the eigenvalues A1,..., A, of then x n

matrix A satisfy
n

det(A) =[] M (B.21)
i=1
and
Tr (A) =\ (B.22)
=1

(ii1) From (B.21), it is immediately seen that A is nonsingular if and only
if none of its eigenvalues is zero.

(iv) The eigenvalues of A™, m a positive integer, are A\}".

(v) If A is nonsingular, then the eigenvalues of A~! are A~!, and the
eigenvectors are the eigenvectors of A.

(vi) The eigenvalues of A + oI are \; + o2, and the eigenvectors are the
eigenvectors of A.

(vii) The two matrices AAT and AT A share the same set of nonzero eigen-
values.
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B.3 Gauss-Jordan elimination

The Gauss—Jordan algorithm transforms a given matrix into row echelon form by
using elementary row operations. A matrix is said to be in row echelon form if the
following conditions are satisfied:

o If a row does not consist entirely of zeros, then the first nonzero entry in the
rowisal.

e The rows all of whose entries are zero are grouped at the bottom of the
matrix.

e In any two successive nonzero rows, the leading 1 in the lower row occurs
farther to the right than the leading 1 in the upper row.

B.4 Some classes of matrices
Let A be an nn X n square matrix.
(@) A is called symmetric if A’ = A.
(b) A is called Hermitian if At = A.
(¢) A is called orthogonal if A= = A'.
(d) A is called unitary if A=1 = At

(e) A is called diagonal if its entries a;; are zero unless ¢ = j. A useful notation
for a square diagonal matrix is

A = diag (a1, a22,.-.,0nn)
This definition also holds for nonsquare matrices.

(B A is called scalar if A = cI for some constant c; that is, A is diagonal with
equal entries on the main diagonal.

(g) A symmetric real matrix A is called positive (nonnegative) definite if all its
eigenvalues are positive (nonnegative). Equivalently, A is positive (nonneg-
ative) definite if and only if for any nonzero column vector x the quadratic
form x' Ax is positive (nonnegative). If A is nonnegative definite, then the
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number of positive eigenvalues equals rank (A), and the remaining eigenval-
ues are zero. If A is positive definite (we write A > 0), then all its eigenval-
ues are positive. The Hadamard inequality states that, for every nonnegative
definite matrix A,

det A < JJ(A)s (B.23)

with equality if and only if A is diagonal.

Example B.1
Let A be Hermitian. Then the quadratic form f £ x! Ax is real. In fact
= (x'Ax)* = x'A*x* = (A*x*)x =xTAlx (B.24)
Since At = A, this is equal to x' Ax = f, which shows that f is real. |
Example B.2
Consider the random column vector X = [z1, Z2,...,Zn] and itz correlation
matrix
R 2 E [xx] (B.25)

It is easily seen that R is Hermitian. Also, R is nonnegative definite; in fact, for any
nonzero deterministic column vector a,

alRa = a'E [xx']a = E[afxx'a] = E[Ja'x|?| > 0 (B.26)

with equality only if atx = 0 almost surely; that is, the components of x are lin-
early dependent. O

B.5 Scalar product and Frobenius norms

Given two m x n matrices A and B, their scalar product is defined as

(A, B) 2 ZZ% : (B.27)

=1 j=1

The scalar products has the properties
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(@ (A, B)"=(B, A)
() (A, B) = Tr (ABf) = Tr (BTA)
(¢) The scalar product of the n x 1 vector x by itself,
A =xx
is a Hermitian matrix.

(d) Two vectors x, y such that (x,y) = 0 are called orthogonal. If in addition
Ix|| = lly|| = 1, they are called orthonormal.

We define the Frobenius (or Euclidean) norm of A as

lAll 2 (&, &) = /Tr (AA}) = /Tr (ATA) =

The Frobenius norm has the properties
(@ A=0 ifandonlyif ||A]=0
() [|A+Bj| <Al + Bl (triangle inequality)
© [(A, B)| < [|A[l-[IB]
@ [A] = ||AT|
@ [|AB| <|A]l-[B]
® [A]? =Tr (AAT) =Tr (ATA)

B.6 Matrix decompositions

B.6.1 Cholesky factorization

Given a Hermitian n X n matrix A, its Cholesky factorization is
A=LL! (B.29)

where L is lower triangular (that is, (L);; = 0 unless j > ¢) and has nonnegative
diagonal entries.
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B.6.2 QR decomposition

An m X n matrix A, m > n, can be decomposed in the form
A=QR (B.30)
where R is an upper triangular n x n matrix, and Q is m X n with orthonormal

columns: QfQ = I,,. When A has rank n, all diagonal entries of R. are positive.
Notice that Q is not necessarily unitary. To make it a unitary m X m matrix

we can append to it an additional m — n orthonormal columns qp41,°* , Qm.
Correspondingly, we append rows of zeros to R so that
R
A=[Q dnt1 - qm][o] (B.31)

B.6.3 Spectral decomposition

If we define the n x n matrix U whose columns are the orthonormalized eigen-
vectors of the square matrix A, and the n x n diagonal matrix of its eigenvalues

diag (A1, -+ , An), then we have the decomposition
A = UAU! (B.32)
Notice that a square U may not exist: for example, the matrix
11
A=loi]

has only one nonzero eigenvector, u = (1 0)’. In this case the singular-value
decomposition (see below) can be used instead of the spectral decomposition. A
simple sufficient condition for the spectral decomposition to exist is that A be
positive definite.

B.6.4 Singular-value decomposition

Singular-value decomposition (SVD) of the m X n matrix A yields
A=U[X o]V! (B.33)

where U is a unitary m X m matrix, V is a unitary n X n matrix, and ¥ ism X n
diagonal, with nonnegative entries oy > oo > -+ > 0, called the singular values
of A. The singular values are the square roots of the eigenvalues of AAT, and the
number of their nonzero values equals the rank of the matrix A. The columns of U
are the eigenvectors of AAT, and the columns of V are the eigenvectors of AtA.
The SVD of a matrix expresses the fact that any linear transformation can be
decomposed into a rotation, a scaling operation, and another rotation.
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B.7 Pseudoinverse

Given an mxn matrix A whose SVD is (B.33), its (Moore—Penrose) pseudoinverse
AT is defined as

»+
K
vV[=t 0]U" forn<m

] Ut for m<n
(B.34)

where
2* = diag (07,05, ...,0,1,0,...,0)
and p is the number of nonzero singular values of A.
The pseudoinverse has the following properties:

AATA=A ATAAT=AT (AAT) =AAT (ATA) =ATA
(B.35)
Moreover, if the m x n matrix A has full rank (i.e., rank (A)) = min(m, n)), then

AYAAD ifm<n
At =¢ A1 if m=n (B.36)
(ATA)"IAT if m>n

A is the unique solution to the approximation problem
min [|[AX — L,|| (B.37)

where the minimum is taken over all complex n x m matrices X, and I,,, denotes
the m x m identity matrix.
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C.1 Complex random variables

A complex random variable (RV) has the form
Z=X+jY (C.D

where X and Y are real RVs with mean values p1x and py and variances V[X],
V[Y], respectively; Z can also be viewed as a two-dimensional vector RV (see
infra). The mean value and the variance of Z are defined as uz = E[Z] and
V[Z] & E[|Z — pz|?], respectively. We also have, directly from the definitions,

E[Z] = E[X] + jE[Y] (C2)
and
V[Z] = E[X?*] + E[Y?] - pk — 1% (C3)
so that!
V[Z] = V[X] + V[Y] (C4)
The cross-covariance of the two complex RVs W and Z is defined as
Rwz & E[(W — pw)(Z — pz)*] (C.5)
As a special case of this definition, we have the covariance of Z:
Rz 2 Rzz = V[Z] (C.6)
Moreover, we have
Rwz = Rzw (o))
If X is real Gaussian with mean p and variance o2, i.e., its pdf is
p(e) = e (eW?/20" (C.8)
2wo?

We write X ~ N(u,02), a notation stressing the fact that the pdf of X is com-
pletely specified by p and o2. If the real and imaginary parts of the complex RV
Z are independent with the same variance 02/2, and y = IE(Z ) € C, then we say
that Z is circularly symmetric, and we write Z ~ N¢(p, o ) Its pdf is the product
of its real and imaginary part:

p(z) = me—lz—#lz/vz (C.9

!To avoid any confusion, observe that if Z £ X + Y, then (C.4) holds only for uncorrelated X
and Y, while if Z £ X 4 ;Y then it holds in general.
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C.2 Random vectors

A random vector is a column vector x = (X1, X3, ..., X,) whose components
are random variables.

C.2.1 Real random vectors

A real random vector is a column vector x = (X1, X, ..., X,)’ whose compo-
nents are real random variables. Its mean value is defined as
by 2 (E[X1), E[X2],. .., E[X,))’ (C.10)

The expectation of the squared norm of x,
n
E [|x|”] = E [x'x] = } E[X?) (C.11)
i=1

is often referred to as the average energy of x. The covariance matrix of x is
defined as the (nonnegative-definite) n X n matrix

R £ E[(x — 1) (x — )] = E [xX] — prpepas, (C.12)

Notice that the diagonal elements of Ry are the variances of the components of x.

The n X n matrix
Cx £ E [xx] (C.13)

is called the correlation matrix of x. We observe that the trace of Cy equals the
average energy of x:

E[|x]|*] = Ex'x] = E[Tr (xx')] = Tr Cx (C.14)

The cross-covariance matrix of the two random vectors x and y, with dimensions
n and m, respectively, is defined as the n x m matrix

Ry 2 E[(x — )y — 1y)] = E[xy'] — pcstl, (C.15)

Real Gaussian random vectors

A real random vector x = (X7,..., X, )’ is called Gaussian if its components are
jointly Gaussian, that is, if their joint pdf is
1
p(x) = (2m)"/2det
1

T et RV {‘%T* (R (3 = pa) (x = ux)’]} (C.16)

o] - i R - )
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where R is a nonnegative definite n X n matrix, the covariance matrix of x. We
write x ~ N(p,, Rx), which stresses the fact that the pdf of a real Gaussian
random vector is completely specified by its mean value and its covariance matrix.

C.2.2 Complex random vectors

A complex random vector is a column vector z = (Z1, Za, . . ., Zn) whose com-
ponents are complex random variables. The covariance matrix of z is defined as
the nonegative-definite n x n matrix

R, £ E((z — p,)(z — p,)") = Elzz'] — p el (C.17)
The diagonal entries of R, are the variances of the entries of z. If z = x + jy,
R, = (Rx+ Ry) + j(Ryx — Rxy) (C.18)

Thus, knowledge of R, does not yield knowledge of Ry, Ry, Ryx, and Ryy, i€,
of the complete second-order statistics of z. The latter is completely specified if,
in addition to R, the pseudocovariance matrix

1’i’z £ E[(Z - /J'z)(z - uz),]
= (Rx - Ry) + j(Ryx + ny) (C.19)

is also known [C.5]. We have the following relations:

R, = iR(R.+R,)
R, = iRR,-R,)
Ry = 39(R.-R,) (€20
Ryx = 33(R,+R,)

Proper complex random vectors, endowed with the additional property
R,=0 (C.21)

(see [C.5] for a justification of the term), are completely specified by R, as far as
their second-order statistics are concerned.

Similar properties can be derived for the n x n matrix C, £ E[zz!], which is
called the correlation matrix of z.
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Complex Gaussian random vectors

A complex random vector z = x+jy € C™ is called Gaussian if its real part x and
imaginary part y are jointly Gaussian, or, equivalently, if the real random vector

zé[x]eR%
y

is Gaussian.

Unlike real Gaussian random vectors, their complex counterparts are not com-
pletely specified by their mean values and covariance matrices (the pseudocovari-
ance matrices are also needed). In fact, to specify the pdf of z, and hence of z, we
need, in addition to E|z], the covariance matrix of z:

Rx Ry ] (C.22)

R - |

R';cy Ry
which is completely specified by R, and R,. In order to be able to uniquely
determine Ry, Ry, and Ryy from R, we need to restrict our attention to the
subclass of proper Gaussian random vectors, also called circularly symmetric. The
covariance matrix of Z can be written as follows:

1} RR, -SSR,
R; = 5 [ SR, RR, J (C.23)
Hence, a circularly symmetric complex Gaussian random vector is characterized
by pi5 and R,. We write? z ~ N.(pt,, R,). The probability density function of z
is given by

p(z) = p(z)
= det(27R;) % exp {—(z — )Rz ~ I"i)}
= det(7R;) lexp {—(z — ) Rz — uz)} (C.24)

The following theorem [C.5] describes important properties of circularly sym-
metric Gaussian random vectors.

This notation is meant to avoid confusion with the real case and as a reminder that, in our context,
circular symmetry is a property of Gaussian complex random vectors.
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Theorem C.2.1 Ifz ~ N.(u,, Ry), then every affine transformation
y=Az+b

yields a circularly symmetric Gaussian RVy ~ N.(Au, + b, ARZAJ‘). Ifz, and
z9 are independent, circularly symmetric Gaussian RVs, the linear combination
6121 + asZy, where a1 # 0 and ay are complex numbers, is circularly symmetric
Gaussian.

C.3 Random matrices

A random matrix is a matrix whose entries are random variables. Consequently, a
random matrix is described by assigning the joint probability density function (pdf)
of its entries, which is especially easy when these are independent. For example, an
m X n matrix A, m < n, whose elements are independent identically distributed
N(0, 1) real RVs has pdf [C.2]

(27)~™ 2etr (AA'/2) (C.25)
An m x n matrix B with iid complex Gaussian N.(0, 1) entries has pdf [C.2]
() ™ etr (BBT) (C.26)
We have the following theorem [C.4]:

Theorem C.3.1 If A is a given m x m Hermitian matrix such that 1, + A > 0
and B is an m X n matrix whose entries are iid as N.(0, 1), then

Eletr (-ABB')] = det (I,, + A)™" (C.27)

The eigenvalues of a random matrix are also random variables and hence can
be described by their joint probability density function. An important special case
occurs is that of a complex Wishart matrix, that is, a random complex Hermitian
square m X m matrix W £ BB, with B as in (C.26). The pdf of the ordered
eigenvalues A = (A1,...,An), 0 < A; £ ... < Ap, of W is given by [C.2,C.8]

1 n—-m
Fm(n)—I‘me"p( ZA)I}A HlA~A)2 (C28)

where T'p(a) £ [T, 1T(a — i). The joint pdf of the unordered eigenvalues is
obtained from (C.28) by dividing it by m!.
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It is interesting to observe the limiting distribution of the eigenvalues of a Wishart
matrix as its dimensions grow to infinity. To do this, we define the empirical distri-
bution of the eigenvalues of an n x n random matrix A as the function F'()) that
yields the fraction of eigenvalues of A not exceeding A. Formally,

FO) £ T[{A(A) : M(A) < A} (€29

The empirical distribution is generally a random process. However, under certain
mild technical conditions [C.7], as n — oo the empirical distribution converges to
a nonrandom cumulative distribution function. For a Wishart matrix we have the
following theorem, a classic in random-matrix theory [C.2}:

Theorem C.3.2 Consider the sequence of n xm matrices Ay, with iid entries hav-
ing variances 1/n; moreover, let m = m(n), with lim,_..o m(n)/n = ¢ > 0 and
finite. Next, let B,, 2 AnAL. As n — oo, the empirical eigenvalue distribution of
B,, tends to the probability density function

P = (L= s 60) + VR A [0 — N5 (€30

with Ay 2 (Ve£1)%

The theorem that follows [C.1] describes an important asymptotic property of a
class of matrices. This is a special case of a general theory described in [C.3].

Theorem C.3.3 Let (H,,(s))ses be an independent family of n X n matrices whose
entries are iid complex Gaussian random variables with independent, equally dis-
tributed real and imaginary parts. Let A, (s) 2 f(H,(s)TH,(s)) where f is a
real continuous function on R. Let (B, (t))icy be a family of deterministic matri-
ces with eigenvalues A1(n,t), ..., A\p(n,t) such that forallt € T

sup max \;(n,t) < 0o
n i

and (By(t), BL.(t))ico has a limit distribution. Then A, (s) converges in distri-
bution almost surely to a compactly supported probability measure on R for each
s € 8 and, almost surely as n — oo,

%Tr (A,B,) — %]E ITr (A,)] - %E [Tt (B,)] (C31)
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D.1 Calculation of an expectation involving the () func-
tion

Define the random variable

X=> X (D.1)

where X; £ Ao?, A aconstant and o, i = 1,...,n, a set of independent, identi-
cally Rayleigh-distributed random variables with common mean value X £ E o2,
The RV X is chi-square-distributed with 27 degrees of freedom, i.e., its probability
density function is

1 R
P = e ©2

We have the following result [D.4, p. 781]:

EQ(VX) = (FT“YTLX_:I("_;M) (HT“)k D3)

k=0
where
A X
E Y D4
Iz 1% (D-4)
Moreover, for large enough X, we have
1 1 1
SA+m 1 S1-n)
and
’f(n—nk) B (Qn—l)
poard k n
so that 0 . L A\"
n —_—
wn=( ) (&) s

D.2 Numerical calculation of error probabilities

Consider the evaluation of the probability P = P(v > z), where v and z are
independent random variables whose moment-generating functions (MGFs)

®,(s) £ Elexp(—sv)] and ®,(s) £ E[exp(—sz)]
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are known. Defining A £ z — v, we have P = P(A < 0). We describe a method
for computing the value of P based on numerical integration. Assume that the
MGEF of A, which, due to the independence of v and x, can be written as

DA (s) 2 Elexp(—sA)] = &,(s) ®,(—s) (D.6)
is analytically known. Using the Laplace inversion formula, we obtain
1 [t
P(A <0) = —/ Aﬁzds (D.7)
27TJ c—joo s

where we assume that c is in the region of convergence (ROC) of ®(s). This
is given by the intersection of the ROC of ®,(s) and the ROC of ®,(—s). Inte-
gral (D.7) can be computed exactly by using the method of residues [D.3,D.8].
This method works well when the integrand exhibits simple poles, but it becomes
long and intricate when multiple poles or essential singularities are present. Here
we describe a general approach based on numerical calculation of the integral.
Expand the real and imaginary parts in (D.7). We have the following result:

1 [ ]
P(A < 0) = —/ Paletjw) 4,

2 J_o ¢+ jw
1 [ R{Pa(c+jw)} + wS{Pa(c+ jw)} o
27 J_oo 2+ w?

The change of variables w = ¢v/'1 — z2/z yields
1 [t V1-—z2
x

2m )

V1 — g2 o V1—2z2 dz
+ %’%(eﬂc . )” s (D.8)

and this integral can be approximated numerically by using a Gauss—Chebyshev
numerical quadrature rule with L nodes [D.6]. We have

P(A < 0)

I
= i > {%[‘I’Mc(l + 37))] + T S[@a(c(1 + m))]} + E; (D.9)
k=1

where 7, £ tan((k — 1/2)7/L), and E, — 0 as L — oo. In numerical calcula-
tions, a rule-of-thumb choice yields L = 64.
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Example D.1.

As a special case of the above, consider the calculation of the expectation

P 2 E[Q(/%)] (D.10)

where Q(y) is again the Gaussian tail function, i.e., Q(y) £ P(v > y) with v ~
N(0,1), and £ is a nonnegative random variable. Defining A £ ¢ — 12, we have
P = (1/2)P[A < 0]. Thus,

Da(s) = Be(s)B,0(—s) = B (s)(1 — 25)7/?

Here the ROC of ® 4 (s) includes the complex region defined by {0 < R(s) < 1/2}.
Therefore, we can safely assume 0 < ¢ < 1/2: a good choice is ¢ = 1/4, corre-
sponding to an integration line in the middle of the minimal ROC of ®a(s). The
latter integral can be evaluated numerically by using (D.9). a

D.3 Application: MIMO channel

Here we apply the general technique outlined above to calculate pairwise error
probabilities for MIMO channels affected by fading.

D.3.1 Independent-fading channel with coding

The channel equation can be written as
yi = Hix; + 2 i=1,...,N (D.11)

where N is the code block length, H; € C™ is the ith channel gain matrix, x; €
Ct is the ith transmitted symbol vector (each entry transmitted from a different
antenna), y; € C" is the ith received sample vector (each entry received from
a different antenna), and z; € C7 is the ith received noise sample vector (each
entry received from a different antenna). We assume that the channel gain matrices
H; are elementwise independent and independent of each other with [Hjl;, ~
N¢(0,1). Also, the noise samples are independent with [z]; ~ N.(0, Np).
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It is straightforward to obtain the PEP associated with the two code words X =

(x1,...,xn) and X = (X1, ...,%n) as follows:
P(X - X)
N
= P (Z{Hyz' - H%i|)? - [lys — Hix|*} < 0)
i=1

(Z{llﬂ(Xz— )+ 2l - ”Zi“2}<0)

= \l A ZHH ki (D.12)

Setting
€2 o N ZHH xi — %) (D.13)

a straightforward computation ylelds

N

De(s) = [0+ sll=: — =i/ (2No)] (D.14)
i=1

and the result of Example D.1 applies.

D.3.2 Block-fading channel with coding

Here we assume that the channel gain matrices H; are independent of the time
index 7 and are equal to H: under this assumption the channel equation is

Y=HX+7Z (D.15)

where H € C™, X = (x1,...,xy5) € CV,Y € C"V,and Z € C™V. We assume
iid entries [HJ;; ~ N(0, 1) and i.i.d. [Z];; ~ N(0, Np). We obtain

N HA
P(X—X)=E [Q (”\/TT(I)—I)] (D.16)
where A £ X — X.
Setting \
¢ [HAP (D.17)

2N,
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we can evaluate the PEP by resorting to (D.10). Apply Theorem C.3.1. First, notice
that £ can be written in the form

1 T
= § AATh
£ 2N, 2= h;AA™h]
1
= —[hy,...,h ][I, ® (AAD][hy,...,h,] (D.18)
2Ny
where h; denotes the ith row of matrix H. Setting z = [hy,...,h,], we have

p = 0and ¥ = E[zz!] = I,;. Finally, setting A = [I, ® (AA")]/(2Ny) in
(C.27), we obtain
O¢(s) £ Elexp(—s¢)] = Elexp(—sz'Az)]
= det(I+sZA)~!

= det [It +sAAl /2N0] - (D.19)

and the result of Example D.1 applies.
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Notations and Acronyms

=

B & R B R § R R R §

R

R

&

B 8 B § B § R R § B

§ § B R B §

a.s., Almost surely

ACS, Add-compare-select

APP, A posteriori probability

AWGN, Additive white Gaussian noise
BER, Bit error rate

BICM, Bit-interleaved coded modulation
BSC, Binary Symmetric Channel

cdf, Cumulative distribution function
CSI, Channel state information

FER, Frame-error rate

GSM, Global system for mobile com-
munications (a digital cellular telephony
standard)

GU, Geometrically uniform

iid, Independent and identically dis-
tributed

IS-136, An American digital cellular
telephony standard

LDPC, Low-density parity-check

LLR, Log-likelihood ratio

In, Natural logarithm

log, Logarithm in base 2

MD, Maximum-distance

ML, Maximum-likelihood

MGF, Moment-generating function
MIMO, Multiple-input, multiple-output
MMSE, Minimum-mean-square error

MPEG, A standard algorithm for coding
of moving pictures and associated audio

MRC, Maximum-ratio combining
MSE, Mean-square error

pdf, Probability density function
PEP, Pairwise error probability
PN, Pseudonoise

ROC, Region of convergence

B 5 B § B R B 8§ §

8

8

g

E §E R &R &8 §

&

B

RV, Random variable

RX, Reception

SIMO, Single-input, multiple-output
SISO, Soft-input, soft-output

SNR, Signal-to-noise ratio

SPA, Sum-product algorithm

TCM, Trellis-coded modulation

TX, Transmission

UMTS, A third-generation digital cellu-
lar telecommunication standard

VA, Viterbi algorithm

> nz; f (@1, ., Zn), Sum with respect
of all variables except x;

a”™, Conjugate of complex number a

(a)+ £ max(0,a), Equal to a ifa > 0,
equal to 0 otherwise.

A, (Moore-Penrose) pseudoinverse of
matrix A

A’, Transpose of matrix A

A, Conjugate (or Hermitian) transpose
of matrix A

||A.l|, Frobenius norm of matrix A

C, The set of complex numbers

dg, Euclidean distance

du, Hamming distance

deg g(D), Degree of polynomial g(D)

&5, Kronecker symbol (6;; = 1if i = j,
= ( otherwise)

E[X], Expectation of the random vari-
able X

etr () £ exp(Tr ()

& [Fy, The binary field {0, 1} equipped with

modulo-2 sum and product.

-+, Asymptotic power efficiency of a sig-
nal constellation

7, Asymptotic coding gain
I,., The n x n identity matrix
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Notations and acronyms

B B

B

&8 R § B B8 B &®& 7§

S, Imaginary part
log, Logarithm to base 2

Q(z) & (2m)71/% [ exp(—2%/2) dz,
The Gaussian tail function

Ry, Transmission rate, in bit/s

R, Real part

R, The set of real numbers

R, The set of nonnegative real numbers
V{X], Variance of the random variable X
W, Shannon bandwidth

wy, Hamming weight

£ Equal by definition

X ~ N(p,0?), X is areal Gaussian RV
with mean u and variance o2

& X ~ Ne(g,0%), X is a circularly dis-

tributed complex Gaussian RV with mean
p and E[| X |?] = o

X1Y, The RVs X and Y are statisti-
cally independent

a « b, a is proportional to b

[(z) £ [;°u""'e ™ du, The Gamma
function

p, Transmission rate, in bit/dimension
Tr (A), Trace of matrix A

vec(A), The column vector obtained by
stacking the columns of A on top of each
other

[A], Equal to 1 if proposition A is true,

" equal to 0 if it is false

A\ a, The set A without its element o
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A
A posteriori probability, 76
Adaptive coding and modulation, 15
Alamouti code, 351, 353, 354, 373, 375

B
Bandwidth, 38
equivalent noise, 47
Fourier, 46
Shannon, 46, 51, 194
BCJR algorithm, 134, 138, 257, 264, 267,
285
for binary systematic codes, 137
Beamforming, 331
Belief propagation, 267
BICM, 225
capacity, 228
Bit error rate, 45
Bound
Bhattacharyya, 44
Chernoft, 89
Singleton, 104, 120
union, 43
union-Bhattacharyya, 66

C

Capacity

of memoryless channels, 388

delay-limited, 333

of MIMO channels, 14
Catastrophicity, 161, 168
Cayley-Hamilton theorem, 401
Channel, 385

€-outage capacity, 86

flat in frequency, 31

flat in time, 31

additive white Gaussian noise, 39

AWGN, 11, 12,21

bandlimited, 53

capacity, 50
binary symmetric, 387, 388
capacity, 388
block fading, 327, 335
regular, 334
block-fading, 100, 176
capacity, 8, 50, 70, 388, 390
constellation-constrained, 56, 94
ergodic, 115
zero-outage, 115
continuous
entropy, 389
continuous-time, 20
cutoff rate, 391
discrete-time, 20
entropy
conditional, 386
input, 385
joint, 385
output, 385
equivocation, 386
ergodic, 32, 85, 101, 305, 311, 328
capacity, 85
fading, 11
capacity, 92, 96, 98
Rayleigh, 84
frequency flat, slow, 84
frequency-selective, 20, 351
impulse response, 20
infinitely noisy, 388
inversion, 106
linear, 20
memoryless, 39
MIMO, 302
capacity, 305, 308, 310-312, 314, 316-
325, 338, 392, 393
completely correlated, 306
reciprocity, 310, 322
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rich scattering, 306 irregular, 274
separately correlated, 306, 323 parallel concatenated, 248
uncorrelated keyhole, 307 random, 8
mutual information Reed-Muller, 145
instantaneous, 86, 325 Reed—Solomon, 10
narrowband, 84 Reed-Muller, 362
noiseless, 388 Reed-Solomon, 109
non-time-selective, frequency-selective, repeat-accumulate, 248
20 repetition, 6, 72, 126, 246, 247
non-time-selective, non-frequency-selective, single-parity-check, 72, 143, 246, 247
21 space—time, 15, 344, 350
nonergodic, 32, 85, 86, 306, 325 linear, 354
overspread, 32 trellis, 356
Rayleigh fading, 91 systematic, 71, 127, 255
reliability function, 391 trellis
Rice, 307 factor graph, 246
space-selective, 31 turbo, 10, 248, 281
state information, 12, 87, 95, 106, 307, universe, 74, 75
335, 338, 343, 356, 392 word, 4, 40
stationary memoryless, 129, 255, 284, future, 141
385 past, 141
time-invariant, 20 state, 141
time-selective, 20, 30 Coding
time-selective, frequency selective, 21 error-control, 6
transition function, 385 error-correcting, 6
underspread, 32 gain, 11, 57, 91, 188, 194
wireless, 11 asymptotic, 58
Chi-square pdf, 113, 175 Coherence
Cholesky factorization, 337, 365, 404 bandwidth, 30
Code distance, 30
algebraic, 67 time, 30
binary, 42, 67 Concatenation
block, 40 parallel, 281, 291
capacity-approaching, 10 serial, 282, 291
concatenated, 10 Constellation
convolutional, 10, 158, 165, 194, 350 dimensionality, 40
best known, 177 distance-uniform, 63
nonlinear, 208 geometrically uniform, 62, 64, 65
punctured, 177 multidimensional, 199
state diagram, 159 Voronoi-uniform, 63
tail biting, 183
trellis, 159 D
trellis termination, 181, 182 Decoder
diversity, 13 SISO, 284, 295
Hamming, 73, 241 Decoding
in a signal space, 4 algebraic, 5
in the signal space, 40 iterative, 10

LDPC, 10, 243, 274 MAP, 236
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soft, 5 TCM, 196
symbol MAP, 76 turbo, 282

symbol-by-symbol, 7
Delay
constraint, 101, 105, 331
operator, 162
spread, 30
Demodulation, 5, 39
coherent, 84
Demodulator, 38
Differential
decoding, 201
encoding, 200-202
Distance
Bhattacharyya, 41
enumerator function, 66
Euclidean, 13, 40, 42, 74, 347
minimum, 41, 45
free, 188, 222
Hamming, 13, 41, 42, 73, 74
block, 103
minimum, 41, 91
Diversity, 109
code, 91
combining, 111
equal-gain, 116
maximal-ratio, 112
selection, 117
delay, 350
frequency, 111
polarization, 110
space, 110
time, 111
Doppler
shift, 23
spread, 30
Doppler shift, 23

E
Efficiency
bandwidth, 48, 49, 194
power, 48, 49, 67, 69, 188
Encoder
catastrophic, 168
convolutional, 164, 197, 248
minimal, 168
polynomial, 167
systematic, 166, 168

Entropy, 384
continuous channels, 389
Error
detection, 72
event, 169, 210, 222
floor, 289, 290
state diagram, 222
Error probability, 12, 39, 42, 44, 49, 210, 295,
391
bit, 39, 45
block-fading channel, 102
fading channels, 88
in TCM, 209, 210
of convolutional codes, 169
pairwise, 13, 66, 170, 345
MIMO channel, 418
symbol, 7
word, 7
Euclidean distance, 211
criterion, 348, 349
EXIT chart, 292, 295, 296
Extrinsic message, 256, 285, 292, 296

F

Factor graph, 236, 237
cycles, 238, 243, 251, 261
normal, 238-241

Fading, 22, 24
figure, 29
frequency-selective, 30
models, 26

Frobenius norm, 102, 344, 404

G
Gain
diversity, in MIMO systems, 14, 304,
347, 368, 369
rate, in MIMO systems, 14, 304, 368,
369
Galois field, 74
Gauss—Chebyshev quadrature rule, 417
Gauss—Jordan elimination, 402
Gauss-Jordan elimination, 71
Gaussian random vector, 409
Gaussian tail function, 44, 418
Generator matrix, 68, 127, 164, 168
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Index

Geometric uniformity, 62, 217

H

Hadamard inequality, 393, 403
Hamming

block distance, 176

distance

minimum, 289

weight, 170

Hard decision, 5

1
Information
measure, 384
mutual, 387
outage, 86
rate, 38
Interference
intersymbol, 303, 351
multiple-access, 303
Interleaver, 10, 98, 248, 281, 285, 290
Intrinsic message, 256, 284
Iverson function, 238, 240, 241, 244, 262,
263

J
Jensen inequality, 93

L
Labeling
Gray, 46, 227
quasi-Gray, 227
Ungerboeck, 227
Laplace inversion formula, 417

M
MAP rule, 76
Marginalization, 8, 236
Matrix
column-uniform, 216
definite, 402
determinant, 399
diagonal, 402
Hermitian, 402
orthogonal, 402
QR decomposition, 405
random, 412
eigenvalues, 412
rank, 400

row echelon form, 402
row-uniform, 216
scalar product, 403
singular-value decomposition, 405
spectral decomposition, 405
symmetric, 402
trace, 399
uniform, 216
unitary, 402
Wishart, 412, 413
Max~sum algorithm, 262
Modulation, 38
binary antipodal, 114
multilevel, 10
multiresolution, 16
Moment generating function, 416
Moore—Penrose pseudoinverse, 358, 406
Multipath propagation, 12, 22

N
Nakagami pdf, 29

O
Orthogonal design, 353, 354, 374, 375
Outage
capacity, 326, 333
probability, 86, 105, 325, 326, 331, 333

P

Parity-check matrix, 71, 128, 240, 243
Path loss, 21
Power constraint

long-term, 331, 332

short-term, 331
Pseudo-noise sequence, 33
PSK

M-ary, 47

asymmetric, 65

binary, 201

octonary, 65

quaternary, 42, 64, 65, 78

Q
QR decomposition, 405

R
Random vector
circularly symmetric, 411
complex Gaussian, 411
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proper complex, 410 power-limited, 54
Rank-and-determinant criterion, 346, 349
Rayleigh T
fading, 12 Tanner graph, 241, 255
pdf, 27, 84 TCM . .
normalized, 27 coding gain, 194
Receiver encoder, 196
interface, in MIMO, 358, 363 transparent to rotations, 206
D-BLAST, 366, 374 transparent to rotations, 203
iterative, 367 trellis
MMSE, 359, 360 transparent to rotations, 205
V-BLAST, 363-365, 367, 374 Transfer function of a graph, 172
zero-forcing, 359, 360 Trellis, 126, 158
Region branch metric, 130
decision, 43 Fomplexity, 139
Voronoi, 43 m_T_CM, 189
Repetition function, 239, 251 minimal, 139, 143
Rice of a block code, 126, 127
factor, 28 of a convolutional code, 158, 159
pdf, 27 parallel transitions, 189, 191, 194, 196,

198, 208, 209, 212
permutation, 144
S sectionalization, 144
tail-biting, 151, 246
Trellis-coded modulation, 188
Turbo algorithm, 283, 286, 288
convergence, 288

normalized, 28

Set partitioning, 196

transparent to rotations, 204
Shadowing, 22
Shift register, 159

Signal U
binary, 45, Unequal error protection, 16
con§tellat10n, 2,38 Ungerboeck rules, 196, 209
design, 39 Union bound, 210
elementary, 4
energy, 38 v
labeling, 38 Viterbi algorithm, 129, 130, 138, 152, 158,
Signal-to-noise ratio, 47, 49, 303 208, 267, 358
Signals ACS step, 130
binary antipodal, 42, 45, 89, 96 optimality, 131
orthogonal, 54, 103 sliding window, 133
Singular-value decomposition, 308, 405
Sphere W
hardening, 52 Water filling, 97, 309
packing, 52 Weight
Subcode, 74 enumerator, 75
cosets, 74 enumerator function, 171
Sum-—product algorithm, 249, 278 Hamming, 73
Syndrome, 71, 128, 279
System z

bandwidth-limited, 10, 54 Zero-outage capacity, 107





